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ABSTRACT  

The work carried out in this doctoral thesis investigated the representation of 

statistical sound properties in human auditory cortex. It addressed four key aspects in 

auditory neuroscience: the representation of different analysis time windows in 

auditory cortex; mechanisms for the analysis and segregation of auditory objects; 

information-theoretic constraints on pitch sequence processing; and the analysis of 

local and global pitch patterns. The majority of the studies employed a parametric 

design in which the statistical properties of a single acoustic parameter were altered 

along a continuum, while keeping other sound properties fixed. 

The thesis is divided into four parts. Part I (Chapter 1) examines principles of 

anatomical and functional organisation that constrain the problems addressed. Part II 

(Chapter 2) introduces approaches to digital stimulus design, principles of functional 

magnetic resonance imaging (fMRI), and the analysis of fMRI data. Part III (Chapters 

3-6) reports five experimental studies. Study 1 controlled the spectrotemporal 

correlation in complex acoustic spectra and showed that activity in auditory 

association cortex increases as a function of spectrotemporal correlation. Study 2 

demonstrated a functional hierarchy of the representation of auditory object 

boundaries and object salience. Studies 3 and 4 investigated cortical mechanisms for 

encoding entropy in pitch sequences and showed that the planum temporale acts as a 

computational hub, requiring more computational resources for sequences with high 

entropy than for those with high redundancy. Study 5 provided evidence for a 

hierarchical organisation of local and global pitch pattern processing in neurologically 

normal participants. Finally, Part IV (Chapter 7) concludes with a general discussion 

of the results and future perspectives. 
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Chapter 1. GENERAL INTRODUCTION 

The acoustic environment comprises a multitude of simultaneous and consecutive 

acoustic events. The human auditory system has evolved remarkable capabilities to 

decode the acoustic information within this complex heterophony with apparent ease. 

For example, when engaging in a conversation with a friend at a reception while 

multiple other people speak simultaneously and music plays in the background, we 

are able to follow the conversation while ignoring the interfering acoustic information 

from the other sound sources (the so-called ‘cocktail party effect’; Cherry, 1953). 

This thesis addresses fundamental mechanisms of auditory perception in such 

complex and dynamically changing acoustic environments. Specifically, this thesis 

investigates cortical principles for segregating and grouping elements within the 

auditory scene (Bregman, 1990), both at the level of individual auditory objects 

(Griffiths & Warren, 2004) and at the level of grouped objects or linked streams of 

objects. Such auditory scene analysis requires the auditory system to assess the 

statistical properties of the acoustic signal so as to extract those spectrotemporal 

patterns of the signal that comprise the relevant acoustic features in the signal (e.g. the 

conversation with the friend), while simultaneously filtering out irrelevant or 

redundant information (e.g. the background noise emanating from the rest of the 

room). 

From an information-theoretic perspective, the auditory system needs to assess 

those statistical properties that contribute relevant information comprising an auditory 

object and optimise its coding of these features. At the same time, the neural code 

representing auditory objects must be robust enough to allow one and the same 

auditory object to be recognised irrespective of different instantiations (e.g. 

recognising the vowel /a/ irrespective of whether it is pronounced with or without 

background noise or by different speakers). The auditory system must further 

establish object boundary properties, which allow it to detect transitions between 

auditory objects, and thus segregate between auditory objects at points in time when 

those properties change. 
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The information-theoretic approach regards the brain as a Bayesian inference 

generator, which forms predictions from the statistical properties of sensory input and 

evaluates these predictions based on stored, experience-dependent templates or priors 

(Friston, 2003a, 2005). Within this framework, the auditory system is constantly 

evaluating the incoming signal with respect to its statistical properties, from which it 

forms predictions that are the basis for detecting transitions in the auditory scene 

when the signal properties change. 

There is a considerable body of work investigating the principles for processing 

basic and relatively deterministic acoustic signal properties, yet the knowledge 

obtained from these studies, while valuable, is necessarily limited by the simplicity of 

the experimental stimuli used. What is needed is an approach that offers a bridge 

between the representation of highly controlled, deterministic, low-level acoustic 

features, and the highly complex nature of the real acoustic environment, while still 

maintaining control over the experimental stimulus manipulations. This thesis aims to 

provide such an approach by taking advantage of the computational power available 

for signal processing and digital sound synthesis in order to create generic sounds that 

approximate a level of complexity that is comparable to many naturally occurring 

sounds. The use of synthetic sounds allows the precise manipulation and control of 

sophisticated higher-order statistical signal properties that are characteristic of 

complex ethological sounds. At the same time, the generic nature of the experimental 

stimuli allows inferences with respect to general principles of auditory processing that 

likely apply to a variety of sound classes such as speech or music. 

Such higher-order signal properties are likely represented at advanced levels of 

the auditory system such as auditory cortex. The methodology used in all 

experimental studies of this work, functional magnetic resonance imaging (fMRI), 

allows the investigation of acoustic information processing at the neural network level 

across multiple levels of the auditory system, including auditory cortex, with high 

spatial (on the order of a few cubic millimetres) and considerable temporal (on the 

order of a couple seconds) resolution (Logothetis, 2008). It is therefore well suited to 

investigating the neural substrates underlying the processing of higher-order statistical 

properties in acoustic signals. 
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The aim of the General Introduction is to provide a conceptual framework for 

the studies carried out in this thesis. In particular, following a brief overview of the 

functional anatomy of the auditory cortex (Section 1.1), the General Introduction will 

review experimental approaches towards elucidating the encoding of statistical 

properties in acoustic signals (Section 1.2), before introducing the key problems 

addressed in the experimental work of this thesis (Section 1.3). 

 

 

1.1 Functional anatomy of the auditory system 

The acoustic information that reaches the cochlea is processed via a series of brain 

structures that form the ascending auditory pathway. Briefly, the mechano-electrical 

transduction of the travelling sound wave into neuronal signals is accomplished by the 

hair cells on the basilar membrane of the inner ear (Hudspeth, 1989). Once the 

incoming mechanical signal has been transduced into an electro-chemical signal, it is 

then projected along the auditory nerve, which terminates in the cochlear nucleus 

(CN). Most fibres leaving the CN cross the midline and convey acoustic information 

to auditory structures in the contralateral hemisphere, while a small number continue 

ipsilaterally. The major subcortical structures of the auditory system are the superior 

olivary complex (SOC) and the nucleus of the lateral lemniscus (LL) of the pons, the 

inferior colliculus (IC) of the midbrain, and the medial geniculate body (MGB) of the 

thalamus. Neurons of the MGB then project to primary and secondary auditory areas 

within the temporal lobe of the cortex cerebrum. 

The peripheral and subcortical auditory structures set up important constraints 

or principles for subsequent stages of auditory information processing, such as the 

orderly series of frequency bandpass filters instantiated on the basilar membrane (von 

Békésy, 1960), or binaural analysis mechanisms in SOC and IC that allow sound 

localisation via interaural time and level differences (ITD and ILD, respectively; 

McAlpine, 2005). Furthermore, far from being mere relay stations in the ascending 

auditory pathway, subcortical structures already perform a significant amount of 

information processing of complex acoustic features (Miller et al., 2001; 

Rauschecker, 1998; Winer & Lee, 2007). 
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Nevertheless, the processing of higher-order statistical properties in acoustic 

signals, which is the focus of the present body of work, depends on the involvement 

of auditory cortex for accurate and efficient representation. The following sections 

therefore provide in more detail a review of the anatomical organisation and 

parcellation of auditory cortex (Sections 1.1.1 and 1.1.2), before discussing some of 

its basic functional properties (Sections 1.1.3 to 1.1.6). Specifically, the following 

overview takes an approach that focuses on certain characteristic features of auditory 

cortex (e.g. macroanatomy, cytoarchitecture, or functional organisation) that are 

preserved across a variety of species, instead of a species-centred approach. As an 

organisational principle, within each section these properties will first be presented for 

non-human primates and then for humans; further, the general organisation proceeds 

from the description of primary areas to higher-level areas. This approach enables a 

direct comparison between species and highlights the phylogenetic emergence of 

generic principles of auditory cortex organisation (Hackett, 2007). 

 

 

1.1.1 Macroscopic organisation of the auditory cortex 

Auditory cortex covers much of the superior temporal plane (STP) of the temporal 

lobe and is conventionally defined as the region that receives its primary afferents 

from ventral or dorsal MGB (Hackett, 2007). Allometric measurements (surface area 

and volume) of the superior temporal gyrus (STG) reveal that it increases about 

threefold each time in the progression from squirrel monkey, macaque monkey, and 

chimpanzee, to human (Rilling & Seligman, 2002) (Figure 1-1). In fact, most of the 

increase in humans can be attributed to a relative expansion of auditory association 

cortex in the temporal lobe. In all primates, a significant portion of auditory cortex is 

‘hidden’ beneath the Sylvian fissure (or lateral sulcus, LS, in non-human primates), 

separating the parietal and temporal lobes, on the dorso-medial surface of the STP. 
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Figure 1-1  Schematic drawings of the cerebral cortex and the location of auditory cortex 

in several primates. Each panel depicts a lateral view of the left hemisphere and a coronal 

section through right auditory cortex. (a) Marmoset monkey (Callithric jaccus jaccus); (b) 

squirrel monkey (Saimiri squireus); (c) macaque monkey (Macaca mulatta); (d) 

chimpanzee (Pan troglodytes); (e) human (Homo sapiens). The core area is shaded in dark 

grey. MB, medial belt region; LB, lateral belt region; PB, parabelt region; ?, region not 

defined; LS, lateral sulcus; STS, superior temporal sulcus. Scale bars: 5 mm (coronal 

sections); 10 mm (lateral views). Modified from Hackett (2007) with permission from 

Elsevier. 

 

 

The general organisation of the auditory cortex of non-human primates is commonly 

divided into core, belt, and parabelt regions. Three primary subfields form the core of 

auditory cortex, while about seven to eight surrounding belt subfields and some two 

to three parabelt subfields have been identified (Hackett et al., 2001; Hackett et al., 

1998a) (Figure 1-2). The core area consists of a primary area (A1), and more anterior 
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rostral (R) and rostrotemporal (RT) areas. The belt and parabelt regions are labelled 

according to their anatomical location (e.g. anterolateral, AL, or caudomedial, CM; 

see Figure 1-2). 

 

 

 

Figure 1-2 Schematic diagram of monkey auditory cortex illustrated for the macaque 

monkey. (a) Lateral view of the superior temporal gyrus (STG) with rostral (RPB) and 

caudal (CPB) parabelt areas. (b) Virtual cut to reveal auditory areas lying on the lower bank 

of the lateral sulcus (LS). (c) Close-up of (b), also revealing the flow of information (arrows) 

and tonotopic gradients (white letters H, high frequency, and L, low frequency). The three 

areas with dark shading represent the core of auditory cortex (auditory area 1, A1; rostral, 

R; rostrotemporal, RT); surrounding it are the eight belt regions in light shading 

(caudomedial, CM; caudolateral, CL; middle medial, MM; middle lateral, ML; rostromedial, 

RM; anterolateral, AL; rostrotemporal medial, RTM; rostrotemporal lateral, RTL). The 

rostral (RPB) and caudal (CBP) parabelt areas on the STG are shown in medium shading. 

Scale bar: 10 mm. From Hackett (2007) with permission from Elsevier. 
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In humans, core, belt, and parabelt regions likely correspond to primary, 

secondary, and association cortex, respectively, comprising some 30 functionally 

distinct subfields (Hackett, 2007); however, the precise delineation of the subfields 

varies considerably between researchers (Figure 1-3). Anatomically, these regions 

encompass the first transverse gyrus of Heschl, or Heschl’s gyrus (HG), the posterior 

lying planum temporale (PT), and the STG. These correspond to Brodmann areas 

(BA) 41, 42, 52, and 22 (Brodmann, 1909). Areas in the superior temporal sulcus 

(STS) and, more rostrally towards the planum polare (PP), at the temporal pole, are 

considered auditory related cortex (Hackett, 2007). 

 

 

 

Figure 1-3 Parcellation of the human superior temporal cortex by different investigators. 

Schematic figures are standardised and normalised (the STG is not visible). Dark shading 

indicates the core region, medium shading indicates belt regions, and light shading 

indicates parabelt and possibly other regions. Posterior is up, lateral is right. For detailed 

description of the abbreviations see the original publications: (a) Brodmann (1909); (b) von 

Economo & Koskinas (1925) and von Economo & Horn (1930); (c) Beck (1928); (d) 

Galaburda & Sanides (1980); (e) Rivier & Clarke (1997) and Wallace et al. (2002); (f) 

Morosan et al. (2001; 2005). Modified from Hackett (2007) with permission from Elsevier. 

 

 

In humans and chimpanzees, some individuals display a duplicate or bifid HG in one 

or both hemispheres (this feature is absent in all other non-human primates; Hackett et 

al., 2001; Leonard et al., 1998; Rademacher et al., 1993; Sweet et al., 2005). In the 
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case of a single HG, primary auditory cortex covers about two thirds of HG and does 

not extend past its anterior and sulcal boundaries. Where there is a duplicate HG, 

primary auditory cortex usually spans parts of both gyri and the intermediate 

transverse sulcus. 

Perhaps the best described human auditory association area is the PT, lying 

posterolateral to HG on the STP; it is thought to contain multiple auditory subfields 

(Rivier & Clarke, 1997; Wallace et al., 2002), which might explain its participation in 

a multitude of perceptual processes (Griffiths & Warren, 2002). The gross 

morphology of PT varies considerably (Westbury et al., 1999), and often shows a left-

hemispheric asymmetry (Dorsaint-Pierre et al., 2006; Eckert et al., 2006; Foundas et 

al., 1994; Steinmetz et al., 1989); however, such demonstration might in part reflect 

the stereotactic method used (Westbury et al., 1999). This has traditionally led to the 

conclusion that PT forms a special role in language processing (Foundas et al., 1994); 

more recent findings suggest, however, that there is no direct correspondence between 

leftward asymmetry and language function (Dorsaint-Pierre et al., 2006; Eckert et al., 

2006). 

Thus, both in non-human and human primates, auditory cortex displays a 

parcellation into three anatomically distinct regions (core, belt and parabelt in non-

human primates; primary, secondary, and association cortex in humans). However, 

while homologies between different species are often assumed (especially between 

non-human primates and humans), this has only been shown convincingly for primary 

auditory cortex; homologies of higher-order auditory cortex are problematic, and 

certain areas of human association cortex may not have homologues in primates 

(Hackett et al., 2001). 

 

 

1.1.2 Cytoarchitecture 

The core area of monkey auditory cortex and its three subfields display a distinct 

cytoarchitecture. The core region as a whole exhibits typical features of primary- or 

koniocortex, as it contains a dense layer IV, indicating prominent thalamocortical 
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connections (Galaburda & Pandya, 1983). Furthermore, the core region stains 

prominently for the calcium binding protein parvalbumin, is highly granular and 

myelinated, and displays high metabolic activity (Jones et al., 1995; Kaas & Hackett, 

2000; Morel et al., 1993; Pandya, 1995). These features are most pronounced for area 

A1 and least present for area RT (Hackett et al., 1998a). The narrow band of belt 

subfields surrounding the core displays reduced cell density and columnar spacing, 

larger pyramidal cells and a less dense myelination than the core areas (Hackett et al., 

1998a). The parabelt region stains less darkly than core and belt regions and displays 

other features that distinguish parabelt from core and belt, such as a stronger tendency 

to be arranged in vertical columns and an even lower cell density (Hackett et al., 

1998a). A subdivision of the parabelt region into two subfields is not obvious from 

cytoarchitectonic markers, but rather is based on cortico-cortical connectivity: the 

rostral parabelt (RPB) subfield shares connections within the anterior temporal lobe 

and ventrolateral frontal cortex, while the caudal parabelt (CPB) subfield projects 

caudally to the temporo-parietal junction and dorsolateral frontal cortex (Hackett et 

al., 1999; Kaas & Hackett, 2000; Romanski et al., 1999). 

