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Abstract

Radar networks received increasing attention in recent years as they can out-

perform single monostatic or bistatic systems. Further attention is being ded-

icated to these systems as an application of the MIMO concept, well know

in communications for increasing the capacity of the channel and improving

the overall quality of the connection. However, it is here shown that radar

network can take advantage not only from the angular diversity in observing

the target, but also from a variety of ways of processing the received signals. The

number of devices comprising the network has also been taken into the analysis.

Detection and false alarm are evaluated in noise only and clutter from a theoretical

and simulated point of view. Particular attention is dedicated to the statistics

behind the processing. Experiments have been performed to evaluate practical

applications of the proposed processing approaches and to validate assumptions

made in the theoretical analysis. In particular, the radar network used for

gathering real data is made up of two transmitters and three receivers. More than

two transmitters are well known to generate mutual interference and therefore

require additional efforts to mitigate the system self-interference. However,

this allowed studying aspects of multistatic clutter, such as correlation, which

represent a first and novel insight in this topic. Moreover, two approaches for

localizing targets have been developed. Whilst the first is a graphic approach, the

second is hybrid numerical (partially decentralized, partially centralized) which

is clearly shown to improve dramatically the single radar accuracy. Finally the

effects of exchanging angular with frequency diversity are shown as well in some

particular cases. This led to develop the Frequency MIMO and the Frequency

Diverse Array, according to the separation of two consecutive frequencies. The

latter is a brand new topic in technical literature, which is attracting the interest

of the technical community because of its potential to generate range-dependant

patterns. Both the latter systems can be used in radar-designing to improve the

agility and the efficiency of the radar.
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Chapter 1
Introduction

The concept of using radiofrequency waves in order to detect metal and
other objects was first developed at the beginning of the last century. The
word RADAR (RAdio Detection And Ranging) itself was coined many
years later, in 1941. However, since the 1930s there has been a high interest
in investigating and improving the capabilities of these systems. The basic
principle of a radar system is to transmit an electromagnetic signal and
receive a copy after reflection from a target. The time to receive the echo
determines the range of the target. The transmitter and the receiver can
be co-located (monostatic radars) or separated (bistatic radars). The basic
principles of radars are described in Chapter 3.

Radar systems have been developed constantly over time and nowa-
days are applied in a wide variety of ways. Applications include air
traffic control, target recognition and tracking, weather monitoring, imag-
ing, global navigation, automatic systems guidance, road speed control,
through-the-wall imaging, etc. . . [1, 2, 3, 4, 5]. Originally designed, devel-
oped and built with analogue technology, in the past radar systems could
generally perform one or two main tasks only. However, in recent years,
they have been taking advantage of developments in digital technology. In
particular, a combination of digital signal processing and array antennas
has allowed radar systems to become much more versatile. As a conse-
quence future generations of radar systems are being designed to perform
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multiple tasks. These include detection, tracking and target classification
performed in a variety of modes (area surveillance, volume search, etc.)
and often simultaneously. These are the so-called ‘multi-role’ radars or
‘multi-function’ radars (although there is not a strict definition yet).

1.1 Overview and motivation

This thesis examines a relatively new concept in which the transmitters and
receivers comprising the radar system are distributed in space. In this way
they form a networked or distributed sensor. This provides new degrees
of freedom in design. In this thesis these new freedoms are explored by
evaluating the resulting performance compared to that of a monostatic
system. In particular a concept termed MIMO (Multiple Input – Multiple
Output) has received a lot of attention in literature, often with significant
claims being made for detection performance. Thus in this thesis the
MIMO concept is compared with other forms of processing applied to a
distributed radar. In this way MIMO radar can be evaluated in comparison
with other approaches.

1.1.1 The radar network concept

A radar network consists of transmitters and receivers distributed over a
geographic area such that it is possible to view targets at different aspect
angles. Transmitters and receivers can be co-located or not. A schematic
example of such a network is shown in Figure 1.1. Signal processing
techniques for radar networks has received considerable attention and this
has spawned a wide variety of system structures and processing methods
that can be employed [29, 36, 37].

In this case, the same data acquired by a radar network can be processed
in a number of different ways, leading to a range of performance levels.
In this thesis we describe and compare four different signal processing
approaches. These vary from the processing of fully coherent signals to
processing incoherent signals. The processing approaches can be ‘cen-
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1.1 Overview and motivation Introduction

Figure 1.1: From the monostatic to the MIMO concept

tralized’ (i.e. the detection decision is taken at a single processing unit)
or ‘decentralized’ (decisions are taken at individual receivers in the radar
network across all possible mono/bistatic pairs). The statistical properties
of the signals resulting from the differing signal processing approaches lead
to substantial differences in their performance in terms of FAR (False Alarm
Rate) and even more so when subject to either accidental or deliberate
interference (jamming). Such an analysis allows a detailed examination
of the benefits and drawbacks associated with radar networks and the
various possible processing schemes. This provides a simple but thorough
interrogation enabling the potential of radar networks in terms of their
false alarm performance to be assessed.

Results for monostatic systems are also reported to provide a well
understood benchmark. The achievable detection performance is com-
puted as a function of (i) processing method, (ii) Radar Cross Section
(RCS) model of the target and (iii) the number of nodes comprising the
radar network. Furthermore, the sensitivity of each system is calculated to
show the extent of the range coverage that these differing systems could
potentially achieve. In order to provide a fair comparison of the processing
types, the total Effective Radiated Power (ERP) is maintained constant in
transmission regardless of the number of nodes comprising the network. In
other words, a monostatic radar with a fixed power in transmission Pt and
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a specific antenna gain G is compared to a radar network comprised by a
number of devices (say L) all able to transmit and receive, using a fraction of

the power in transmission
(Pt

L

)
and with antennas with a fraction of the gain(G

L

)
. Such a decision has been taken in order to provide a fairer comparison

between the radar network and the monostatic performance. Actually it
would not be hard to demonstrate that, whenever each transmitter of the
radar network is fed with as much power as the monostatic case and
the tx/rx antennas have the same gain, the performance is expected to be
higher, simply for the reason that an increased amount of total energy is
injected into the system.

Figures 1.2 and 1.3 show an example of the antenna patterns when
the original antenna is split in L = 4 smaller antennas. As is known,
not only is the gain lower, but also the pattern or angular resolution is
wider. Therefore two significant drawbacks of applying this approach
when comparing with traditional monostatic radar, are: (i) the reduced
SNR expected in every receiver and (ii) the smaller angular resolution of
each antenna. However, as seen in Chapters 5 and 8, the increased number
of processable signals together with the achieved angular diversity can
recover performance. In Chapter 4 the considered processing approaches
for this concept of radar systems are reported in detail.

1.1.2 The MIMO concept

MIMO is a recently developed concept that has attracted much interest in
application to communication systems, e.g. [41] to [52]. This is because
it allows enhanced performance of a communication channel in terms of
data transfer (capacity) without requiring additional bandwidth or power
in transmission. This technique employs a number of antennas, say M, in
transmission and others, say N, in reception.

MIMO has recently been applied to radar systems, attracting much
attention (e.g. [53] to [58]). Therefore the ideas behind MIMO and dis-
tributed radar are very similar and form a core part of the investigation
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Figure 1.2: Monostatic beam

Figure 1.3: MIMO single antenna beam
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of this thesis. A more complete discussion on the research on this topic
is reported in Chapter 2. In the following Section an overview of the
principles of the MIMO communication system is presented, as applied
within this thesis. This allows a more fundamental understanding of the
MIMO concept as applied to radar to be developed. However, it has to be
pointed out clearly that a detailed description and evaluation of the MIMO
communication systems is outside the scope of this thesis. In particular,
this investigation aims to focus on the possible application of this concept
to radar networks to allow new exploitation of sensor resources, increasing
accuracy, parameter estimation, tolerance to jamming, etc. . . Overall, this
thesis examines spatial diversity as a new degree of freedom.

MIMO concept as a communication system

As stated above, it has been extensively reported in the literature that
MIMO systems show improvements in channel capacity and subsequent
performance of communication systems in several ways (Chapter 2). They
transmit and receive a number of signals (e.g. x1, x2, x3, . . . ) on differing
elements simultaneously. At the receiver a MIMO decoder operates on
each of the antenna elements. MIMO antennas are spaced by multiple
of wavelengths, usually between 1 and 10. This allows, in an indoor
environment, independent samples of the interfering signals in reception.
Each antenna element receives signals coming from any of the transmit
elements, thus:

r1 = h11x1 + h12x2 + . . . + h1MxM + n1

r2 = h21x1 + h22x2 + . . . + h2MxM + n2
...

...
...

rN = hN1x1 + hN2x2 + . . . + hNMxM + nN

(1.1)

where hi j are the channel weights and nk the possible disturbances incoming
in the receiver (noise, jammers, multipath, clutter). This can be written in
a compact way as:
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r = Hx + n. (1.2)

By treating the set of channels as a matrix the individual data streams
xi can be recovered. To do this the disturbance vector n and the channel
matrix H must be estimated and respectively subtracted and inverted to
recover the individual data streams from the vector r. This is equivalent
to solving N simultaneous equations with M unknowns. The matrix can
only be inverted or pseudo-inverted if there are sufficient paths between
the transmitter and receiver.

MIMO is currently widely used in indoor wireless applications, since
it allows a dramatic increase of the capacity of the channel and reduces
the limitations due to fading, multipath and other secondary effects. This
technology is still being developed, with increasing potential, as MUltiuser
MIMO (MU-MIMO), Network MIMO or Intelligent Antennas MIMO (IA-
MIMO), [50, 51] with different applications.

MIMO: from communications to radar systems

MIMO basic principles are being applied to radar systems and a number of
publications have recently begun to emerge, e.g. [53] to [70]. These suggest
there are advantages to using this technique derived from spatial or other
forms of diveristy. As much as in wireless communications, the spacing of
antennas is crucial in the application to radar systems. Some authors, on
the contrary, apply the MIMO technique to an array of antennas spacing the
elements up to a few wavelengths as in wireless communications. Other
authors point out that the distance d between antenna elements in a MIMO
system, for achieving independent angular measurements of the RCS of a
target and therefore independency of the received signals, is determined
by

d ≥
λR
D
, (1.3)
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where λ is the wavelength, R is the target range and D the target’s main
dimension. As a consequence, assuming for instance a 20-meter wide
target at 100 km and a wavelength of 3 cm, the spacing d between the
antenna elements should be 150 m. This allows the target to be seen under
different aspect angles and, consequently, to gather diverse measurements
of the RCS. In this scenario, it is also clear that the coherency between the
antennas is lost.

In the migration from the MIMO communication concept to the MIMO
radar concept, another point that requires stressing is that in radar systems
it is not of interest to maximize the capacity of the channel. This may seem
debatable, but it is extremely important because a number of concepts that
characterize the MIMO communication system have to be understood in
depth before applying them to radar systems. In fact, the maximization of
the channel information is the core of MIMO as developed in communica-
tions. The channel capacity of radar is extremely low and is not of interest.
This is due, of course, to the ultimate purpose of a radar system which is
detecting, tracking and sometimes classifying targets in an unknown or
non-cooperative environment, rather than transmitting and/or receiving
data from cooperative devices.

Other authors (e.g. [67] to [69]) have been investigating MIMO as a
technique based on two arrays of antennas transmitting and receiving
different codes from different (sub)elements. Here the distance between
the elements is kept relatively small, i.e. in the order of the wavelength, and
therefore angular diversity cannot be achieved. However this application,
exploiting either orthogonal or partially correlated codes (e.g. [59] to [68]),
has been shown to overcome the standard array of antenna performance
and to provide an extra degree of freedom, allowing formation of multiple
beams at the same time which can be used for tracking or jammer rejection.
This is not considered further in this thesis.
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MIMO concept as a radar system

When evaluating the MIMO concept from a communication to a radar
basis, equation (1.3) is crucial. This equation states clearly that it is
not possible to achieve angular diversity and consequently independent
measurements of the RCS of a target, when antennas are closely spaced.
This is the real basis of MIMO radar as independent samples of a target
can be combined to provide a more accurate estimate of the underlying
RCS. This is also valid for clutter and multipath, since the proximity of the
antennas does not allow decorrelation of all the received signals. Therefore
in radar systems, the antennas should be separated by distances not
comparable with the wavelength. This generates a number of secondary
effects, which require at least a strong awareness, that have not been taken
into account in the analysis of MIMO as a communication technique.

First of all, the coherency between the antenna elements is totally
lost. This is due to the increased distance that scrambles the received
phases from element to element. Secondly, whenever more than one
code (waveform) is used in transmission, these cannot be considered as
temporally ‘orthogonal’ anymore, even if they have been designed with
this property. Actually, two codes, say wi(t) and wk(t) are called ‘orthogonal’
when the following property applies:∫ +∞

−∞

w∗i (t) · wk (t) dt = 0, (1.4)

where ∗ is the conjugate operator.
In radar systems employing several waveforms, each received signal

goes through a bank of matched filters performing all the possible cross-
correlations between the received signal itself and the reference wave-
forms, as in equation (1.5)

Rwi,k (τ) = wi (t) × wk (t) =

∫ +∞

−∞

w′i (t) wk (t + τ) dt, (1.5)

where × is the cross-correlation function and τ is a delay. If the trans-
mitting antennas are closely spaced, the delay in the time of arrival of all
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1.2 Aim Introduction

the waveforms, assumed transmitted at the same time, is negligible and
equation (1.5) can be expressed as equation (1.4) which still holds. As
a result, when a peak in the cross-correlation of a waveform with itself
occurs, the cross-correlations with all the other used waveform is 0 and
therefore there are no interferences (noise apart).

When the antennas are located far away from one another, transmission
and reception are not synchronized anymore because the paths between
the transmitters, the target and the receivers have different lengths, usually
much more than a resolution cell. In this case the corresponding different
times of arrival of the echoes generate delays mismatching the orthogo-
nality of the codes. Being unaware of this issue may lead to detection
of multiple targets which in fact can be generated by the echoes from
one target only. Of course it is possible to estimate the peak of the auto-
correlation of a waveform and cancel it in the other received signals, but it
requires additional efforts in signal processing.

1.2 Aim

This research examines distributed radar concepts in terms of performance
and system utility. The overall aim of the work described here is to compare
the performance, under various practical operating conditions, of different
ways of implementing a MIMO radar system and netted radar concept.
Exploring the potential allowed by introducing extra degree of freedom
as in the MIMO case, an overlook to the advantages of a couple of novel
‘frequency MIMO’ concepts are also taken into consideration. These are
designed to provide alternative benefits to radar systems without requiring
multiple distributed sensors, notwithstanding the possibilities of mutual
integration of the two concepts.
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1.3 Thesis layout Introduction

1.3 Thesis layout

Chapter 2 reviews the literature produced so far for MIMO systems in com-
munications and radar systems. Additional publications on mono/bistatic
radars are reported as well.

In Chapter 3 basic features of the mono/bistatic radar systems are
reported. This provides a platform to have a better understanding of
the multistatic scenarios described later in this thesis.

In Chapters 4, 5 and 6 we discuss of the number of processing that it
is possible to apply to a radar network. Their performance as a function
of signal to noise ratio has been evaluated for various models of targets
including the introduction of secondary effects such as clutter. Chapter 7
reports the achievable coverage.

The UCL radar network, i.e. the system used for acquiring experimental
data, is described in Chapter 8. In Chapters 9 and 10 an analysis of the
acquired multistatic data is performed for both validating the theoretical
results achieved in the previous Chapters and introducing a way for
localization and tracking with multistatic systems.

Chapter 11 describes a novel form of frequency MIMO as applied to an
array of antennas.

Finally in Chapter 12 the conclusions of the work produced so far are
reported with suggestions for further improvements and possible future
developments.

1.4 Achievements of this work

In Chapters 5, 6 and 7 it is demonstrated that radar networks are not
required to be made up of a number of nodes to outperform conventional
monostatic systems. In particular, these Chapters demonstrate that it is
possible to compromise on the complexity of the network, still allowing
improved performance.

Few is known on correlation of multistatic clutter samples from a joint
illuminated area. Chapter 9 shows first results on this topic. In particular
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1.4 Achievements of this work Introduction

it is here demonstrated through real data processing that the statistics and
the correlation of multistatic clutter signals from the same area can have
different features. As a consequence, this is a starting point for further
research.

Chapter 10 provides two different ways for localizing a moving target
exploiting the information of six multistatic signals. The achieved accuracy
is here demonstrated to be at least an order of magnitude greater than
that of a monostatic system. In addition it is shown that it is possible
to reconstruct the full Doppler vector reconstruction. Attention has been
dedicated to a suboptimal algorithm which can speed up the processing
time making it more suitable for online radar signal processing.

Finally, Chapter 11 reports a brand new concept for arrays of antennas.
The results shown here are a first promising insight in the potential of these
systems.
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Chapter 2
Literature review

In this section a summary of the literature is presented, covering radar
networks, MIMO systems, together with a brief survey on general radar
systems.

The literature review is divided into four parts. The first part is
made of general publications in radar. The second discusses clutter in
monostatic and bistatic systems. The third is a comprehensive critique of
the papers published on the netted radar concept. Finally the last part
focuses specifically on MIMO as a radar system concept.

The theory underlying radar systems is reported in a number of pub-
lications. Because radar is a quite mature technology, a variety of books
is currently on the market and no attempt is made here to review all
the literature published on radar. However, among these, [1, 2, 3] are
a significant survey of monostatic radar systems. As well, [4, 5] are a
benchmark for the principles of bistatic systems. Chapter 3 reports an
explanation of the most relevant concepts developed, as applied in this
thesis, in order to improve the understanding of the results presented in
the rest of this work. The principles of information theory and statistical
signal processing, respectively, are covered comprehensively in [6, 7, 8].

Publications from [9] to [22] are significant with respect to clutter as
utilized in this thesis. Whereas clutter is present in most of the radar
applications, many studies have been carried out over the last 60 years.
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As a consequence, robust theories and a number of models have been
proposed to describe this phenomenon, although not all problems have
been solved. Section 3.5 reports a brief survey of the principal models
applied nowadays. Little is still known about the detailed pulse-to-pulse
behaviour of bistatic clutter compared to monostatic measurements from
the same area. Even less is known about the actual relationships between
simultaneous measurements of monostatic and bistatic clutter from the
same area and this is presented in Chapter 9. This is a very important issue
for optimizing the processing of received echoes in a multistatic system.
References [23] to [28] provide a basic survey of the most common detection
approaches, which are presented in detail in Section 3.6. However, a
thorough analysis of simulated mono-bistatic clutter is outside the scope
of this thesis.

In recent times the concept of linking two or more radars together is
finding new applications and therefore further stages of developments
are ongoing. Whilst in the past radar networks were comprised of many
receivers but one transmitter only, recent works on waveform diversity
allow multiple sources of transmission at the same time.

“Multistatic systems” cover a broad range of radar systems, such as

(i) networks of monostatic radars (sometimes termed “netted radars”
and already used in diverse applications),

(ii) systems comprised of multiple transmitters and receivers, each widely
separated in space from one another and

(iii) single transmitter and multiple receivers.

The first and the third cases have already been investigated, at least
partially. However, the capabilities of autonomous integrated systems of
multiple transmitters and receivers are still to be fully evaluated. In [29]
the author defines a Multisite Radar System as “a radar system including
several spatially separated transmitting, receiving and (or) transmitting-
receiving facilities where information of each target from all sensors are
fused and jointly processed”. When the system is comprised of more than
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one transmitter, the requirement of using multiple waveforms can lead to
an overall optimization of the resources, but can, on the other hand, provide
additional problems in system design. Indeed, to make this work, it must
be possible to distinguish the different signals in each receiver, avoiding
cross-detection of targets. In addition, the difference in time of arrival must
be adequately mitigated in the matched filtering to avoid the echo from the
waveform “a” being recognized as a target after the matched filter applied
to the waveform “b”. This leads to the conclusion that with multiple
and widely separated radar devices very low cross-correlation codes must
be used. [30] and [31] focus on this issue, suggesting quasi-orthogonal
codes so to allow multiple simultaneous transmission. Alternatively,
transmitters may employ pseudo-random codes, such as in [32], mitigating
this effect. However, it should be pointed out that whilst additional
processing techniques may allow cross-interference cancellation, losses
may arise from consistent differences in the measured RCS, reducing the
low cross-correlation characteristic of the codes. An additional technique
for separating signals after matched filtering is “frequency diversity”,
when each transmitter works on a different carrier frequency separated by
more than the bandwidth of each carrier. In this case waveform diversity
is not important anymore, as the separation is due to the multiple carriers.
Unfortunately, the higher cost in terms of frequency occupation does not
always make this solution easily feasible.

A good introduction to netted radars, including applications for track-
ing, is in [33, 34, 35] where basic concepts are introduced. However, they
investigate, principally, the case of one transmitter and multiple bistatic
receivers. More detailed studies on the topic of multistatic radar, e.g. from
[36] to[40], provide an insight to scheduling, hardware, sensitivity and the
ambiguity function.

Finally, multistatic collection and analysis of data is a concept that
has been recently redeveloped in MIMO systems. It is recognized that
a huge quantity of papers and publications has been produced in the
literature about MIMO for communication systems. The improvements
in performance (achievable in terms of capacity of the communication
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channel) are shown to be very significant. Publications about MIMO as
applied to radar systems have become relevant only in the last couple of
years, as interest in this topic has developed only recently. For brevity and
relevance to this research, we only examine the literature relevant to the
MIMO and distributed radar concept.

Publications from [41] to [52] are representative of MIMO communica-
tion systems. These are of limited interest if applied directly to the topic
discussed in this thesis. However, they provide a starting point to eval-
uate the migration from MIMO communication to MIMO radar systems.
In particular, [41] describes in detail the background to MIMO wireless
communications. The other publications focus on specific problems, such
as multipath, spectral efficiency and interference cancellation. Whereas
the MIMO concept has been developed for communication systems, most
of these publications develop and investigate theoretical aspects which are
not directly related to radar and have to be carefully interpreted if they are
to be applied to radar systems.

Most relevant for the purposes of this thesis are the first papers on
MIMO radar systems, e.g. from [53] to [58], in which the authors stress the
point that a MIMO radar system operating in the “spatial diversity” mode
manages to take advantage of effects, such as glint, that in conventional
radar systems introduce a loss in achievable performance. This part will
be reviewed in detail as it is the most relevant for this thesis.

So far it generally stands out that a distributed MIMO radar system
makes use of “orthogonal” signals on transmit and has M transmitting
and N receiving antennas in order to be able to distinguish between the
signals with a bank of matched filters. Furthermore, the RCS responses of
a common target are assumed to be independent and to have uncorrelated
amplitudes and phases.

In [53], that is the starting point of the concept of MIMO radar systems,
the authors develop a general approach to the problem together with a
model for the received signal under the assumption of additional white
Gaussian noise. Here the most relevant concept is that individual radars
have to be far away from one another in order to exploit spatial diversity.
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This is clearly stated when the authors demonstrate that the spacing dt

between the antennas should be

dt ≥
λR
D

(2.1)

where R is the distance of the target, λ the wavelength, D the dimension
of the target. Here the authors highlight in few paragraphs that with
MIMO systems it is possible to distinguish more than one object within
one resolution cell. This is an idea that should have been developed as
the benefits that it might yield to the concept of MIMO as applied to radar
systems are considerable. Unfortunately the background of this paper is in
communications systems. This is made clear when the Cramer-Rao bound
for the performance is developed under the hypothesis of a multistatic
Swerling II-distributed RCS.