The human homologue of the core in non-human primates can be similarly 

divided into three subfields: one primary area in central HG, and two secondary areas 

in medial and anterolateral HG (Morosan et al., 2001; Rademacher et al., 2001); these 

are sometimes denoted as areas Te1.0, Te1.1, and Te1.2, respectively (Morosan et al., 

2001; Morosan et al., 2005) (see also Figure 1-3). The cytoarchitectonic 

characteristics of these three subfields are similar to those in the core of monkey 

auditory cortex: all areas display prominent cytochrome oxidase, parvalbumin and 

acetylcholinesterase staining in cortical layers IIIc and IV (Clarke & Rivier, 1998; 

Hackett et al., 2001; Hackett et al., 1998a; Rivier & Clarke, 1997; Wallace et al., 

2002); a high density of small cells is particularly marked in layers II and IV; and 

layers V and VI are relatively thick (Galaburda & Sanides, 1980; Wallace et al., 

2002). The secondary subfields in medial and lateral HG show lower metabolic 

activity in layer IV than the primary subfield (Wallace et al., 2002). The 

cytoarchitectonic characteristics of human auditory association regions are less well 

defined, rendering comparisons to belt and parabelt regions in non-human primates 

problematic (Hackett, 2007). 
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While cytoarchitectonic studies of post-mortem brains have significantly 

advanced our understanding of auditory cortex, the results can only provide limited 

functional information, for example on whether or not a given neuron is an ‘auditory 

neuron’; this caveat is sometimes circumvented by exposing animals to certain sounds 

or behavioural tasks before sacrifice and subsequent mapping of histochemical 

markers (Bajo et al., 2007; Kaczmarek & Robertson, 2002; Overath, 2004b; 

Rauschecker et al., 1997). Immunohistochemistry using antero- and retrograde tracers 

can inform about the macroscopic organisational connectivity between cortical 

subfields. These studies highlight both hierarchical and parallel processing streams 

that show a considerable degree of preservation between species. 

In monkeys, the core region receives its main afferents from ventral MGB, 

while projecting to ipsilateral and contralateral core regions as well as to adjacent belt 

regions (Hackett et al., 1998b; Kaas & Hackett, 2000; Morel et al., 1993). The 

ipsilateral connections between core and belt are related to their spatial positions, in 

that anatomically neighbouring areas share stronger connections than non-adjacent 

areas (Galaburda & Pandya, 1983; Hackett et al., 1998a; Morel et al., 1993). The 

dorsal nucleus of the MGB provides the main afferents to belt subfields, which share 

multiple interconnections with each other as well as with the core and parabelt 

regions. Parabelt subfields receive subcortical input from the dorsal MGB (as well as 

strong afferents from medial pulvinar, suprageniculate and limitans nuclei, see 

Hackett et al., 1998b) and are mainly indirectly connected to the core via belt areas. 

Direct connections from the core to parabelt areas are minimal (Hackett et al., 1998a). 

Parabelt areas project to destinations in frontal, parietal, and temporal cortex for 

higher-level stages of processing. 

In humans, similar processing schemes have been suggested by imaging 

techniques that track the diffusion in white matter axon bundles to elucidate intrinsic 

functional connectivity between brain areas (Behrens & Johansen-Berg, 2005; 

Behrens et al., 2003). These studies confirm the general functional architecture within 

human auditory cortex (Upadhyay et al., 2007; Upadhyay et al., 2008). 
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1.1.3 Electrophysiology 

A large part of our understanding of the functional characteristics of the subfields of 

auditory cortex is derived from invasive techniques applied in non-human primates, 

such as electrophysiology and lesion studies. These techniques provide excellent 

spatial and temporal (in the case of electrophysiology) resolution and have been 

invaluable in advancing auditory neuroscience. The most common measures are 

peristimulus response histograms (reflecting the firing rate of a certain neuron or 

neural ensemble to a specific stimulus), and response synchronisation (reflecting 

temporal distributions of neural discharges). However, caution is needed when 

interpreting electrophysiological responses obtained in anaesthetised animals, since 

these can differ from those of awake and behaving animals, while recordings in non-

anaesthetised animals can also address effects of attentional modulation (Wang, 

2000). In rare cases, depth-electrode and surface grid measurements can be acquired 

in humans during the pre-surgical evaluation of patients with intractable epilepsy (e.g. 

Howard et al., 1996; Howard et al., 2000; Liégeois-Chauvel et al., 2001; Liégeois-

Chauvel et al., 1994; Liégeois-Chauvel et al., 1991).  

A general processing scheme in auditory cortex based on electrophysiological 

data across species including humans suggests that core and possibly belt areas 

encode basic spectral and temporal acoustic features, before more complex signal 

attributes are processed in parabelt regions (Rauschecker, 1998). For example, core 

areas respond more vigorously to pure sounds (or sinusoids), while belt and parabelt 

areas respond more strongly to complex sounds (rather than to sinusoids), and also to 

species-specific vocalisations (Rauschecker, 1998; Rauschecker & Tian, 2000; 

Rauschecker et al., 1995; Rauschecker et al., 1997; Tian et al., 2001). Neurons in the 

core regions show narrow frequency tuning to pure tones, while the tuning properties 

of belt and parabelt neurons are increasingly broad (Bendor & Wang, 2008; 

Rauschecker et al., 1995; Rauschecker et al., 1997). However, ablation of primary 

auditory cortex in rhesus monkeys does not abolish neuronal pure tone sensitivity 

(Heffner & Heffner, 1986), suggesting an additional parallel processing stream that 

likely relies on the preservation of an orderly frequency encoding (see Section 1.1.4 

below) in lower structures of the auditory system. 
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The hierarchical flow of information in auditory cortex is also confirmed by the 

latency of neuronal responses. In humans, responses in medial HG can already be 

recorded approximately 20 ms post stimulus onset, while central and lateral HG show 

slightly longer latencies at 50 ms and 60-75 ms, respectively, and responses in PT 

peak at around 100 ms (Brugge et al., 2008; Liégeois-Chauvel et al., 1994; 1991). 

Similarly, in some cases direct intracortical stimulation of primary auditory cortex in 

posteromedial HG can produce propagated responses towards lateral HG and 

association areas (Brugge et al., 2003; Howard et al., 2000; Liégeois-Chauvel et al., 

1994; 1991). Response latencies increase and become more variable as one progresses 

to structures in the STG and parietal operculum (Celesia, 1976; Liégeois-Chauvel et 

al., 1991); there is also evidence for back-projections from STG to HG (Brugge et al., 

2003), likely facilitating neuronal modulation of afferent signals. Responses in the 

hemisphere contralateral to acoustic stimulation are stronger than those to ipsilateral 

stimulation, while binaural stimulation leads to the strongest response amplitudes 

(Liégeois-Chauvel et al., 1991). 

 

 

1.1.4 Tonotopy 

One prominent principle of auditory functional organisation across species is the 

conservation of an orderly frequency representation, or tonotopy, throughout the 

ascending auditory pathway. This is similar to comparable anatomical organising 

schemes in other senses (e.g. retinotopy in vision). The mechanical characteristics of 

the basilar membrane set up a series of frequency bandpass filters, in which high 

frequencies lead to maximum movement excursions at the base, while lower 

frequencies are represented towards the apex of the basilar membrane (von Békésy, 

1960) (Figure 1-4). This mapping of frequency to spatial position is maintained in the 

auditory nerve leading to the cochlear nucleus, and is subsequently conserved in 

subcortical structures including IC (e.g. Schreiner & Langner, 1988, 1997) as well as 

the ventral MGB as part of the lemniscal ascending auditory pathway (the non-

lemniscal dorsal MGB does not show a tonotopic organisation; for a review, see 

Jones, 2003). This is usually demonstrated via best or centre frequencies (BF or CF, 

respectively) using electrophysiological recordings. Several subfields of auditory 
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cortex each show tonotopic frequency gradients (see below); in fact, the 

demonstration of frequency gradient reversals often functions as evidence for 

boundaries between functionally different cortical fields. 

 

 

 

Figure 1-4 Frequency responses at six different positions along the basilar membrane 

(see von Békésy, 1960). Distance is indicated with respect to the apex of the basilar 

membrane. Reprinted from Moore (1999) with permission from Macmillan Publishers Ltd. 

 

 

Tonotopic gradients in primary auditory cortex have been shown in a variety of 

species with electrophysiological and immunohistochemical tracing studies, as well as 

a post hoc combination of the two (Joris et al., 2004; Kosaki et al., 1997; Morel et al., 

1993). In monkeys, the primary field A1 displays a tonotopic gradient from high to 

low as one moves from rostral to caudal; subfield R shows a reverse tonotopic 

gradient, while the tonotopic gradient in RT is similar to A1 (Figure 1-2). At least 

four of the approximately seven belt areas (namely AL, CL, CM, ML) also display a 

tonotopic organisation (Kosaki et al., 1997; Morel et al., 1993). However, the 

frequency tuning in belt areas is generally broader than those of neurons in the core 

areas (Kosaki et al., 1997; Recanzone et al., 2000). 

Recently, tonotopic frequency gradient reversals have been confirmed in 

monkey auditory cortex using fMRI (Petkov et al., 2006). In humans, Talavage and 

colleagues (2000) demonstrated eight distinct tonotopic fields in both HG and STG. 
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However, an alternative account posits that areas with preferred high or low 

frequencies represent distinct fields instead of representing the border between fields 

(Schönwiesner et al., 2002). One potentially significant caveat of many functional 

imaging studies investigating tonotopic organisation in the auditory system is, 

however, that stimuli are generally presented at a level far above their response 

threshold (Kim & Molnar, 1979), thereby blurring the frequency selectivity and 

spatial resolution of the results. 

For frequencies up to a certain frequency cut-off (which varies between species, 

see Joris et al., 2004; Middlebrooks, 2008), responses in the auditory nerve are phase-

locked to the instantaneous phase of the motion produced on the basilar membrane. 

Frequencies above this threshold are likely represented via an average firing pattern 

across different neurons, where each neuron might only fire at a multiple of the 

frequency. Both midbrain and cortical structures retain these principles of frequency 

representation, although the upper frequency limit for phase-locking decreases with 

each step along the ascending auditory pathway (Joris et al., 2004). 

 

 

1.1.5 Spectrotemporal receptive fields 

A further approach to elucidating functional characteristics of auditory cortex is the 

description of spectrotemporal receptive field (STRF) properties in auditory neurons 

(Aertsen & Johannesma, 1981a, b; Eggermont et al., 1981). The STRF of a neuron is 

represented by a kernel (in the spectral and temporal domain) that describes its 

dynamic spectrotemporal response properties (Coath et al., 2008). STRFs can 

therefore be regarded as representing characteristic computational properties in single 

neurons or small neuronal ensembles (Elhilali et al., 2007). Importantly, the 

calculation of a neuron’s STRF reveals both excitatory and inhibitory response 

properties in both spectral and temporal domains and thus provides important 

information beyond other descriptions, for example a neuron’s BF as introduced in 

the previous Section 1.1.4. 
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Studies investigating STRF properties in the primary auditory cortex of awake 

ferrets demonstrated a co-existence of stability and plasticity that allows optimal 

coding of acoustic features in a dynamically changing world (Elhilali et al., 2007). 

For example, while neurons display stable STRFs to certain acoustic features when 

these are not behaviourally relevant, STRF properties can undergo plastic modulation 

within hours or minutes if these acoustic features become task relevant (Fritz et al., 

2003; Fritz et al., 2007; Fritz et al., 2005). 

In the primary auditory cortex of non-anaesthetised monkeys, STRF responses 

display on-excitation as well as off-excitation or on-inhibition characteristics, 

providing a sophisticated and flexible neural code to integrate complex 

spectrotemporal information, such as in natural sounds and species-specific 

vocalisations (deCharms et al., 1998; Pelleg-Toiba & Wollberg, 1989; Shamma & 

Symmes, 1985). Furthermore, inhibitory responses slightly lag excitatory responses, 

which opens a short time window during which neurons can initially respond, thus 

establishing an equilibrium of excitatory and inhibitory responses that allows fine-

tuning of firing precision and optimal information processing (Wehr & Zador, 2003; 

Zhang et al., 2003). 

 

 

1.1.6 Processing streams 

The above Section 1.1.3 on electrophysiological recordings in auditory cortex 

discussed a processing hierarchy in which the encoded acoustic features increase in 

complexity as one ascends in the auditory hierarchy. There is also evidence of two 

parallel processing streams in the auditory cortex that represent two types of auditory 

information; the identity (‘what’) and spatial location (‘where’) of acoustic signals 

(Kaas & Hackett, 1999; Rauschecker & Tian, 2000; Romanski et al., 1999; Tian et 

al., 2001). According to this model, auditory ‘what’ information is processed in a 

rostral or anterior pathway along the temporal lobe and prefrontal cortex, while 

auditory ‘where’ information is processed along a dorsal route via posterior temporal 

cortex, posterior parietal lobe and frontal cortex. This organisational scheme is similar 

to the ‘what’ and ‘where’ pathways in vision (Ungerleider & Haxby, 1994). 
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Anterior and caudal belt areas in the auditory cortex of rhesus monkeys display 

differential sensitivity to the type or spatial position of con-specific vocalisations, 

respectively (Tian et al., 2001). In humans, the processing scheme is now relatively 

well established for the rostral ‘what’ pathway. For example, Zatorre and colleagues 

(2004) demonstrated increased activation within the upper bank of the right anterior 

STS as well as the right inferior frontal gyrus as a function of the distinctness of 

auditory object identities (see also Section 1.2.1). However, it might be more 

appropriate to conceive of relative gradients for processing ‘what’ (and ‘where’) 

information instead of exclusive processing streams (Kikuchi et al., 2007). 

Evidence for the dorsal ‘where’ pathway has proven to be more controversial, 

mainly because posterior temporal cortex also responds to con-specific vocalisations 

in addition to anterior temporal cortex (Poremba et al., 2004; Tian et al., 2001), 

suggesting that a distinction between ‘what’ and ‘where’ information may be relative 

rather than absolute. This has led some researchers to emphasise the importance of 

procedural ‘how’ information in the acoustic signal to explain the functional 

significance of a dorsal processing stream (Belin & Zatorre, 2000; Middlebrooks, 

2002; Zatorre et al., 2002b). This view highlights articulatory aspects of the stimuli 

used (i.e. conspecific vocalisations and speech) to explain the role of the dorsal 

pathway (Hickok & Poeppel, 2007; Warren et al., 2005b). This is in agreement with 

later conceptualisations of the original ‘where’ pathway in vision that emphasise its 

functional role in visuomotor integration (Milner & Goodale, 1995; Rizzolatti et al., 

1997). 

 

The previous sections provided a general framework of the functional anatomy 

of auditory cortex, highlighting basic principles of auditory processing, such as the 

co-existence of serial and parallel processing streams and the representation of 

increasingly complex acoustic features along the ascending auditory pathway. These 

provide a foundation for investigating more complex functional properties reviewed 

next. 
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1.2 Experimental approaches to auditory cortex function 

The following sections review several experimental approaches to elucidating the 

representation of statistical signal properties within subdivisions of auditory cortex. 

Following a brief introduction to auditory objects (Section 1.2.1), regarded as the 

‘building blocks’ of auditory scene analysis, the two subsequent sections will discuss 

pitch (Section 1.2.2) and timbre (Section 1.2.3) as critical object features that require 

the integration of higher-order statistical properties. Subsequently, processes 

underlying the grouping of linked objects will be reviewed (Section 1.2.4), with a 

special emphasis on the extraction of statistical regularities in auditory streams. 

 

 

1.2.1 Auditory object analysis 

The concept and definition of auditory objects and auditory object analysis are 

controversial (Griffiths & Warren, 2004; Kubovy & Van Valkenburg, 2001; Nelken, 

2004; Scholl, 2001; Scott, 2005). Griffiths and Warren (2004) propose four principles 

of auditory object analysis. First, auditory object analysis comprises the processing of 

information that corresponds to entities in the physical or sensory acoustic world. 

Second, auditory object analysis requires perceptual mechanisms that segregate the 

object itself from other objects and from the rest of the acoustic environment. Third, 

auditory object analysis must abstract characteristic object properties in order to 

enable a stable representation or object identity even when these properties undergo 

minor stochastic variations (e.g. the characteristic features of a speaker’s voice must 

be maintained irrespective of the speaker’s spatial position). Fourth, in a multimodal 

world, object information should generalise across senses, such as when associating a 

face with a voice. From an information theoretic perspective (Shannon, 1948), 

auditory object analysis requires computational mechanisms that are both robust 

(allowing the maintenance of object identity) as well as sensitive to critical acoustic 

changes (allowing the detection of transitions and the segregation between objects).  

A slightly different conceptualisation highlights the importance of perceptual 

segregation mechanisms for auditory object analysis (Kubovy & Van Valkenburg, 
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2001). The authors propose that the defining process of auditory objects is figure-

ground segregation. This posits that auditory object analysis is based on the detection 

of boundaries in frequency-time space within which statistical signal regularities 

apply. This allows the integration and disambiguation of auditory objects in complex 

auditory scenes. Further, Kubovy & Van Valkenburg (2001) conceive of auditory 

object analysis as a hierarchical process: the output of early, subcortical processing 

stages represents basic acoustic features in the auditory scene that require grouping; 

grouping in turn produces putative perceptual objects according to Gestalt principles 

(Wertheimer, 1922, 1923); in a complex auditory scene, attentional processes 

subsequently select which of the perceptual objects become figure, and which become 

(back-) ground. 

In the present context, auditory objects are conceptualised in information 

theoretic terms, such that a given auditory object is characterised through its 

probabilistic higher-order statistical properties; in turn, boundaries between auditory 

objects are indicated by transitions in these statistical regularities (Kubovy & Van 

Valkenburg, 2001). That is, at a generic descriptive level, auditory objects are defined 

in terms of their distinct statistical signal characteristics, which simultaneously 

distinguish them from other auditory objects (and possibly other object classes). 

Statistical regularities thus provide important information for auditory scene analysis, 

as they allow the perceptual organisation of the acoustic environment (e.g. figure-

ground segregation). The focus here is on the analysis of statistical characteristics that 

are inherent in the acoustic signal; in the case of natural sounds, these are represented 

as abstract templates and thereby provide distinct information on auditory objects. 

The four principles proposed by Griffiths & Warren (2004) and the emphasis on 

figure-ground segregation (Kubovy & Van Valkenburg, 2001) together with the 

conceptualisation of auditory objects as characterised by statistical properties provide 

a general framework for experimental investigations of auditory object analysis. 

However, the devil is in the detail (just as in the visual system: Feldman, 2003). 

Consider a speaker producing the vowel /a/: should the speaker (or sound source) be 

regarded as an auditory object, or the vowel /a/ itself, or the speaker’s position, or all 

of them together? Griffiths & Warren (2004) argue that any of these object 

characteristics can be regarded as an auditory object; any of these can define an 
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auditory object based on the four basic principles. For example, the auditory object 

could be the speaker or the vowel; at the same time, the combination of the 

constituent objects could also comprise an auditory object, similar to visual objects 

and perceptual Gestalt phenomena (Wertheimer, 1922, 1923). Here, it is argued that 

each of the constituent objects has characteristic statistical properties that can be 

extracted, maintained and disambiguated according to the principles introduced above 

(Griffiths & Warren, 2004). 

Bregman (1990) emphasised the temporal aspect of audition and suggested that 

auditory streams are the equivalent of visual objects (see Chapter 1.2.4.2); in this 

regard, auditory events that are grouped together or perceived as a distinct auditory 

stream form an object of audition. A further view suggests yet a slightly different 

conceptualisation by equating auditory objects with auditory streams (Shamma, 

2008). However, a direct comparison between visual and auditory objects is 

necessarily limited by their differential reliance on space and frequency: whereas 

visual objects exist in space-time (and can be static), auditory objects exist over 

frequency-time space (and are rarely static). For example, two different pitches 

arising in the same location can be heard as distinct, while two identical pitches in two 

different locations will likely be perceived as a single sound (Kubovy & Van 

Valkenburg, 2001). Conversely, two colours emerging from the same spatial location 

will likely blend into one colour percept, while they will be perceived as two light 

sources if they emerge from two spatial location (Kubovy & Van Valkenburg, 2001). 

These conceptualisations of auditory object analysis address two fundamental 

and complementary requirements of the auditory system, often referred to as 

simultaneous and sequential grouping (Bregman, 1990; Carlyon, 2004; Darwin, 1997; 

Darwin & Carlyon, 1995; Griffiths & Warren, 2004). First, acoustic events must be 

grouped together, for example with respect to their identity or source. Second, 

acoustic events must be parsed or segregated, for example to distinguish between 

different sound sources. At relatively short time scales, these fundamental processes 

are relevant for binding together acoustic information and perceiving as an entity 

individual auditory objects (Griffiths & Warren, 2004); at the level of longer time 

scales, they are relevant for the analysis of linked or grouped streams of objects 

(Bregman, 1990). 
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The studies in this thesis explored mechanisms for both the analysis of 

individual objects characterised by higher-order statistical signal properties (Studies 

1-2, Chapters 3-4) as well as for processing higher-order statistical signal properties in 

linked streams of objects such as in pitch sequences (Studies 3-5, Chapters 5-6). The 

following two sections briefly review two features of auditory objects, pitch (Section 

1.2.2) and timbre (Section 1.2.3), which are relevant for the experimental work of this 

thesis. 

 

 

1.2.2 Pitch 

Pitch is a fundamental feature of the auditory scene (Helmholtz, 1875) and a universal 

element in music across human cultures (McDermott & Hauser, 2005). The recent 

American National Standards definition states: “Pitch [is] that attribute of auditory 

sensation in terms of which sounds may be ordered on a scale extending from low to 

high. Pitch depends primarily on the frequency content of the sound stimulus, but it 

also depends on the sound pressure and the waveform of the stimulus” (ANSI, 1994). 

Nevertheless, after decades of research, many aspects of the neuronal and neural 

mechanisms underlying the perception of pitch are still not completely understood 

(Plack et al., 2005), and the current section will therefore attempt only a brief 

overview. 

Pitch and frequency are not identical. Pitch refers to the (psychological) percept 

and can differ from (physical) frequency. In the case of a pure tone with a fixed 

frequency, pitch is identical to frequency. However, most naturally occurring sounds 

are complex sounds consisting of multiple frequencies that are harmonics of the 

lowest or fundamental frequency f0 that is present in the sound. As a general 

approximation, the perceived pitch of a complex periodic tone corresponds to that of 

the f0 (however, see Fastl & Zwicker, 2007). Therefore, instead of perceiving several 

distinct frequencies making up the signal, the spectral information is integrated across 

frequency bands, leading to a single, coherent pitch percept that may be different from 

its physical stimulus properties. This is likely achieved by higher-order pattern 
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matching mechanisms that operate over multiple frequency bands (de Cheveigné, 

2005). 

A prominent example highlighting the pattern matching mechanisms underlying 

pitch perception is the ‘missing fundamental’ phenomenon (de Boer, 1976; Terhardt, 

1974; Winkler et al., 1997). In this auditory illusion, a complex periodic tone of 

several harmonics is presented without its fundamental frequency f0. The percept of 

this complex tone is that of a pitch an octave lower than its lowest physically present 

frequency, leading to an ‘illusory’ percept (corresponding to the missing f0). As 

indicated by the missing fundamental phenomenon, pitch perception can diverge from 

the spectral information present in the sound, and is best described via the repetition 

rate of a sound. For natural sounds consisting of a fundamental frequency and several 

harmonics that are integer multiples of f0, the slowest repetition rate of the complex 

sound is equal to the period of the fundamental frequency. When the fundamental 

frequency is removed, the repetition rate of the complex sound remains unchanged. 

This also holds when removing more than one frequency (e.g. the first five 

frequencies of a complex periodic sound consisting of ten harmonics). Therefore, 

sounds with the same repetition rate, but very different spectra, can evoke the same 

pitch (Plack & Oxenham, 2005). Furthermore, pitch can be evoked by unresolved 

harmonics alone; however, the strength of the pitch percept is an order of magnitude 

stronger in the presence of resolved harmonics. In fact, the third to fifth harmonics 

contribute most strongly to a pitch percept (Moore, 2003; Plack & Oxenham, 2005). 

There are two prominent theories of pitch perception mechanisms (Plack et al., 

2005). One posits that the place on the basilar membrane with maximum movement 

excursion determines the pitch percept (place pitch theory); the other highlights the 

temporal aspect of pitch and posits that the repetition rate of the periodic sound 

determines its pitch (temporal pitch theory). Neither theory can explain all 

experimental data. In fact, since at least some spatial or place information is necessary 

for pitch perception (Oxenham et al., 2004), it has been suggested that pitch is coded 

by a place-specific temporal code (Shannon, 2005). It is further conceivable that there 

is more than one pitch encoding mechanism, since resolved and unresolved harmonics 

are represented via different neural codes (Plack et al., 2005). Thus, pitch perception 

is situated at the interface between sensation and perception and offers a unique 
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window into how the auditory system makes inferences based on its statistical 

evaluation of (sometimes ambiguous) acoustic information. 

Given the complexity of pitch perception and its reliance on pattern matching 

mechanisms, it seems reasonable to assume that pitch extracting mechanisms emerge 

relatively late in the auditory hierarchy. Early evidence from patients with temporal 

lobectomies suggested that the right temporal lobe including HG is important for 

detecting the direction (up or down) of a pitch pair with missing fundamentals, but not 

with present fundamental frequencies (Zatorre, 1988). Subsequent studies have 

refined these findings and suggest that the lateral aspect of Heschl’s gyrus as part of 

secondary auditory cortex plays a crucial role in processing pitch information. 

Griffiths and colleagues (2001) created a repetition pitch by systematically 

varying the temporal regularity of sounds via a delay-and-add algorithm (Yost et al., 

1996); generally, pitch salience increases with the temporal regularity created by the 

number of delay-and-add iterations. They demonstrated activity in HG that was 

stronger for pitch evoking sounds than for noise (see also Patterson et al., 2002). 

However, the manipulation of repetition pitch via the number of iterations cannot 

directly address whether activation increases due to (physical) temporal regularity or 

(perceptual) pitch salience. Making use of the fact that pitch salience of sounds with 

only resolved or only unresolved harmonics differs, while temporal regularity remains 

constant, Penagos and colleagues (2004) were able to localise pitch salience to lateral 

Heschl’s gyrus as part of secondary auditory cortex. Similarly, activity in lateral HG 

is specific to the percept of temporal pitch and not generalised to analysis of temporal 

structure as such, as in spatial width perception introduced by interaural delay (Hall et 

al., 2005). Electrophysiological recordings in the primary auditory cortex of the 

marmoset monkey confirmed these findings for various types of complex sounds that 

all shared a pitch percept within a low-frequency region at the anterolateral border of 

areas A1 and R (Bendor & Wang, 2006; Bendor & Wang, 2005). 

Warren and colleagues (2003) expanded these findings for two further aspects 

of pitch, namely pitch chroma and pitch height. Pitch can be modelled along a helix, 

where pitch chroma is represented by angular position along the helix, and pitch 

height by elevation (Bachem, 1950; Krumhansl, 1990). In this helical model, pitches 

an octave apart (frequency ratio of 2:1) share the same pitch chroma, but are of 
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different pitch height. The authors showed that pitch chroma and pitch height are 

encoded in distinct cortical areas anterior and posterior to primary auditory cortex, 

respectively. These results suggest a processing hierarchy in which the basic features 

of pitch are encoded first in lateral HG, and are subsequently rendered to a more 

refined analysis with respect to pitch chroma and pitch height in auditory association 

cortex. 

 

 

1.2.3 Timbre 

Timbre is a further perceptual attribute that reflects higher-order auditory object 

perception and segregation. Timbre, known evocatively in German as Klangfarbe 

(‘sound colour’), commonly refers to those aspects of a sound that distinguish it from 

another sound with identical pitch, duration and intensity (ANSI, 1994). Rather than 

being a unitary entity, however, timbre is best conceptualised within a perceptual 

‘timbre space’ consisting of multiple temporal and spectral dimensions (Caclin et al., 

2005; Hajda et al., 1997; McAdams et al., 1995). Studies using multidimensional 

scaling (MDS) techniques (Caclin et al., 2005; McAdams et al., 1995) suggest three 

to four principal dimensions: the attack or log-rise time, spectral centroid, spectral 

fine structure, and to a lesser extent spectral variation or spectral flux (for a slightly 

different weighting of timbral dimensions see Kendall et al., 1999). Thus, timbre 

relies on the statistical evaluation and integration of multiple stimulus dimensions. 

The principles underlying timbre perception provide important information for 

auditory object analysis, such as object recognition and segregation (Handel, 1995; 

McAdams, 1993). For example, for short tones produced by impulsive instruments 

(e.g. piano or drums), the information in the log-rise time is vital for auditory object 

or instrument identification, while the spectral information contained in the sustained 

part of longer instrument sounds is sufficient for recognition (Hajda, 1999). 

Furthermore, auditory streaming (Section 1.2.4.2) is strongly influenced by timbre 

(Bregman, 1990). 
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Until about 1850, in Western tonal music, timbre was mainly a means to 

distinguish the instrument carrying the melodic line from those playing the 

accompaniment, or to signal boundaries by changes in instrumentation. Subsequently, 

the richness of the symphonic orchestra of the late Romantic era enabled composers 

to make timbre itself a distinctive attribute via sophisticated orchestration techniques, 

e.g. by combining different instruments to form different timbres. The aesthetic 

epitome of this timbre feature was the concept of a Klangfarbenmelodie (‘tone colour 

melody’) based on timbral sequences, introduced in the 20th century by Arnold 

Schönberg and Anton Webern in their compositions. Electronically generated 

synthetic sounds later opened the door to an unlimited variety of musical timbres 

(McAdams, 1996). The complexity of timbre perception is underscored by the fact 

that even today’s sophisticated computational pattern matching algorithms are not 

capable of disambiguating the various instruments in an orchestra; a feat that the 

human auditory system performs with apparent ease. In speech, vowels are the prime 

example of timbre. We distinguish an /a/ from a /u/ by virtue of their different spectral 

shape, or the different profile of their harmonics, commonly referred to as formants 

(Rogers, 2000). 

On a more abstract scale, affine transpositions of timbral relations are perceived 

as more similar than non-affine timbral transpositions, underscoring the higher-order 

perceptual properties of timbre (McAdams & Cunibile, 1992). Similarly, it is 

possible, though generally quite difficult, to disambiguate via timbre alone two sound 

sources or auditory objects that differ in pitch; for example, distinguishing a violin 

playing an A4 from a flute playing a C5 (Handel & Erickson, 2004). As a general rule 

of thumb (Handel & Erickson, 2001), this generalisation of timbral attributes across 

instrumental pitch is only possible for sounds that are within an octave of each other 

(for similar findings concerning speech vowels, see Erickson et al., 2001; Erickson & 

Perry, 2003).  

Given the complex interplay of multiple acoustic features or dimensions within 

the perceptual attribute timbre, it is reasonable to hypothesise that timbre is processed 

or assembled in auditory association areas. At the same time, possibly because of its 

complexity, the precise neural correlates of timbre and its dimensions are still 

relatively little understood. A study in which multiple timbral attributes were varied 
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simultaneously found bilateral posterior superior temporal activity (Menon et al., 

2002), while changes in the spectral envelope activated a network of PT and posterior 

STS (Warren et al., 2005a). Furthermore, the latter network seems to be serially 

organised, so that the extraction of the spectral envelope could be attained between 

HG and PT, where PT functions as a computational hub, forwarding the information 

to posterior STS (Kumar et al., 2007). These results are supported by a patient with a 

right-lateralised lesion confined to areas within this network (right lateral HG, PT, 

posterior STG, and posterior STS), who had impaired differentiation of various 

timbres (dystimbria) (Griffiths et al., 2007). However, there is also evidence for an at 

least partially parallel representation of the different dimensions of timbre (Caclin et 

al., 2006), with potential hierarchies only arising at later processing stages (Caclin et 

al., 2007; Caclin et al., 2008).  

Despite important recent advances with respect to elucidating the neural 

representation or representations of the multidimensional auditory attribute timbre, 

these likely reveal only the tip of the iceberg and many questions still remain. The 

precise neural representations of the different timbral dimensions that have been 

established via MDS techniques remain unclear, as does the question at which stages 

in the auditory system these dimensions interact. Further, it is unresolved to what 

extent the processing of the different timbral dimensions is hierarchical versus parallel 

(Caclin et al., 2006; Caclin et al., 2007). 

 

 

1.2.4 Sound and pitch sequences 

The acoustic scene does not only consist of single auditory objects (e.g. pitch or 

timbre), of course, but is often a pattern or sequence of sound objects that conveys 

acoustic information, such as in musical melodies or the prosody of spoken sentences 

('t Hart et al., 1990; Patel, 2008). These auditory streams can themselves be regarded 

as forming auditory objects (Bregman, 1990). Several experimental paradigms have 

investigated the underlying neural mechanisms for organising the auditory scene, such 

as tracking and grouping sound sequences. The following sections review three 
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approaches to elucidating how the auditory system evaluates the statistical signal 

properties of sound and pitch sequences. 