Publications [54] and [55], from the same authors, investigate further
the MIMO application to radar systems. As [55] is a more complete work
on spatially distributed MIMO radar systems, where the authors express
the MIMO radar system they developed in full, also expanding concepts
present in the previous works. It is worth giving a full and deep critique
of this paper as it represents the starting point of this work.

In the paper it is assumed that there are M transmitters and N receivers
and that the waveforms are distinguishable after matched filtering. The
authors often refer to “orthogonal” waveforms, as in the communications
system. In a radar system background it is more accurate to speak about
“low-cross-correlation” waveforms, as every incoming signal is passed into
one or more matched filters in parallel that perform a correlation with one
or more waveforms. If the target is present, all the transmitted waveforms
are received: the incoming signal is processed through a filter bank and
M signals are available at its output. Then, considering this process for N
receiving antennas, a total of MN signals can be processed by the entire
system. In these papers all the outputs are packed into a vector x, where
the qth element can be expressed as below:
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xq = rk ∗ sh (2.2)

where ∗ is the convolution operator, rk is the signal received by the kth

antenna, sh is the kth transmitted waveform, k = 1..N, h = 1..M and q =

(k − 1)M + h. Under these assumptions x is as follows:

x =

n, H0,√
E
Mα + n, H1,

(2.3)

where E is the total supplied power, H1/0 is the hypothesis of target respec-
tively present/not-present, n is Gaussian white complex noise, supposed
to be ∼ CN

{
0, σ2

nIMN
}
, and α a value taking into account all the parameters

of the radar equation, including the phase-shift due to the path length and
the transmitted energy of the signal and

x =


x1

x2

. . .

xMN

 , n =


n1

n2

. . .

nMN

 , α =

α1

α2

. . .

αMN

 . (2.4)

In these papers, for the sake of simplicity, α has been assumed as ∼
CN

{
0, σ2

nIMN
}
, i.e. normalization has been applied to the signal and noise

powers.
Furthermore here the authors present a LRT (Likelihood Ratio Test)

developed for this system and the analysis of its resulting performance.
It is convenient here to report in more detail some achievements as they
provide a background and a starting point for the results presented in this
thesis. As is well known, the optimal detector in this sense is given by

log
p(r|H1)
p(r|H0)

H1

R

H0

λ, (2.5)

where p(r|H1/0) is the Probability Density Function (PDF) under the hy-
potheses of target respectively present/not-present, and λ is the threshold
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set on the Probability of False Alarm (PFA). Under the assumptions on n
it is demonstrated that this structure for the detector is equivalent to the
following:

‖x‖2
H1

R

H0

λ, (2.6)

From equation (2.3) it has been inferred that, under the assumption
for n and α, x is the realization of a Gaussian random variable even
when the target is present. This enables one to write in closed form the
performance of spatial MIMO. From a mere statistical point of view the
sum of the squared value of L Gaussian random variables generates a chi-
square random variable with L degrees of freedom. In the specific case, the
PDF of ξ = ‖x‖2, where each element of x is a complex Gaussian random
variable, will be a chi-squared PDF with 2MN degrees of freedom. This
can be expressed as follows:

p(ξ) = p(‖x‖2) =


σ2

n
2 χ

2
2MN(ξ), H0,(

E
2M +

σ2
n

2

)
χ2

2MN(ξ), H1,
(2.7)

where the variances have been divided by a factor 2 in order to consider
both real and imaginary parts of the complex Gaussian variables. Then
the PFA (Probability of False Alarm) can be written as:

PFA (λ) = Pr
{
σ2

n

2
χ2

2MN(ξ) ≥ λ
}

= Pr
{
χ2

2MN(ξ) ≥
2λ
σ2

n

}
, (2.8)

so, inverting this formula, the threshold guaranteeing a certain FAR is
given by:

λ =
σ2

n

2
F−1
χ2

2MN
(1 − PFA) , (2.9)

where F−1
χ2

2MN
(z) denotes the inverse cumulative distribution of the chi-

squared PDF computed in z.
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As x has a chi-squared distribution when the target is present (equation
(2.7)), it is possible to achieve a closed form also for the PD (Probability of
Detection):

PD (λ) = Pr
{(

E
2M

+
σ2

n

2

)
χ2

2MN(ξ) > λ
}

=

= Pr
χ2

2MN(ξ) >
2λ

E
M + σ2

n

 =

= 1 − Fχ2
2MN

 σ2
n

E
M + σ2

n
F−1
χ2

2MN
(1 − PFA)

 . (2.10)

This is the most preliminary result in [55].
Moreover, in these publications comparisons between MIMO system

research work and an array of antennas and a MISO (Multiple Input, Single
Output) system are reported. Although the results represent a first sight
into the potential of MIMO radar, these publications are still written for a
communication approach to the problem, as, for example, plots of PD vs.
PFA are reported.

At a first stage a Gaussian model of the variables under observation
is a reasonable choice, as a closed form can be very useful to compute
and then to compare system performance. Unfortunately most targets do
not have a noise-like scattering behaviour and the PDF associated with
their RCS measurements can be complicated. As soon as secondary or
additional non-Gaussian effects such as those of high resolution clutter are
considered, it can be extremely hard, if not impossible, to achieve a closed
form expression for the performance.

In [57, 58] a similar MIMO concept as examined in this thesis is devel-
oped. Here, the authors distinguish a MIMO system with widely separated
antennas from a multistatic system through “the joint processing of signals
for transmission and reception”. At the same time they provide a quite
precise description of their system. They refine the law for determining the
minimum distance between the elements to allow angular diversity, they
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also discuss the ambiguity function of such a system and finally provide a
comparison of the detectors.

Papers [59, 60] stress the necessity of having a number of waveforms
with particular low cross correlation properties in order to make MIMO
work. Although authors here do not investigate the effects of having many
antennas in transmission and reception, they develop particular polyphase
codes, with a certain grade of tolerance to Doppler. As they point out,
without low-cross-correlation codes, MIMO radar systems are not feasible
unless it is possible to distinguish the several transmitted waveforms. This
requirement is clearly necessary for merging and exploiting in a further
processing all the multistatic and increased information gathered.

It has to be acknowledged that other authors, as from [61] to [70],
used the MIMO as an array of antennas for beamforming using multiple
orthogonal signals. [71] is a good book for understanding the basic
principles of these electronic systems. These are vaguely or not at all related
to the work proposed in these pages, so just a brief summary is given.
Within these publications, a significant survey of MIMO radar systems with
both co-located and separated antennas is provided in [61] by contributions
from different authors. Of interest are also (i) the formalization in [62] of
the model of the channel matrixes as function of time and of their effect
on the final PDF of the received signal and (ii) the overall analysis of the
MIMO communication channel in [63].

In [64] the authors develop an expression for the performance in case
of a general coloured noise. This paper includes also a first study on
performance in clutter, although it is still done from a communication
perspective, expressing the Chernoff upper and lower bound limits for
the probability of detection. A description of the mutual information
exchangeable is provided as well. A limit of this paper is that it considers
a fully known and constant channel matrix, while, especially in the radar
field, it is well known that it may change in time. Thus in real systems it is
necessary to trade this knowledge with an estimation of the real channel
matrix that has to be appropriately updated. This publication provides a
deeper overview of the capacities of the MIMO system and nonetheless a
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better formulation of the system model.
As the MIMO radar is a relatively new concept in the scientific literature,

most of the papers published at the beginning of this work did not take
into account many fundamental aspects, such as the CFAR capabilities of
the overall system, the performance achievable in most of the standard op-
erative configurations, the response to different target models and the loss
of performance due to mismatches in estimating most of the parameters
involved in the several usages of a radar system.

Finally, it is worth mentioning the publication [70]. Here the authors
provide a precise, concise and quite exhaustive description of MIMO with
co-located antennas, addressing many of the issues described in previous
publications through the search of eigenvalues and eigenvectors of a partic-
ular system. In particular, terming the multi-waveform transmitted signals
as s, the best configuration for such a system in terms of maximization of
SNR and optimization of the resources in transmission and reception is
given by the solution of the following constrained system

maxs

{
s′E

{
HHH

}
s
}

s.t.


E
{
HHH

}
s = λmaxs (transmitter)

Hw = R−1HT (receiver),
H = HTHw,

(2.11)

where H is the Hermitian operator, HT is the multi-waveform channel
matrix and R is the multiwaveform nuisance correlation matrix, which
can include clutter, multipath and jammerers, E{x} is the expected value
of x and finally λmax is the maximum of the eigenvalues of E{HHH}. Al-
though this result comes directly from an extension of the single-waveform
problem, the analysis provided by the authors suggests to use multiple
orthogonal waveforms in a first moment where the environment is still
unknown and therefore to switch to more conventional methods or reduce
the number of transmitted waveforms to achieve the best results reducing
the overall complexity of the system. However, whereas this topic is of
marginal interest for this thesis, publications on MIMO radar systems with
co-located antennas will not be discussed further.
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In the existing literature, there is a lack of a complete and exhaustive
comparison between the possible processing approaches of the information
collected by a radar network. In particular, the achievable potential of
these systems has never been reported as a function of the number of the
devices comprising the network under the constraint of a constant ERP.
This thesis attempts to fill this gap in Chapters 5, 6 and 7 where this topic is
discussed under different scenarios. As well, whilst clutter in monostatic
system has been widely investigated, the relationships between multistatic
clutter have not been studied before. Chapter 9 is a first insight into this
subject and it is a starting point for further research to come. Whilst a
lot has been written about the concept of localization in radar networks,
few publications report real data processing. For the last two purposes,
real data collection has been necessary. As a consequence, a number of
experiments has been planned and carried out. Finally, in this thesis
the Frequency Diverse Array concept is introduced and developed. A
lot is known about the employment of antenna arrays in radar system.
As well, space diversity and frequency diversity are topic which have
already been introduced and discussed in technical literature. However,
the hybridization of frequency and space diversity within the same antenna
array is a brand new topic with significant potential, which is here reported
in Chapter 11.
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Chapter 3
Fundamentals of monostatic and
bistatic radars

In this Chapter the basic principles of monostatic and bistatic radars are
described. This provides a well understood context in which multistatic
systems can be subsequently introduced and examined.

The underlying concept of radar systems is to transmit an electromag-
netic signal and receive the echo from objects that it intercepts, generally,
in an unknown environment. The radar system then processes the signals
appropriately to acquire as much information as possible. In most common
applications, radar systems are applied to detect, locate and track targets.
Alternatively another wide range of usage is in the field of imaging from
aircraft or spacecraft systems. Radar systems can transmit Continuous
Wave (CW) or pulses, i.e. transmitting for a relatively short time and
receiving for the remaining time before another pulse is transmitted. In
the rest of this work CW radars are not considered. In pulsed systems,
therefore, it may appear convenient to transmit a pulse as short as possible
to increase the resolution. However, a number of constraints limiting
the lower duration of a single pulse are to be taken into account: the
most common are (i) the frequency occupation of the signal, that can be
considered at first as inversely proportional to its time duration (Section
3.2) and (ii) the peak and average power that the electronic physical devices
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are capable of handle.
In this Chapter a survey of the most common issues of monostatic

and bistatic systems and the trade-offs generally applied to compromise
between the different requirements is reported. In particular, Section 3.1
introduces the matched filtering concept as in radar systems, in Section
3.2 the resolution as function of the bandwidth is described, in Section
3.3 the Doppler shift due to the velocity of a target is reported, Section
3.4 shows how the RCS of a target may change in multistatic systems,
Section 3.5 presents the knowledge in modelling clutter and finally 3.6
gives an overview of the possible detection approaches that is possible to
implement in a radar system.

3.1 The matched filter

After the transmission of a waveform s(t), with duration Ts, the receiving
antenna gathers all the returning echoes. As in all electronic devices,
thermal noise is always present in reception. Therefore, a simple model of
the incoming signal r(t) can be written as follows:

r (t) = H0/1αs (t − T) + n (t) , (3.1)

α is an attenuating factor as in Section 3.4, n(t) is the thermal noise and
s(t−T) is the echo of the target received at the time T after the transmission,
with

T =
2R
c
, (3.2)

where R is the target distance and c the speed of light.
It is widely recognized that ‘matched’ filtering the received signal is

the best approach to maximize the Signal-to-Noise Ratio (SNR), under
the hypothesis of white noise n. In this process the received signal r(t)
is processed through a filter h(t) so to maximize the SNR. Therefore the
matched filter is such that, if
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r̂ (t) = ŝ (t) + n̂ (t) , (3.3)

where

ŝ (t) = αs (t − T) ∗ h (t) (3.4)

and

n̂ (t) = n (t) ∗ h (t) , (3.5)

the following applies:

h (t) = arg
{

max
h(t)

Pŝ

Pn̂

}
= arg

max
h(t)

∫
∞

−∞
|ŝ (t)|2 dt∫

∞

−∞
|n̂ (t)|2 dt

 . (3.6)

Under the assumption of white Gaussian noise, it can be demonstrated [1]
that the optimum matched filter can be expressed as

h(t) = s∗(−t). (3.7)

Using a causality constraint, equation (3.7) can be written as

h(t) = s∗(Ts − t), (3.8)

where Ts is the length of s(t).
The matched filtering process is valid for both monostatic and bistatic

systems.

3.2 Resolution

In pulsed radar the delay between the transmission and the reception of the
backscattered waveform is directly dependent on the range of the target.
For a non-compressed pulse of duration τ, the resolution ∆r achievable for
discriminating two targets relatively close can be expressed [1] as:
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∆r =
cτ

2 cos(β/2)
(3.9)

where c is the speed of light, β is the bistatic angle between the transmitter,
the target and the receiver and the bandwidth of the signal B can be
expressed as

B =
1
τ
, (3.10)

that leads to the conclusion that the resolution is given by

∆r =
c

2B cos(β/2)
. (3.11)

In the monostatic case β = 0 and therefore the following well-known
expression is achieved:

∆r =
c

2B
. (3.12)

Thus the resolving power of any waveform depends on its frequency
bandwidth, rather than its time duration. This cannot be of unlimited
width for a number of technical and organizational reasons (e.g. available
frequencies for transmission, maximum bandwidth of the amplifiers and
the antennas comprising the system, other communication devices using
contiguous frequencies, fractional band ratio, etc. . .).

Matched filtering is used to maximize the SNR by compressing long
duration pulses that have been frequency modulated such that their band-
width is greater than that implied by the inverse of their pulse length.
Hence they achieve improved range resolution.

3.3 Doppler frequency

After receiving a number of echoes from a target, it is possible to process
them coherently to gather information about its Doppler frequency, and
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(a) Bistatic iso-range curve (b) Bistatic geometry for Doppler

Figure 3.1: Bistatic geometry

consequently its radial velocity. In general terms, the Doppler shift can be
expressed as

fD =
1
λ

∂(Rtx + Rrx)
∂t

. (3.13)

Therefore, in a bistatic configuration a zero Doppler frequency is asso-
ciated to targets moving on the iso-range curves which are well known to
be ellipses [4]. Rearranging equation (3.13), the Doppler frequency can be
expressed as

fD =
2V
λ

cos (δ) cos
(
β

2

)
, (3.14)

where δ is the angle between the velocity vector of the target and bisector
of β, as in Figure 3.1. If β = 0,

fD =
2V
λ

cos (δ) , (3.15)

that is the well known monostatic case.
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3.4 Radar Cross Section

There are diverse reasons behind the different RCS responses of a target
as a function of a number of the parameters of the radar and viewing
geometry. In a monostatic system differences in aspect angles produce a
variety of backscattering levels. Whilst for particular reflectors, such as a
dihedral or a flat plate (Figures 3.2 and 3.3 respectively) the backscattering
variation as a function of the aspect angle is deterministic, common targets,
such as airplanes, helicopters, tanks, etc. . . are known to change rapidly,
according to range and geometry. Even a change in the viewing angle of
few milliradians can result in a severe impact on the measurable amplitude
of the signal [1] due to fluctuation. Figure 3.4 provides a simplified example
of this concept.

In concept, bistatic RCS has the same behaviour as the monostatic.
In particular, it has to be pointed out that simultaneous monostatic and
bistatic measurements usually provides significantly different levels in the
echo of the signal. A simple example is the flat plate target [4] where
the monostatic RCS achieves its maximum when the measurement is
orthogonal to the plate. On the contrary, the bistatic measurements achieve
its peak when the transmitter is specular to the receiver and the plate is in
line with the baseline within the two.
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3.5 Clutter

Clutter is unwanted echo from anything than the desired target. It has been
deeply investigated in the past and is present in most radar applications.
Being reflected from the environment in which the targets are present,
clutter cannot usually be rejected easily. Actually the clutter is usually
represented as the sum of the elemental scatterers. As a consequence
of the movement of each single scatterer, a Doppler shift is generated
in the received signal. The spectrogram of the clutter can be spread
across multiple frequencies, because of the single scatterers’ movement.
In some applications, such as weather forecasting, the main Doppler shift
can be used to estimate the speed of the wind. However, in most cases,
the Doppler component due to clutter can mask real targets. Recently,
new sophisticated ways for removing clutter, creating specific nulls in the
pattern of the antenna at specific times, such as STAP (Space Time Adaptive
Processing) [73, 74], have been developed. In the following sections,
general model of clutter are presented, together with some approximation
of the way in which Doppler and wind speed are linked.

In more general terms, it should be pointed out that, although the
knowledge about monostatic clutter is quite exhaustive, little is known
about bistatic clutter samples acquired from the same area and at the same
time, i.e. as for the data presented here. For this purpose, Section 9 provides
some initial insight to this topic.

3.5.1 Clutter models

Four main models for describing clutter analytically [9, 10, 22] can be
considered. These models are widely adopted not only because they are
a practical tool for describing clutter statistically, but also because they fit
the reality quite well. These are: (i) Gaussian, generally used for ground
clutter, (ii) K and (iii) Log-normal, usually describing sea clutter, and finally
(iv) Weibull, which can model both in different conditions.
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Figure 3.2: Monostatic RCS of a dihedral

Figure 3.3: Monostatic RCS of a flat square plate
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Image from Wikimedia Commons.

Free reproduction allowed at the time of printing this thesis

Figure 3.4: Monostatic RCS

It is widely accepted that echoes from the clutter can be written as the
product of two independent random variables. Commonly it is written:

c =
√
τx, (3.16)

where x is an m-dimensional complex Gaussian circular vector, termed
‘speckle’ and τ is the ‘texture’ and represents the power associated to the
speckle. Statistically, x can be described as a 0-mean value vector with unit
variance and correlation matrix Mx, where clearly

Mx = E
{
xxH

}
. (3.17)

Many authors use the compact writing

x ∼ CN {0,Mx} . (3.18)

It is worth pointing out that τ is a non-negative variable. The product
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model as in equation (3.16) has been shown to describe accurately the scat-
tering mechanism [9, 10, 11, 16, 22]. In addition, whilst for sea clutter the
speckle x decorrelates in a short time, i.e. in the order of a few milliseconds,
the texture τdecorrelates in a longer time, in the order of seconds, so within
the Time On Target (TOT), τ can be considered constant [11, 22].

Therefore, the four models referred to at the beginning of this Section
differ substantially. These are as in Table 3.1, where the mean value and
the variance are as in the Table 3.2.

Distribution Expression

Gaussian p (τ) =
τ
στ

exp
{
−
τ2

2στ

}
K p (τ) =

1
Γ (ν)

(
ν
µ

)ν
τν−1 exp

{
−
ν
µ
τ

}
Weibull p (τ) =

ν
q

(
τ
q

)ν−1

exp
{
−

(
τ
q

)ν}
Log-Normal p (τ) =

1
√

2πτσlog

exp

−
[
log(τ) − T

]2

2σ2
log


Table 3.1: Common probability density functions for the texture

Distribution Mean Variance
Gaussian 0 στ

K µ
µ2

ν

Weibull qΓ
(
1 +

1
ν

)
= µ q2Γ

(
1 +

2
ν

)
− µ2

Log-Normal exp
{
T + σ2

log/2
}

= µ exp
{
σ2

log − 1
}
µ2

Table 3.2: Texture statistics

In these Tables, στ and σlog are the variances of the Gaussian and Log-
Normal PDFs, respectively, ν is the shape parameter for both K and Weibull
distributions, µ is the expected value of the K distribution, q is the scale
parameter of the Weibull and finally T is the expected value of the Log-
Normal PDF.

47



3.5 Clutter Fundamentals of monostatic and bistatic radars

3.5.2 Spectral distribution

As reported at the beginning of this Section, clutter is generally comprised
of the coherent sum of the echoes from a number of elemental scatterers.
These includes leaves, drops of rain, snow flakes and/or sea waves. For the
sake of simplicity, assume that the radar platform is not moving: whenever
these single components move within the same range cell, they add a
Doppler shifted reflection on the clutter echoes. Whereas the speed of
the single elements can vary significantly, it is usually possible to describe
statistically the spectrum of the clutter as a random variable with a mean
value, which is dependent on the average speed of the elements, and a
variance, which has been shown [3] to be a function not only of the type of
clutter and its average speed, but also of a number of radar parameters such
as the wavelength, the angular velocity of the antenna and its aperture. It
is clear that fixed clutter, such as buildings or rocks, do not have a Doppler
shift and therefore in this case the spectrum is concentrated at the frequency
f = 0. However, in high reflectivity scenarios, the clutter sidelobes can be
manifest in non-zero Doppler cells.

As a result, the spectrogram of the clutter can be spread over a number
of frequencies. In addition it is possible that two or more kinds of clutter
(e.g. ground and rain clutter) are present within the same range cell. In
this case the spectrogram can be made up of two or more components, as
in a bimodal distribution.

Typical models for describing the spectrum Sc( f ) of the clutter are (i) the
Dirac function (fixed clutter), which is also the simplest and less realistic
assumption, (ii) Gaussian, (iii) two-sided exponential, (iv) power law, (v)
autoregressive, (vi) Lorentzian (i.e., autoregressive of order 1) and finally
and (vii) Voigtian (convolution of the Gaussian and Lorentzian) [22], as
reported in Table 3.3, where A is a general constant that takes into account
the power of the clutter spectrum (in some formulas, for convenience, it
groups other constants which are usually reported as separated), f0 its the
centroid of the spectrum, β is a constant linked to the decay of the clutter
spectrum, λ is the wavelength, α is generally 2 or 3 in sea clutter modelling,
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Dirac Sc( f ) = Aδ( f )

Gaussian Sc( f ) =
A
σ f

exp

− ( f − f0)2

2σ2
f


2-sided exponential Sc( f ) =

βλ

4
exp

{
−
βλ

2

∣∣∣ f ∣∣∣}
Power law Sc( f ) = A/ f α

Autoregressive c[n] = εn −

p∑
i=1

a jc[n − j]

Lorentzian Sc( f ) =
A

( f − f0)2 + A

Voigtian Sc( f ) =
A
π

∫ +∞

−∞

e−x2(
f− f0
fV
−x

)2
+A2

dx

Table 3.3: Typical models for the clutter spectrum

p usually varies between 2 and 5, εn is white noise and finally fV is a scale
frequency for the Voigtian function.

Figure 3.5 shows an asymmetrical spectrum, which is in general typical
of sea clutter, of real clutter data (HH and VV components) and the
corresponding fittings with sums of a Gaussian and a Voigtian functions.

3.6 Detection approach

In reception two assumptions maybe usually considered in processing the
signals: target present or target not present. This is commonly described
as follows:

r(t) =

 n(t), H0,

s(t − t0) + n(t), H1,
(3.19)

where n groups all the possible non desired target signals. Under this
assumption, the radar approach to signal processing consists of keeping
the probability that a target is declared when it is not present as low as
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(a) HH spectrum and fitting (b) VV spectrum and fitting

Images courtesy of Prof. Maria Sabrina Greco, Università di Pisa

Figure 3.5: Clutter spectra and fittings

possible, i.e. within predetermined limits, allowing at the same time a
reasonably high probability of detecting the target when it is present.

Let one assume that a detection is declared when received signal r̃,
given by

r̃ = r ∗ h = (s + n) ∗ h = s̃ + ñ, (3.20)

is greater than a given threshold θ. The symbol ∗ is representative of the
convolution operator. The decision rule may be written as follows:|r̃|2 ≥ θ ⇒ D1

|r̃|2 < θ ⇒ D0.
(3.21)

Therefore in a decision process, four events are possible. These are as
in Table 3.4.
Correct decisions are obviously desirable. However, as noise and the target
echoes are random variables, rather than deterministic signals, incorrect
decisions can be made and therefore the decision rule has to be designed
to avoid them as much as possible. From a statistical point of view, then,
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H0 H1

D0 Correct Incorrect
D1 Incorrect Correct

Table 3.4: Decisions in the decision process

Table 3.4 can be written as Table 3.5 where the probabilities P of correct or
wrong detection are expressed more explicitly.

H0 H1

D0 P(|r̃|2 < θ|H0) = P(|ñ|2 < θ) P(|r̃|2 < θ|H1) = P(|s̃ + ñ|2 < θ)
D1 P(|r̃|2 < θ|H0) = P(|ñ|2 ≥ θ) P(|r̃|2 < θ|H1) = P(|s̃ + ñ|2 ≥ θ)

Table 3.5: Statistics in the decision process

Usually these probabilities are referred as:

(i) Probability of false alarm: PFA = P(|ñ|2 ≥ θ) – This is the probability
of declaring detection when no target is present;

(ii) Probability of detection: PD = P(|s̃ + ñ|2 ≥ θ) – This is the probability
of a correct detection of a target;

(iii) Probability of missed detection: PMD = P(|s̃ + ñ|2 < θ) – This is the
probability of missing the detection of a target.

These probabilities can also be expressed as follows:

PFA =
∫ +∞

θ
p(y = |ñ|2) dy,

PD =
∫ +∞

θ
p(y = |s̃ + ñ|2) dy,

PMD =
∫ θ

0
p(y = |s̃ + ñ|2) dy = 1 − PD.

(3.22)

It is worth highlighting, clearly, the case of equation (3.22), the following
two set of limits:
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 lim
θ→0

PFA = 1,

lim
θ→0

PD = 1,
(3.23)

and  lim
θ→+∞

PFA = 0,

lim
θ→+∞

PD = 0.
(3.24)

These limits are fundamental in radar systems, since they clearly demon-
strate that it is not possible on average to achieve full detection of a target
whilst keeping the number of false alarms moderate. Alternatively, it is not
possible to avoid completely false alarms still being able to detect targets.

As a consequence, in radar systems it is common to use the Neyman-
Pearson criterion, which consists of (i) fixing a threshold θ so to constrain
the PFA within a predetermined value and at the same time (ii) minimizing
the PMD, i.e. maximizing the PD. Whereas

|s̃ + ñ|2 ≤ (|s̃| + |ñ|)2 = |ñ|2
(√

SNR + 1
)2

(3.25)

and

|s + n|2 ≥ (|s̃| − |ñ|)2 = |ñ|2
(√

SNR − 1
)2
, (3.26)

maximizing the SNR increases the PD. For this purposes, a matched filter
as described in 3.1 is usually employed. A detector with a limited PFA

is usually termed as guaranteeing the CFAR (Constant False Alarm Rate)
condition. From a mathematical point of view, it can be shown that the
Neyman Pearson approach is a problem of constrained optimization using
a Lagrange multiplier, say ξ. The rule can be expressed as [3]

max
θ

{
P
(
|r̃|2 ≥ θ|H1

)
− ξ

[
P
(
|r̃|2 ≥ θ|H0

)
− PFA

]}
. (3.27)

The most used CFAR techniques are the LRT (Likely Ratio Test), its
more general version GLRT (Generalized LRT) and the CA-CFAR (Cell
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Average CFAR). The first two rules decide according to

p (r̃|H1)
p (r̃|H0)

H1

R

H0

θLRT (3.28)

in the LRT case or to

max
P

{
p (r̃|H1)

}
max

P

{
p (r̃|H0)

} H1

R

H0

θGLRT (3.29)

in the GLRT case, where each pdf is maximized using the parameters on
which P depends. The CA-CFAR will be described and used in Chapter 6.

Other decision rules, such as the MEP (Minimum Error Probability)
and the Bayes minimum risk, are widely described in literature of decision
theory, but are rarely applied in radar systems. In particular, the MEP
minimizes the following total error probability of error PE:

Pe = P (H0) P (D1|H0) + P (H1) P (D0|H1) , (3.30)

i.e. the sum of PFA and PMD, weighted with the probability of the events H0

and H1, respectively. Whereas

P (D0|H1) = PMD = 1 − PD = 1 − P (D1|H1) , (3.31)

equation (3.30) can be rewritten as

PE = P (H0) P (D1|H0) + P (H1) (1 − P (D1|H1)) =

= P (H1) + {P (H0) P (D1|H0) + P (H1) P (D1|H1)} =
= P (H1) + {P (H0) PFA + P (H1) PD} .

(3.32)

By minimizing the part in curly brackets, this criterion is equivalent to

the Neyman-Pearson’s when P (H0) and P (H1) are known and equal to
1
2

.
However, since this is not always the case in radar system and the two
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latter probabilities are unknown, this detector, although efficient, is not
commonly used.

Similarly The Bayer minimum risk is uncommon. This detector tries to
minimize the following cost function C:

C =

1∑
i=0

1∑
j=0

Ci, jP
(
H j

)
P
(
Di|H j

)
. (3.33)

Whereas the costs of correct decisions cannot be different from 0, i.e. C0,0 =

C1,1 = 0, the cost function can be reduced to

C = C1,0P (H0) P (D1|H0) + C0,1P (H1) P (D0|H1) =

= C1,0P (H0) PFA + C0,1P (H1) PMD,
(3.34)

which is a generalized version of the MEP detector.
Finally, it has to be pointed out that in more general terms the decision

rule can be more complicated. A generalized expression can be

f (r̃) ≥ θ (r̃) ⇒ D1

f (r̃) < θ (r̃) ⇒ D0,
(3.35)

where r is a vector or a matrix comprised of either a number of received
signals at different pulses, ranges or elementary antennas (the latter within
the same array) and f (x) and θ(x) are arbitrary (but appropriate) functions
of x.

This Chapter the elementary concepts of radar systems have been pre-
sented. The information presented is a starting point to understand the
basic concepts of the investigation of the rest of this work.
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Chapter 4
Systems types

Recently the idea that a radar network can offer improved and more
versatile performance has been progressively developed (e.g. from [29]
to [40]). A radar network usually consists of a number of transmitters and
receivers that can be co-located or not. Although a robust synchronization
has to be performed and an increased quantity of data has to be jointly pro-
cessed, the potential achievable benefits can be worth these efforts. These
are, for example, (i) an improved detection capability due to multistatic
scintillation of the target, that enhance the possibilities of getting one or
more sharp echoes from the target, (ii) joint estimation of the target position
and DOA (Direction Of Arrival), that increases the accuracy of location over
a single nodes and, consequently, (iii) the potential capability of resolving
multiple targets within a single resolution cell compared to a single node,
(iv) increased information using the same bandwidth occupation and (v)
increased ECCM (Electronic Counter Counter Measures) capabilities due
to the physical and electronic vulnerability.

In this Chapter the processing approaches considered in this thesis are
reported. These are:

(i) MIMO approach, which operates incoherently,

(ii) Netted Radar approaches (NR and RPNR), operating coherently and
finally
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(iii) Decentralized Radar Network (DRN) approach, operating as the sum
of single devices.

These concepts are to be described as in Sections 4.1, 4.2 and 4.3.
To provide a well-known benchmark, these systems will be compared
throughout this thesis against a monostatic radar. As a result the same
total amount of ERP (Effective Radiated Power) has been assigned to the
transmitting antennas, regardless of their number. Unless specified, the
reference setup can be schematically represented as in Figure 4.1. Here
it is possible to see that radars are scattered in space and transmit their
own waveform, so that it would be possible to distinguish signals after
receive. Sections 4.4 and 4.5 describe an alternative way of exploiting
diversity: here the spatial diversity is exchanged with frequency diversity.
As seen in the following Chapter, the results when bandwidths do and do
not overlap will be only briefly examined in this work. However, this will
lead to further considerations about the achievable improvements when
any kind of diversity is introduced in the system.

Each antenna points at the target from a different aspect angle, so that
the measurement of RCS into a certain receiver can differ from the other
measurements by several dB or more, i.e. independent spatial samples of
the scattering from the target are obtained. In previous work, e.g. [1, 3] the
target RCS model has been assumed to be noise-like. This is a questionable
assumption but provides a useful jump off point from previously published
research.

The mathematical description for Sections 4.1, 4.2 and 4.3 is formulated
as follows. The received signal rk (t) can be expressed as:

rk (t) =

M∑
m=1

αk,m (t) sm

(
t −

Rm,k

c

)
+ nk (t) , (4.1)

supposing sm (t) is the mth transmitted signal, nk (t) is white Gaussian noise,
Rm,k the distance covered by the signal, and
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Figure 4.1: MIMO spatial diversity, NR and DRN configuration

αk,m (σ) =

√
Pt

M

√
GtxGrxλ2σ

(4π)3 R2
m−taR

2
ta−k

exp
{
− j

2πRm,k

λ

}
(4.2)

is a coefficient including the amplitude and the phase of the received
signal, where Gtx and Grx are respectively the gains of the transmitting and
receiving antennas, σ the RCS of the target, Pt the transmitted power, Rm−ta

and Rta−k the distance tx-target and target-rx respectively. From equation
(4.1) it is clear that the autocorrelation of the received signal will be made
up of four terms, these are:

1. sum of the auto-correlations Rs,m (τ) of the transmitted waveforms,

where s,m stands for the mth signal, i.e.
M∑

m=1

‖αk,m (σ) ‖2Rs,m (τ),

2. the sum of the cross-correlation between two of the transmitted

waveforms, i.e.
M∑

m=1

M∑
n=1
n,m

αk,mα
∗

k,nRm,n
(
τ + τm,n,k

)
, where τm,n,k takes into
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account the difference in the paths,

3. the sum of the cross-correlation between the transmitted waveforms

and the noise, i.e.
M∑

m=1

αk,m (σ) sm

(
t −

Rm,k

c

)
× nk (t), and finally

4. the auto-correlation of the noise, i.e. σ2
nδ (τ), where δ (τ) is 1 for τ = 0,

0 otherwise.

So, all together, it is possible to write the auto-correlation of the received
signal as

Rk(τ) = rk(t) × rk(t) =

=

M∑
m=1

‖αk,m (σ) ‖2Rs,m (τ) +

M∑
m=1

M∑
n=1
n,m

αk,mα
∗

k,nRm,n
(
τ + τm,n,k

)
+

+

M∑
m=1

αk,m (σ) sm

(
t −

Rm,k

c

)
× nk (t) + σ2

nδ (τ) , (4.3)

where × is the correlation operator, function of the time delay τ . As the
received signal is processed in each receiver through a bank of filters that
are matched to the different waveforms, it makes more sense to express
the result of the cross-correlation of the received signal with one, say the
mth, of the transmitted waveforms. This is:

rk(t) ⊗ sm(t) =

= αk,mRm(t) + αk,mRm,n(t + τm,n,k) + nk(t) ⊗ sm

(
t −

Rm,k

c

)
(4.4)

The two latter elements in equation (4.4) represent the noise in the
processing scheme. Apart from the term directly dependant from the
noise/jamming present in reception, this equation highlights how the use
of low-cross-correlation codes is vital for the system concept in order not
to affect the discrimination of the transmitted waveforms and therefore
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to lose all the benefits of multistatic data collection. This aspect has been
treated in [30, 32]

4.1 Spatial MIMO system

MIMO radar does not have a strict definition. The MIMO spatial diversity
model that will be described is a form of MIMO that has appeared in
the literature [53, 54, 55] and hence provides a useful start point for
these studies. This form of MIMO radar system exploits measurements
of independent samples of target scattering as the basis for improving
the probability of detection. Data are processed incoherently and in a
centralized architecture, i.e. there is a central processing unit collecting the
receiver outputs from all the nodes and returning a decision about the
presence or absence of a target.

4.2 Netted radar systems

Two other models that have been developed have the same physical
layout as the spatial diversity MIMO but instead use conventional coherent
processing.

In these systems the received signals are processed coherently. As the
model of the received signal is the same as in equation (4.1), the results
of processing after filtering are the same as those in equation (4.4). In this
research, two different kinds of netted radar are considered: the first one is
termed “coherent Netted Radar”, while the second one is the “Re-Phased
coherent Netted Radar”.

4.2.1 The coherent netted radar

This system obtains the same samples of the spatial MIMO radar system,
but sums them coherently. We examine this not as a MIMO concept but to
provide a means of comparison. The phases of the incoming signals are
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Figure 4.2: The coherent netted radar integration

in this case highly correlated, as they depend from the target’s position
and the geometry of the system. Yet it is well known that the phase wraps
every half wavelength, so, given that the position of the target cannot
be measured with this accuracy, the signals apparently have uncorrelated
phases uniformly distributed between −π and π . In Figure 4.2 it is shown
what happens if 4 signals are coherently summed without processing the
phases. In this case the phases results to be uniformly distributed and the
overall coherent sum is a signal whose amplitude is much smaller than the
sum of the amplitudes of the single elements. In the extreme case, when
the amplitude is constant and the sum of the phases is 2π, it is possible
to cancel the signal completely. As shown in the next sections, in such
conditions this processing will provide us with the lower bound limit for
the performance, as its SNR after integration will be statistically the same
as in a single pulse case.

4.2.2 The re-phased coherent netted radar

This system gets the same samples as the previous one, but it performs a
re-phasing of the vectors according to the exact position of the target in
order to maximize the signal-to-noise ratio (Figure 4.3) and subsequently
the achieved performance. This assumes perfect knowledge of the 3-D
location of the target and that it has a single phase centre, which are
conditions unlikely to be found in practice. However, if the phases of
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Figure 4.3: The re-phased coherent netted radar integration

the signals in Figure 4.2 can be opportunely re-aligned, the amplitude of
their sum is the biggest possible. This system therefore provides the upper
bound limit for the performance as it maximizes the signal to noise ratio.
It is considered in order to see what the losses of the MIMO processing are.

4.3 Decentralized radar Network

In this Section a different sub-optimum strategy is applied to a radar
network. This represents another possible alternative to MIMO and NR
processing for radar networks. Whilst the radar network operates in the
same geometry of MIMO and NR systems, it is here considered as being
made of all the possible mono/bistatic radars working separately in a
first stage and consequently fusing the results together. The processing
therefore consists of two parts. Firstly, detection is extracted from the
signals for each of the mono/bistatic cases, i.e. in a decentralized pre-
processing. Secondly all the decisions are jointly fused, so the system can
provide a final output.
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Figure 4.4: Frequency MIMO diversity and configuration

4.4 Frequency MIMO system

Here we introduce a different form of MIMO radar that attempts to ex-
ploit frequency rather than spatial diversity. The principle relies on the
simultaneous transmission of multiple independent frequencies from each
element of an array antenna as shown schematically in Figure 4.4. This
has the advantage of being able to use the MIMO technique in a compact
single radar site form.

The bands and the carrier frequencies of the M transmitted signals
have to be chosen such that they do not overlap and are not adjacent,
in order to (i) get independent measurements of the RCS of the target
after an appropriate matched filtering and to (ii) avoid the Doppler-shifted
spectra of the received signals to overlap. Clearly, this will be dependent
on the complete target scattering function (i.e. over all angles, frequencies
and polarizations). This concept is not too different from the ‘frequency
diversity’ [75]. Mathematically we have:
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Figure 4.5: frequency MIMO diversity model

rk (t) =

M∑
m=1

αk
(
σ, fm

)
sm

(
t −

Rm,k

c

)
+ nk (t) , (4.5)

supposing fm to be the carrier frequency of the mth signal,

αk,m
(
σ, fm

)
=

√
Pt

M

√
GtxGrxλ2

mσ( fm)

(4π)3 R2
m−taR

2
ta−k

exp
{
− j

2πRm,k

λm

}
(4.6)

a coefficient including the amplitude and the phase of the received signal,(
σ, fm

)
the RCS of the target at fm and all the other symbols meaning as in

equation (4.1). Due to the separability in frequency, signals can therefore be
distinguished through M adequate band-pass filters, after which standard
matched filtering can be applied.

4.5 Frequency Diverse Array

The Frequency Diverse Array (FDA) concept has been developed starting
from the Frequency MIMO. As in the previous Section, the effects of
transmitting the same signal on different frequencies are investigated. It
is well known that the use of different frequencies in transmission can
improve the detection and the classification of targets, as it decorrelates
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clutter, provides a better estimate of a target’s mean echo strength and
provides a sampling of the frequency response of the target. In these
examples the carrier frequencies are far from one another such that the
bandwidths of the signals do not overlap.

Here, although each element still transmits at a different frequency,
the frequencies are set extremely close with one another. In fact, the
difference between two consecutive frequencies is in the order of a few
kHz, whilst the carrier is in the order of GHz. As a result, here it is not
expected to have an increase of the performance due to the exploitation of
frequency diversity, whereas the frequency response is assumed to be the
same for each transmitted antenna, due to the negligible difference in the
wavelengths.

In other words, manipulating the concept of the Frequency MIMO,
through this system the effects in transmission and propagation of a trans-
mitted signal consisting of equally-spaced frequencies relatively close to
one another are investigated. This concept has been explored from [76] to
[81] only and it is a brand new topic which is attracting interest from the
technical community.

It is here anticipated that the results of this concept are completely
different from those presented in the rest of the thesis. As a consequence,
these are reported in a separate Chapter (Chapter 11), together with a
formalization of the concept and possible developments of this technique.
Figures 4.6 and 4.7 are a first schematic outline of this concept. In its most
simple form one can envisage an array antenna [71] where the different
elements comprising the array carry signals with differing frequencies as
in Figure 4.7. In particular, in the latter Figure it has to be pointed out
that the distance from the target of the kth element, i.e. R0 + kd sinθ (where
d is the distance between 2 consecutive elements) generates a phase shift
which is function of the kth frequency. As shown in Chapter 11, this in
turns generates a range-angle dependant pattern.
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Figure 4.6: The FDA concept

Figure 4.7: An example of FDA
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Chapter 5
Detection performance

In this Chapter the performance of the first four radar system concepts
described previously are reported. In order to get a fair comparison, the
same power in transmission is provided to the system. This means that
systems with a lower number of nodes1 have an increased available power
per node. In other terms, if the total power available is P, each of the M

transmitters is provided with a power
P
M

. Furthermore, in comparing the
frequency MIMO to the other systems, the same number of transmitters has
been considered. Thus, in approaching the frequency MIMO performance,
the same configuration of the spatial MIMO has been taken into account,
relocating all the nodes in the same position and trading spatial diversity
with frequency diversity.

5.1 False Alarm Rate

Here the PFA against threshold is investigated in the case where only white
Gaussian noise with zero mean value and normalized variance is input to
the receivers.

1In this thesis any path between a transmitter and a receiver is termed “node”. This
implies that, for instance, a network made up of 2 transceivers is considered as formed
of 4 nodes. As well, 1 transmitter and 4 netted receivers comprise a network of 4 nodes.
Unless otherwise specified, transmitters, receivers and transceivers are in this thesis called
“devices”.
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5.1.1 MIMO

When only white noise comes into the receivers, spatial MIMO performs
the incoherent summation of a number of samples and compares them
with a threshold. The same process is made by frequency MIMO. Here
the only difference is that the noise affecting the spatial MIMO system has
an equivalent bandwidth centered on the only carrier frequency, while
the one affecting the frequency MIMO system is centered on the many
carrier frequency used. When the equivalent noise bandwidth and the
spectrum of the noise (here supposed white) are the same for both spatial
and frequency MIMO cases and the same number of signals are processed,
the overall incoming noise power is statistically the same and consequently
spatial and frequency MIMO perform equally.

From a mathematical point of view, given the complex noise nk at the
output of any of the matched filters and when no target is present, the
overall noise power2 can be written as

σ2
n,MIMO = ‖n‖2 = nHn =

=

MN∑
k=1

|nk|
2 =

MN∑
k=1

σ2
k , (5.1)

where MN is the number of processed signals.
In addition, we term xk and yk the I&Q noises each one independently

Gaussian-distributed with mean value 0 and standard deviation σ. Con-
sequently the PDF of nk can be expressed as the joint PDF p(xk, yk) and it
is:

2It seems appropriate to highlight here that in this thesis the radar convention of
expressing the power of a vector/signal applies. In particular, this implies that the energy
and the power are defined in the same way, assuming an implicit normalization of 1Ω
(Ohm) in the latter case.
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p(nk) = p(xk, yk) = p(xk)p(yk) =

=
1√

2πσ2
k

exp
{
−

x2
k + y2

k

2σ2
k

}
. (5.2)

Thus in amplitude this results in a Rayleigh distribution ρk =
√

x2
k + y2

k

with PDF:

p(ρk) =
ρk

σ2
k

exp
{
−
ρ2

k

2σ2
k

}
, (5.3)

that in power w = ρ2
k becomes an exponential:

p(wk) =
1

2σ2
k

exp
{
−

wk

2σ2
k

}
,wk ≥ 0 (5.4)

For the sake of simplicity, this expression is modified in

p(tk) = exp {−tk}u(tk), (5.5)

i.e. the following transformation is applied

tk =
wk

2σ2
k

(5.6)

to equation (5.4) and the function

u(t) =

0, t < 0

1, t ≥ 1
(5.7)

is introduced. This is equivalent to considering each noise having unit
power.

When MIMO processing is applied, the sum of the random variables
is in power and not in amplitude and phase. This means that the PDF of
the power of 2 signals, say τ = |n1|

2 + |n2|
2, can be expressed from equation

(5.5) as
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p(τ) = p(t) ∗ p(t) =

=

∫ +∞

−∞

p(t)p(τ − t) dt =

=

∫ +∞

−∞

exp{−t}u(t) exp{−(τ − t)}u(τ − t) dt =

=

∫ τ

0
exp{−t} exp{t − τ} dt =

=

∫ τ

0
exp{−τ} dt =

= exp{−τ}
∫ τ

0
dt =

= τ exp{−τ}u(τ). (5.8)

Therefore the distribution resulting from the sum of the power of two noise
signals is a Rayleigh. Applying this process MN times, the PDF of the sum

of MN noise power τ =

MN∑
k=1

|nk|
2 is distributed as follows:

p(τ) =
τMN−1

(MN − 1)!
exp {−τ}u(τ), (5.9)

i.e. with a Poisson distribution. This distribution of power, as in many
works published so far [82], can be represented as a chi-squared with 2MN
degrees of freedom:

p(ζ) =
ζn/2−1

2n/2Γ(n/2)
exp

{
−
ζ
2

}
u(ζ), (5.10)

with n = 2MN. Introducing this value in equation (5.10), it becomes

p(ζ) =
ζMN−1

2MNΓ(MN)
exp

{
−
ζ
2

}
u(ζ) =

=
ζMN−1

2MN(MN − 1)!
exp

{
−
ζ
2

}
u(ζ). (5.11)
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Finally the two expressions in equations (5.9) and (5.10) are exactly the

same when the change of variables τ =
ζ
2

is applied. This transformation
is necessary in order to reduce the mean value of the equations (5.11) from
2MN to MN that is the expected value, since we sum MN noise samples
with unit variance (power).