 

 

1.2.4.1 Mismatch negativity 

A classical experimental paradigm that provides a window into how the auditory 

system makes inferences based on statistical stimulus characteristics in the auditory 

scene is the mismatch negativity (MMN) paradigm (Näätänen, 1995; Näätänen et al., 

2007). The MMN is traditionally recorded non-invasively with electrophysiological 

techniques, such as electro- and magneto-encephalography (EEG and MEG, 

respectively). Subtracting the event-related response (ERP) to frequent ‘standard’ 

stimuli (e.g. a sinusoid of 1000 Hz) from the response to infrequent ‘deviant’ or 

oddball stimuli (e.g. a sinusoid of 1100 Hz) reveals a negative component, the MMN, 

at 150-250 ms post stimulus onset, with a maximal deflection at fronto-central 

electrodes and a typical sign reversal at the mastoids when using a nose reference 

(Näätänen et al., 1978; Sams et al., 1985a; Sams et al., 1985b). 

The MMN is thought to reflect the pre-attentive processing of any discernable 

violation of a previously established context. The larger the difference between 

standard and deviant stimuli, the earlier and larger the MMN (Sams et al., 1985a; 

Tiitinen et al., 1994). Furthermore, equivalent current dipole (ECD) modelling 

suggests that there might be feature-specific MMN generators, since some studies 

show spatially distinct ECD sources for frequency, intensity, inter-stimulus-interval, 

and duration oddballs (Deouell & Bentin, 1998; Deouell et al., 1998; Frodl-Bauch et 

al., 1997; Giard et al., 1995; Levänen et al., 1993; Rosburg, 2003) (but see Sams et 

al., 1991). The MMN is also elicited by more complex acoustic changes such as 

deviating phonemes (for a review see Näätänen, 2001; see also Näätänen et al., 1997; 

Winkler et al., 1999), rhythms (Vuust et al., 2005), timbre (Caclin et al., 2006, 2007, 

2008), and musical pitch sequences (van Zuijen et al., 2004; Winkler et al., 2006). Its 

pre-attentive nature makes it a promising tool in infants and clinical populations (for 

reviews see Kujala et al., 2007; Näätänen, 2000, 2003). 
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The cortical generators of the mismatch response are likely localised in 

secondary or association auditory cortex on the STP, with a potential additional 

source in right inferior frontal cortex, as has been demonstrated using ECD modelling 

in EEG (Giard et al., 1995; Jemel et al., 2002; Scherg et al., 1989) and MEG studies 

(Alho et al., 1998a; Alho et al., 1998b; Hari et al., 1984; Levänen et al., 1996; Sams 

et al., 1991), as well as with fMRI (Opitz et al., 1999; Opitz et al., 2002; Rinne et al., 

2005) and intracortical recordings (Halgren et al., 1995; Halgren et al., 1998; 

Kropotov et al., 2000; Kropotov et al., 1995; Rosburg et al., 2005). 

Whether the MMN reflects a distinct neural mismatch source in STP or is due to 

sensory adaptation processes within a single neuronal population is currently a matter 

of debate (Jääskeläinen et al., 2004; Näätänen et al., 2005). The classical, echoic 

memory-trace hypothesis argues that the mismatch response reflects the activity of a 

specific subpopulation that compares the current sensory input with a previously 

established context and signals upon detection of a violation (for a review see 

Näätänen et al., 2005). In this framework, the MMN would reflect activity that is 

distinct from other, temporally close evoked responses, such as the N100 or N1 (or its 

magnetic equivalent the N100m or N1m), which is the main evoked negative 

deflection to sound onset and is composed of at least two subcomponents (Näätänen 

& Picton, 1987). The alternative adaptation hypothesis of the MMN mechanisms 

highlights the existence of these different N100 subcomponents, in particular the more 

posterior N1p (which peaks at around 85 ms) and more anterior N1a (which peaks at 

around 150 ms) components. It argues that the MMN is a subtraction artefact 

attributable to different features of N1p and N1a: the narrow frequency tuning of the 

N1a generators would show sensory adaptation to the standard stimulus and a 

subsequently larger response to a frequency deviant; conversely, the broad frequency 

tuning of the N1p generators would also adapt to the standard, but would show a 

larger response only to wide frequency deviations. Thus, subtracting evoked 

responses to standards from deviants would produce a negative deflection at the 

latency of the N1a, leading to a misattribution of the MMN. 

There are several results that suggest that sensory adaptation cannot explain all 

results in the vast MMN literature (reviewed in Näätänen et al., 2005). For example, 

an MMN is also present when the oddball is not physically different from the standard 
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or reflects a complex rule change that is unlikely to be confounded by sensory 

adaptation (van Zuijen et al., 2004). However, recent studies suggest that the MMN 

might reflect a temporal combination of sensory (adaptation) and cognitive (memory-

trace) processes (Maess et al., 2007). Similarly, a scheme based on predictive coding 

(Friston, 2003a, 2005) of sensory input processing that encompasses both hypotheses 

has been proposed to underlie cortical MMN mechanisms (Garrido et al., 2008). 

 

 

1.2.4.2 Auditory streaming 

One fundamental requirement of the auditory system is to be able to follow a sound 

source irrespective of distraction from other sound sources, often described as 

auditory scene analysis (Bregman, 1990). One prominent example of such figure-

ground segregation is the ‘cocktail party effect’ mentioned above (Cherry, 1953); the 

brain far surpasses the ability of sophisticated computational algorithms in its ability 

to segregate sound sources (Haykin & Chen, 2005). Classical studies investigating the 

underlying perceptual mechanisms have employed an auditory streaming paradigm, 

first introduced by Bregman and Campbell (1971; further explored in detail in the 

doctoral thesis by van Noorden, 1975), which highlights the neural mechanisms 

underlying the extraction of statistical signal properties relevant for figure-ground 

segregation. 

In the classical auditory streaming paradigm, two pure tones A and B of 

different frequencies are presented in an alternating pattern, the most common 

patterns being ABAB and ABA_ sequences (where ‘_’ represents a silent gap before 

the repetition of the triplet). Whether the pattern is heard as a single stream of 

alternating A and B frequencies (stream integration or fusion) or as two separate 

streams where each stream is formed by A or B tones only (stream segregation or 

fission), depends on the presentation rate and the difference in frequency (�f) between 

A and B. As a general principle, the faster the presentation rate and the larger �f, the 

more likely stream segregation occurs. 
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The stimulus paradigm may seem overly simplistic and far removed from the 

complex acoustic environment. However, its generality and relevance for auditory 

perception is underscored by the demonstration of behavioural streaming phenomena 

in songbirds (Hulse et al., 1997; MacDougall-Shackleton et al., 1998) and non-human 

primates (Izumi, 2002). Furthermore, as will be discussed below, rather than being a 

stimulus-driven bottom-up phenomenon, it can be modulated by attention, providing 

evidence for statistical inference in the brain. 

One prominent theory – the peripheral channelling hypothesis (Hartmann & 

Johnson, 1991) – that attempts to describe the neural mechanisms underlying stream 

segregation, highlights the role of auditory filters in the sensory periphery (see also 

Beauvois & Meddis, 1996). According to the peripheral channelling hypothesis, if A 

and B are close in frequency and therefore pass through the same auditory filter on the 

basilar membrane, they will excite the same neural population in the ascending 

auditory system, leading to a percept of a single stream of alternating A and B tones. 

Conversely, if the difference in frequency �f between A and B is large enough so that 

A and B will pass through different filters and excite separate neural populations, this 

leads to a two-stream percept or stream segregation. While this theory is able to 

explain much of the experimental data of stream segregation (as reviewed in Darwin, 

1997; Micheyl et al., 2007; Moore & Gockel, 2002; Snyder & Alain, 2007), there are 

two aspects in particular that cannot be explained by peripheral mechanisms alone. 

First, stream segregation can also occur for sounds in which the peripheral 

coding does not differ: for example, when two complex tones A and B differ only 

with respect to their unresolved harmonics, while the resolved spectrum of the two 

tones is kept identical (Grimault et al., 2000; Gutschalk et al., 2007; Vliegen et al., 

1999; Vliegen & Oxenham, 1999). Similarly, streaming can occur with temporal cues 

only, but otherwise identical long-term power spectra (Grimault et al., 2002; Roberts 

et al., 2002). Second, stream segregation is sensitive to attention. This was already 

acknowledged by van Noorden (1975), who discovered that attention can bias 

perception towards segregation or integration in ambiguous ABA_ sequences with 

intermediate �f. A related aspect is that stream segregation has a temporal component 

that can be influenced by attention, in the sense that stream segregation often requires 



CHAPTER 1 

 30 

several seconds to build up (Carlyon et al., 2001; Carlyon et al., 2003), and this build-

up seems to be ‘reset’ when switching attention (Cusack et al., 2004). 

The physiological bases of streaming have only been studied relatively recently. 

A general principle underlying stream segregation seems to be ‘forward suppression’. 

For example, intracortical recordings (multiunit activity and current source density) in 

A1 of awake monkeys, where the A tone in ABAB sequences was centred on the best 

frequency (BF) of the recording site, showed decreased responses to B tones as a 

function of presentation rate and �f (Fishman et al., 2001). For slow presentation 

rates, both A and B frequencies elicited large responses; however, for fast 

presentation rates, only A tones elicited clear responses, while the magnitude of 

responses to B tones decreased. This effect increased with �f. Fishman and colleagues 

(2001) interpreted these findings in terms of a forward masking effect that A tones 

exert on B tones. While these effects could also be explained due to the fact that with 

increasing �f, B tones moved farther away from the best frequency region of the 

recording site, Micheyl and colleagues (2005), recording in macaque A1, quantified 

that forward suppression is at least a contributing factor by comparing responses to B 

tones in an ABA_ paradigm, to responses to B tones alone. A subsequent study found 

that inter-tone-interval, i.e. the time interval between tones, is more crucial for stream 

segregation than the presentation rate (Fishman et al., 2004); this is consistent with 

psychoacoustic results (Bregman et al., 2000). 

As mentioned earlier, stream segregation often has a build-up time of several 

seconds (Carlyon et al., 2001; Cusack et al., 2004). Generally, the faster the 

presentation rate, the faster the build-up of stream segregation. Micheyl and 

colleagues (2005) showed that this perceptual switch (as measured in humans) has a 

similar time-course representation to the corresponding neural response (as measured 

in monkey A1). This is similar to a reduced N1m/P1m complex, reflecting the 

stimulus onset response to the B tone in ABA sequences as a function of �f 

(Gutschalk et al., 2005; see also Snyder et al., 2006). For ambiguous �f, the 

N1m/P1m complex was similarly reduced whenever participants indicated a two-

stream percept as opposed to a one-stream percept (Gutschalk et al., 2005). Somewhat 

at odds with the neurophysiological data in non-human primates (Fishman et al., 

2004; Fishman et al., 2001; Micheyl et al., 2005), the source reconstruction indicated 
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an origin in secondary and association cortex (Gutschalk et al., 2005; Snyder et al., 

2006). However, a more recent study (Gutschalk et al., 2007) using both MEG and 

fMRI reported a source origin and haemodynamic activity in auditory cortex, 

including primary cortex, that correlated with a two-stream percept (see also Deike et 

al., 2004; Wilson et al., 2007). However, there is also evidence for extra-auditory 

areas participating in streaming: Cusack (Cusack, 2005) found no correlate of stream 

segregation in auditory cortex, but instead activity in the intraparietal sulcus (IPS) that 

covaried with a two-stream percept in ambiguous �f sequences. An intriguing recent 

result suggests that stream segregation is not specific to auditory cortex, but is already 

present in the cochlear nucleus of the anaesthetised guinea pig (Pressnitzer et al., 

2008). 

While these studies provide a critical insight into the cortical areas relevant for 

stream segregation, they nevertheless say relatively little about the neuronal 

mechanism. For example, some studies also report a general effect of adaptation for 

both A and B responses as a function of presentation rate (e.g. Fishman et al., 2004; 

Fishman et al., 2001; Gutschalk et al., 2005; Micheyl et al., 2005). How forward 

suppression and adaptation mechanisms interact in the paradigm is currently unclear; 

for example, as stream segregation builds up (forward suppression), the strength of 

the neuronal responses recedes (adaptation). Furthermore, the synaptic mechanisms 

underlying forward suppression have yet to be elucidated (Brosch & Schreiner, 1997; 

Calford & Semple, 1995; Denham, 2001; Eggermont, 1999). The multiplicity of 

factors determining auditory streaming (Moore & Gockel, 2002) suggests a 

distributed network contributing to auditory streaming instead of one single substrate. 

Nevertheless, theories emphasising the degree of spectral or tonotopic separation 

(Hartmann & Johnson, 1991) likely explain most, while certainly not all, of the stream 

segregation phenomenon. At the same time, there still remain outstanding questions 

regarding (i) the role of peripheral vs. central mechanisms, (ii) the role of attention on 

stream formation, and (iii) the contribution of different auditory areas as well as that 

of non-auditory areas. 
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1.2.4.3 Complex pitch sequences 

While the two previous paradigms (MMN and auditory streaming) highlighted basic 

properties of auditory perception, one significant restriction is their repetitive and thus 

deterministic nature. The MMN reflects sensory and comparator mechanisms over 

relatively short time scales and under arguably simple or overly deterministic acoustic 

stimulation conditions (except for the occasional rule violation exemplified by the 

oddball stimulus). This is similar in the auditory streaming paradigm, in which a set 

pattern generally consisting of only two frequencies is repeated over and over. 

However, real-life acoustic events generally have a complexity that is 

magnitudes greater. For example, pitch sequences such as those in musical melodies 

extend over several seconds and often span multiple pitches combined in a rhythmic 

and harmonic structure, and thus are likely to require perceptual processes with a 

complexity that far surpasses those necessary for simple mismatch detection in a 

repetitive sequence. In fact, a significant aspect contributing to music appreciation is 

its complexity, exemplified by the balance between expected and unexpected musical 

events (Huron, 2006). Similarly, speech perception involves the processing of 

complex consonant-vowel transitions over different time-scales (Rosen, 1992), as 

well as the tracking of prosodic structure. 

Section 1.1.4 noted that initial perception of single frequencies engages primary 

and secondary auditory areas, while a more integrated pitch percept likely arises in 

lateral HG (Section 1.2.2) (Bendor & Wang, 2005; Griffiths, 2001, 2005; Patterson et 

al., 2002). In contrast, the perception of a complex series of pitches requires 

perceptual grouping mechanisms and is thus likely to engage areas beyond primary 

cortex (see also the two preceding Sections 1.2.4.1 and 1.2.4.2). Lesions to parabelt 

areas in macaques (Cowey & Weiskrantz, 1976) and association cortex in humans 

(Patel et al., 1998; Peretz et al., 1994), sparing primary cortex, lead to impairments of 

auditory pattern perception such as pitch sequence processing. 

Both the direction (up or down) and the precise size of intervals between 

successive pitches provide important information for pitch sequence perception 

(Peretz, 1990). The simplest process required is the detection of the direction of pitch 

change between two successive pitches; patient studies indicate that this computation 

depends on right lateral HG (Johnsrude et al., 2000). In one of the first studies 
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investigating the perception of longer musical pitch sequences, Zatorre and colleagues 

(1994) used positron emission tomography (PET) to compare the response in auditory 

cortex to simple melodies against the response to acoustically matched noise 

sequences; this revealed increased activity in right STG for melodies. Lateral HG and 

PT participate in the perception of lively pitch sequences compared to fixed-pitch 

sequences (Griffiths et al., 2001), while anterior and posterior temporal cortices show 

a parametric increase with temporal structure for musical pitch sequences (Griffiths et 

al., 1998). Furthermore, there is evidence that duration and pitch sequences are 

processed in overlapping areas in the temporal lobes (Griffiths et al., 1999). 

Patterson and colleagues (2002) suggest a hierarchical organisation of pitch 

sequence processing, in which precise temporal information is represented in 

subcortical structures, before the emergence of a pitch percept in lateral HG and the 

representation or integration of increasingly complex pitch sequences (as in a melody) 

in association areas. The authors presented four types of sound sequences: noise, 

fixed-pitch, random, and diatonic pitch sequences (similar to melodies). The stimuli 

used were repetition pitch (iterated rippled noise, IRN) to control for low-level 

acoustic complexity. All four types of sound sequences activated primary, secondary 

and association cortex. Furthermore, primary auditory cortex responded strongest to 

noise, while activation for fixed-pitch sequences extended into lateral Heschl’s gyrus. 

Random and diatonic pitch sequences resulted in activation beyond primary and 

secondary auditory cortices along the anterior superior temporal gyrus, notably the 

planum polare (PP). Interestingly, the authors found no consistent differences across 

participants for the random and diatonic pitch sequences (similar to the results by 

Griffiths et al., 2001). Nevertheless, the results demonstrate a hierarchy in processing 

temporal pitch information at the level of the cortex, extending from an initial analysis 

in primary and secondary areas to auditory association areas on the superior temporal 

plane. 