Figure 5.1 show the threshold required to achieve a chosen FAR for a
variety of numbers of overall processed signals. In particular, it shows that
the more the nodes, the more the signals, the bigger the noise power added
up and, as a consequence the higher the threshold required to guarantee a
fixed FAR. As seen in the next Section, this is a common characteristic of
centralized systems.

Figure 5.1: The MIMO diversity PFA performances

5.1.2 NR and RPNR

When no target is present, the processing of NR and RPNR is the same. The
coherent netted radar cannot align the phases of the signals coming from
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the target, so the two systems achieve the same results. As consequence of
these, only the NR is examined here.

The overall noise affecting the NR processing can be written as

σ2
n,NR =

∣∣∣∣∣∣∣
MN∑
k=1

nk

∣∣∣∣∣∣∣
2

=

MN∑
k=1

nH
k

MN∑
k=1

nk =

=

MN∑
k=1

|nk|
2 +

MN∑
k=1

nH
k

MN∑
k=1

nk =

=

MN∑
k=1

σ2
k + 2Re

MN−1∑
k=1

MN∑
h=k+1

nH
k nh

 =

= σ2
n,MIMO + 2Re

MN−1∑
k=1

MN∑
h=k+1

nH
k nh

 . (5.12)

It is then clear that, even when the NR’s noise samples are statistically
independent and the mean values of noise are the same in both systems,
an extra variance has to be considered in the PDF of the noise power of the
NR when comparing equation (5.1) with (5.12). This extra variance leads
to an increased probability that noise is detected as a target for a given
threshold.

Looking at the problem from a statistical point of view, an even deeper
understanding can be provided. Proceeding as in the previous Section
and using the same symbols, when NR processing is applied, it can be
easily shown that the PDF resulting from the coherent summation of MN
noise-variables is a complex Gaussian with variance MN times bigger than
the original one. Consequently the PDF of the resulting power can be
expressed as:

p(t̂) =
1

MN
exp

{
−

t
MN

}
u(t), (5.13)

where t̂ =

∣∣∣∣∣∣∣
MN∑
k=1

nk

∣∣∣∣∣∣∣
2

.
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Figure 5.2 shows the FAR as a function of the threshold for a variety
of numbers of overall processed signals. Fixing the FAR to a certain
value and comparing this Figure with 5.1, say 10−6, it is shown here that
MIMO systems have a performance advantage over coherent networks as
a smaller threshold is required to achieve the same rate. The advantage
achieved by the MIMO system is due to the incoherent processing of the
signals effectively reducing the variability in the total received signal hence
enabling a lower threshold to be set, i.e. the total noise power contributing
to the detection decision is lower in the MIMO systems than in the netted
ones: the coherent netted case requires a threshold of some 3 to 8 dB more
to achieve an equivalent level of performance. The reduced threshold set
with incoherent processing gives, as seen in this Chapter, an increased
sensitivity to MIMO systems when used for detection.

Figure 5.2: The NR diversity PFA performances

In addition, equation (5.13) explains why the curves in Figure 5.2 have
exactly the same shape and the only difference is a shift on the x-axis.
Actually they are the realization of the same PDF apart from a different
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variance. Furthermore the distance, measured on the x-axis, between a
certain curve and the monostatic one is exactly MN converted to dB.

Comparing equations (5.9) and (5.13), it is clear that asymptotically
whilst the distribution of the power in a MIMO system decays with an
exponential coefficient, the distribution of the power in NR systems decays
with the same coefficient divided by the number of nodes, i.e. more slowly.
In evaluating the FAR, this allows a lower threshold to be set for the
incoherent case. As known, in turns lower thresholds allow to discriminate
a target also for reduced SNR, which obviously impacts on the detection
capability of the system. Therefore fixing a certain threshold for both
systems, say λ, the NR’s and the MIMO PFA can be expressed respectively
as:

pFANR =

∫ +∞

λ

1
MN

exp
{
−

t
MN

}
dt =

= exp
{
−
λ

MN

}
, (5.14)

and

pFAMIMO =

∫ +∞

λ

tMN−1

(MN − 1)!
exp {−t} =

= exp {−λ}
MN−1∑

k=0

.
λk

k!
(5.15)

Figures 5.3 and 5.4 show the distributions in equations (5.9) and (5.13)
for 4 and 25 nodes. As it can be seen here, the PDFs differ considerably in
the two cases.

5.1.3 DRN

In a DRN, assuming as usual and for the sake of simplicity that the noise
after every matched filter has the same statistics, the thresholds for all
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(a) 4 nodes, linear scale (b) 4 nodes, logarithmic scale

Figure 5.3: PDF of the noise power in MIMO and NR

(a) 25 nodes, linear scale (b) 25 nodes, logarithmic scale

Figure 5.4: PDF of the noise power in MIMO and NR
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the nodes are set to the same value in order to guarantee the same FAR.
After each mono/bistatic decision has been taken, a vector v, containing
the detection results from all the nodes is available for the second stage
of processing. Obviously, each element of v is either 0 or 1. At this point
the decision rule assumes that the target is present when L elements of the
vector are set at 1. The number of L can vary according to the specifications
of the system. Thus the decision rule is as follows:

MN∑
k=1

v[k] ≥ L. (5.16)

From a statistical point of view, if each element of v is independent from
the others and each value ‘1’ occurs with a probability P, the overall prob-
ability that equation (5.16) is verified is given by the following binomial
function:

P

MN∑
k=1

v[k] ≥ L

 =

MN∑
k=L

(
MN

k

)
Pk (1 − P)MN−k (5.17)

where (
h
k

)
=

h!
k! (h − k)!

(5.18)

is the binomial coefficient that takes into account all the permutations of
the possible positions of ‘1’ in v.

From a radar point of view the PFA of the overall system can be expressed
as

PFAglobal =

MN∑
k=L

(
MN

k

)
Pk

FA (1 − PFA)MN−k . (5.19)

It is worth noting that, when the FAR of each single node is relatively small
(i.e. 1 − PFA ≈ 1), equation (5.19) can be written as:
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PFAglobal =

MN∑
k=L

(
MN

k

)
Pk

FA (1 − PFA)MN−k
≈

≈

MN∑
k=L

(
MN

k

)
Pk

FA ≈

(
MN

L

)
PL

FA. (5.20)

This concept is therefore very close to the ‘Moving Window’ concept
that is well known in monostatic radar systems [28]. However an important
difference between this and the Moving Window algorithm is that here we
gather samples in a space-diversity context only and consequently there is
no sliding window in time; in other words we collect in one instant of time
all the signals from different aspect angles and we apply a criterion as in
equation (5.16).

After this stage a number L of minimum detections that minimizes the
losses is used. This has been heuristically estimated in [28]

L ≈ 1.5
√

MN. (5.21)

This means that overall detection is assumed when respectively 1, 3, 5,
6 and 8 single detections occur.

In Section 5.6 it is shown that by introducing a different criterion, it is
possible to achieve similar performance and at the same time to have an
increased tolerance to Electronic Counter Measures (ECM). In particular,
the attention is focused on the case

L =
⌈MN

2

⌉
, (5.22)

where dxe is the greater nearest integer of x, i.e. it is assumed that a target
is present if at least the 50% of nodes detect the target in a mono/bistatic
configuration. This is to increase the interference rejection of the overall
system, as shown in Section 5.6. Given the number of co-located transmit-
ters and receivers, a target is detected when 1, 3, 5, 9 and 13 thresholds of
the single nodes are passed. The first three numbers are the same for both
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the decision rules, so there will be no difference in their results. However
this indicates that for a reduced number of nodes the two reported criteria
are equivalent. On the contrary, when the radar network is made of an
increased number of nodes, the two decision rules differ considerably, since
there is a difference of roughly 20% of nodes in assuming detection.

Figures 5.5 and 5.6 show the results of the overall FAR achievable by
the network of radar against the FAR of a single node respectively using
the two criteria in equation (5.21), i.e. the minimum losses case, and in
equation (5.22), i.e. the 50% + 1 single detections case. In these cases it is
evident that the false alarm generated in one node is compensated by all the
double-threshold processing. Actually, as it can be seen from these plots,
to global FAR (y-axis) is lower than that of the single nodes comprising
the system (x-axis). It can be also evidenced that the FAR achieved by the
minimum losses criterion is higher than that of the other case. In particular
it can be observed that the latter criterion allows the curves of networks
made up of a greater numbers of nodes to have an advantage over those
of the first criterion. Moreover, whilst in the second case the more the
nodes, the better the performance, the first criterion does not necessarily
guarantee increased performance when the number of nodes grows up.
This is clear in the plots related to networks made up of 9 and 16 nodes.
Here, the levels of the second thresholding are such that these curves differ
not as much as for the latter criterion.

Figure 5.7 shows the FAR achieved by this system against the single
node threshold. If compared to Figures 5.1 and 5.2, it is evident that, whilst
for MIMO and NR systems the higher the number of nodes, the higher the
threshold, the opposite happens when using a decentralized algorithm.
This peculiarity is explained by the fact that in the DRN case the threshold
is set at the single node, while in centralized systems it was determined
for the overall set of received signals. For this purpose, Figures 5.8 and 5.9
allow a direct comparison of FAR as a function of the threshold in MIMO,
NR and DRN systems. In particular they report the PFA for all the examined
systems fixing the number of nodes. As it can be seen, the difference in
the threshold levels can be in the order of up to 20 dB. For instance, fixing
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Figure 5.5: Global FAR against single node FAR, minimum losses criterion

Figure 5.6: Global FAR against single node FAR, 50% criterion
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the PFA to 10−6 and the number of nodes to 4, it can be observed that
whilst a MIMO system requires a threshold of approximately 14 dB, the
NR requires approximately a threshold of 18 dB and the single node of a
DRN 7 dB only. Difference are remarkable when the number of the nodes
increases to 25. In this case these are 4 dB for the DRN approach, 17 for the
MIMO and approximately 25 for the NR.

5.2 Detection of Swerling I targets

In this Section a target model is introduced so that detection performance
can be evaluated.

Here a Swerling I, i.e. noise-like distributed, target model is considered
when networks made up of two to five radars are assumed to transmit and
receive (M = N = 2 . . . 5), with co-located devices. The system concepts
described in Chapter 4 are here reported. The detection of a monostatic
radar is reported as well, in order to have a clear mean of comparison
(M = N = 1) to a meaningful benchmark. Frequency MIMO is not explicitly
reported in this section as the results are identical to those of the spatial
MIMO case, given that the RCS of the target has a noise-like response in
space as well as in frequency. The total transmitted power is a constant in
all the cases as before.

Figures from 5.10 to 5.14 show detection performance for the systems
examined so far, i.e. the NR, RPNR, MIMO, DRN 50% and DRN ML, as
a function of signal to noise ratio and the number of devices comprising
for a PFA of 10−6. As it can be seen, the MIMO and the DRN systems
have performance in between those of the netted radars, which represents
the upper and lower bound limit for performance. In these Figures the
losses for incoherent processing, compared to the RPNR, can be estimated
from 1 to 5 dB, when respectively from 4 to 25 signals are taken into
account for PD = 80%. Even if the RPNR performs best, as it maximizes
the signal-to-noise ratio, MIMO and DRN achieve good results without
requiring additional information about the effective position of the target.
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Figure 5.7: Global FAR against single node threshold, 50% criterion

Figure 5.8: PFA in MIMO, NR and DRN, 4 nodes
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Figure 5.9: PFA in MIMO, NR and DRN, 25 nodes

This good performance is due to the acquisition of independent samples
effectively reducing the noise variance and to the lower threshold that has
been possible to set as shown in the previous section. Finally, it may seem
peculiar that the NR is the only case where the performance decreases as
the number of nodes increases. This may seem contrary to expectation but
is explained by the increasing randomizing of the received signal phases
with increasing number of independent looks.

For incoherent systems, the higher the number of processed signals
the higher the performance. However, over a certain number, e.g. 3,
increasing the number of nodes does not guarantee the same improvement
in detection. This suggests that, from a practical point of view, it is possible
to improve the capacity of detection of a radar system by adding just a few
devices at different aspect angles. However, this assumes that independent
samples can always be taken. Although this is common with most targets,
the opposite case is partly examined by considering, for example, the
sphere target (Section 5.5).

81



5.2 Detection of Swerling I targets Detection performance

Figure 5.10: NR, Swerling I PD performances

Figure 5.11: RPNR, Swerling I PD performances
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Figure 5.12: MIMO, Swerling I PD performances

Figure 5.13: DRN 50%, Swerling I PD performances
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For completeness, Figure 5.15 reports the detection results for a single
node of a DRN 50% before merging all the detections. As it can be seen from
a comparison of this and Figure 5.13, the improvement in detection in the
global system is considerable and can be explained by the compensation of
the missed detections performed by the nodes of the network. In addition
it is worth noting that in this case, due to the constraints on the transmitted
power, the monostatic detection overcomes that of a single node.

In general, it can be observed that losses in SNR at PD = 80% of MIMO
and DRN systems, compared to RPNR, are relatively small and can be
estimated in roughly 1 to 5 dB for 4 to 25 signals. It can be observed that,
notwithstanding the constraints on the power, the more spatial samples
taken the better the resulting detection performance. However, it stands
out clearly that the implementation of a MIMO or a DRN system is much
simpler than the RPNR due to the greatly reduced tolerance required for
the re-phasing. Indeed this may prove impossible for distributed targets,
i.e. the synchronization and data communication requirements are much
less severe than for the fully coherent network.

In turn, the poorer performance of a decentralized systems, compared
to the centralized, can be explained as follows:

1. In DRN systems the received power is a function of the measured
RCS, here this system is not able to detect a target when just a few
echoes are large and the others relatively small. This is a drawback of
this algorithm that is mitigated in centralized processing algorithms.

2. Furthermore, for relatively low SNR, while MIMO and NR systems
sum up every signal coming into the receiver, this sub-optimum
algorithm considers only the signals with a power greater than the
first threshold. So, whilst in centralized processing every received
signal contributes to the output power, here only a number of them
are taken into account. This can be considered as a loss of power
or sensitivity introduced into the second stage of processing and
consequently in a loss of performance.
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Figure 5.14: DRN ML, Swerling I PD performances

Figure 5.15: Single node PD against SNR, global FAR= 10−6, 50% criterion
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5.3 Detection of Swerling III targets

A Swerling III model corresponds to a target consisting of one domi-
nant scatterer plus a number of smaller ones. The resulting PDF can
be expressed as in equation (5.23) and it is representative of a chi square
distribution with 4 degrees of freedom or, equivalently, with 2 complex
degrees of freedom [82]:

p(σ) =
4σ
σ̄2 exp

{
−

2σ
σ̄

}
, (5.23)

where σ̄2 is the variance of the RCS of the target.
Figure 5.16 shows the results for spatial MIMO, NR, DRN and RPNR

against a Swerling III target for a network made up of 5 devices, which
provides the biggest difference in dB among the systems. Again, frequency
MIMO is not reported as the RCS model is independent of the carrier
frequency. The results of other numbers of nodes are not reported for
brevity, as they have smaller distances between the curves and, overall,
it would be a variation of the Figures of the previous Section. As in the
previous Section, MIMO and DRN fall between the two netted cases. The
difference in performance with respect to the netted cases is greater here
than a Swerling I target.

5.4 Detection of Rician targets

Both spherical target and Swerling III RCS model can be considered a
particular realization of this distribution as it is made of a deterministic
and a random parts. Under this assumption, a more realistic statistical
model of the RCS of a target is expected to be described in this way. As
known, the PDF of the RCS σ can be written as follows:

p(σ) =
σ
σ̄2 exp

{
−
σ2 + m2

2σ̄2

}
I0

(
σm
σ̄2

)
, (5.24)
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Figure 5.16: Comparison of PD for a Swerling III target, with M = N = 5

where σ̄ is the 2nd not centered moment of the RCS distribution, m is a
parameter controlling its moments and I0 is the modified Bessel function
of first kind and order 0. Figure 5.17 shows the results for such distribution.
As in the previous two cases, the ranking of performance is here confirmed
with negligible differences.

In general therefore, for Swerling and Rician distributed targets inco-
herent performance is much better than the NR’s one. This is mainly due
to the coherent processing realized by this system that, without a-priori
information and an algorithm for re-phasing the incoming signals, is not
able to exploit all its potential.

5.5 Detection of spherical targets

A further comparison of the performances has been considered for the case
of a spherical target as its RCS exhibits a simple frequency dependence
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Figure 5.17: Comparison of PD for a Rician target, with M = N = 5

with radius. This case exhibits a highly correlated RCS, so it provides a
first view of the MIMO performance when the target is not noise-like. It
is here acknowledged that this is an extreme case for a target, as its RCS
is deterministic and therefore can provide a benchmark for the detection
performance for other directional targets such as flat plates, dihedrals
and trihedrals. Several values of the radius of the sphere r have been
considered, in order to get the related performances of the systems. A
frequency f0 = 3 GHz has been chosen as the carrier frequency of the
spatial MIMO and the netted radar, while, as in this case a frequency
model for the RCS of the target was available, the carrier frequencies of the
frequency MIMO vary in the range of 1− 5 GHz, with bandwidths that do

not overlap each other. The RCS of a sphere as a function of the ratio
2πr
λ

is plotted in Figure 5.18 to illustrate frequency dependence.
The results are shown in Figures from 5.19 to 5.22 for a variety of

ratios
r
λ0

. The received SNR, shown in the x-axis, is computed at the
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wavelength λ0 =
c
f0

(10 cm). When a frequency MIMO radar system

has been considered, the reported performance is affected by the different
responses of the RCS of a sphere to different wavelengths that modify the
effective SNR value, according to the following:

SNR |λ= SNR |λ0

σ (r, λ)
σ (r, λ0)

, (5.25)

where it is assumed GT(λ)GR(λ)λ2 = GT(λ0)GR(λ0)λ2
0 (in the expression of

the SNR). This is done to provide a comparison between the systems where
the values of the SNR change according to the differences of the measured
RCS only and not the differences of gains of the transmitting/receiving
antennas to different wavelengths.

The performances achieved in this case are extremely interesting as they
show differences when comparing spatial and frequency MIMO systems.
The spherical target does not yield independent samples for spatial MIMO
but it does to a certain extent when the frequency variant is employed.
Figures from 5.19 to 5.22 indicate that it is not possible to predict the best
performer a priori between the frequency and the spatial MIMO cases and
might be more indicative when considering real targets.

In Figure 5.19 the performance achieved by frequency MIMO approaches
that of the RPNR. This is due to the frequency diversity permitting at
least one measurement of the target’s RCS in the resonance zone of the

curve in Figure 5.18 0.5 ≤
2πr
λ
≤ 1.5 that introduces some extra signal

strength into the signal power, hence enhancing detection. It is then evident
that the frequency MIMO’s performances are affected by the ratio

r
λ

, as
theoretically expected. For a small number of transmitted signals, the
frequency MIMO seems to perform better than the corresponding spatial
MIMO; on the contrary the higher the number of processed signals, the
more similar the achieved results.

The loss of performance of frequency MIMO for
2πr
λ

= 1 is significant.
In this case all the spatial MIMO’s and NR’s signals operate in peak of the
resonance zone of Figure 5.18; on the contrary, the frequency diversity of
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Figure 5.18: RCS of a sphere

Figure 5.19: Compared PD for spherical target, M = N = 5, 2π r
λ = 0.2
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Figure 5.20: Compared PD for spherical target, M = N = 5, 2π r
λ = 1

Figure 5.21: Compared PD for spherical target, M = N = 5, 2π r
λ = 5
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Figure 5.22: Compared PD for spherical target, M = N = 5, 2π r
λ = 20

the other MIMO system allows at least one signal to operate in that zone,
while all the others are in the Rayleigh or optical regions3.

As soon as the ratio
2πr
λ

reaches the optical zone of Figure 5.18, the fre-
quency MIMO cannot exploit the extra signal strength so it performs worse
than the RPNR. As expected, the spatial MIMO PD curve always performs
worse than the RPNR as the phase-shifting maximizes the received SNR.

The detection performance here examined are a benchmark for the
detection of real targets. These are generally made of deterministic and
random contributions giving a backscattered radiation which cannot be
predicted. In addition the assumption of a point target with one phase

3With regards to the normalized RCS of a sphere as a function of the ratio 2πr
λ , as

in Figure 5.18, the part of the plot where the radius of the sphere is comparable with
the wavelength 2πr ≈ λ is usually referred as “Rayleigh region” . On the contrary, the
case 2πr >> λ is usually referred as the “optical region”. In particular, the last region is
characterized by reduced fluctuations of the normalized RCS, as seen in the right part of
the plot in Figure 5.18.
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centre only is not realistic in most of the cases. However, notwithstanding
the complexity of the backscattering process, it has here been presented
that the behaviour of the different approaches to detection is similar in all
the examined cases.

5.6 DRN tolerance to jamming

In this Section the effect on performance is considered when one of the
receivers of the network is jammed with a fully matched transmission, i.e.
when the received signal at the qth receiver is expressed as

rq(t) =

H0/1

M∑
m=1

αq,m(σ)sm

(
t −

Rm,q

c

)
+ nq(t) +

M∑
m=1

βq,m(σ)sm (t − τm) , (5.26)

with symbols as in Chapter 4 and
|β|2 � |αq,m|

2

|β|2 � σ2
n

|β|2 � λq,m

(5.27)

and λq,m is the threshold after matched filtering of for the mth waveform at
the qth receiver.

Figures 5.23 and 5.24 show the performance of the FAR when one of
the N receivers is jammed. This means that, due to the co-location of
transmitters and receivers, M nodes (from 1 to 5 respectively) are being
jammed. As expected there is a significant loss in FAR for all the systems.
In this scenario the monostatic radar system totally loses its capacity for
detection and it is evident that the higher the number of nodes, the lower
the losses. No ECCM has been considered and thresholds are kept fixed at
nodes, so applying any sort of ECCM algorithm will provide an additional
tolerance. Here it is evident the minimum losses criterion has much worse
performance when jammed. That is the reason why a criterion as the
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50% + 1 one, that introduces roughly just one dB of extra losses, should be
preferred to the other for a decentralized processing in a radar network.

In this Chapter it has been shown that incoherent systems provide a good
trade-off between fully coherent systems and coherent systems under
the assumption of white Gaussian noise only in receive. This has been
confirmed for noise-like targets and more deterministic targets, such as
the sphere. In general terms, a loss of only few dB in terms of SNR has
been observed, compared to the RPNR. In addition, incoherent systems
and the RPNR outperform the conventional monostatic radar, also under
the constraint of providing constant ERP to the system. DRN has the great
asset to allow an increased tolerance to jamming. The Frequency MIMO
concept has been shown to be able to achieve the same benefits as spatial
diversity under the reported assumptions. The analysis presented here
is going to be extended in more details and under different background
assumptions in the next Chapter.
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Figure 5.23: Global FAR against single node FAR, 1 jammed receiver, ML
criterion

Figure 5.24: Global FAR against single node FAR, 1 jammed receiver, 50%
criterion

95



Chapter 6
Performance in clutter

So far different target models under noise limited conditions have only
been investigated. However, it is more realistic to also include the effects
of the environment such as clutter. Here the effects of clutter on the
performance of the various distributed radar concepts are investigated.

The issues in investigating multistatic clutter, together with the charac-
teristics of the K-distributed clutter, have been introduced in Section 3.5.
Here the effects of K-distributed clutter on multistatic performance are
investigated on a single carrier frequency. The processing of the received
echoes has to take into account the extra information provided and the
environment that the radars are in. The PDF of the total disturbance has
obviously changed and the change in performance in terms of FAR and PD

is reported.
Because of the lack of works and solid background on the multistatic

aspects of clutter, in this Chapter a first analysis is developed starting
on some assumptions, for instance on the clutter correlation. However,
this topic has been investigated in a second time of this work through an
analysis of real data (Chapter 9).
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6.1 Signal models and statistical approach

In this Section the characteristics of the incoming signals are described.
First of all, the kth received signal is modelled as:

rk =

M∑
m=1

(
H0/1αm,ksm + cm,k

)
+ nk, (6.1)

where cm,k is the clutter, m = 1..M is the number of transmitters, k = 1..N is
the number of receivers and the other symbols as in the previous Chapters.

For the sake of simplicity the RCS of the target has been assumed
Swerling II1 distributed for both the monostatic and the bistatic case. The
clutter has been modelled as a K-distribution (from [12] to [16]). This
means that the amplitude has a Rayleigh distribution with a Γ-distributed
variance. For echoes incoming from adjacent range cells, a correlation
between the powers received has to been taken into account. Thus the
following model for the amplitude of the clutter c2 can be introduced:

c =
√
τx, (6.2)

where x is the complex vector of the received echoes from different range
cells and its PDF is given by

p (x|τ) =
1

(2πτ)L √
|Mx|

exp
{ 1

2τ
xHM−1

x x
}
, (6.3)

where Mx is the covariance matrix of x given τ, i.e.

Mx = E
{
xxH
|τ
}
, (6.4)

1When processing the returns from more than one pulse, the Swerling I and III models
assume a degree of correlation from pulse to pulse. On the contrary the Swerling II and
IV imply uncorrelated echoes from the same set of pulses. However, for a single pulse
the Swerling I and Swerling II models are equivalent as well as the Swerling III and the
Swerling IV. In this Chapter the analysis is performed as if the echoes change on a pulse
to pulse basis, so a Swerling II model has been assumed for the target.

2In this thesis c (italics) refers to the speed of light, whilst c (bold) to the vector made
up of clutter samples
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and the texture τ follows a Γ-distribution of shape parameter ν and ex-
pected value µ:

p (τ) =
1

Γ (ν)

(
ν
µ

)ν
τν−1exp

{
−
ν
µ
τ

}
, τ > 0. (6.5)

The general element mx (h, k) of Mx has been taken equal to

mx (h, k) = ρ|h−k|
x (6.6)

where ρx is the correlation coefficient between two adjacent elements of the
vector x. As usual the thermal noise has been modelled as a white complex
Gaussian Random Variable (RV) with zero mean value and variance σ2

n.
So, considering clutter and noise to be mutually independent, it is

possible to express the resulting PDF of the L-long vector of the disturbance
as a complex Gaussian with zero mean value and covariance matrix equal
to τMx + σ2

nIL, where τ is distributed as in equation (6.5) and IL is the LxL
identity matrix.

In this analysis a certain number (Q) of echoes received during the TOT
has been taken into account. When integration in time is performed, the
clutter plus noise statistics change significantly. If in time the clutter echoes
have textures τi, i = 1..Q, after the integration process the vector of the total
disturbance can still be expressed as a complex Gaussian with zero mean
value and covariance matrix given by

Q∑
i=1

(
τiMx + σ2

nIL

)
= Qσ2

nIL + Mx

Q∑
i=1

τi. (6.7)

The PDF of the RV τ̃ =
∑Q

i=1 τi, that is the texture of the vector with the
integrated contribution of clutter, can be expressed as a Γ RV with shape
parameter ν and mean value Qµ if the textures are uncorrelated with each
other in the time domain. In this case it is clear that the higher Q, the better
the approximation

∑Q
i=1 τ̃i ≈ Qµ, so the overall PDF of the disturbance

approaches asymptotically a Gaussian with mean value 0 and covariance
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matrix equal to Q
(
µMx + σ2

nIL
)

= Qσ2
n (CNRMx + IL). Unfortunately from

this approximation it can be difficult to evaluate the threshold for the FAR
in a closed form. In practice, in real systems, the number Q of integrated
samples is directly dependent on TOT, so in most cases it is too small to
approximate the overall PDF and thus to compute accurately thresholds
for low and very low FAR.

In addition, if the textures are correlated in time a more complex
expression for the PDF of the disturbance vector can be found. If, for
instance, a first order Markov structure is assumed to describe the texture
component on Q elements, then we can write (as in [13]):

p (τ̄) = p (τ1)
Q−1∏
i=1

p (τi+1|τi) , (6.8)

where

p (τi+1|τi) =
ν
µ

1
ρν−1

(
1 − ρ2

) (
τi+1

τi

) ν−1
2

exp
{
−
ν
µ

τi+1 + ρ2τi

1 − ρ2

}
Iν−1

[
ν
µ

2ρ
√
τiτi+1

1 − ρ2

]
,

(6.9)

and Iz is the modified Bessel function of first kind and order z. The
covariance matrix MT in time has been assumed of the same kind as Mx

with a different correlation coefficient.

6.2 Multistatic information and correlation

In multistatic systems it is now assumed that each transmitter-receiver
couple provides a set of data of the form previously described. Thus the
total data incoming into the system and suitable for processing should be
organized in a three-dimensional matrix as shown in Figure 6.1. Clutter
echoes from the same area generated by one of the M transmitted wave-
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Figure 6.1: Multistatic data organization

forms can have correlated values of the textures as observed in practice
(from [12] to [16]).

As already pointed out, whilst correlation in time and range has been
largely investigated, there is a lack of knowledge about a possible corre-
lation of the data in a multistatic configuration. Here it is assumed that
echoes scattered by the same clutter can be partially correlated, especially
under the hypothesis of narrowband due the relatively high number of
elementary scatterers [19, 20]. Thus a third correlation matrix Mt−r can
be introduced. At this stage two clutter samples from the corresponding
range cell cm,k(p) and cn,h(p), n,m = 1..M, k, h = 1..N, p = 1..L are assumed to
have a correlation coefficient 1 if n = m and k = h, ρtx−rx if n = m but k , h,
with 0 < ρtx−rx < 1, and otherwise 0. The choice of 0 in the latter case can
be explained due to the slightly (for far targets) different orientation of the
range cells: when transmitters far away each other illuminate different-
shaped range cells, although in the same area, the coherent sums of all the
backscattered contributions of the clutter are not expected to be correlated
with each other.
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An additional hypothesis is that multistatic clutter is not correlated
either: ideally many cases should be considered and examined as currently
insufficient knowledge exists about target and clutter scattering under bi-
and multi-static conditions. The examined cases show a reasonable range
of performance variation.

Clutter and its correlation properties in multistatic systems have still to
be measured and analyzed via experimental results.

6.3 Signal processing and performance

Once data are collected, there is more than one way of processing them
in order to obtain a detection. In this Section three ways are considered.
These are: (i) a fixed threshold algorithm applied to the raw data, (ii) a
fixed threshold algorithm whitening the incoming data, assuming that the
exact correlation matrixes are known and (iii) finally an adaptive threshold
algorithm applied to the raw data. These are reported in the following
sub-sections, together with the corresponding results. Here a multistatic
Swerling II target has been assumed, in analogy to the previous Chapter.

6.3.1 Fixed threshold on correlated and whitened data

Correlated data

A first method is to process data as it arrives at the receiver. This is not be
the best case, but it avoids estimating the correlation matrixes: after initial
processing, the data is available to the detectors; the two corresponding
thresholds (one for MIMO systems, the other for netted radars) ensuring
FAR have been recomputed due to the non-gaussian distribution of the
total disturbance. These results have been reported in Figures from 6.2 to
6.9 in pairs PFA (top figure) – PD (bottom figure). From the plots of the
top figure the FAR is set to 10−4. Fixing this value, the PD performance as
a function of CNR, SNR and number of nodes is reported in the bottom
figure. As in the previous Chapter, NR performs the worst and RPNR
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the best, with the other two systems in the middle. Covariance matrixes
have been considered as described in sections 6.1 and 6.2 with coefficients
equal to 0.9 (range), 0.7 (pulses) and 0.2 (nodes). Results of FAR against
threshold for CNR equal to 0 and 15 dB and for 1, the monostatic case, 4
and 25 signals are shown.

As in the simple case, where only thermal noise had been considered,
MIMO and DRN radar systems allows a lower threshold to be set in any
configuration, if compared to the NR system. This means that a lower
noise power is introduced into the detector. Data whitening produces the
best performance as processing of raw data requires a threshold of 5 to 10
dB higher.

Whitened data

Firstly, given the covariance matrix in time, τMT + σ2
nIL, it is possible to

whiten the data in this domain, which is the best way to remove or reduce
the correlation, given a fully known correlation matrix. In so doing it is
also possible to achieve, after integration, a simpler expression for the PDF
of clutter plus noise, as can be inferred from equation (6.7).

As the detectors for both the MIMO and the NR system work on the row
of the matrix in Figure 6.1, it is convenient to whiten data in this dimension
as well as it decorrelates the samples and consequently allows lowering
the threshold. In fact, especially for netted radar systems, it is better to
avoid clutter correlation as the coherent sum processed into the detector
may enhance the disturb power, thus increasing false alarms. However, in
real systems clutter will be correlated and thus may mean that the analysis
here leads to a “best case” result.

A second method of processing is to remove the correlation in the
3rd (or just 2nd, if range is not taken into account) dimension. It is clear
that, as detectors will work on the row of the matrix, a certain amount of
correlation on the columns of the 3D matrix in Figure 6.1 does not affect
the decision process. After this operation it will be possible to write down
a decision rule (threshold for CFAR condition) using the properties of the
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Figure 6.2: FAR, NR, correlated clutter, L= 16

Figure 6.3: PD, NR, correlated clutter, L= 16
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Figure 6.4: FAR, RPNR, correlated clutter, L= 16

Figure 6.5: PD, RPNR, correlated clutter, L= 16
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Figure 6.6: FAR, MIMO, correlated clutter, L= 16

Figure 6.7: PD, MIMO, correlated clutter, L= 16
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Figure 6.8: FAR, DRN, correlated clutter, L= 16

Figure 6.9: PD, DRN, correlated clutter, L= 16
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PDF of the disturbance (noise and clutter). It is worth highlighting that
this solution cannot be performed without estimating the clutter texture
on a limited number of cells, thus it is reasonable that practical errors in
estimates produce mismatches in the data. The improved performance
(roughly from 5 to 10 dB compared to the previous set) with whitened data
highlights the importance of the effects of correlation.

Statistical considerations

Theoretically, the threshold of the NR system processing MN data, after
whitening, can be computed as follows: the sum of MNQ independent
complex Gaussian RV with variance τi,q + σ2

n is, again, a complex Gaussian
RV, say w, with variance

σ2
w = MNQσ2

n +

MN∑
i=1

Q∑
q=1

τi,q = σ̂2
n + τ̂, (6.10)

where τ̂ is Γ-distributed with shape parameter ν and mean value MNQµ.
Thus, given a threshold λNR, the probability of false alarm will be given by

PFA =

∫ +∞

λNR

∫ +∞

0
p
(
r|τ̂, σ̂2

n

)
p(τ̂) dτ̂ dr, (6.11)

where r = |w|2, so p
(
r|τ̂, σ̂2

n
)

is an exponential PDF. Thus

PFA =

∫ +∞

0
p(τ̂)

[∫ +∞

λNR

p
(
r|τ̂, σ̂2

n

)
dr

]
dτ̂ =

=

∫ +∞

0
p(τ̂)

[∫ +∞

λNR

1
2
(
τ̂ + σ̂2

n
)exp

{
−

r
2
(
τ̂ + σ̂2

n
)} dr

]
dτ̂ =

=

∫ +∞

0
exp

{
−

λNR

2
(
τ̂ + σ̂2

n
)} p(τ̂) dτ̂. (6.12)

Under the same hypothesis, the PDF of the received power of clutter
and noise, when processing data in MIMO systems, can be expressed as
the convolution of MN identical PDFs p(r) where
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Figure 6.10: FAR, NR, whitened clutter, L= 16

Figure 6.11: PD, NR, whitened clutter, L= 16
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Figure 6.12: FAR, RPNR, whitened clutter, L= 16

Figure 6.13: PD, RPNR, whitened clutter, L= 16
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Figure 6.14: FAR, MIMO, whitened clutter, L= 16

Figure 6.15: PD, MIMO, whitened clutter, L= 16
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Figure 6.16: FAR, DRN, whitened clutter, L= 16

Figure 6.17: PD, DRN, whitened clutter, L= 16
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p(r) =
1

2
(
σ′2n + τ′

)exp
{
−

1
2
(
σ′2n + τ′

)} p(τ′) (6.13)

and σ′2n and τ′ are RV generated as in equation (6.10) but performing the
summation only on the time domain. It is clear then that expressing the
FAR in a closed form is hard. Prediction in a closed form of the results in
detection is not possible for both netted radar and MIMO systems as well.

The overall results achieved show a loss of performance for both NR
and MIMO systems when the correlation is present. This is consistent with
the results of monostatic systems.

6.3.2 Adaptive threshold (CA CFAR) on raw data

In this Section an adaptive CFAR algorithm for detection in MIMO radar
and RPNR systems operating in the same clutter conditions is considered.
As before, a statistical description of the signal processing is reported and
thus the results in FAR and detection. Moreover the incoherent algorithm
is compared with a coherent way of processing the same data in order to
provide a deeper understanding.

In particular an adaptive Cell Averaging Constant FAR (CA CFAR)
incoherent algorithm is applied to provide an increased tolerance to high
power peaks that might occur when clutter is present. The CA CFAR is
a well known algorithm [17, 27]. Two possible implementations of this
algorithm are considered here. In both the clutter power is estimated by
averaging L range cells adjacent to the Cell Under Test (CUT). The only
difference is in the choice of the cells used for this estimation. In the first
case the two adjacent cells to the CUT are taken into account and in the
second they are disregarded. In the latter case the presence of these two
‘guard cells’ can be justified since a target may occupy more than one
resolution cell, so its backscattering power can take part in the adaptive
threshold estimation, decreasing the overall PD. However, in the rest of the
Section the target is assumed to be within one resolution cell only. Figure
6.18 shows a schematic representation of a CA CFAR detector. The grey
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Figure 6.18: CA CFAR scheme for a monostatic radar

cells represent the ‘guard cells’ that in the second version of the algorithm
are not been taken into account in estimating the detection threshold. The
black cell is the CUT.

In the monostatic case the CA CFAR algorithm compares the power of
the CUT with the average power of L adjacent cells. So, terming x2

m the
content of the CUT, the average power |ym|

2 of the L adjacent cells can be
expressed as (in the case of guard cells the indexes should be appropriately
shifted):

|ym|
2 =

m−1∑
h=m−L/2

|xh|
2 +

m+L/2∑
h=m+1

|xh|
2. (6.14)

The decision rule is therefore:

|xm|
2
−

k
L
|ym|

2

H1

R

H0

0, (6.15)

where
k
L

is an averaging parameter guaranteeing a certain FAR.
In this case, from all the nodes, a vector X made up of all the measure-

ments from the CUT and a vector Y with the measurements from all the
secondary data are gathered. The overall decision rule in the MIMO case
can therefore be written as follows:
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MN∑
q=1

|xm(q)|2 −
k
L

MN∑
q=1

|ym(q)|2
H1

R

H0

0, (6.16)

When a RPNR system is considered, in the event of the presence of
a target in the CUT, the algorithm is applied coherently, assuming full
knowledge of the geometry and the target’s position, in order to achieve
the maximum SNR. Clearly, once again, this is not possible in practice so
here it is used to represent an upper performance bound. As consequence,
a coherent summation, aligning the phases of the echoes from the target,
is performed and a CA CFAR decision is applied. Mathematically, in this
case the decision rule is:

∣∣∣∣∣∣∣
MN∑
q=1

x̂m(q)

∣∣∣∣∣∣∣
2

−
k
L

∣∣∣∣∣∣∣
MN∑
q=1

ŷm(q)

∣∣∣∣∣∣∣
2 H1

R

H0

0, (6.17)

where x̂m(q) and ŷm(q) are respectively xm(q) and ym(q) after aligning the
phases of the target only, when present. Similarly for the NR case, with
the only exception of the phase-aligning.

As expected, for the DRN case, a decision rule on the single node is
considered as in equation (6.14). Detections are then fused together using
the 50% + 1 rule used before.

Figures from 6.19 to 6.34 show the performance in FAR and PD for
different values of CNR, when the multiplicative factor k varies (L is set to
16 as in the previous Sections). All these results have been generated for
clutter with shape parameter ν = 3. Other values of this parameter have
been taken into account. However, whereas the overall behaviour of the
curves is not modified in concepts as a function of this parameter, results
for different ν are not reported.

As in previous results, the higher the number of nodes, the smaller

the ratio
k
L

guaranteeing the performance in terms of FAR. Moreover, a
comparison of these figures highlights the loss of performance due to
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discarding the guard cells in the CA CFAR algorithm. This is evident
particularly in the monostatic systems: with spiky and highly correlated
clutter, discarding the closest cells can lead to a considerable underestima-

tion that has to be compensated with a bigger value of
k
L

.
However, it is worth noting that multistatic systems manage to make

this loss much smaller: with 4 nodes (2 tx, 2 rx), but especially with 25
nodes (5 tx, 5 rx) this is almost negligible. This is due to the increased
information carried by the radar network and to the diverse aspect angle
of the clutter that allow a better estimation of the characteristics of the
area under observation and mitigates the loss of knowledge occurring in
disregarding the most meaningful cells. Small differences between curves
with the same numbers of nodes, but different CNR, are due to some
residuals of thermal noise affecting the processing. The noise samples are
in fact independent and therefore its response to the CA algorithm has
similar effects to removing the adjacent range cells of a CUT: it decreases
the algorithm’s accuracy in averaging. Of course the lower the CNR, the
higher the thermal noise effect.

A common feature observed in coherent processing is that increasing
the number of nodes and processing data coherently do not modify the
shape of the original distribution of the interference and therefore the
behavior of the performance is similar to the monostatic case. On the
contrary the incoherent processing realized by the MIMO radar systems
modifies this distribution. In those Figures, as well as in the work produced
so far, this modification allows setting a lower threshold, when compared
to the coherent case, for the FAR.

From the detection point of view, there are minor differences between
the reported results of the two versions of the CA CFAR implementation.
Once again MIMO systems loose a few dB against the RPNR and DRN a
few dB against MIMO. This is due to the lower threshold set for FAR that
allows recovering most of the losses due of sub-optimal processing. As
previously, NR apart, here multistatic systems overcome the monostatic
one also when constant power is transmitted.

The relatively high values of SINR necessary to yield an adequate
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Figure 6.19: FAR, NR, guard cells considered, L= 16

Figure 6.20: PD, NR, guard cells considered, L= 16
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Figure 6.21: FAR, NR, guard cells discarded, L= 16

Figure 6.22: PD, NR, guard cells discarded, L= 16
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Figure 6.23: FAR, RPNR, guard cells considered, L= 16

Figure 6.24: PD, RPNR, guard cells considered, L= 16
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Figure 6.25: FAR, RPNR, guard cells discarded, L= 16

Figure 6.26: PD, RPNR, guard cells discarded, L= 16
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Figure 6.27: FAR, MIMO, guard cells considered, L= 16

Figure 6.28: PD, MIMO, guard cells considered, L= 16
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Figure 6.29: FAR, MIMO, guard cells discarded, L= 16

Figure 6.30: PD, MIMO, guard cells discarded, L= 16
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Figure 6.31: FAR, DRN, guard cells considered, L= 16

Figure 6.32: PD, DRN, guard cells considered, L= 16
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Figure 6.33: FAR, DRN, guard cells discarded, L= 16

Figure 6.34: PD, DRN, guard cells discarded, L= 16
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detection rate can be justified by taking into account the distributions used
in the models and the integration time (Q = 16 pulses) before processing:
actually in the time-integration process, whilst the noise and signal’s power
achieve a gain of Q only, because they are uncorrelated, the power of the
clutter, that is highly correlated, is magnified by a much higher factor.

Statistical considerations

In this Section the modification of the statistics of the received signals
during the processing are briefly discussed. From a statistical point of
view, in a monostatic system using a CA CFAR algorithm as in equation
(6.15) the random variable zm, given τ is considered:

zm = |xm|
2
−

k
L
|ym|

2. (6.18)

Detection occurs when zm ≥ 0. This infers that, given its PDF pz(zm|τ), the
system yields detection with a rate equal to∫ +∞

0
pz(zm|τ) dzm. (6.19)

Therefore pz(zm|τ) can be written as function of xm and ym:

p(zm|τ) = p
(
|xm|

2
−

k
L
|ym|

2
|τ

)
. (6.20)

This expression is also a function of the noise power and of the correlation
properties of the clutter.

If the samples xm in equation (6.15) are statistically independent and
they have constant texture, the final expression of the PDF is much simpler
and clearer. Whilst the second assumption can be considered fairly close
to reality, as the texture is almost constant in the interval of few range cells,
the first assumption is usually not realistic, unless a pre-processing of data
is realized in order to remove the correlation between range cells. In any
case, the statistical modifications that follow and their consequences are
useful to improve understanding especially when the correlation between
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the samples of clutter is reintroduced. Under the hypotheses above, it is
possible to write:

p(zm|τ) = px2(|xm|
2
|τ) ∗ py2

(
−

k
L
|ym|

2
|τ

)
=

= px2(|xm|
2
|τ) × py2

(
k
L
|ym|

2
|τ

)
. (6.21)

When no target is present, px2(|xm|
2
|τ) is an exponential PDF function of

power w|τ, i.e.

px2(|xm|
2
|τ) = pwx (w|τ) =

=
1

τ + σ2
n

exp
{
−

w
τ + σ2

n

}
, (6.22)

and py2(|ym|
2
|τ) is a gamma, as a result of L convolutions of the distribution

in equation (6.22) with itself:

py2(|ym|
2
|τ) = pwy (w|τ) =

= pwy (w|τ) ∗ pwy (w|τ) ∗ · · · ∗ pwy (w|τ) =

=
1

(L − 1)!
1

τ + σ2
n

(
−

L
k

w
τ + σ2

n

)L−1

exp
{
−

L
k

w
τ + σ2

n

}
, (6.23)

Considering py2

(
k
L
|ym|

2
|τ

)
, as in equation (6.23), the factor

k
L

has to be taken

into account. Consequently this PDF can be expressed as:

py2(|ym|
2
|τ) =

=
L
k

1
(L − 1)!

1
τ + σ2

n

(
−

L
k

w
τ + σ2

n

)L−1

exp
{
−

L
k

w
τ + σ2

n

}
, (6.24)

Figure 6.35 shows the PDF in equation (6.20) (in a logarithmic scale on
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Figure 6.35: PDF of zm|τ, monostatic case

the vertical axis) for several values of k
(16

3
, 16, 48

)
, L = 16 and τ + σ2

n = 1.
Since no target is present, the area of the curves for z ≥ 0 represents the

PFA. As expected, the lower the ratio
k
L

(i.e. the lower averaging coefficient
of the power from the all the secondary data), the bigger the FAR.

In a multistatic incoherent radar system, such as a MIMO, we have
to develop the distribution descriptions starting from the decision rule,
equation (6.16), and the mono/bistatic distributions, as in equations (6.23)
and (6.24). Working in analogy with the monostatic case, the curves for
p(zm|τ) are as in Figure 6.36.