Further, studies of pitch sequence processing have highlighted the perceptual 

cues of global and local contour information (Liégeois-Chauvel et al., 1998; Peretz, 

1990). The global contour of a pitch sequence describes its pattern of ‘ups’ and 

‘downs’, while the local contour denotes the exact interval size. Study 5 of this thesis 
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(Chapter 6) investigated the underlying neural correlates for global and local 

processing of pitch patterns in healthy volunteers. 

 

In summary, some general principles of auditory cortex function across species 

can be highlighted. First, the information flow in auditory cortex is both hierarchical 

and parallel, enabling dynamic and highly adaptable processing of complex acoustic 

information, in which bottom-up, top-down and lateral signalling co-exist. Second, 

the complexity of acoustic information represented in each region increases from core 

via belt to parabelt cortex (and their likely human homologues). However, there is 

currently no consensus as to whether structures in the ascending auditory pathway 

process similar acoustic features (e.g. tonotopic maps at various stages in the auditory 

pathway) at different levels of complexity and generality, or whether these structures 

share a division of labour where each processes different sound attributes (Griffiths et 

al., 2004; Nelken, 2004; Pressnitzer et al., 2008; Scott, 2005). A related outstanding 

problem is whether auditory cortex represents complex auditory objects irrespective 

of local stochastic variations (e.g. represents a voice irrespective of its location or 

background noise) or, rather, according to invariant acoustic features that only lead to 

the emergence of auditory objects via the synchronisation of larger neural 

populations, which each code a particular invariant acoustic feature. Nelken (2004) 

argues that these levels co-exist and that it is indeed possible for auditory cortex to 

represent complex auditory objects as such. It has been hypothesised that such 

redundancy reduction may in fact be a general principle in the ascending auditory 

system: while neuronal responses in auditory cortex may indeed be noisier than those 

in subcortical structures, at the same time they can be argued to be less redundant than 

subcortical structures, which often faithfully represent a single physical stimulus 

attribute multiple times (Chechik et al., 2006). The increasing complexity in auditory 

cortex implicates computational processes at the level of single neurons, and quite 

probably neuronal populations, which provide a less faithful representation of precise 

physical stimulus attributes than that provided by previous structures in the auditory 

hierarchy. Such a computational scheme suggests that redundancy is reduced as one 

ascends along the auditory hierarchy and that redundant signals require fewer 

computational resources. 



GENERAL INTRODUCTION 

 35 

1.3 Key problems addressed in this thesis 

Previous approaches to auditory processing, such as the MMN and auditory streaming 

paradigms, have typically used deterministic stimulus designs in which the statistical 

properties of the experimental stimulus were relatively constrained. While the 

mechanisms and topography of the underlying processes are now relatively well 

understood, inferences from these data are necessarily limited by the scope of the 

experimental stimuli. Thus, current outstanding questions concern the representation 

of less deterministic and higher-order stimulus properties. This doctoral thesis 

addresses the representation of higher-order statistical properties of acoustic signals in 

human auditory cortex; in particular, it investigates the participating structures and 

their organisation (e.g. hierarchical or parallel) for representing various higher-order 

statistical properties in acoustic signals. 

The majority of the studies herein employ a parametric design in which the 

statistical properties of a single acoustic parameter – such as entropy, correlation over 

time, or spectrotemporal coherence – are altered along a continuum (Friston, 2003b). 

The advantage of a parametric approach is that it provides a sharper understanding of 

the representation of a particular acoustic stimulus parameter across different 

instantiations; in particular, parametric designs enable the investigator to probe 

precisely the brain’s response to a particular parameter across various instantiations, 

while keeping other lower-level acoustic properties, e.g. spectral power or bandwidth, 

constant. This is in contrast to classical categorical or factorial designs, which contrast 

the effect of an experimental variable with a control condition, i.e. the presence versus 

the absence of the experimental variable, on the response in cortex, and thus cannot 

inform on the precise effect of the experimental variable across different 

instantiations. Furthermore, while categorical designs hinge on the adequacy of a 

control condition and are prone to problems associated with cognitive subtraction or 

pure insertion (Friston et al., 1996a), the different levels of parametric designs 

function as their own internal control stimulus and allow the detection of non-linear 

responses across levels (Friston, 2003b). This thesis specifically takes an information-

theoretic approach in the sense that statistical signal properties are systematically 

varied, thereby tracking cortical areas that encode the signal properties over different 

instantiations. 
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The detailed investigation of complex sound properties is only made possible by 

modern signal processing techniques, whose computational power has increased 

significantly over the last decade. Current signal processing software allows the 

sophisticated manipulation of complex higher-order statistical properties in generic, 

synthetic sounds that share many of the characteristic features of naturally occurring 

sounds, while avoiding their semantic connotations. As a consequence, this work 

addresses neural processing mechanisms for the abstraction of generic higher-order 

statistical acoustic properties at the level of neural populations in neurologically 

normal participants. The following sections provide a brief description of the 

motivation for each of the five studies comprising the thesis. 

 

 

1.3.1 Chapter 3 – Study 1 

Are there distinct time scales over which the auditory cortex addresses statistical 

signal properties, and can these operations be assigned to distinct areas within 

auditory cortex? 

Acoustic information evolves over several time scales, from microseconds 

(relevant for sound localisation and spectral pitch resolution), to tens of milliseconds 

(e.g. phonemes) and hundreds of milliseconds (e.g. syllables), to several seconds (e.g. 

musical melodies or spoken sentences) (Rosen, 1992). Accordingly, the auditory 

system needs to assess acoustic information over a range of time scales or time 

windows. One way to achieve this is to vary the correlation in the acoustic signal over 

different time scales to assess brain activation that tracks acoustic information 

evolving over one of those time windows (Luo & Poeppel, 2007). There is evidence 

that processing of information encapsulated in time windows of tens and hundreds of 

milliseconds is lateralised towards the left and right auditory cortices, respectively 

(Boemio et al., 2005; Poeppel, 2003). However, the precise conceptualisation and 

representation suggested by different studies is not consistent (c.f. Obleser et al., 

2008; Schönwiesner et al., 2005; Zatorre & Belin, 2001). Further, the division of 

labour between primary, secondary, and association areas for these different time 

windows of analysis has so far not been clearly established. This study investigated 
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the notion of distinct time windows by representing the different spectrotemporal time 

windows via correlation in the acoustic spectrum. 

 

 

1.3.2 Chapter 4 – Study 2 

How are auditory objects represented and segregated in the auditory cortex? 

The auditory system has developed remarkable precision in identifying, as well 

as segregating, distinct auditory objects (Griffiths & Warren, 2004; Nelken, 2004; 

Scott, 2005). In order to achieve this, it needs to assess the statistical object properties 

to detect boundaries or transitions between objects as well as maintain object 

constancy. However, little is known about the underlying cortical mechanisms for 

these two fundamental perceptual mechanisms. This study introduces a novel 

stimulus, in which auditory objects were identified by the percentage of randomly 

distributed frequency ramps with identical direction and trajectory. Thus, auditory 

object perception depended on the detection of higher-order spectrotemporal 

coherence; similarly, object segregation depended on the detection of a change in 

coherence over frequency-time space. This study investigated the cortical 

representation for segregating and integrating auditory objects based on higher-order 

statistical properties such as spectrotemporal coherence. 

 

 

1.3.3 Chapter 5 – Studies 3 & 4 

Can the planum temporale be described as a neural engine that requires fewer 

computational resources for redundant signals than for those with high information 

content? 

Within the auditory system, the planum temporale of human auditory 

association cortex is thought to represent a ‘computational hub’ that compares the 

neuronal pattern of incoming information to pre-existing templates and subsequently 
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gates the information along the auditory hierarchy for further processing (Griffiths & 

Warren, 2002). The ‘computational hub’ model of PT function integrates results from 

a variety of studies investigating a multitude of auditory functions. However, the 

model has not been tested explicitly, and studies 3 and 4 investigated one specific 

prediction that arises from the ‘computational hub’ model: activity in PT should 

increase as a function of the entropy, or information production, in pitch sequences. 

 

 

1.3.4 Chapter 6 – Study 5 

Is there a cortical hierarchy and lateralisation scheme for processing local and 

global information in pitch patterns? 

Pitch sequences consist of two structural levels; the global level comprises the 

pattern of ‘ups’ and ‘downs’ that forms the contour of the pitch sequence, while the 

local level denotes the precise interval size between pitches (Dowling, 1978; Dowling 

& Fujitani, 1971; Dowling et al., 1987). Behavioural and patient studies have 

demonstrated a hierarchical organisation of pitch pattern perception, such that global 

processing precedes local processing. However, the notion that global processing is 

right-lateralised, while local processing is left-lateralised, has been less consistently 

supported between studies (Liégeois-Chauvel et al., 1998; Peretz, 1990; Schuppert et 

al., 2000). Further, accounts of the underlying brain structures have so far only come 

from patients with cerebral damage. This study tested the hierarchy and lateralisation 

accounts in neurologically normal participants. 
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Chapter 2. TECHNIQUES AND METHODS 

Signal processing and digital stimulus synthesis form the theoretical core of this work. 

The advances over the past decade in computing power and software sophistication 

have made it possible to generate complex acoustic stimuli that allow researchers to 

generate and manipulate sounds seemingly at their will. The core experimental 

methodology employed in this thesis is functional magnetic resonance imaging 

(fMRI). Here, too, increased magnetic field strengths and innovations in the design of 

acquisition sequences and data analysis have made large strides and now provide a 

powerful tool to investigate brain function. This chapter introduces applications of 

signal processing and digital stimulus design in auditory neuroscience (Section 2.1), 

followed by a brief review of the basis of MRI and fMRI (Sections 2.2 and 2.3), 

specific considerations for studying auditory perception with fMRI (Section 2.4), and 

an outline of fMRI data analysis (Section 2.5). 

 

 

2.1 Approaches to stimulus design for auditory neuroscience 

Digital stimulus design has become an invaluable tool in auditory neuroscience. With 

respect to this thesis, digital stimulus synthesis provides a bridge between bottom-up 

and top-down approaches to acoustic information processing. The bottom-up 

approach allows individual acoustic characteristics to be systematically created and 

manipulated from first principles, thereby investigating basic rules determining 

auditory scene analysis (Section 2.1.1). The top-down approach allows the systematic 

manipulation of natural acoustic signals (Section 2.1.2). A complementary approach 

using digital stimulus synthesis enables the generation of sophisticated acoustic 

signals that can be as complex as natural sounds, but in which characteristic stimulus 

features can be tightly controlled (Section 2.1.3). Furthermore, individual sound 

features (such as spectrotemporal correlation in complex acoustic spectra or 

information production in pitch sequences) can be designed to obey probabilistic 

rather than deterministic principles, and thus approximate properties of ethological 

sounds. 
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2.1.1 Simple synthetic stimuli 

Acoustic signals in the real world are continuous, or analogue. However, most 

contemporary computing devices operate in the digital domain; therefore acoustic 

signals are discretised or sampled at a certain sampling rate. According to Shannon’s 

sampling theorem, the sampling rate must be at least twice as high as the highest 

frequency in the original analogue signal in order to faithfully capture the signal 

(Shannon, 1949). This is also often called the Nyquist rate. A common sampling rate 

discretises the signal at 44100 Hz; according to the sampling theorem, this faithfully 

captures frequencies in the signal of up to 22050 Hz, which is above the normal 

hearing threshold of humans. The number of bits per sample that are used to encode 

the signal provides a second dimension of fidelity; the higher the number of bits, the 

more precise the correspondence between analogue and digital signal. A common bit 

rate is 16 bits/sample. 

The following sections give brief mathematical descriptions of fundamental 

types of stimuli employed to elucidate generic mechanisms of auditory perception 

(frequency and pitch, Sections 2.1.1.1 and 2.1.1.2; amplitude modulation, Section 

2.1.1.3; frequency modulation, Section 2.1.1.4). These have been used successfully in 

numerous experimental studies employing electrophysiology, functional imaging and 

psychophysics in humans and animals (e.g. Fastl & Zwicker, 2007; Joris et al., 2004; 

Laureys et al., 2003; Moore, 2003; Patterson et al., 2002; Rees & Malmierca, 2005; 

Warren, 2008). Their experimental power lies in the tight control that the 

experimenter has over the acoustic feature that is manipulated; this ensures that any 

observable effect (behavioural or neural) can be attributed precisely to the stimulus 

manipulation.  

However, a notable caveat is their relative simplicity and deterministic nature, 

limiting the validity of direct comparisons with natural sounds. Deducing the neural 

representation of complex natural sounds from that of pure tones would need to 

assume that the auditory system behaves in a linear way, which is not the case (Hart et 

al., 2003; Malone et al., 2007; Rauschecker et al., 1995). 
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2.1.1.1 Pure tones and decomposition of complex sounds into pure tone 

components 

In mathematical terms, a pure tone can be described as 

)2sin()( fp +=
T
t

Atx , (Eq. 2-1) 

which, as a function of time t, has amplitude A, period (or time to repeat) T, and initial 

phase f . A commonly used measure of the period is in fact its inverse 1/T, called the 

frequency f, which denotes the number of periods per second. The angular frequency 

w, in radians, is then defined as w = 2pf . Note that a pure tone can also be expressed 

in mathematical terms when substituting cosine for sine, where the relation 

)2/sin()cos( p+= xx  holds. For brevity, a pure tone wave x(t) will sometimes also 

be referred to as a frequency. 

According to the principles of Fourier analysis, all sounds can be described as a 

composition of one or more frequencies. Most naturally occurring sounds originating 

from animate sources are periodic sounds and consist of multiple frequencies, where 

the constituent frequencies are integer multiples of the lowest frequency (f0) present 

in the sound. The principle of Fourier analysis is that every periodic sound can be 

written as the sum of its constituent frequencies, and the Fourier series provides a 

mathematical description of this principle. 

The Fourier series of a signal x(t) with period T may be defined as 
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where wn = 2pnf0 (Hartmann, 2000). The Fourier coefficients An and Bn are defined 

for n > 0 as 

An =
2
T

x(t)cos(wnt)dt
- T / 2

T / 2

� , and Bn =
2
T

x(t)sin(wnt)dt
- T / 2

T / 2

� , 

and for n = 0 by 
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A0 =
1
T

x(t)dt
- T / 2

T / 2

� . 

The equations defining the Fourier coefficients define the Fourier transform in the 

context of the Fourier series. In general, the Fourier transform is an operator that 

allows one to pass freely between two types of representations for a signal x(t): the 

time and the frequency domains. In the time domain, the signal is defined in terms of 

sound pressure present at each point in time, while in the frequency domain the signal 

is defined via the amplitude (and phase) of each constituent frequency. 

For digitally sampled signals, the discrete Fourier transform (DFT) must be 

used (Hartmann, 2000). For a time series 

Nxxx ,...,, 21  

with N sampling points, the DFT is defined by computing for each 1 > n > N 
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This allows the time series to be reconstructed via the inverse DFT (IDFT) 
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A naïve algorithm for computing the DFT would require approximately N2 operations, 

which for large N, would require substantial computational resources. For example, 

with a sampling rate of 44.1 kHz (as for the stimuli in this thesis), sounds of several 

seconds duration would have hundreds of thousands of sampling points. Therefore, 

the fast Fourier transform (FFT), which performs the same computation in only 

approximately NN log  operations, is commonly used in digital signal processing (the 

same holds for the inverse FFT, IFFT). 
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2.1.1.2 Iterated rippled noise (IRN) 

A large body of work emphasises the temporal structure of sounds, rather than the 

spectral structure considered above, as relevant to pitch (de Cheveigné, 2005) (see 

also Section 1.2.2). Work by Yost and Patterson (Patterson et al., 1996; Yost et al., 

1996) introduced noise stimuli associated with pitch in which the temporal regularity 

of the sound and associated pitch can be manipulated, whilst controlling the spectral 

structure that is resolved by the auditory system. Such stimuli are used in this thesis as 

a way of controlling the resolved spectrum in pitch sequences, to allow clearer 

interpretation of the data in terms of complex pitch sequence properties rather than 

lower level frequency representations (see Chapter 5). These stimuli are referred to as 

iterated rippled noise (IRN) or regular interval sounds (Patterson et al., 1996; Yost et 

al., 1996). In IRN sounds, a noise sample is iteratively added to itself with a delay (in 

ms), where the delay determines the period of the sound that is produced. There are 

two basic methods to generate IRN sounds: one can either add the original noise 

sample, or the running noise sample. The temporal structure, or periodic quality, 

introduced by iteratively adding the samples with a fixed delay increases with the 

number of iterations. Thus, in the spectral domain, IRN sounds contain all frequencies 

within a certain passband (a property inherent to noise). 