These curves have been obtained considering a multistatic system made
of 2 tx and 2 rx and they confirm that, also in this case, the lower the ratio
k
L

, the bigger the FAR. From a comparison with Figure 6.35 a modification
of the PDF is observed. In particular, it is worth mentioning that the FAR

increases for small values of
k
L

, whilst it decreases for greater values of this
ratio.
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Figure 6.36: PDF of zm|τ, multistatic case (MN= 4)

Statistics in the coherent case (RPNR) are similar to the monostatic
case since one CA CFAR is present at the end of coherent summation of
all the components, as in equation (6.17). In this case, and under the
same assumptions of the MIMO case (i.e. uncorrelated samples of clutter
and constant texture in range), the only difference with the monostatic
case is that the coherent pre-summation of all the contributes originates
two distributions identical to equations (6.23) and (6.24) apart from a
multiplicative factor for the variance τ + σ2

n: this is due to the effects of
summing coherently MN independent random variables. For brevity the
corresponding curves are not reported.

In this Chapter it has been confirmed that MIMO and DRN approach the
performance of the best coherent system also under the assumption of
clutter. They both have superior detection performance to (not-re-phased)
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NR. A decentralized approach has also been shown to have a simplest
structure of detector with moderate losses in SNR. Most of the results of
the previous Chapter have also been confirmed.
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Chapter 7
Coverage

Radar sensitivity and coverage are fundamental attributes of system per-
formance and hence are here considered as a means of comparison of the
different processing approaches. Therefore here the sensitivity of each
processing approach and subsequent coverage capacity are computed as
a function of the number of nodes in the radar network. This allows the
received power and the SNR levels for a target in a particular geometry
to be examined. It is recalled that a constant transmit power is supplied
to the radar network regardless of the number of transmitters as has been
used previously. This allows for a more straightforward comparison of
performance.

7.1 Sensitivity

From the bistatic radar equation [4] the power received Pr(m, k) from a
target at a distance Rm from the transmitter and Rk from the receiver is
given by

SNR(m, k) =
P0

M
GT(m)GR(k)λ2σ(θm,k, φm,k)

(4π)3R2
mR2

kLKTBF
=

Pr(m, k)
KTBF

(7.1)

where Pr(m, k) is the received power of the useful signal, K is Boltzmann’s
constant, T is the receiver temperature in Kelvins, B is the bandwidth of
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the system and F is the noise figure and the rest of the symbols are defined
in Section 4. This reduces to the monostatic case when Rm = Rk.

All the parameters with no dependency on distance, number of nodes or
RCS are grouped and give the symbolρm,k (where m refers to the transmitter
and k to the receiver). Thus:

ρm,k = P0
GT(m)GR(k)λ2

(4π)3L
. (7.2)

Therefore the dependency of the power at a single node of the network
system on the range and on the number of transmitters is:

SNR(m, k) =
1
M
ρm,kσ(θm,k, φm,k)

R2
mR2

k

1
KTBF

. (7.3)

In the rest of this section, for simplicity and to allow an immediate compar-
ison, it is assumed that P0 = 5 kW (peak), GT(m) = GR(k) = 30 dB, λ = 12.5
cm, L = 1, T = 290◦K, F = 2, B = 10 MHz, M = 5, i.e. ρm,k is a constant, say
ρ0. For the sake of simplicity, the pulse is assumed not to be compressed

and therefore its duration τ is equal to
1
B

. It is still assumed that the RCS
σ(θm,k, φm,k) is Swerling I distributed with zero mean value and variance
σ0 = 10 m2.

7.2 Covered area

The coverage resulting from the differing processing approaches is evalu-
ated via the average SNR as a function of range. A value of SNR is chosen
so that the overall detection rate, for each system, is 80% with a FAR equal
to 10−6. This means, given the differences in the underlying statistics of
the overall incoming noise, the chosen SNR value for a single pulse at each
node is different in every system. As it can be inferred by inspection of the
FAR and detection plots in Sections 5.1 and 5.2, the required SNR levels
are (approximately) 18 dB in the monostatic case, 7 dB in the RPNR case,
25 dB in the simple NR case, 9.5 dB in the MIMO system and finally 11.75
dB in the DRN one (Figure 5.2 and 5.9 for the monostatic case).
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7.2.1 Monostatic case

In the monostatic case the coverage (in two dimensional space) is circular
and the maximum covered radius can be recovered inverting equation 7.3
and setting Rm = Rk = R and M = 1:

max {R} = 4

√
ρ0σ0

KTBF
1

min {SNRmono}
. (7.4)

With
ρ0σ0

KTBF
= 186.9 dB · m4 and SNRmono ≈ 18 dB, Rmax ≈ 16.7 Km. Figure

7.1 shows the coverage under these assumptions.

Figure 7.1: SNR and coverage, monostatic case

7.2.2 RPNR

Here the RPNR is examined. In this case it is convenient not to focus on
power at a first stage as these systems operate coherently, but on amplitude
and phase of all incoming signals. The global received power, after the
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appropriate alignment of the phases from all the signals, can be expressed
as

Pr =

∣∣∣∣∣∣∣
M∑

m=1

N∑
k=1

1
R2

mR2
k

√
ρm,kσ(θm,k, φm,k)

M
exp

{
jφ0

}∣∣∣∣∣∣∣
2

, (7.5)

where the phases of all the signals have been realigned to φ0. On average
and in the far field, where Rm ≈ Rk = R, the received power can be
expressed as

Pr ≈
1

R4 E


∣∣∣∣∣∣∣

M∑
m=1

N∑
k=1

√
ρm,kσ(θm,k, φm,k)

M
exp

{
jφ0

}∣∣∣∣∣∣∣
2
 =

=
ρ0

MR4 E


∣∣∣∣∣∣∣

M∑
m=1

N∑
k=1

√
σ(θm,k, φm,k)

∣∣∣∣∣∣∣
2
 , (7.6)

where
√
σ(θm,k, φm,k) is Rayleigh distributed.

From a statistical point of view, if xk and yk are Gaussian RV with 0 mean
value and σ2 and ξk = |xk + jyk| is their corresponding Rayleigh-distributed
envelop, the following applies:

E


∣∣∣∣∣∣∣

L∑
k=1

ξk

∣∣∣∣∣∣∣
2
 = E


L∑

k=1

ξ2
k +

L∑
k=1

L∑
h=1
h,k

ξhξk

 =

= E

 L∑
k=1

ξ2
k

 + E


L∑

k=1

L∑
h=1
h,k

ξhξk

 = 2Lσ2 +

L∑
k=1

L∑
h=1
h,k

E {ξhξk} =

= 2Lσ2 +

L∑
k=1

L∑
h=1
h,k

E {ξh}E {ξk} = 2Lσ2 +

L∑
k=1

L∑
h=1
h,k

π
2
σ2 =

= 2σ2L
[
1 + (L − 1)

π
4

]
. (7.7)
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Therefore, as a consequence of equation (7.7) equation (7.6) can be
reduced to:

Pr ≈
ρ

MR4 MN
[
1 + (MN − 1)

π
4

]
σ0. (7.8)

The computation of the average SNR after re-phased coherent summa-
tion of all the signals is therefore:

SNRRPNR =

ρ0

MR4 MN
[
1 + (MN − 1)π4

]
σ0

MNKTBF
=

=
ρ0

MR4

σ0

KTBF

[
1 + (MN − 1)

π
4

]
, (7.9)

where it is convenient to point out clearly that the white Gaussian noise
power is increased by a factor MN because of the coherent summation of
all the noise samples.

Here, compared to the monostatic case, there is a gain
[
1 + (MN − 1)

π
4

]
in the global SNR. This can be approximated to

Nπ
4

as the number of nodes
increases. The coverage from the centre of each device is approximately 45
Km. The increase of coverage is huge when compared to the monostatic
case and this is due to the increased global SNR after processing and the
reduced minimum SNR required at each single node (from 18 to 7 dB).
Again, when compared to MIMO and the DRN processing, this gives us
the upper bound limit for performance. Figure 7.2 shows the coverage for
this kind of radar when devices are spaced 0.5 km away from the original
position in the monostatic case when the system is made of 5 transmitters
and 5 receivers (co-located devices). This network configuration will be
the same for the other processing approaches. As shown, in both cases the
coverage is increased and can be further improved by locating the nodes
further away from each other (at least until the limit on sensitivity starts to
be exceeded).
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Figure 7.2: SNR and coverage, RPNR case, d= 500 m

7.2.3 NR

For the same conditions as used previously the received power is given by:

Pr =
1

R4

∣∣∣∣∣∣∣
M∑

m=1

N∑
k=1

√
ρm,kσ(θm,k, φm,k)

M
exp{ jφ0}

∣∣∣∣∣∣∣
2

≈

≈
1
M
ρ0

R4

∣∣∣∣∣∣∣
M∑

m=1

N∑
k=1

√
σ(θm,k, φm,k)exp{ jϕm,k}

∣∣∣∣∣∣∣
2
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where ϕm,k takes into account the phase-shift due to the path. On average
this quantity can be expressed as

Pr ≈
1
M
ρ0

R4

∣∣∣∣∣∣∣E
 M∑

m=1

N∑
k=1

√
σ(θm,k, φm,k)exp{ jϕm,k}


∣∣∣∣∣∣∣
2

. (7.11)

It is well known that the coherent sum of Gaussian distributed white RV
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7.2 Covered area Coverage

Figure 7.3: SNR and coverage, NR case, d= 500 m

achieves a gain equal to MN in power, therefore the global SNR on the far
field can be written as:

SNRNR ≈
1
M
ρ0

R4

MNσ0

MNKTBF
=

1
M
ρ0

R4

σ0

KTBF
. (7.12)

As a consequence in this system the overall SNR is of a factor M smaller
than the monostatic case and in addiction the threshold on the single node
is bigger (from 18 to 25 dB). This explains the reduced coverage in Figure
7.3.

7.2.4 Spatial MIMO

When spatial MIMO processing is applied, the received power is computed
from the signals as

Pr ≈
1
M
ρ0

R4

∣∣∣∣∣∣∣E
 M∑

m=1

N∑
k=1

√
σ(θm,k, φm,k)exp{ jϕm,k}


∣∣∣∣∣∣∣
2

. (7.13)
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7.2 Covered area Coverage

Figure 7.4: SNR and coverage, MIMO case, d= 500 m

On average and in the far field this can be approximated by

SNRMIMO ≈
MN 1

M
ρ0

R4

MNKTBF
=

1
M
ρ0

R4

1
KTBF

=
1
M

SNRMONO. (7.14)

Therefore in the MIMO case decreased SNR and hence reduced cov-
erage might be expected when compared to the re-phased case. Figure
7.4 show the coverage for MIMO processing. Here the maximum covered
distance is approximately 18 Km. However it is worth noting that in this
case the coverage is still more extensive than in the monostatic case. This
reinforces the hypothesis that in real cases, when the RCS has a complex
multistatic behaviour, the angular diversity provided by MIMO radar
systems can exploit scintillation of the target to outperform a monostatic
system.
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7.2.5 DRN

In DRN processing each node of the system operates as a single mono/bistatic
radar system and in a second stage the gathered information is fused
together. Under this assumption, when each device works in a monostatic
configuration, it can assumed that the SNR is M times smaller than the
monostatic case (due to the reduced transmitted power), thus the maxi-
mum area covered can be obtained from equation (7.4). In the far field
this assumption is valid including when the receivers work in a bistatic
configuration.

Figure 7.5 shows that with this form of processing the minimum SNR
required at 80% of PD is approximately 11.75 dB, against 18 dB for the
monostatic case (i.e. with a gain of approximately 6 dB), but has a loss of M
(= 5, i.e. ≈ 7 dB) due to the bound on the total transmitted power. Therefore
the actual loss of this system in SNR, compared to the monostatic case is
approximately 0.75 dB and the subsequent loss on the covered distance is
≈ 4.2%. However this loss in coverage could be fully recovered by spacing
the devices in a more optimum fashion. Indeed, in realistic scenarios this
will be dictated by the terrain.

In this Chapter the coverage of all the systems under analysis have been
examined. It has been shown that the incoherent systems achieve a
coverage comparable with the monostatic radar. RPNR is reported, once
again, to achieve the optimal performance. However, the analysis here
takes into account transceiver distant 500 meters from one another. In real
systems the devices are placed according to the geographical configuration
and this can improve the joint coverage further.
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7.2 Covered area Coverage

Figure 7.5: SNR and coverage, DRN case, d= 500 m
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Chapter 8
Experimentation

In order to examine the theoretical results achieved in the previous part of
this thesis, a small number of experiments were conducted. This does not
allow a exhaustive tests of all arguments of performance for each of the
distributed concepts but not all arguments can be examined.

In this Chapter the radar system used for acquiring data is introduced
and consequently the experiment setup and the processing of the data are
described. Through the acquired data the aim is to validate the concepts
developed so far and provide a more realistic scenario of the potential of a
radar network.

In particular, the following are reported:

(i) the hardware configuration,

(ii) the experiment setup,

(iii) the noise and clutter characteristics.

These are introductory to show in the following Chapters:

(i) the multistatic data characteristics for a moving target (person) and
clutter,

(ii) a range-Doppler analysis of the acquired data,

(iii) ways for localizing a target.
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8.1 Hardware Experimentation

8.1 Hardware

Figures 8.1 and 8.2 show one pair tx-rx used for the experiment.
The beamwidth of each tx or rx antenna has been chosen to be quite

wide (20◦ el. ×30◦ az. one way beamwidth, as in Figure 8.6). Such a beam
pattern has been chosen in order to illuminate an area wide enough to
allow for the target movements, even though the clutter component in the
received signal is greater.

The one-way gain of each antenna is ≈ 15 dB. The two transmitters
have been set to a PRF of 10 kHz each. In a real system a couple of low
cross-correlation codes would be employed for this purpose. However,
due to hardware limitations, this was not possible when acquiring data.
As a consequence an interleaved transmission has been used to emulate
the separability allowed by the codes and consequently to enable full
recovery of each of the tx-rx signals. The transmitted waveform is an
up-chirp with 40 MHz effective bandwidth and duration T = 0.6 µs. The
carrier frequency has been set at 2.4 GHz and the IF at 20 MHz. The
A/D converter emits 100 MSamples/s, each one quantized to 14 bits. The
nominal transmitted power for the data presented here is ≈ 23 dBm (≈ 0.2
W). The crosscorrelation of the transmitted waveform is reported in Figure
8.3. As it can be seen, the transmitted waveform has the properties of a
chirp with first sidelobes at -13.3 dB.

8.2 Experimental setup

The experiment configuration is shown schematically in Figure 8.4. The
experiment was conducted at the UCL Shenley Sports Ground, London,
Colney in Hertfordshire (UK). The experimental site was chosen for its
expected low clutter background. The system was comprised of 2 devices
able to transmit and receive and one silent receiver. As a consequence,
with M = 2 transmitters and N = 3 receivers, the system’s output O is
comprised of 6 multistatic signals, that can be schematically represented
as
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8.2 Experimental setup Experimentation

Figure 8.1: tx-rx external view

Figure 8.2: tx-rx internal view
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8.2 Experimental setup Experimentation

Figure 8.3: cross-correlation of the transmitted waveform

O =

 tx1 − rx1, tx1 − rx2, tx1 − rx3
tx3 − rx1, tx3 − rx2, tx3 − rx3

 . (8.1)

The antennas were fixed, i.e. during the acquisition of the data they
were not scanning, and pointed to the initial position of the target. The
transmitting and the receiving antennas of the first and third devices were
separated by a small distance (≈ 90 cm), although for simplicity they have
been represented as one in Figure 8.4. Here this is referred to as either
“monostatic signals” or “monostatic configuration” or “quasi-monostatic”.
In Chapter 9 it is seen that the different location of the tx and rx antennas
affects the observations.

It is worth highlighting that there is a symmetry between the bistatic
signals of the first and the third devices and therefore a very high correla-
tion is expected between r1,3 and r3,1, where rh,k is the signal after matched
filtering when the h-th device transmits and the k-th receives. This acts
also a simple test of the system and the experimental method. The target
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8.2 Experimental setup Experimentation

Figure 8.4: Schematics of the radar network configuration

Figure 8.5: Actual radar network configuration
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8.3 Received signals and clutter removal Experimentation

Figure 8.6: Antenna patterns in elevation and azimuth – images provided
by the producer

presented in the following figures is a person walking radially towards the
first device starting from a range of (approximately) 120 m.

8.3 Received signals and clutter removal

The signal to each receiver after matched filtering is expected to be made of
(i) target (when present), (ii) clutter, (iii) multipath and (iv) thermal noise,
i.e.

rk,m(t) =

M∑
m=1

H0/1
[
αk,msm (t − τs) + βk,msm (t − τs − ∆τs)

]
+

+ ck,m (t − τc) + nk (t) ,

(8.2)

where k = 1..N, m = 1..M and αk,m and βk,m are the backscatter coefficients,
inclusive of the phase terms determined by the parameters of the radar
equation and due, respectively, to the direct path and the multipath. The
other symbols are as in previous Chapters. The dependency of the delays
τs/c and ∆τs on the indexes k and m have been omitted for brevity.
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8.3 Received signals and clutter removal Experimentation

In the acquisitions completed, the time between two interleaved trans-
missions of the reference chirp and the distance of the target allows the
echoes from the target to be separated in time. Thus it is possible to write
equation (8.2) in a simplified form as:

rk,m(t) = H0/1
[
αk,msm (t − τs) + βk,msm (t − τs − ∆τs)

]
+

+ nk (t) + ck,m (t − τc) .
(8.3)

In more complex systems, covering greater distances, it will be neces-
sary to exploit code diversity or other properties to minimize the mutual
interference between the transmitted signals. This argument is not consid-
ered in this thesis.

8.3.1 Clutter removal

In this Section a brief description of the processing adopted to remove the
clutter is reported, together with its effects on the received signals. Figures
8.7 and 8.8 show a snapshot of the signals arriving at all the receivers, after
matched filtering and integration but before clutter suppression, when tx1
and tx3 are transmitting. From the a-priori knowledge of the experiment,
the moving target is expected to be at a mono/bistatic range of 120 m.
Whilst in Figures 8.7 and 8.8 a visual analysis cannot confirm the presence
of the target at this distance, after clutter removal, i.e. in Figures 8.9 and
8.10, the target stands out much clearly than before.

As the clutter was expected to be due to the backscattering from
the stationary ground, and consequently without a significant Doppler
spread, it has therefore been cancelled using a high-pass filter with a cutoff

frequency of 10 Hz. Figure 8.12 shows its amplitude response. The filter
cutoff has been designed to attenuate the stationary clutter as much as
possible while preserving the Doppler response of slow-moving targets
such as a walking person. The effectiveness of filtering in saving the
Doppler information of a walking person is also shown in Figure 8.11.
Here a range-Doppler plot of the monostatic signal tx1-rx1 is reported
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8.3 Received signals and clutter removal Experimentation

Figure 8.7: Signals from tx1 to all receivers

Figure 8.8: Signals from tx3 to all receivers
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8.3 Received signals and clutter removal Experimentation

Figure 8.9: Signals received from tx1 after clutter removal

Figure 8.10: Signals received from tx3 after clutter removal
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8.3 Received signals and clutter removal Experimentation

before and after clutter removal. The integration time is here 1 second.
This is too high as range cell migration of the target occurs. However, as
also discussed in Section 10.2.2, it allows a better evaluation of the clutter
removal.

Finally, further considerations on the geometry of the experiment con-
cern the direct feeding of the receivers, due to the presence of sidelobes in
the pattern of the tx/rx antennas. An attempt to mitigate this interference
was setting rx2 and rx3 in the first null of the azimuth pattern of tx1,
according to the information shown in Figure 8.6. In turn, rx1 and rx2
have been placed, respectively, in the first and second null of tx3. As the
antennas in tx and rx were of the same kind, this turned out to place the
transmitters in nulls of the receiving patterns as well. As Figures 8.7 and
8.8 show, this has avoided the saturation of the receivers. The residual
direct feeding has then been cancelled in a second stage of processing by
the same filter used for the clutter, as it had a zero Doppler component.

8.3.2 Target, noise and clutter signals

This Section describes in more detail the signals introduced in the previous
Section. Particular attention is given to the echoes from two different range
cells: the first is the target’s and the second contains only clutter and noise.
For the sake of simplicity, only echoes related to the pair tx1-rx1 only
are here examined: the signals from the remaining pairs have similar
behaviours and therefore for brevity are not reported.

Figure 8.13 shows the power (in dB) and the phase (in degrees) of the
received signal for a series of pulses for the range cell where the target
is present. One second of acquired data at a PRF of 10 kHz are reported
here (i.e. 10000 pulses). After removing the clutter by filtering, the signal
appears as shown in Figure 8.14. It is worth highlighting that for relatively
high SNR the linear (after filtering) behaviour of the phases is clearly
evident, whilst it is partially or totally lost for low SNR, e.g. between
pulses 6000 and 7000, as it is expected. In other words, for high SNR a
quite strong correlation of the phases from pulse to pulse for the target is
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8.3 Received signals and clutter removal Experimentation

Figure 8.11: Range-Doppler plots before and after clutter removal

Figure 8.12: Amplitude response of the high-pass filter used for clutter
removal
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8.3 Received signals and clutter removal Experimentation

Figure 8.13: Signal and interference as a function of pulses – tx1-rx1

observed. This might be expected considering that the target is a walking
person (therefore with a modest velocity) and the radar has a relatively
high PRF and hence there is little change from pulse to pulse.

Figures from 8.15 to 8.17 refer to the a range cell at 187.5 m where clutter
and noise only are present. Here the power and phase of (i) clutter and
noise, (ii) noise only after filtering as in the previous Sections and finally
(iii) clutter only, as the difference of the received signals and the filtered
noise. As it is possible to observe, whilst the noise has an uncorrelated
phase, when the clutter is present, its phase has a degree of correlation.
However, since a visual analysis cannot describe exhaustively the statis-
tical description of clutter, the following Chapter is dedicated to a more
detailed analysis which includes considerations on the multistatic statistics
of the clutter together with an introductory study of the correlation of the
interference as function of the nodes.
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8.3 Received signals and clutter removal Experimentation

Figure 8.14: Signal and residual noise as a function of pulses – tx1-rx1

Figure 8.15: Clutter and noise as a function of pulses – tx1-rx1
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8.3 Received signals and clutter removal Experimentation

Figure 8.16: Noise as a function of pulses – tx1-rx1

Figure 8.17: Clutter as a function of pulses – tx1-rx1
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Chapter 9
Multistatic data characteristics

In this Section some properties of the set of the acquired signals are
investigated. This is a merely preliminary analysis to examine properties of
multistatic data and an experimental means of evaluating the assumptions
of previous chapters, such as Chapter 6. In particular, the attention here is
focused on the cross-correlation characteristics of the received signals and
their relationship as a function of the nodes.

In general, throughout this chapter the correlations have been com-
puted taking into account the data either in (i) their complex format, (ii)
their amplitude alone and finally (iii) their phase alone, in order to best
understand all the possible existing relationships. Correlations have been
computed on single pulses and then averaged over a period of 1 second.

9.1 Clutter and noise only

In this Section the average correlation and the PDF of clutter as function of
nodes are reported.

Figure 9.1 shows, on the same plot, the average correlation properties of
the signals from tx1 to rx1 with all the others in the network. In particular
complex data correlation is reported in blue, amplitude correlation in green
and finally phase correlation in red. It appears convenient now to describe
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9.1 Clutter and noise only Multistatic data characteristics

in more details the procedure applied here to get such plots. In general
terms, the kth received signal from the ith receiver can be written as

ri,k (t) = H0/1si (t) + ci,k (t) + nk (t) , (9.1)

with symbols as in Chapter 6. Nonetheless, ri,k (t) can be written in terms
of its amplitude an phase, i.e.

ri,k (t) = |ri,k (t) | exp
{
jφi,k (t)

}
. (9.2)

Therefore in the following Figures the correlation coefficient between
ri,k (t) and rm,q (t) are reported. In addition, in a first instance, the reader
can assume that signals have been collected from one range cell only1.
Moreover, echoes have been acquired for 1 second at a PRF of 10 KHz, so
it would be more correct to write equation 9.2 as

rp
i,k (mT) = |rp

i,k (mT) | exp
{
jφp

i,k (mT)
}

=

= |rp
i,k [m] | exp

{
jφp

i,k [m]
}

= rp
i,k [m] , (9.3)

where m = 1 . . . 10000, T = 1
PRF and finally p refers to the pth range cell.

The correlations coefficients ρξ,η reported in Figure 9.1 (and following) are
evaluated as follows:

ρξ,η =

L∑
l=1

ξ∗[l]η[l]√√ L∑
l=1

ξ∗[l]ξ[l]


 L∑

l=1

η∗[l]η[l]


(9.4)

where L = 10000 and ∗ is the conjugate operator. The variables ξ and η are
defined as

1In a multistatic system, range cells cannot match perfectly, due to the difference in
geometry. However, range cells have been chosen to have most of the illumination in
common. For the sake of simplicity in the rest of this Chapter it is referred as if signals
come from one range cell only, notwithstanding the difference in geometry.
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(i) ξ = rp
i,k, η = rp

m,q when complex data are analyzed (blue plot),

(ii) ξ = |rp
i,k|, η = |rp

m,q|when amplitude data are analyzed (green plot) and

(iii) ξ = φp
i,k, η = φp

m,q when phase data are analyzed (red plot).

In Figure 9.1 (and following) the paths are reported on the x-axis and
the correlation values on the y-axis. The distance of the cell taken into
consideration is 187.5 m from the first node. As it is possible to see, when
the signal is correlated with itself, all the correlation levels are 1. Although
this is expected and therefore redundant, these values have been plotted
anyway to (i) provide an immediate understanding of the reference signal
and to (ii) allow uniform axes of the Figures for an easier comparison.
However, when describing the Figures, these values will not be analyzed.
On the contrary the attention is focused on the correlation values with the
rest of the paths, which can vary more or less significantly, according to
the nodes and the kind of data examined (complex data, amplitude only,
phase only).

In Figures from 9.1 to 9.4, although the amplitudes are shown to be
statistically dependent from one another, the phases can be considered
almost independent. Also the overall correlation of complex data corre-
lation is quite low. There are still exceptions to this general behaviour
that stand out clearly: first of all, Figures 9.1 and 9.2 show a remarkable
correlation between the monostatic measurements. This is quite unex-
pected, given the different aspect angles of illumination of the clutter patch,
which is confirmed from the low correlation of the phases, therefore this
relatively high level of correlation may be explained by a similarity of
monostatic clutter backscattering from the same area. It is also true that
in this particular case the clutter is made of terrain that can have a more
homogeneous behaviour than other kinds of clutter, such as that from
the sea surface, that is characterized by a spiky echoes rapidly varying
in time. Figure 9.3 shows a quite high correlation between tx1-rx3 and
rx3-tx1. This has to be expected if considering that this is originated by the
symmetrical configuration of these devices, as described in the previous
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Chapter. However, a possible argument can be that, notwithstanding the
high degree of redundancy, the cross-correlation of the complex data of
symmetrical signals falls to 61%, the amplitude correlation to 87% and the
phase correlation as low as 20%. It has to be pointed out clearly that, as also
shown in the next Section for the target, the noise effects here are such to
decorrelate the clutter properties and therefore to lessen the its correlation.
In particular for this set of data the CNR was quite low, i.e. in the order
of 5 dB. Finally Figure 9.4 does not show any particular correlation for the
clutter and noise case.

Figures from 9.5 to 9.7 show the distribution of the amplitude of the
clutter. Most of these distributions have a Gaussian texture in common,
which is reflected in the Rayleigh-shaped PDFs. As seen in Section 3.5,
the Gaussian distribution is quite common for the texture in the case of
ground clutter. In particular Figure 9.5 shows that the two monostatic
measurements have two Rayleigh-distributed PDF with different standard
deviations. As expected, the two symmetrical signals tx1-rx3 and tx3-
rx1 have similar distributions (Figure 9.6). As it will be seen at the end
of this Chapter, the difference here can be explained by the extra noise
of the first receiver. Finally Figure 9.7 reports the clutter distribution of
the remaining two bistatic signals. Whilst the one from tx3 to rx2 has
an expected Gaussian shape, that from tx1 to rx2 has a tail which does
not match the expectations. At this point, it is worth recalling that the
relationships between multistatic clutter returns from the same area have
received limited attention in the past and this is a first insight in this topic.
In particular, the long tail of the distribution in the latter Figure might be
an indicator of a change in the clutter distribution, not only in its statistics.
Therefore, the complex backscattering from even a fairly simple kind of
clutter, i.e. from a flat grass field (as in this case), seems to be able to provide
a variety of reflected signals with different properties, as much as happens
in more structured targets.
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Figure 9.1: Cross-correlation levels with tx1-rx1 – clutter

Figure 9.2: Cross-correlation levels with tx3-rx3 – clutter
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Figure 9.3: Cross-correlation levels with tx1-rx3 – clutter

Figure 9.4: Cross-correlation levels with tx1-rx2 – clutter
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Figure 9.5: Multistatic PDF of the amplitude of the clutter, monostatic
signals

Figure 9.6: Multistatic PDF of the amplitude of the clutter, symmetrical
signals
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Figure 9.7: Multistatic PDF of the amplitude of the clutter, bistatic signals

9.2 Moving target - person

In this Section the correlation properties are studied when a moving target
is present. In particular a window of 3 range cells around the target is
taken into account. These 2 guard range cells around the nominal cell of
the target have been introduced to take account the oversampled data rate
and a possible migration of the moving target

The examination of Figures from 9.8 to 9.11 highlights a different
correlation behaviour from that observed in Section 9.1 when a target
is present. In these cases the amplitudes are extremely correlated in
all the results shown. This is due to the characteristics of the target (a
person) whose RCS does not scintillate as conventional targets and exhibits
a longer correlation from pulse to pulse, due to the slow velocity (and the
high PRF used). However, when considering the correlation between the
phases and the entire complex data, different characteristics from those
in Figures from 9.1 to 9.4 arise. In Figure 9.8 it is quite evident that
the monostatic measurements are less similar to one another. On the
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contrary the monostatic measurements from tx3 to rx3 (Figure 9.9) are
quite similar to the one from tx1 to tx2. This is quite unexpected and does
not match what found in the clutter cases and may be explained by the
back scattering properties of the target. Figure 9.10 shows an interesting
result that validates the a-priori expectations about the experiment: here
the properties of the symmetrical configuration are extremely clear. There
is a similarity at all levels between tx1-rx3 and tx3-rx1 highlights (the
average cross-correlation on complex data is ≈ 88%) and also a quite high
correlation is observed between tx1-rx3 and tx1-rx2, as it might be expected
since the target is a person moving towards the central node. This due,
again, to the symmetry in carrying out the experiment. Even the phases,
which are extremely sensitive to minor mismatches and to low SNR, have
a correlation up to almost 50% in one case and 40% in the other. These
considerations are basically confirmed by Figure 9.11.

Figures 9.12 and 9.13 shows the signals received from pairs tx1-rx3 and
tx3-rx1 respectively. As it can be seen, the overall shape of the signals is
very similar, although the signal in Figure 9.13 has a greater contribution
of noise, as it can be confirmed as well from an analysis of the phases.
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Figure 9.8: Cross-correlation levels with tx1-rx1 – target

Figure 9.9: Cross-correlation levels with tx3-rx3 – target
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Figure 9.10: Cross-correlation levels with tx1-rx3 – target

Figure 9.11: Cross-correlation levels with tx1-rx2 – target
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Figure 9.12: tx1-rx3

Figure 9.13: tx3-rx1
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Chapter 10
Localization

In this Chapter a method for processing data from a chosen area as
surveyed by a multistatic system for the localization of a target is presented.
Experiment description and pre-processing of the signals have already
been discussed in Chapter 8. In particular, two ways for localization are
reported. The first is a graphical method, in which data are processed
according to the strategies so far examined (MIMO, NR, RPNR, DRN).
The second is an hybrid numerical approach in which the system works
in part as decentralized and in part centralized. It is clear that numerical
minimization of specific functions has to be applied when the estimated
target location is used in a tracking algorithm, so an easy and immediate
method to locate one (or more) target is also reported. This expands the
domain of potential application. For this purpose, an easy and very fast
sub-optimal algorithm is applied to the received data so to improve the
estimation of the measures of the Doppler shifts and the range positions
of the target.

Figure 10.1 shows a representation of 25 integrated received pulses, as
a function of range. In particular, each subplot shows one path from a
transmitter to a receiver. It has been chosen to integrate 25 pulses for (i)
avoiding range cell migration and (ii) emulating the TOT as if the antennas
were scanning. In this Figure, the shown signals are a representation on the
(x, y) plane of the received echoes for each path. The first transceiver has
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Figure 10.1: Graphical representation of acquired signals

been taken as the origin of the grid (x = 0 m, y = 0 m) and consequentially
the other two devices are located at (x = −48.96 m, y = 10.28 m) and
(x = 48.96 m, y = 10.28 m), respectively. In addition, the pattern of the
antennas are here represented as if they are limited to the -3dB width.
Bistatic paths in the subplots have been represented evaluating the patterns
as the superimposition of the transmitter and receiver 1-way patterns. As
it can be seen from this Figure, the SNR is expected to vary roughly from
15 to 30 dB, which is a fairly high SNR. However, as also seen in Section
8, these levels can be subject to a considerable fading. From the a-priori
knowledge of the experiment, the moving target is expected to be ≈ 120 m
far from the first device and walking away from it radially.
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10.1 Visual localization

In this Section the diagrams in Figure 10.1 are summed up together into
a single plot only, according to different strategies. These are, in order, in
analogy with the concepts examined in the previous Chapters: (i) coherent
centralized summation (NR), (ii) coherent centralized summation with
phase correction (RPNR), (iii) incoherent centralized summation (MIMO)
and (iv) incoherent decentralized summation (DRN). In other words in the
NR case the diagrams in Figure 10.1 are summed in amplitude and phase,
without re-aligning the phase from the target, in the MIMO case they are
summed up in power, in the DRN after a first thresholding, in the RPNR
after re-aligning the phases according to the position of the target. For the
sake of simplicity, given the high SNR, in the RPNR it has been assumed
that

∠ (sta (tta)) ≈ ∠ (sta (tta) + nta (tta)) (10.1)

where ∠x is the phase of x, and tta is the time of reception of the echo from
the target. This is not the same as re-aligning the phases according to the
real position of the target, but still gives a good approximation of the best
performance available. However, as in the rest of this work, the first two
systems are reported as a means of comparison.

Figures 10.2 and 10.3 show the graphical approach to localization in the
area around the target at the beginning and at the end of the acquisition,
respectively, i.e. at t = 0 sec and t = 1 sec. Here all the approaches
described throughout this thesis are applied. The integration time was
2.5 msec, i.e. equal to 25 pulses. The subplots have been achieved by
summing up, according to the different strategies, the signals as in Figure
10.1. Generally, the coherent uncorrected summation performs worst, as
expected, whereas coherency is not achieved in the location of the target,
but in other regions, whilst as expected, the re-phased coherent system
performs at the best, whereas it exploits a-priori information. As it can be
seen, the MIMO approach results in some uncertainty as to the position
of the target, because of the wide beamwidth of the antenna patterns. On
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the contrary the DRN approach manages to locate the target with higher
accuracy, although it has to be pointed out that this approach requires a
thresholding on the output of each pair tx-rx. In particular, the approach to
thresholding for this set of results is a standard CA-CFAR, with one guard
cell and two secondary cells per side, around the cell under test. The single-
pair FAR has been set in this case to 10−1, which is a fairly high value, but
still allows to compare the systems limiting the advantage that the DRN
can take from the double-thresholding. In addition it has to be pointed out
that the graphical approach does not allow a clear discrimination of the
movements of the target, as the plots at the beginning and the end of the
acquisition (respectively Figures 10.2 and 10.3) differ by small differences.
This scenario can be therefore of interest if the signals are to be plotted
jointly on a screen or on a Planned Position Indicator (PPI), but it is not
adequate for automatic applications. In the following Section a solution
for addressing this issue is presented.

10.2 Numerical localization and Doppler recon-

struction

In this Section a numerical approach to the problem of localization is
reported. In addition, Section 10.2.2 and Section 10.2.3 describe some
issues related to the range-Doppler measurements of the analyzed data and
their solution. Finally Section 10.2.5 shows a convenient way of extracting
further information on the movement of the target.

10.2.1 Algorithm

Numerically, the position of one or more targets can be computed by
solving the following equations
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Figure 10.2: Graphical approach to localization, start of acquisition
(t = 0 sec)

Figure 10.3: Graphical approach to localization, end of acquisition
(t = 1 sec)
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‖vT − vtx,1‖ + ‖vT − vrx,1‖ = r1,1
...

...
...

‖vT − vtx,i‖ + ‖vT − vrx,k‖ = ri,k
...

...
...

‖vT − vtx,M‖ + ‖vT − vrx,N‖ = rM,N

(10.2)

with respect to vector of the coordinates of the target vT, where vtx,i is
the vector of the coordinates of the ith transmitter, vrx,k is the vector of the
coordinates of the kth receiver and ri,k is the two-way estimated distance.
Alternatively, it is possible to minimize a function such as

ε(vT,Vtx,Vrx, r) =

M∑
i=1

N∑
k=1

(
‖vT − vtx,i‖ + ‖vT − vrx,k‖ − ri,k

)2 , (10.3)

where Vtx is the matrix comprised by the vectors of the coordinates of the
transmitters, Vrx is the matrix comprised by the vectors of the coordinates
of the receivers and r is the vector comprised by the measured 2-way
distances. Under this assumptions, the solution of the system in equation
(10.3) can be written as

v̂T = arg
{
min

vT
{ε(vT,Vtx,Vrx, r)}

}
, (10.4)

since it is more robust when the set of distances r is not exact but affected
by errors (thermal noise, residual clutter and range-estimation errors), as
occurs generally in radar systems. However such minimization can be
complicated and the complexity grows with the number of all the possible
paths between the transmitters, the target and the receivers.

Alternatively, this problem can be slightly simplified by determining
at a first stage an evaluation of the distance d̂h = ‖vt − vh‖ between the
target and the hth device (either tx or rx) and in a second stage finding the
minimum of a function such as:
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ε(vT,V,d) =
∑

h

(
‖vT − vh‖ − d̂h

)2
(10.5)

where V is the matrix comprised by the vectors of the coordinates of all
the devices. Consequently the solution of the function in equation (10.5)
can be written as follows:

v̂T = arg
{
min

vT

{
ε(vT,V, d̂)

}}
, (10.6)

In other words, the minimum least square (MLS) optimization of equa-
tion (10.3) is divided in two sub-MLS-optimizations. In the first, starting
from all the range estimations (as will be seen in Section 10.2.3), the
distances between the devices (either tx or rx or both) and the target
are computed and then the minimum of the function in equation (10.5)
is searched.

In particular, the distances d̂h, can be found as the MLS solution of the
following system:

Ad =



2 0 0
1 1 0
1 0 1
1 0 1
0 1 1
0 0 2




d1

d2

d3

 =



r11

r12

r13

r31

r32

r33


= r, (10.7)

i.e. as

d̂MLS =
(
ATA

)−1
ATr. (10.8)

It has to be pointed out that many equations in (10.7) would be redun-
dant if it was possible to measure distances without errors. In fact, this
system states that the generic measured range ri,k is the sum of the distance
di from the ith transmitter to the target and the distance dk from the target
to the kth receiver. Nevertheless, the inaccuracy of the measurements due
to disturbance and limited resolution provides a reason for the inversion

171



10.2 Numerical localization and Doppler reconstruction Localization

of the system in (10.7) as in (10.8). However, it is particularly worth noting
that (i) this MLS optimization is basically costless, whereas the matrix(
ATA

)−1
AT can be pre-computed and does not need to be updated, and (ii)

the optimization of the function in equation (10.5) presents a much lower
level of complexity than the one in equation (10.3).

For completeness, in the analysis of the localization, two further func-
tions have been examined. These take into account the noise of the channel
and are as follows:

ε(vT,Vtx,Vrx, r) =

M∑
i=1

N∑
k=1

1
σ2

i,k

(
‖vT − vtx,i‖ + ‖vT − vrx,k‖ − ri,k

)2 , (10.9)

and

ε(vT,V, d̂) =
∑

h

1
σ̂2

h

(
‖vT − vh‖ − d̂h

)2
, (10.10)

where σ2
i,k is an estimate of the noise present in the path from the ith

transmitter to the kth receiver and


σ̂2

1

σ̂2
2

σ̂2
3

 =


1
5 0 0
0 1

2 0
0 0 1

5

 AT



σ2
1,1

σ2
1,2

σ2
1,3

σ2
3,1

σ2
3,2

σ2
3,3


, (10.11)

where T is the transpose operator. In other words σ2
h is an average of the

noise of the channels, when the hth device is active as a transmitter and/or
as a receiver. The matrix before AT provides an averaging proportionally
inverse to the sum of the columns of A.
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10.2.2 Range-Doppler analysis

In this Section the range-Doppler diagrams for the acquired signals are
reported. The aims are (i) to validate that the clutter cancellation does
not affect the Doppler-shift of the signal, (ii) to provide a starting point
for an algorithm for improving the range and Doppler estimations and
therefore (iii) to allow, in a second stage of processing (Section 10.2.5),
better localization of the target and reconstruction of the Doppler vector of
the target.

Although the acquisition time is 1 second, in a real-time scenario the
precessing unit is capable of performing a range-Doppler analysis within a
much shorter time interval. As a consequence, the TOT is assumed to be 50
msec only for producing the range-Doppler plots. Under this assumption
and after the clutter removal, the range-Doppler plots for each pair tx-rx
become as in Figure 10.4. As seen here, not only the clutter cancellation of
the low frequencies is less effective, due to the coarse frequency resolution,
but also the target’s Doppler frequencies fall into the same bin, regardless
from the pairs tx-rx. At the same time, because of the geometrical and
iso-range configuration of the experiment, also the range bin of the target
is the same for any pair of devices.

10.2.3 Range-Doppler estimation

To partially solve the ambiguity in Range and Doppler described in the
previous Section, Doppler frequency and range estimation in a single pair
tx-rx has been improved through an interpolation method based on fitting
a parabolic curve to the logarithm of the absolute value of the peak of
the range-Doppler function [72]. Here the method is applied to range
estimation only, for brevity, since it is the same as for frequency.

Assuming that the maximum power P0 (dB) occurs at the range R0,
the parabolic curve passing through the points (R−1 − R0, P−1), (0, P0) and
(R1 − R0, P1) is considered, where R−1 and R1 are respectively the range
bins respectively before and after R0 and P−1 and P1 the corresponding
power measured (in dB) and a translation from R0 to the origin has been
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Figure 10.4: Range-Doppler plots over 50 ms

applied to the range domain. Therefore the power as function of the range
is interpolated as

P(r) = ar2 + br + c, (10.12)

where a, b and c are unknown coefficients that can be recovered from the
information 

P−1 = P (−∆R) = a (∆R)2
− b∆R + c

P0 = P (0) = c
P1 = P (∆R) = a (∆R)2 + b∆R + c

(10.13)

where

∆R = R0 − R−1 = R1 − R0. (10.14)

Under these assumptions, after solving the system, the range r̂max of
maximum power is
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r̂max =
1
2

P−1 − P1

P−1 − 2P0 + P1
∆R, (10.15)

which gives, translating the origin back to R0:

rmax = R0 + r̂max = R0 +
1
2

P−1 − P1

P−1 − 2P0 + P1
∆R, (10.16)

Exactly the same procedure applies to the Doppler frequency and
therefore it is not reported for brevity. It is important to highlight that,
after these processing, the new measurements in range-Doppler will also
allow an improved cancellation of the target [72] and therefore a recursive
application of the detection algorithm so to detect multiple targets (if
present) with RCS smaller in the area.

10.2.4 Localization results

The optimizations of the functions in equations (10.3), (10.5), (10.9) and
(10.10) have been computed with Nelder-Mead simplex method, that is
known to be quite robust even if relatively slow. The starting point
provided to the algorithm at the qth iteration is the (q − 1)th output. For the
first iteration the starting point was deliberately set to (0, 100), so to verify
the convergence in just a few steps.

Figure 10.5 shows the series of the localizations after the optimization
processes when pulses are processed at bursts of 25, i.e. over 2.5 msec.
Figures 10.5(a) and 10.5(b) show the Y-axis and X-axis positions after the
1-stage minimization respectively without and with noise as in equations
(10.3) (above) and (10.9) (below). Figures 10.5(c) and 10.5(d) show the
Y-axis and X-axis positions after the 2-stage minimization respectively
without and with noise as in equations (10.5) (above) and (10.10) (below).
The average time for achieving the results in the following pictures varied
between 2 seconds (2-step MLS algorithm) and 2.75 seconds (original 1-
step version). Although the time of processing is greater than the time
of acquisition, it has to be pointed out that it has been achieved using a
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2 GHz processor and standard commercial minimization macros over an
unoptimized hardware.

(a) 1-stage algorithm, Y axis,
unweighed (up), weighed (down)

(b) 1-stage algorithm, X axis,
unweighed (up), weighed (down)

(c) 2-stage algorithm, Y axis,
unweighed (up), weighed (down)

(d) 2-stage algorithm, X axis,
unweighed (up), weighed (down)

Figure 10.5: Localization results on buffers of 2.5 msec

In particular, it is observed that:

(i) The series of localizations, in all cases, is a good representation of
the actual path of the target, with a resolution that is dramatically
improved compared to the nominal one (3.75 m),

(ii) The 2-stage process performs better than the single-stage one for low
SNR. This can be seen from the absence of a couple of noise-affected
localizations at approximately 0.16 sec.
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(iii) The standard deviation of the errors in these Figures are between 15
and 17 cm on the Y axis and between 35 and 45 cm on the X axis.

(iv) For low SNR the weighted versions perform better than the non-
weighted, as might be expected. However a higher standard devia-
tion overall (approximately 5% more) has been observed in the latter
cases.

Figure 10.6 shows the plots of the localization on the Y and X axis
when buffers of 50 msec are processed. In this Figure the results of
the minimization according to equation (10.3) only is reported. This is
because the differences between the four minimization functions described
previously are negligible. In addition, as it can be expected with a longer
integration period, here the measurements are averaged, if compared to
those in Figure 10.5, and therefore the overall movement of the target
appears smoother. The increased length of the data-buffer had also the
effect of reducing the measurements in input to any minimization function,
leading to a dramatic reduction in the processing time: in this case, for each
function taken into account, the time required to provide the output was

approximately 0.1 sec, i.e. in the order of
1

10
of the acquisition time, using

unoptimized macros and hardware. This is of course of much greater
interest for real systems applications.