In mathematical terms, the original noise sample method can be described as 

follows. If x(t) is the original noise sample, then 

�
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tktxtX
0

)()(  (Eq. 2-5) 

gives the IRN with K iterations and delay � t. Technically, this equation is restricted to 

t 7 K� t, but this simply amounts to cropping the sound at the beginning. 

The running noise sampling method is defined iteratively. If x0(t) = x(t), then 

the first iteration is defined as x1(t) = x0(t)+ x0(t- � t), the second as x2(t) = x1(t)+ x1(t- 

� t), and so on. The K-th iteration 

)()()()( 11 ttxtxtxtX KKK D-+== --  

then gives a running noise IRN with K iterations and delay time � t. 
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2.1.1.3 Amplitude modulation (AM) 

Amplitude modulation (AM) of natural sounds can be considered at the level of the 

whole waveform (when it is determined by the ‘envelope’) and at the level of changes 

in intensity within particular frequency regions, as used to simulate natural sounds in 

‘vocoding’ (see Section 2.1.2). Most naturally occurring sounds vary constantly not 

only because of their sinusoidal nature, but also because of varying amplitude or 

frequency. AM occurs when the amplitude A of the signal is also a function of time, 

A(t). The two most common forms of AM are sinusoidal and linear AM. For 

sinusoidal AM (SAM), the modulating amplitude A(t) is itself given by a wave, 

)2sin(1)( mmtfmtA fp ++= . 

The modulation depth of A(t) is defined as its fixed amplitude m and can be any value 

between m = 0 (0%, no modulation) and m = 1 (100%, maximum modulation). 

Furthermore, the function A(t), as a scaling factor, must always be non-negative, that 

is 0 > m > 1. The frequency of the original signal x(t) is now called the carrier 

frequency fc, while the frequency fm of A(t) is called the modulation frequency. The 

combined amplitude modulated signal is then given by 

x(t) = A(t)sin(2pfct + f c). (Eq. 2-6) 

In the frequency domain, an AM sound with carrier frequency fc and modulation 

frequency fm is represented by a central peak at fc with two subsidiary sideband peaks 

at fc ± fm. The amplitudes of the two side bands are always identical, and are precisely 

half that of fc at 100% modulation depth. 

SAM is the simplest form of AM, consisting of a single modulation frequency. 

Different modulation waveforms can be constructed using Fourier series. For 

example, a square wave has multiple harmonics at odd integer multiples of the 

fundamental that decrease in magnitude with increasing frequency. A square wave 

can therefore be constructed from the sum of a number of sinusoidal modulations. The 

same applies to other modulation waveforms such as sawtooth or ramp changes in 

intensity. 
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2.1.1.4 Frequency modulation (FM) 

Frequency modulation (FM) occurs when the frequency f of the signal x(t) is a 

function of time, f(t). Again, the most common forms of FM are sinusoidal and linear. 

When the instantaneous frequency of x(t) is sinusoidal, the FM signal can be written 

as 

)sinsin()( tftAtx mc ww D+= , (Eq. 2-7) 

where A is a fixed amplitude, wc = 2pfc denotes the carrier frequency in radians, and 

wm = 2pfm denotes the modulation frequency in radians. � f specifies the maximum 

frequency modulation; for � f C 0, the frequency spectrum of the resulting FM sound 

gains multiple sidebands around fc, forming a complex spectrum. Depending on the 

exact value of � f, the carrier frequency fc can even disappear from the spectrum. 

Vibrato is one example of naturally occurring sinusoidal FM. 

When the instantaneous frequency f(t) is linear, this is given in general by a 

linear equation of the form mt+b. An explicit linear equation of the form 
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produces a linear sweep from the starting frequency f1 to the ending frequency f2 over 

a time period T, with a slope 
f2 - f1

T
. 

In the linear case, the total FM signal is described by 

))(2cos()( fp += ttftx . (Eq. 2-8) 

 

 

2.1.2 Sampled natural stimuli 

A second approach to auditory stimulus design is the use and specific manipulation of 

natural sounds. This has been particularly useful for understanding the perception of 

ethological sounds such as speech (or species-specific vocalisations in general) and 
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music. The advantage of this approach is its ethological validity, since it most closely 

approaches real world listening situations. For example, the STS of both human and 

non-human primates, respectively, is sensitive to specific timbral cues such as those 

present in voices or con-specific vocalisations (Belin, 2006; von Kriegstein & Giraud, 

2004). However, this approach faces the difficulty of controlling stimulus parameters 

such that the observed responses are not confounded by low-level acoustic confounds 

(such as spectral or temporal complexity). A further caveat is that the use of natural 

stimuli constrains the possible inferences to the stimulus material used; that is, natural 

stimuli automatically evoke semantic associations, in which case the degree to which 

behavioural or neural responses are attributable to the acoustic parameters or stimulus 

semantics is difficult to assess, or needs to be specifically addressed in the 

experimental design (von Kriegstein et al., 2003). 

Two approaches can be distinguished: one uses natural sounds as such, or 

natural sounds that are minimally manipulated to fit certain secondary criteria (e.g. 

sound duration), so as to most closely emulate perception in a complex world (Nelken 

et al., 1999; Schnupp et al., 2006; Wang, 2000; Wang & Kadia, 2001). This approach 

has yielded important insights into higher cognitive processes such as language 

(Hickok & Poeppel, 2007; Price, 2000) or music perception (Stewart et al., 2006). 

The second approach directly manipulates specific characteristics of the 

auditory signal so as to isolate critical determinants of the signal. A prominent 

experimental paradigm is the use of vocoding techniques and its variations, which 

allow the control of spectral and temporal information in the acoustic signal (Davis & 

Johnsrude, 2003; Narain et al., 2003; Obleser et al., 2008; Overath, 2004a; Scott et 

al., 2000; Scott et al., 2006; Shannon et al., 1995; Smith et al., 2002). For example, in 

noise vocoding (Shannon et al., 1995), the speech signal is divided into a fixed 

number of spectral bands (from just one band to multiple contiguous bands), and the 

spectral information of the speech signal in all the bands is replaced with white noise; 

this procedure retains the overall temporal structure of the speech signal in the 

spectral bands, while altering the spectral information. Speech intelligibility is 

retained with the presence of only a few spectral bands; thus, much of the information 

for speech intelligibility is carried in the envelope (Shannon et al., 1995; Smith et al., 

2002). At the level of the cortex, Scott and colleagues (2000; Narain, 2003) showed 
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that both normal speech and noise-vocoded speech that was still intelligible led to 

activations in a left-lateralised temporal lobe network when compared with 

acoustically matched, but unintelligible, speech (see also Giraud et al., 2004). 

Conversely, spectral resolution is critical for music perception (Smith et al., 

2002); spectral information in speech operates at a coarser spectral resolution (e.g. in 

the case of formants). The importance of spectral resolution for music perception is 

also evident from patients with cochlear implants who generally are unable to 

appreciate music, since the physical constraints of cochlear implants limit the number 

of spectral channels (Shannon, 2005). The spectrotemporal trade-off theory (Zatorre 

& Belin, 2001; Zatorre et al., 2002a) draws on this dissociation by highlighting the 

differential importance of spectral and temporal information for music and speech 

perception, respectively (see also Study 1, Chapter 3).  

 

 

2.1.3 Complex probabilistic stimuli 

2.1.3.1 Spectrotemporal correlation in complex AM spectra 

As described in Section 2.1.1.3 above, the amplitude of natural sounds fluctuates over 

time. A common approach for investigating principles of AM processing in the 

auditory system utilises SAM. The systematic independent or interactive manipulation 

of modulation rate and modulation depth in SAM sounds enables the investigation of 

basic principles of AM processing in the auditory system. However, SAM is a rather 

deterministic stimulus manipulation, since a given sound commonly has a fixed 

modulation rate fm and a fixed modulation depth m. In contrast, the envelope in 

ethological sounds varies over different time scales and to different degrees in a 

complex and often non-deterministic manner. The auditory system needs to both track 

and integrate the information in the signal over different time scales and frequency 

regions so as to perceive auditory objects and disambiguate between auditory objects. 

One approach to conceive of the probabilistic nature of ethological sounds is in 

terms of spectrotemporal correlation. In this framework, correlation can be regarded 

as a probabilistic principle, such that the individual instantiations of the signal obey 
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certain global constraints over a given time frame, while their precise instantiations 

are non-deterministic and can take any form within the constraints. This approach 

allows the synthesis of sounds with specific global constraints, set by a given degree 

of correlation, while keeping other stimulus parameters constant. 

In general, many ethological sounds contain various AM rates or modulation 

rates simultaneously; for example, phonemes and syllables in speech operate over 

different modulation rates, the former at the order of tens of milliseconds, the latter 

over hundreds of milliseconds (Poeppel, 2003; Rosen, 1992). These rates or time 

scales can be described in terms of spectrotemporal correlation and implemented in 

synthetic sounds (see Study 1 in Chapter 3). Given a unit frame length of 20 ms 

within a longer sound, the degree of correlation between any two consecutive frames 

introduces time windows of different lengths: low correlation values result in short 

time windows within which correlation exists (i.e. some 20 ms), while high 

correlation values result in longer time windows spanning hundreds of milliseconds. 

The probabilistic nature of such synthetic sounds, given by the degree of correlation, 

closely resembles that of naturally occurring speech sounds such as phonemes or 

syllables. 

In mathematical terms, the degree of AM in complex sounds can be 

operationalized in terms of the Pearson product moment correlation r. For a complex 

spectrum with a fixed set of n constituent frequencies, the degree of correlation 

between two frames x and y can be described as 
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Here, x and y are vectors representing the instantaneous amplitude values (in dB) of 

the frequencies in the spectrum, x  and y  are the arithmetic means of x and y, and sx 

and sy represent the standard deviations of x and y. 

In this implementation, at the local level, each frequency has an independent or 

stochastic AM profile that is constrained at a global level by the overall degree of 

correlation between the two spectra as a whole. From an information theoretic 

perspective, the processing of such signals requires the assessment of higher-order 
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statistical properties, while ignoring local fluctuations. Essentially, the auditory 

system must track the properties of the acoustic signal with respect to different time 

windows and detect higher-order statistical properties such as spectrotemporal 

correlation in complex acoustic spectra consisting of multiple frequencies. Such 

sounds approach the complexity of natural sounds, while their statistical properties 

can be controlled. 

 

 

2.1.3.2 Spectrotemporal coherence 

Many naturally occurring sounds are characterised by FM, and mechanisms for 

processing single FM ramps of different slope and range, at the level of subcortical 

and cortical structures, have been studied in detail (Rees & Malmierca, 2005). 

However, single FM sweeps are still far removed from the complexity of FM in 

ethological sounds. For example, many monkey vocalisations and speech sounds 

comprise coherent FM across multiple frequencies, in which the fundamental 

frequency f0 and its harmonics move coherently up or down in frequency (Rees & 

Malmierca, 2005). 

In a complex acoustic world, coherently moving frequencies are likely to 

emanate from the same source and are thus interpreted as being part of or forming an 

auditory object. To achieve this, the auditory system needs to assess the acoustic 

signal over various frequency bands and time scales simultaneously. Again, this is a 

higher-order process that requires the detection of global statistical properties 

irrespective of local fluctuations. Furthermore, changes in the global statistical 

properties are likely to signal transitions between objects, and the auditory system 

thus needs to detect these changes at a higher-order level of integration that allows it 

to disambiguate them from mere (stochastic) local fluctuations. 

The stimulus used in Study 2 (Chapter 4) assessed the neural correlates 

underlying the higher-order integration and segregation of auditory objects in 

complex sounds, in which distinct objects were identified by higher-order 

spectrotemporal coherence. Specifically, sounds consisted of multiple linear FM 
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ramps that were randomly distributed in frequency-time space, forming an ‘auditory 

texture’. The degree of coherence was defined as the percentage of FM ramps with 

identical frequency trajectory (slope) and direction (up or down) (while the remaining 

FM ramps had random trajectories and directions). Thus, since the FM ramps were 

randomly distributed, a mechanism detecting spectrotemporal coherence needed to 

assess the acoustic signal over multiple frequency bands and time windows covering 

hundreds of milliseconds. Similarly, mechanisms detecting spectrotemporal 

coherence transitions needed to assess stimulus transitions at a higher-order statistical 

level covering multiple FM ramps, rather than at the level of individual FM ramps. 

 

 

2.1.3.3 Information theoretic properties of pitch sequences 

As described in the General Introduction, experimental paradigms such as the MMN 

or auditory streaming paradigms, which investigate generic principles of auditory 

scene analysis, are limited by their deterministic nature. While it is inherent to the 

MMN paradigm to have ‘non-deterministic’ oddball stimuli, which violate the 

seemingly established statistical rules represented by the standard stimulus, the 

overall complexity still does not compare to the complexity encountered in natural 

sounds. 

An elegant way to define global information theoretic properties of pitch 

sequences without explicitly defining the precise intervals or local fluctuations is to 

derive pitch sequences from exponential power spectra. In mathematical terms, 

exponential power spectra are defined by 

n
n kfI -= , (Eq. 2-9) 

where k is a constant and the exponent n determines the slope of the amplitude 

spectrum across frequencies f. For n = 0, I0 is constant across all frequencies (white 

noise); as n increases, the exponential slope increases and acts as a low-pass filter. 

Performing an inverse FFT (IFFT) on a power spectrum with a given exponent n 

gives a time series; the time points in this series can then be treated as representing 

pitches to form a pitch series. ‘Fractal’ pitch sequences based on inverse Fourier 
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transforms of f - n power spectra (Patel & Balaban, 2000; Schmuckler & Gilden, 

1993) provide a means to control directly the entropy of the sequence via the 

exponent n (see Chapter 5). 

 

 

 

2.2 Magnetic resonance imaging 

Magnetic resonance imaging (MRI) has its basis in nuclear magnetic resonance 

(NMR) of the nucleus of individual atoms. NMR can be traced back to the 1940s 

(Bloch et al., 1946; Purcell et al., 1946). The word ‘nuclear’ was later dropped in the 

clinical environment in favour of MRI, to avoid a false connection with nuclear 

radioactivity. 

If an atomic nucleus has an odd number of protons and nucleons, this imbalance 

causes the atomic nucleus to spin around its axis, thus creating a magnetic 

momentum. Atomic nuclei with an even number of protons and nucleons, or an even 

atomic mass number, do not have a net spin or angular momentum and thus do not 

emit NMR signals. In particular, hydrogen (H) atoms not only have a pronounced 

nuclear momentum, but are also abundant in natural tissues. In the absence of a strong 

magnetic field, the orientation of the atomic nuclei in normal tissue is random, and no 

net magnetic field can be detected. However, if a strong external magnetic field B0 is 

applied, the magnetic moments align either parallel to B0 (low-energy state) or anti-

parallel to B0 (high-energy-state). The magnetic field strength is denoted in Tesla (T), 

where 1 Tesla = 10,000 Gauss. For comparison, the magnetic field strength of the 

earth is approximately 0.5 Gauss. Typical magnetic field strengths for human-

compatible MRI scanners are 1.5, 3, or 4.7 T, while some high-field MRI scanners 

reach 7 T. 

NMR makes use of two properties of atomic nuclei: their alignment and their 

precession around themselves. A small majority of the atomic nuclei align in the low-

energy state parallel to B0, leading to a small net magnetization effect (in a 1.5 T 

scanner, this ratio is about 1/10,000 000). The nuclei do not align precisely parallel or 
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anti-parallel to B0, but precess around B0, much like a spinning top. The speed of the 

precession is proportional to B0 and is defined by the Larmor equation: 

0Bgw =  (Eq. 2-10) 

Here, �  is the (Larmor) frequency in MHz (� /2� ), �  is the gyromagnetic ratio in 

MHz/Tesla for the spin under consideration, and B0 is the external magnetic field 

strength. The Larmor frequency of hydrogen atoms is 42.578 MHz/Tesla. In a three-

dimensional reference frame or coordinate system x-y-z, there are two magnetisations 

at work due to the alignment and precession of the nuclei. The longitudinal 

magnetisation denotes the magnetic moment due to the orientation of the nuclei (the 

z-axis is defined to be aligned with B0); the transverse magnetisation denotes the 

magnetisation in the x-y plane due to the precession of the nuclei around the z-axis. 

Since all nuclei precess in random phase, there is no net detectable transverse 

magnetisation. At this stage, the longitudinal magnetisation is the only detectable 

magnetisation due to the slight excess of nuclei that are aligned in the low-energy 

state parallel to B0. 

The application of a brief (~ 1 ms) radio frequency (RF) excitation pulse at time 

t0 with the same frequency as the precessing H atoms introduces an additional 

magnetic field B1 perpendicular to B0. This has two effects: firstly, the longitudinal 

magnetisation of the nuclei is tilted towards B1 and the magnetisation in the z-

direction is reduced. The time for the longitudinal magnetisation to increase to within 

63% of its magnetisation at time t0 is denoted as T1. Secondly, the RF pulse with 

Larmor frequency �  causes the nuclei to precess in phase, thus producing, for the first 

time, a transverse magnetisation in the x-y plane (hence the term magnetic resonance). 

After cessation of the RF signal, the precession of the individual nuclei begins to de-

phase again (mainly through mutual interference due to spatial proximity), thereby 

releasing a small amount of radiation at the Larmor frequency and consequently 

reducing the transverse magnetisation. The time for the transverse magnetisation to 

decrease to within 63% of its magnetisation at time t0 is denoted as T2. T2 assumes 

an ideal tissue where magnetisation is homogenous throughout. However, the 

macroscopic geometry and composition of the imaged sample, e.g. the head, vary 

greatly and influence the magnetic susceptibility. The effective time in normal tissue 

for the transverse magnetisation to decrease to within 63% of its magnetisation at time 
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t0 is denoted as T2*. For example, the transition from tissue to air (which have 

different magnetic susceptibilities) at the sinuses is particularly pronounced. 

Importantly for fMRI, magnetic susceptibility variations are also present around blood 

vessels, where the de-oxyhaemoglobin (dHb) level affects T2* in the surrounding 

tissue. An RF receiver coil can then detect and amplify the signal related to T1 and 

T2*. 

Importantly, the NMR signal is proportional to the density of the protons in 

each tissue and T1 and T2* differ for different tissues. The most common technique in 

NMR is a spin-echo technique. Generally, a 90° RF pulse perturbs the tissue at time t0 

and the time at which the decay signal is read out with an RF receiver coil is the time 

to echo (TE). The calibration of TE and the time to repeat (TR) determine the contrast 

and quality of an MR image. Due to inhomogeneities in the magnetic field and those 

introduced by the tissue, the transverse magnetisation decay will vary across different 

spatial locations (T2*). A second ‘echo’ RF pulse of 180° is therefore applied to 

‘refocus’ the transverse magnetisation decay at time TE/2 and essentially neutralise 

the effects of T2* dephasing (i.e. the spin-echo acquisition is less susceptible to T2* 

effects). The NMR signal received at the RF receiver coil at time TE is then 

decomposed via a Fourier transform. An alternative technique in NMR is a gradient-

echo technique. This acquisition technique records the signal after the initial 90° RF 

pulse without phase refocusing and is thus more susceptible to T2* effects; for this 

reason, it is commonly used in fMRI. 

As described thus far, NMR has been restricted to tissue classification without 

any spatial information. The birth of MRI can be traced to the 1970s, when it was 

realised that NMR could also reveal spatial properties of tissues by spatially varying 

the magnetic field, and consequently the Larmor frequency, along a gradient 

(Damadian et al., 1977; Lauterbur, 1973; Mansfield & Grannel, 1973). By inducing a 

gradient field along the three main coordinates (x-y-z), the received signal can then be 

decomposed using Fourier transforms and it is possible to spatially reproduce 

anatomical properties of the tissue. That is, the received or resonant frequency is now 

a function of spatial position within the imaged tissue. 

Generally, the steeper the slope of the magnetic gradient and the longer its 

application, the higher the spatial frequency resolution, and vice versa (DeLaPaz, 
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1994). Thus, the combination of amplitude and duration of the gradients determine the 

spatial frequency encoding. The spatial frequency information is represented in planar 

k-space, where the x-axis represents the ‘read-out’ gradient (Gx) that encodes the 

spatial frequency, and the y-axis represents the ‘phase-encode’ gradient (Gy). High 

spatial frequencies are represented towards the periphery and low frequencies at the 

centre of k-space. The k-space trajectory along which the signal is encoded traverses 

the different phases (via a series of appropriate RF pulses) of a spatial frequency 

before advancing to and repeating the same procedure for the next spatial frequency. 

The application of a slice-selection gradient (Gz) that is perpendicular to the x-y plane 

enables the acquisition of multiple planes of the imaged tissue. This gradient ensures 

that only protons in a selected slice (x-y plane) are ‘resonant’ to the applied RF pulses 

and emit a signal. Finally, an inverse Fourier transform of the frequency-phase 

information within each plane can reveal the spatial properties of the imaged tissue. 

 

 

2.3 Functional magnetic resonance imaging 

2.3.1 Echo-planar imaging 

The image acquisition techniques described so far are relatively slow (on the order of 

several minutes for one volume, e.g. to cover the head of a person), since essentially 

each row of the k-space is preceded by an RF excitation pulse. However, in order to 

track physiological changes, e.g. changes due to different oxygenation levels in blood 

vessels (see Chapter 2.3.2), scan volumes need to be acquired faster. Echo-planar 

imaging (EPI; Mansfield, 1977) allows ultra-fast acquisition of the x-y plane with a 

single RF excitation pulse (‘single shot’), which is on the order of tens of milliseconds 

per volume. This is achieved by rapid (~1 kHz) switching of the frequency (Gx) and 

phase (Gy) gradients to cover the entire plane. Commonly, EPI is performed with a 

gradient-echo acquisition sequence instead of a spin-echo sequence, since the former 

is more sensitive to T2* changes (see Chapters 2.2 and 2.3.2). Such gradient echoes 

are generated via an oscillating gradient along the read-out (Gx) direction, following a 

‘zig-zag’ trajectory in k-space. In EPI, the TE is defined as the time from the RF 

excitation pulse to the centre of k-space, which is approximately equal to T2* 
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(Logothetis, 2002). While EPI is extremely powerful, it requires dedicated hardware 

that can withstand the taxing physical stress of magnetic gradient switching, and it is 

prone to artefacts (DeLaPaz, 1994). 

 

 

2.3.2 Physiological basis of BOLD signal and haemodynamic response 

function 

In their seminal studies, Ogawa and colleagues (Ogawa & Lee, 1990; Ogawa et al., 

1990a; Ogawa et al., 1990b) discovered that the NMR signal in blood vessels in the 

rat brain varied with changes in blood oxygenation demand, or blood flow. 

Specifically, paramagnetic dHb (Pauling & Coryell, 1936) causes a susceptibility 

difference between the vessel and its surrounding tissue, which in turn leads to an 

increased dephasing of the protons and a decrease in the associated T2* signal. The 

diamagnetic oxyhaemoglobin (oHb) does not produce such an effect. If a brain area is 

activated, cells consume oxygen from nearby blood vessels, leading to a temporary 

increase of the dHb/oHb ratio. However, soon after, in an overshoot mechanism, 

blood is directed towards the active site, leading to a net increase in oHb and a 

decrease in the dHb/oHb ratio; this increase in oHb causes an increase in the 

previously disturbed spin coherence (T2*) and consequently an NMR signal intensity 

increase. The resulting blood oxygen level dependent (BOLD) signal is thus an 

indirect index of neural activity. 

The BOLD signal has its physiological basis in the so-called haemodynamic 

response function (hrf) and can be divided into several characteristic phases 

(Logothetis, 2002). An initial undershoot (Malonek & Grinvald, 1996) is followed 

after about 2 seconds by an increase in the BOLD signal that is mainly due to increase 

in blood flow directed towards the active region (Fox & Raichle, 1986). The hrf peaks 

approximately 4-6 seconds after onset of stimulation and decreases fairly rapidly after 

cessation of the activating stimulus. This is followed by an undershoot phase in which 

the BOLD signal decreases to below its initial magnitude, which can be explained by 

vasodilatation and an increase in local venous blood volume (Buxton et al., 1998). 

The BOLD signal returns to normal after approximately 32 seconds. The associated 
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BOLD signal changes are minute, on the order of 1-1.5% in the auditory cortex 

(Talavage et al., 1999).  

From first principles, the BOLD signal is considered an ‘indirect’ measure of 

neural activity and its precise neuronal underpinnings are still under investigation 

(e.g. Logothetis, 2002, 2003, 2004, 2008). However, pioneering work by Logothetis 

and colleagues, combining intracortical electrophysiological recordings and fMRI in 

anaesthetised (Logothetis et al., 2001) and unanaesthetised macaques (Goense & 

Logothetis, 2008), showed that the fMRI BOLD signal correlates better with local 

field potentials (LFPs), an index of pre-synaptic integration, than with post-synaptic 

action potentials, as assessed via multi-unit activity (MUA). Furthermore, when MUA 

responses adapt while LFPs remain unaffected, the BOLD signal remains unaltered. 

Thus, the best predictor of the BOLD signal is LFP activity in the gamma frequency 

range (20-60 Hz), implicating the importance of neuromodulatory processes (Goense 

& Logothetis, 2008). 

 

 

2.4 fMRI and auditory stimulus presentation 

Acoustic noise due to the mechanical switching of the magnetic gradient coils is a 

serious constraint for fMRI studies investigating auditory processing. In conventional 

continuous 1.5 T and 3 T EPI, sound pressure levels in the bore of the scanner exceed 

120 dB (Price et al., 2001; Ravicz et al., 2000). The main source of acoustic noise is 

the readout phase during the imaging protocol, with other ambient noise factors such 

as the helium cooling pump and air conditioning system only contributing relatively 

little to the total noise level (Ravicz et al., 2000). Furthermore, the noise produced by 

the scanner has a broad spectrum from 250 Hz to 4 kHz with a typical peak at around 

1-1.5 kHz (Chambers et al., 2001; Hall et al., 1999; Ravicz et al., 2000), which covers 

a crucial frequency range in human auditory perception. While ear protection such as 

ear defenders can achieve some 20-40 dB noise reduction, a significant part of the 

scanner noise is still conducted via the ear canal (< 500 Hz) and bones (> 500Hz) 

(Ravicz & Melcher, 2001). Active noise cancellation techniques (Amaro et al., 2002; 

Chambers et al., 2001; Moelker & Pattynama, 2003) can further reduce the effect of 
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the scanner noise, but their effectiveness is similarly limited by the contribution of 

bone conduction (Ravicz & Melcher, 2001). 

Apart from the generally unpleasant experience for the participant, the noise 

also considerably reduces the signal to noise ratio (SNR). That is, when presenting an 

auditory stimulus while acquiring scan volumes, the haemodynamic response (and 

consequently the BOLD signal) due to the stimulus and that due to the scanner noise 

are confounded and difficult to disambiguate. The constant background noise of the 

scanner furthermore introduces a continuous stimulus for the auditory system, 

resulting in adaptation or habituation, as well as inhibitory processes, particularly in 

subcortical and primary auditory structures. Since the haemodynamic response does 

not behave linearly across sound levels, the effects of loud background noise levels 

are often unpredictable (Belin et al., 1999; Edmister et al., 1999; Talavage & 

Edmister, 2004), rendering the notion of a ‘silent’ baseline condition problematic. For 

example, subtracting the haemodynamic response to a ‘silent’ baseline during the 

presence of scanner noise from the haemodynamic response to an experimental 

stimulus during the presence of scanner noise ([stimulus + scanner noise] – [‘silence’ 

+ scanner noise]) is not identical to subtracting silence from an experimental stimulus 

([stimulus – silence]) (Gaab et al., 2007). A further, more cognitive, constraint is that 

the acoustic stimuli are difficult for participants to hear due to the background noise, 

and the experiment essentially becomes a figure-ground task rather than a true sensory 

or perceptual representation of the experimental stimulus attributes per se (Scheich et 

al., 1998).  

A variety of imaging protocols have been introduced to circumvent or avoid 

these effects for studies investigating auditory perception. Principally, there are three 

variants of ‘silent’ imaging designs that offer different temporal resolutions. Eden and 

colleagues (1999) used an imaging protocol in which a silent period (~ 2 seconds) is 

inserted between scan volume acquisitions that was long enough to present a short 

acoustic stimulus. The temporal resolution of such behaviour interleaved gradients 

(Eden et al., 1999) or compressed (Amaro et al., 2002) protocols is not as precise as 

conventional continuous imaging, but still on the order of a few seconds. Belin and 

colleagues (1999) introduced an event-related design by lengthening the silent period 

between volume acquisitions to some 9 seconds while jittering the presentation of the 
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acoustic stimulus within that silent period; the haemodynamic response to the acoustic 

stimulus is thus captured at different time points. Hall and colleagues (1999) acquired 

a volume only at the predicted peak of the haemodynamic response. This ‘sparse’ 

imaging protocol carries minimal information about the shape of the haemodynamic 

response to different experimental stimuli, i.e. its temporal resolution is very limited. 

However, it maximises the dissociation between the haemodynamic response of the 

experimental stimulus and that of the scanner noise and thereby significantly 

improves the SNR (Hall et al., 1999). 

Apart from the trade-off with respect to time resolution, a further constraint of 

these designs is the considerable length of the scanning procedure required to obtain 

reasonable SNR, which makes its use difficult in certain subject populations (e.g. 

clinical patients). In general, when the experimental question is weighted towards the 

sensory representation of certain acoustic attributes that are likely to be influenced by 

adaptation and background noise, ‘silent’ or ‘sparse’ imaging protocols should be 

preferred. However, if temporal resolution is of the essence or the experimental 

question addresses higher level auditory processes in non-primary cortex that are less 

likely to be significantly affected by the scanner noise, continuous imaging protocols 

should be preferred. In the work presented in this thesis, both continuous and sparse 

acquisition protocols were used.  Continuous acquisition was the protocol of choice 

for Studies 1 and 2, since in these studies the temporal dynamics of the data were of 

particular interest; furthermore, the experimental question for Study 2 required an 

experimental design whose effects could only be captured with the temporal 

resolution of a continuous imaging protocol. In contrast, Studies 3-5 used a sparse 

acquisition paradigm, since the pitch sequences employed in these studies extended 

over multiple seconds, making it possible for the BOLD signal to be captured at the 

end of each stimulus block or pitch sequence. 
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2.5 Image pre-processing 

The analysis of functional imaging data requires elaborate pre-processing algorithms 

before any statistical analysis with respect to the experimental effects can be 

performed. Specifically, the successive scans need to be realigned to account for 

movement of the participants, normalised to a standard stereotactic reference frame 

that allows between-subject comparisons, and finally smoothed to increase the SNR. 

Each of these steps, executed within Statistical Parametric Mapping (SPM) software 

(http://www.fil.ion.ucl.ac.uk/spm), and encompassing a sophisticated theoretical and 

mathematical background, is described briefly below. 

 

 

2.5.1 Realignment and unwarping 

The successive scan volumes in fMRI are treated as a time series. In an ideal world, a 

given image volume element (voxel) would represent the same cortical area across 

scans. However, the spatial resolution of fMRI (~ 3×3×3 mm) means that even tiny 

movements lead to misalignment across successive scans; in fact, movement on the 

scale of micro-millimetres can significantly affect the data (Friston et al., 1995a) and 

can contribute as much as 90% of the variance of the data (Friston et al., 1996b). This 

leads to signal changes in a given voxel that might then be misattributed as 

‘activation’. While the most serious movement artefacts are due to participants’ head 

movements, even small movements due to the cardiac cycle movement are a source of 

scan misalignment, particularly in brainstem structures. Motion that is uncorrelated 

with the experimental conditions generally introduces external noise and consequently 

decreases the detection of true activation; conversely, motion that is correlated with 

an experimental task can lead to misattribution of signal changes as ‘activation’. Thus, 

it is essential to remove movement artefacts. 

Typically, the first image of the time series is treated as a global reference for 

the first scans of subsequent sessions, which are then in turn used as references for the 

remaining scans within their session. The realignment routine uses a least squares 

approach and a 6 parameter (three translations and three rotations) affine ‘rigid-body’ 
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spatial transformation to calculate the motion associated with each scan (Andersson et 

al., 2001; Friston et al., 1995a). These parameters are then used to ‘reslice’ the scan to 

the new grid coordinates, usually via sinc interpolation (Grootoonk et al., 2000). 

There are, however, additional non-linear movement-related artefacts; specifically, 

magnetic inhomogeneities particularly in regions with an air-tissue interface, such as 

the orbitofrontal cortex or the anterior inferior temporal lobes, cause deformations in 

the sampling matrix (Andersson et al., 2001) and are further distorted by movement. 

The unwarping routine takes account of such susceptibility-by-movement 

interactions. It can be further informed by the acquisition of B0 magnetic fieldmaps 

for each participant, which provide an explicit measure of B0 inhomogeneities and 

associated geometric distortions (Cusack et al., 2003; Hutton et al., 2002). 