10.2.5 Doppler vector reconstruction

Finally, in this Section the reconstruction of the full velocity vector W
is performed, starting from the measurements of the single radars. The
following system of equations describes the relationship between the real
Doppler vector W and the Doppler measurements FD. The Doppler
measurements are as after the process described in Section 10.2.3.
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Figure 10.6: Localization results on buffers of 50 msec

BW =



bx,11 by,11

bx,12 by,12

bx,13 by,13

bx,31 by,31

bx,32 by,32

bx,33 by,33



wx

wy

 =



fD,11

fD,12

fD,13

fD,31

fD,32

fD,33


= FD, (10.17)

where

bx,ik =
cosθx,TXi + cosθx,RXk

λ
, (10.18)

by,ik =
cosφy,TXi + cosφy,RXk

λ
(10.19)

and θx,TXi/RXk and φy,TXi/RXk are, respectively, the angle between the x and y
unit vectors in the grid and the vectors connecting the target to either the
ith tx or the kth rx. The MLS solution ŴMLS of the system in equation (10.17)
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Figure 10.7: Velocity estimation on 50 amd 100 msec buffers

can be expressed as

ŴMLS =
(
BTB

)−1
BTFD. (10.20)

Figure 10.7 shows the estimated instantaneous velocity on both Y
and X axes for buffers of 50 and 100 msec. From the experiment setup
and the previous plots, it is possible to conclude that the target moves
approximately with an average speed of 1.5 m/sec on the Y axis and 0
m/sec on the X axis. These values are confirmed by the results shown here.
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Chapter 11
Frequency Diverse Array Radars

In this Chapter, manipulating the concept of the Frequency MIMO, the
effects in transmission and propagation of a transmitted signal consisting of
equally-spaced frequencies relatively close to one another are investigated.
The system concept has been anticipated in Section 4.5.

11.1 The Frequency Diverse Array

In [76, 77] the pattern generated using an array of N antennas where each
single element transmits a sinusoid sk(t):

sk(t) = exp
{
− j2π fkt

}
, (11.1)

whose frequency fk differs from a starting frequency f0 by a quantity k∆ f ,
k = 0, . . . ,N − 1 (Figure 4.7), i.e. fk = f0 + k∆ f . For instance the number of
array elements in this Chapter is fixed to N = 9. Frequencies are equally
spaced by ∆ f = 3 KHz starting from f0 = 8 GHz. The antenna elements
comprising the array are mutually spaced by the quantity

1
2

min
k
{λk} =

1
2
λN−1 =

1
2

c
f0 + (N − 1) ∆ f

, (11.2)
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i.e. the half wavelength spacing is maintained albeit now as a function of the
maximum transmit frequency. The expression of the pattern p

(
f , t,R0, θ

)
after coherent summation is as in equation (11.3):

p
(

f , t,R0, θ
)

=

N−1∑
k=0

1
Rk

exp
{
− j2π

(
fkt −

Rk

λk

)}
≈

=

N−1∑
k=0

1
Rk

exp
{
− j2π

[(
f0 + k∆ f

) (
t −

Rk

c

)]}
=

= exp
{
jφ0

} N−1∑
k=0

1
Rk

exp
{
− j2π

(
k∆ f t − k

∆ f R0

c
− k

d sinθ
λ0

− k2 ∆ f d sinθ
c

)}
≈

≈

exp
{
jφ0

}
R0

N−1∑
k=0

exp
{
− j2π

(
k∆ f t − k

∆ f R0

c
− k

d sinθ
λ0

− k2 ∆ f d sinθ
c

)}
,

(11.3)

where dk = kd and Rk = R0 + kd sinθ

φ0 = −2π
(

f0t −
R0

λ0

)
= −2π f0

(
t −

R0

c

)
(11.4)

and the approximation is due to the fact that Rk ≈ R0.
In Figures 11.1 and 11.2 a numerical simulation of the beam pattern is

computed. Whilst the first one reports the pattern as in equation (11.3)
and it is useful to understand the regularity of the pattern as a function of

range, in the second the dependance on the factor
1

Rk
has been removed

to show the recursiveness of the pattern. It is worth highlighting the ‘S’-
shaped pattern which assumes a varying gain in range. Replicas of this
‘S’-shaped pattern occur at regularly intervals.

Although in general terms a closed form of the pattern in equation (11.3)

cannot be written, a closed approximation exists when (N − 1)
∆ f
c
<<

1
λ0

,

which is true as long as (N − 1) ∆ f << f0. In this case the term k2 ∆ f d sinθ
c

in equation (11.3) becomes negligible and the pattern can be written as
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Figure 11.1: Frequency diverse array, pattern with range attenuation,
minimum half-wavelength spacing

Figure 11.2: Frequency diverse array, pattern without range attenuation,
minimum half-wavelength spacing
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p
(

f , t,R0, θ
)
≈

exp
{
jφ0

}
R0

·

N−1∑
k=0

exp
{
− j2πk

(
∆ f t −

∆ f R0

c
−

d sinθ
λ0

)}
=

=
exp

{
j
(
φc + π(N − 1)d sinθ

λ0

)}
R0

sin
[
πN

(
∆ f t − ∆ f R0

c −
d sinθ
λ0

)]
sin

[
π

(
∆ f t − ∆ f R0

c −
d sinθ
λ0

)] , (11.5)

where

φc = −2π fc

(
t −

R0

c

)
(11.6)

and

fc =
1
N

N−1∑
k=0

fk = f0 +
N − 1

2
∆ f . (11.7)

Equation (11.5) provides further details on the behaviour of the pattern.
In particular, fixing the angle θ:

(i) For a given instant of time the pattern is periodic in range and its
peaks are spaced

c
∆ f

from one another and for a given range the

pattern is periodic in time and its peaks are
1

∆ f
from one another;

(ii) The beamwidth at −3 dB is equal to
c

N∆ f
so the more elements

comprising the array the sharper the peak and the greater the peak-
to-sidelobe ratio and the time of illumination (width at −3 dB) of a

target is
1

N∆ f
;

(iii) Finally, the arguments in round brackets of the ‘sin’ functions can

be rearranged as ∆ f
(
t −

R0

c
−

1
∆ f

d
λ0

sinθ
)
. The latter part of this

expression explains clearly why the pattern is a function of angle as
well. At the same time it shows that the distance between the peaks

of the pattern at θ = 0 and θ =
π
2

is
c

∆ f
d
λ0

in range and
1

∆ f
d
λ0

in
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Figure 11.3: Frequency diverse array, pattern with range attenuation,
octave-wavelength spacing

time. Therefore the ‘S’-shape of the pattern is here shown clearly

to be function of the ratio
d
λ0

and the frequency shift of the antenna

elements ∆ f .

Figure 11.3 shows clearly the latter point, since the curvature in the ‘S’
shape of the pattern results to be dramatically reduced by diminishing the
distance between the array elements. In this example the spacing has been

taken equal to
λN−1

8
. Nevertheless, the distance between the peak at 0◦

and those in ±90◦ is in the order of tens of kilometers, with a challenging
spacing between the elements.

11.2 The Wavelength Array

In order to avoid, or at least to lessen, the dependency of the range gain
from angle gain, it was decided to rearrange the elements of the array
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in a different configuration. This leads to what has been termed as the
‘wavelength array’. The main idea is to separate the elements of the array
from a reference point by a distance related to the transmitted wavelengths.
In other words, here it assumed that the distances dk ∝ λk. It is important
to highlight that the reference point is not active in transmission. This
is shown schematically in Figure 11.4. Assuming dk = Lλk, the pattern
p
(

f , t,R0, θ
)

can be written as

p
(

f , t,R0, θ
)

=

N−1∑
k=0

1
Rk

exp
{
− j2π

(
fkt −

Rk

λk

)}
=

=

N−1∑
k=0

1
Rk

exp
{
− j2π

(
fkt −

R0 + Lλk sinθ
λk

)}
=

=

N−1∑
k=0

1
Rk

exp
{
− j2πL sinθ − j2π fk

(
t −

R0

c

)}
≈

≈
1

R0

N−1∑
k=0

exp
{
− j2πL sinθ − j2π fk

(
t −

R0

c

)}
=

=
exp

{
j
(
Φ + φc

)}
R0

sin
(
Nπ∆ f

(
t − R0

c

))
sin

(
π∆ f

(
t − R0

c

)) (11.8)

where

Φ = −2πL sinθ. (11.9)

The pattern derived here is shown in Figure 11.5. This is a most unusual
beam pattern which exhibits constant peak gain with angle at a particular
range, i.e. the beam pattern in the space is orthogonal to that produced
by conventional fixed phased arrays. In this case it is worth highlighting
clearly the following:

(i) The angle-dependency is found in the phase term only, whilst the
amplitude depends on time, range and frequency shift only and not
anymore on the angle;
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Figure 11.4: Frequency diverse array, pattern with range attenuation

Figure 11.5: Wavelength array, pattern with range attenuation

(ii) As in the previous case, as the amplitude is function of time, this
pattern slides in time across the ranges and the propagation velocity
of the carrier;
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(iii) L is a necessary additional parameter to achieve feasible distances
between elements: in fact without L, the effective distance between

two consecutive antennas would be equal to λk−1 −λk = λk−1
∆ f
fk
≈ 14

nm!!

11.3 The Frequency Diverse Bistatic System

Starting from a wavelength array, we now consider L such that the wave-
length array is actually feasible. For this purpose, assuming ∆s the mini-
mum feasible spacing between the antenna elements and

∆λmin = min
k
{λk−1 − λk} = λN−2 − λN−1 (11.10)

the minimum difference between two consecutive wavelengths, we write

L∆λmin ≥ ∆s, (11.11)

which gives the requirement on the minimum L, i.e.

L ≥
∆s

∆λmin
. (11.12)

For instance, let one set

∆s =
1
2
λN−1 (11.13)

in the rest of this Chapter.
After this assumption, the following considerations are required:

(i) The reference point is far LλN−1 from the closest element of the
array. When equations (11.10), (11.12) and (11.13) apply, it can be
demonstrated that the minimum distance DL from the transmitting
antenna and the reference point is

DL ≥
1
2

fN−2

fN−1

c
∆ f
≈

c
2∆ f

, (11.14)
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i.e. the receiver cannot be placed from the transmitter less than half
the distance between two peaks (in the one-way pattern). Applying
the numbers in this paper, L ≥ 1.33 ·106 and DL ≥ 50 km. For instance
L = 1.33 · 106 and DL = 50 km are assumed.

(ii) Despite the high value of L, the spacing ∆dk = L (λk − λk+1) between
two consecutive elements of the active array is in fact constant and
equal to ∆s. In other words, the difference ∆2dk between the spacing
of two consecutive active elements of the array is negligible. For
instance, here ∆2dk ≈ 7.2 nm.

(iii) From the previous two points, it is clear that the WA can be simplified
into a standard array of antennas where each element is fed with
a slight different carrier frequency. This is in fact a FDA. At an
adequate distance from the active array, the so-termed reference
point, it is possible to observe range-constant-periodic patterns. The
reference point can be tens of kilometers far away from the active
array, according to equation (11.14).

The reference geometry, then, has now to be reconsidered as in Figure
11.6. Whereas the distance between the FDA and the reference point is
relevant, the angle under which the target is seen cannot be considered
constant, the pattern in equation (11.8) should be rearranged according to
the latter geometry. In particular, taking into account this geometry, the
following can be demonstrated:

dk = Rk − R0 = Lλk
cosθ2 − cosθ1

sin(θ1 − θ2)
, (11.15)

and

Rk =
√

R2
0 + L2λ2

k + 2LλkR0 sinθ2 ≈

≈

√
R2

0 + L2λ2
N−1 + 2LλN−1R0 sinθ2 = R̂(L, θ2). (11.16)

The pattern pFDBS of a FDBS can be therefore written as
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Figure 11.6: Frequency Diverse Bistatic System with an omnidirectional
receiver

pFDBS
(

f , t,R0, θ1, θ2
)

=
1

R0

N−1∑
k=0

1
Rk

exp
{
− j2π

(
fkt −

Rk + R0

λk

)}
. (11.17)

Introducing equations (11.15) and (11.16) respectively in the phase and
attenuation part of equation (11.17), the pattern pFDBS can be written as

pFDBS
(

f , t,R0, θ1, θ2
)
≈

exp
{
jΦ3

}
R̂(L, θ2)R0

sin
(
Nπ∆ f

(
t − 2R0

c

))
sin

(
π∆ f

(
t − 2R0

c

)) , (11.18)

where

Φ3 = −2πL
cosθ2 − cosθ1

sin(θ1 − θ2)
− 2π fc

(
t −

2R0

c

)
. (11.19)

An immediate application of this concept consists in placing a passive
phased array in the reference point. The overall pattern is the product of the
2-way FDBS pattern shown in Figure 11.7 with the typical passive phased
array pattern in reception (Figure 11.8). The resulting pattern is reported
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Figure 11.7: Frequency diverse bistatic system, normalized (2-way) pattern
with range attenuation

in Figure 11.9 (where a 9-element passive phased array pointing at 0◦ has
been considered in reception). Although this pattern exhibits asymmetrical
peak-to-sidelobes levels in range and angle, especially evident for lower
distances, it is clear that, instantly, most of the energy is concentrated in
limited areas in range and angle. It is important to highlight clearly that,
whilst at each angle the peak appears at specific ranges, the gain at each
range varies in angle due to the difference in paths, as it can be inferred
from Figure 11.6. This explains why the sidelobes in Figure 11.9 are much
higher at −90◦ than at −20◦.

11.4 Windowing

As in standard arrays of antennas, windowing allows to modify the peak-
to-sidelobe ratio, trading off on the resolution (in angle and range in this
case). Figure 11.10 shows the pattern of a FDBS after the application
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Figure 11.8: Phased array, pattern with range attenuation

Figure 11.9: Pattern of a FDBS with an passive ESA
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of a hann window in tx and rx. If compared to Figure 11.9, where no
windowing is applied, it is here shown that the windowing enlarge the
beamwidth not only in angle (rx), as in standard ESA, but also in range
(tx). As a result, it is here shown that the −90◦ sidelobes, which are highest
in Figure 11.9 due to the reduced range attenuation, have been taken into
control. However, it has to be pointed out that asymmetrical sidelobes are
still present. This is clear observing, for instance, the pattern at 100 km.

Figure 11.10: Pattern after applying a hann window in tx and rx, FDBS

11.5 Non-linear Frequency Shift

In this Section the application of non-linear frequency shifts to the active
elements of the transmitting FDA is investigated. This allows to modify
further the shape of the range beam, making possible to shift or reduce
sidelobes. For instance, here the effects of applying frequency shifts which
are no longer constant are examined. In particular these have been made
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equal to k∆ f , with k = 0, 1, 2, . . . 7, 9. In other words, whilst the first 8 shifts
are the same as in the previous case, the last one differs by an additional
∆ f .

Figure 11.11 shows the normalized pattern at θ2 = 0◦ of the beams
formed with linear and non-linear shifts in blue and red respectively. It
stands out clearly that the effect of the non-linear shift does not affect
the mainlobe, as the signals are designed to cohere in that location, but
produces different sidelobes at different positions. In this particular case
it has to be pointed out that this configuration ‘transforms’ the nulls in the
original pattern in sidelobes and viceversa.

As a means of quantitative comparison between these two patterns,
the ISLR (Integrated SideLobe Ratio) is considered. This number is here
evaluated by integrating the power of the sidelobes up to a the distance of

c
4∆ f

on the left and on the right of each peak and dividing it for the power of

the mainlobe. The ISLR of the linear frequency spacing is≈ −18.6 dB, whilst
in the non-linear frequency spacing it is ≈ −13.8 dB. As a consequence
there is an increase this ratio. However, the point of this shifting is not
to decrease the ISLR but to provide the radar designer with an additional
potential extra degree of control.

Further modifications to the frequency shift can lead to a pattern as in
Figure 11.12. The pattern shown has been achieved applying to a FDBS
(with an omnidirectional receiver) a linear shift equal to (0, 2, 4, 6, 8, 1, 3, 5,
7) ∆ f . The most evident drawback here is clearly that the linearity of the
pattern across the same range, as in Figure 11.7, is lost. However this plot
shows that nulls in range and angle can be created through this technique.
The issue now concerns the best way of applying frequency shifts so to
control in full the placement of the nulls.
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Figure 11.11: Comparison of main and sidelobes for linear and non-linear
shifts

Figure 11.12: Additional example of the effects of non-linear frequency
shift, FDBS
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Chapter 12
Summary and conclusions

In this work a number of radar systems have been presented and compared
under different scenarios. The main aim was to investigate the effects of
spatial diversity together with distributing the energy and information
processing in ways other than that of a conventional monostatic system.

In Chapter 2 background on MIMO radar and netted radars systems
was introduced. It is important to highlight, once again, that in recent
literature two kinds of MIMO are being developed. One exploits angular
diversity to improve performance in terms of detection, parameters esti-
mation, velocity and DOA, classification, etc. The other exploits waveform
diversity over a conventional array of antennas to achieve a sharper beam
through a synthetic array bigger than the original. Both these concepts
require extra complexity (e.g. extra hardware, tight synchronization, ap-
propriate waveform design) when compared to conventional monostatic
systems or ESAs (Electronically Steered Arrays). However, the benefits
to costs ratio can be profitable for specific applications, such as multiper-
spective classification, low-RCS target detection, through-the-wall sensing
(angular diversity) or uniform illumination with multibeam in receive
(waveform diversity). In Chapter 3 a description of the basic concepts of
radar systems has been introduced. The information presented is a starting
point to understand the basic concepts of the investigation of the rest of
this work.
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In Chapter 4 particular attention was focused on the processing ap-
proaches when data are collected from a radar network. In particular,
systems exploiting angular (or spatial) diversity have been called NR,
RPNR, MIMO and DRN. The differences between these systems lie in either
the coherency in processing the data or the presence of a central collector
of all the data. In addition, two additional cases have been examined
to provide an insight of the effects of exchanging angular diversity with
frequency diversity. These have been termed the Frequency MIMO and
the Frequency Diverse Array. In Chapters 5 and 6 it has been shown
that, given the limitations of the cases considered here that the MIMO and
DRN provide a good compromise between a fully coherent system and the
monostatic radar when noise only and noise and clutter are considered.
They both have superior detection performance to (not-re-phased) NR.
This is due to the fact that, since the phases of the incoming signals are to-
tally uncorrelated, the coherent sum is statistically a disruptive event. This
result has been confirmed also in other Chapters of this thesis (e.g. 7 and 10).
On the contrary, for fully coherent systems (RPNR), the extra complexity
required for re-aligning the phases to gain a factor L (where L is the number
of summed signals) in SNR is difficult to implement, especially when the
systems are working over broad frequency bandwidths and have high
carrier frequencies. This has been confirmed not only for noise-like targets,
such as the Swerling-modelled ones, but also for targets with a constant
amplitude and random phase, as in the case of the sphere. In general terms,
a loss of only few dB in terms of SNR has been observed, compared to the
RPNR. A decentralized approach has also been shown to have a simplest
structure of detector with moderate losses in SNR. Nonetheless, one of the
greatest assets of this system is to allow an increased tolerance to jamming.
Comparisons with the Frequency MIMO concept have shown that the
exploitation of spatial diversity and frequency diversity leads to similar
results for deterministic and fully random targets. This is not always the
case in a practical scenario. It is important to highlight that in generic
terms there is not a valid rule for deciding a-priori which kind of diversity
has overall the greatest benefits. As it can be expected, this is strongly
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dependent on the proposed application. For instance, whilst the angular
diversity can be applied effectively to low-RCS target detection, frequency
diversity can provide significant improvements in high-cluttered areas as it
decorrelates the clutter samples. A quick comparison of the results of these
Chapters show that just a few netted devices can provide an improvement
on monostatic systems. This is a significant result as it means that it
is possible to improve the sensing power keeping the complexity of the
entire system moderate. In Chapter 7 it has been shown that the coverage
of MIMO and DRN systems is roughly the same as a monostatic system,
with the coherent systems providing, once again, the lower and upper
limit.

Experiments have been carried to provide additional and practical
knowledge on multistatic systems. At the same time the aim was to
validate some of the assumptions made in evaluating the performance.
Chapter 8 shows the setup of the experiment. In particular data were
collected using UCL’s radar network comprised of 2 transmitters and 3
receivers. Although the limitations of this system (reduced transmitted
power, broad antenna beams, single waveform in transmission, direct
feed of the antennas), the collected data allowed to analyze a number
of characteristics of the RCS of the clutter and the target in multistatic
systems. Multistatic correlation of target and clutter (Chapter 9) has been
reported as a function of the different paths. It is important to highlight
that this kind of study has not been investigated in literature so far. For this
purpose, complex data, amplitude and phase correlations were analyzed
to have a better insight. Particular attention was dedicated to the analysis
of symmetrical paths as they should return the same signals and therefore
any difference between these channels can be exploited as an indicator of
issues in the network. Clutter PDFs have been reported as well. In this
case the clutter was expected to have a Rayleigh-distributed amplitude,
as most of the ground clutter. This has been confirmed by most of the
plots reported. Nonetheless, it has been shown that for one node out of
six the Gaussian behaviour was not matched. This provides a background
for future research, as it has been shown that multistatic characteristics

197



Summary and conclusions

cannot easily be predicted and this is a key point if radar networks are to
be employed to maximize the gathered information.

Chapter 10 shows two possible ways of locating a target using the
multistatic data acquired. The first method used a graphical approach
summing on a screen all the gathered signals according to the strategies
discussed in the performance analysis (i.e. NR, RPNR, spatial MIMO and
DRN). Once again, similarities to the performance results have been shown:
NR is the worst, RPNR is the best and the two incoherent approaches
perform in the middle. In particular it has to be pointed out that whilst the
MIMO approach keeps a degree of uncertainty in the position of the target,
the DRN performs better. However, a visual approach to localization
has not to be preferred in most of the applications where the target’s
position has to be tracked automatically. In addition, this approach does
not allow to have a clear understanding of the movement of the target,
as the Figures of the target position at the beginning and the end of
the acquisition prove. As a consequence, a numerical method has been
developed. After extracting the range-Doppler information from all the
nodes, the position of the target and its velocity have been evaluated
with a significant increase in performance. Actually, notwithstanding
the ambiguity in range and Doppler measurements, the behaviour of
the proposed algorithm for localizing and estimating the DOA and the
velocity of the target has been shown to dramatically improve even coarse
resolutions, achieving an accuracy below a tenth of the nominal. An
additional benefit of merging numerically the multi-angle observations
is in the extra information provided on the Doppler frequency. With
spatially-different measurements of the Doppler it has been possible to
reconstruct the full vector of the velocity of a target, whilst it is well known
that with a monostatic case the only possible measurement is on the radial
velocity.

Finally, in Chapter 11 an alternative way of beamforming has been
presented. The results shown here differ from those in the rest of this work.
Actually, whilst throughout this thesis the main aim was to investigate
the effects of mismatching significantly (in either space or frequency) the
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signals from/to each antenna, in this Chapter an insight on the potential
of applying moderate alterations to the signals is reported. The results
shown are a brand new topic of investigation which is progressively
attracting the interest of the technical community. In this Chapter, after
introducing the FDA, the FDBS has been developed, together with some
immediate improvements. In particular, the use of non-linear frequency
shifts has been demonstrated to allow the radar designer with an additional
degree of freedom. Although only the CW case has been studied, the
potential of generating (using a pulsed version of the FDBS) a pattern
‘orthogonal’ to that of a standard ESA is not only interesting for the
development of LPI (Low Probability of Intercept) radars in range, but
also for other applications such as controlling or at least mitigating echoes
from unwanted ranges, as in low-grazing angle multipath.

In conclusion it has been shown that introducing a degree of diversity
into radar systems enhances the performance and provides with new
potential. This is true not only when devices are separated in space but
also when a frequency diversity is applied. Most of the results obtained
through real data processing are a starting point to further research to
be developed. In addition, e.g. for localization, it has been shown that
an appropriate processing of all the collected information can provide a
result which is extremely more accurate than those of the single devices.
In a second stage the data fusion can be extended to a full tracking
algorithm and to multiangle classification. However, if full data have to
be exchanged for allowing a joint processing and subsequently extracting
as much information as possible, a tight cooperation between the devices
of a radar network is required. This is still an issue as the synchronization
schedules and communication channels are to be extremely robust and
reliable.
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