 

 

2.5.2 Normalisation 

Since the anatomy of individual brains differs, it is necessary to transform the scans 

into a stereotactical reference space that allows comparisons across participants. The 

realign and unwarping routine implemented within SPM creates a mean functional 

image of all functional scans; this image is subsequently used to estimate warping 

parameters that map it onto a common stereotactic space (Talairach & Tournoux, 

1988; Toga et al., 1994) or an average brain derived from large sets of previous 

imaging data (Evans et al., 1993; Mazziotta et al., 1995; Roland & Zilles, 1994). The 

estimation is commonly achieved via a 12-parameter affine transformation 

(translations, rotations, zooms, and shears), where the parameters constitute a spatial 

transformation matrix (Friston, 2003b). This is then followed by an iterative non-

linear estimation of spatial deformation patterns. 
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2.5.3 Smoothing 

The final stage of the preprocessing routines convolutes the data with an isotropic 

Gaussian smoothing kernel. The primary motivation for smoothing the data is to 

increase the SNR ratio (Friston, 2003b), albeit at the cost of spatial resolution. 

Confounding effects of noise at the level of individual voxels can be reduced by 

convolution with a smoothing kernel whose support is about 2-3 times the voxel size. 

Generally, a smoothing kernel of 6 mm full-width-at-half-maximum (FWHM) is 

appropriate at the single-subject level, while an 8 mm kernel at the group level is able 

to take into consideration the morphological differences between participants. 

However, small structures, such as nuclei in the brainstem, require smaller smoothing 

kernels of about 4 mm FWHM. 

 

 

2.6 Statistical analysis 

The pre-processing routines described above enable the examination of regionally 

specific effects of the experimentally manipulated variable(s) within a statistical 

framework. SPM software combines the General Linear Model (GLM), described in 

Section 2.6.1, to estimate the effects of interest due to the experimental variable(s) 

with Gaussian Random Field (GRF) theory to model spatially extended processes 

(Section 2.6.2). The result is a statistical parametric map (SPM) that represents the 

regionally-specific effects of the experimental variable(s). 

 

 

2.6.1 General Linear Model (GLM) 

The GLM provides a framework for the statistical analysis of functional imaging data. 

It incorporates common statistical tests such as Student’s t-test or analyses of variance 

(ANOVAs). Essentially, the signal intensity of each voxel within a scan is treated as a 

time series across scans and approximated via the general equation 
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eb += XY  (Eq. 2-11) 

Here, Y is the data matrix with cells yij for j voxels (rows) across i scans (columns); X 

is the design matrix with cells xik, with one column for every effect of interest in each 

row; �  is a parameter matrix where � j is a column vector of parameter estimates for 

each row; �  is a matrix of normally distributed error terms (Friston et al., 1995b). The 

effects of interest in �  are modelled via convolution with a canonical hrf (see Section 

2.3.2). The experimental conditions and their corresponding parameter estimates are 

contrasted against each other by appropriately weighting the columns � j. A normal t 

statistic can then be obtained for each voxel via the ratio of contrast-weighted 

parameter estimates to the estimated standard error term. 

 

 

2.6.2 Gaussian Random Field (GRF) theory 

GRF theory assumes that, under the null hypothesis, SPMs of the voxel parameter 

estimates for a given condition are distributed according to a known probability 

density function, normally Student’s t or F distributions. Any deviations of this 

distribution that surpass a set (significance) threshold can be attributed to the 

experimental variable with a certainty 1-� , where �  is the Type I error of falsely 

rejecting the null hypothesis. 

In a typical fMRI study with whole head coverage, a single scan volume 

comprises tens of thousands of voxels. The statistical comparison of each voxel with 

all other voxels so as to estimate the effect of the experimental variable(s) introduces 

a considerable likelihood of false positives (Hochberg & Tamhane, 1987). For 

example, when testing 200,000 voxels at a significance threshold of p < 0.001 (a 

common statistical threshold in fMRI), about 200 voxels can be expected to show 

chance, and therefore potentially false, ‘activation’. A conservative, straightforward 

approach would be to control for multiple comparisons via the Bonferroni correction 

by dividing the statistical threshold by the number of independent comparisons 

(Logan & Rowe, 2004). However, in this case, the statistical threshold would be very 

stringent (p = 0.05/200,000 = 0.00000025). Furthermore, the voxel time series are not 
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strictly independent, since neighbouring voxels are likely correlated due to 

macroscopic anatomy (e.g. blood vessels) and the spatial extent of the hrf. 

Using a conservative threshold also reduces the power to detect activation (or it 

increases the likelihood of falsely rejecting truly active voxels). Thus, a common 

convention sets a significance threshold of p < 0.001 for brain areas where the 

researcher has an a priori hypothesis (e.g. auditory cortex). In more exploratory 

studies or for activations in brain areas where the researcher did not have an a priori 

hypothesis, a more conservative threshold that accounts for the problem of multiple 

comparisons is prudent so as to avoid false rejections of the null hypothesis. A 

common approach is the family-wise error (FWE) rate (Logan & Rowe, 2004; Nandy 

& Cordes, 2007). Here, the tens of thousands of individual voxels �  are collected in a 

family � , with an associated family of null hypotheses }:{ WÎwwH . The omnibus 

null hypothesis H�  is then rejected if at least one H�  is rejected for a set threshold u; 

the individual threshold  u can be chosen so that the threshold for the full family gives 

the desired level of certainty (commonly �  = 0.05). 

 

 

2.6.3 Random-effects analysis 

There are two main types of analyses, which differ with respect to their scope of 

inference (Friston et al., 1999). Generally, fixed-effects analyses allow inferences 

concerning the typical behaviour of the group of participants tested in the study, while 

random-effects analyses allow inferences to be drawn about the average behaviour of 

the general population. Specifically, fixed-effects analyses disregard inter-subject 

variability and essentially treat each participant as a session within a longer time 

series; thus, the only error source that is modelled and accounted for is the error 

variance between scans. Fixed-effects analyses have a high number of degrees of 

freedom (slightly less than the number of scans total). 

Conversely, random-effects analyses also account for inter-subject variability as 

an additional source of variance, resulting in n – 1 degrees of freedom for n 

participants, reducing the effect of subject outliers. A random-effects analysis requires 
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a sufficient number of participants (at least eight) so as to reliably estimate inter-

subject variability and obtain adequate power to detect effects of interest. Random-

effects analyses incorporate a two stage procedure, where the contrast of interest is 

computed at the single-subject level before it is evaluated at the group level. All 

studies in this thesis used random-effects analyses. 
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Chapter 3. ENCODING OF SPECTROTEMPORAL 

CORRELATION IN COMPLEX ACOUSTIC 

SPECTRA 

Summary 

Acoustic information in natural sounds evolves over a range of time scales. In 

speech, for example, phonemes and syllables unfold over two distinct time 

windows, the former on the order of tens of milliseconds, the latter over 

hundreds of milliseconds. The auditory system needs to track the acoustic 

information over these different analysis windows. Recent studies suggest 

differences in the encoding of short (tens of ms) and longer (hundreds of ms) 

time windows in left and right auditory cortex, respectively. Study 1 assessed 

brain activation in response to the systematic variation of the time window 

over which complex spectra change. The different time windows were realised 

by controlling the degree of correlation between successive time frames of the 

spectrum: the greater the correlation of the spectrum between successive 

time frames, the longer the time window for a given change. The parameters 

were chosen such that stimuli corresponded to time windows between 20-300 

ms. The data show bilateral activity in the planum temporale (PT) and anterior 

superior temporal gyrus (aSTG) as a function of increasing time window, as 

well as activity in the superior temporal sulcus (STS) that was significantly 

lateralised to the right. No cortical areas increased their activity as a function 

of decreasing time windows. The network revealed as a function of increasing 

time windows represents a generic mechanism for the analysis of temporal 

structure in natural sounds. Furthermore, the data suggest a complex 

lateralisation model where different levels of analysis occur within different 

subareas of auditory cortex. 
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3.1 Introduction 

This study considers the neural bases of different temporal analysis windows for 

natural sounds. There is accumulating evidence that auditory perception extracts 

acoustic information over different time scales. In speech, for example, phonemic and 

syllabic rates operate over two distinct time scales, the former on the order of tens of 

milliseconds, the latter over hundreds of milliseconds (Rosen, 1992). One model of 

speech perception, the ‘asymmetric sampling in time’ (AST) hypothesis (Poeppel, 

2003), draws on this dissociation. It posits a lateralisation scheme in auditory cortex 

(AC) by which slower modulations (~3-6 Hz or ~150-300 ms) preferentially engage 

right AC, whereas fast modulations (~20-40 Hz or ~25-50 ms) are preferentially 

processed in left AC. The present study considers generic mechanisms for the analysis 

of the temporal structure of novel sounds with a similar level of complexity to that of 

speech sounds. 

Previous investigations (Boemio et al., 2005; Schönwiesner et al., 2005; Zatorre 

& Belin, 2001) have manipulated the acoustic segment length within multiple-

segment sounds to probe for distinct processing of different temporal modulations or 

time windows. However, results in these studies differed with respect to 

specialisations of different subareas in auditory cortex for temporal modulations, 

either within or between hemispheres. For example, Boemio and colleagues (2005) 

demonstrated sensitivity to decreasing temporal modulation rates in auditory 

association cortex (AAC), with a right-hemispheric bias that was most pronounced in 

right superior temporal sulcus (STS). The authors did not find evidence for 

differential temporal sensitivity in primary or secondary auditory cortices (PAC and 

SAC) as part of Heschl’s gyrus (HG). 

However, others (Schönwiesner et al., 2005; Zatorre & Belin, 2001) have 

shown sensitivity to increasing temporal modulation rates in HG, which was more 

marked on the left. These studies (Schönwiesner et al., 2005; Zatorre & Belin, 2001) 

did not find evidence for differential temporal sensitivity in AAC. Obleser and 

colleagues (2008) used a more natural stimulus and instead manipulated the spectral 

and temporal resolution of speech signals, demonstrating slight lateralisation 

preferences in right and left AAC (specifically STS) for spectral and temporal 

resolution, respectively. Thus, critical yet unresolved questions relate to (i) the extent 
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to which the analysis of different levels of temporal structure depends on primary and 

secondary auditory cortex as opposed to ‘higher-order’ auditory association cortex, 

and (ii) the lateralisation of temporal analysis within these different areas (Hickok & 

Poeppel, 2007; Zatorre et al., 2002a; Zatorre & Gandour, 2008). 

Furthermore, natural sounds including speech comprise modulations of a 

complex spectrum over time, where the spectrum changes dynamically and where 

changes in the spectrum convey information about sound events (relevant to 

communication) and sources (relevant to identification). The temporal variation of the 

spectrum of naturally occurring sounds generally conforms to statistical distributions; 

the spectrum at any given point cannot be precisely predicted, but it will be within a 

range that can be defined by a statistical distribution. None of the previous studies 

captured this complexity of natural sounds in their experimental manipulations. 

In this study, a novel stimulus (Figure 3-1) is introduced that is based on the 

systematic manipulation of the degree of statistical fluctuation over time in complex 

acoustic spectra. The rate of fluctuation is operationalized as the mean Pearson 

product-moment correlation (r) between amplitude spectra in adjacent time frames, as 

used in previous behavioural studies of timbre (Caclin et al., 2005; Krimphoff, 1993; 

Krimphoff et al., 1994; Krumhansl, 1989; McAdams et al., 1995). Rapid modulation 

of the spectrum (at the phonemic rate in speech sounds) corresponds to short time 

windows within which a given degree of correlation is always present between any 

two time frames of the spectrum, even if these are not adjacent. Slow modulation of 

the spectrum (at the syllabic rate in speech sounds) corresponds to long time windows 

within which a given degree of correlation is always present between any two time 

frames. 

For a sound composed of 20 randomly chosen frequencies, the intensity of each 

frequency was allowed to vary between adjacent time frames such that the Pearson 

correlation (r) between the adjacent time frames as a whole corresponded to a fixed 

value r. For a sound with high correlation between adjacent time frames (e.g. r = 0.9), 

the correlation between non-adjacent time frames decays exponentially with the 

number of time frames (or lag) between the non-adjacent time frames. The window 

length of this decay process is defined as the duration over which the correlation 

between any two non-adjacent time frames reaches a minimum value (r = 0.2, in the 
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present case) from its initial value r between adjacent time frames. It is calculated by 

the following Equation 3-1: 

)ln(
)2.0ln(

_)2.0(_
r

durationframelengthwindow ×=  (Eq. 3-1) 

 

 

Figure 3-1 Auditory stimulus. Spectrograms of representative stimuli from each level of 

correlation.  

 

In the case of small initial values of r (e.g. r = 0 or r = 0.2), the correlation between 

non-adjacent time frames is not appreciably different from that between adjacent time 

frames. Figure 3-3 (inset) shows the relationship between the correlation (r) and the 

window length when the frame duration is 20ms: the window length corresponding to 

values of r between 0.2 and 0.9 varies between 20ms and 305ms, encompassing 

windows relevant to phonemic and syllabic processing, respectively (Rosen, 1992). 
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The stimuli are more similar to the acoustic complexity of speech and other naturally 

occurring sounds than the stimuli used in previous studies (Boemio et al., 2005; 

Schönwiesner et al., 2005; Zatorre & Belin, 2001). Unlike speech, however, the 

stimuli allow systematic manipulation of the time windows over which correlation-

controlled change in the spectrum occurs without any semantic confound, enabling 

the investigation of fundamental mechanisms for timing analysis. 

Using fMRI, haemodynamic activity was measured while participants listened 

to stimuli with multiple components where the correlation (r) across the spectrum was 

varied in six steps between a value producing no correlation between adjacent time 

frames (r = 0) to one producing strong correlation (r = 0.9). Specifically, differences 

in activation were sought as a function of increasing and decreasing spectrotemporal 

correlation and the associated window length between (i) primary and secondary 

cortices in HG, and AAC, and (ii) between the two hemispheres of the brain. 

 

 

3.2 Materials and Methods 

3.2.1 Participants 

17 right-handed participants (aged 18-31, mean age = 25.35, 9 females) with normal 

hearing and no history of audiological or neurological disorders provided written 

consent prior to the study. The study was approved by the National NHS Research 

Ethics Committee. 

 

3.2.2 Stimuli 

All stimuli were created digitally in the frequency domain using Matlab 

(http://www.mathworks.com) at a sampling rate of 44.1 kHz and 16 bit resolution. 

Each sound consisted of 20 sinusoids randomly chosen from a pool of 101 

logarithmically spaced frequencies between 246 – 4435 Hz. The particular parameters 

were chosen so as to approximate respective features in naturally occurring sounds, 

which typically have complex spectra with multiple frequencies present. The 
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bandpass (246 – 4435 Hz) covers the acoustic range that is most important for human 

auditory perception, and the number of frequencies within this pool (101 frequencies) 

are a result of this range. The amplitude spectrum was defined in 20 ms frames such 

that the correlation from one frame to the next was operationalized as the Pearson 

product moment correlation r: 

yx

n

i
ii

ss

yyxx

n
yxr

�
=

---
-= 1

)()(
1

),(  (Eq. 3-2) 

where x and y are the amplitude (in dB) vectors over the 20 frequency components of 

two consecutive frames, n is the number of frequencies, sx and sy represent the 

standard deviations of x and y, and x  and y  are the arithmetic means of x and y, 

respectively. Thus, the amplitude spectrum of a given sound varied with a specified 

correlation (r = 0, 0.2, 0.4, 0.6, 0.8, 0.9) between the 20 ms segments. Linear spline 

interpolation amplitude transitions were applied between frames, so that sounds were 

continuous and did not have any sudden amplitude jumps. This was applied in order 

to render the sounds more similar to most ethological sounds; however, some speech 

sounds like plosives or consonant-vowel do display sudden amplitude jumps (Rogers, 

2000). Importantly, the mean amplitude (65 dB) and standard deviation (SD = 15) 

were identical for each frequency component in a given sound and across correlation 

levels. Each sound had a rise and fall time of 20 ms. 

 

3.2.3 Experimental design 

Prior to the experiment in the MRI scanner, participants were familiarised with the 

stimuli and then performed 2I2AFC psychophysics with r = 0 as reference sounds. 

Stimuli were 2 sec. long and were different exemplars from the ones subsequently 

used in the scanner. Psychophysics ensured that participants were able to distinguish a 

highly correlated sound from the reference sound, and they needed to reach at least 

90% correct performance for the strongest correlation (r = 0.9) to be included in the 

fMRI study. Psychometric functions and 95% correct perceptual thresholds were 

estimated via a Weibull boot-strapping procedure (Wichmann & Hill, 2001). 
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Stimuli in the scanner were of different durations (1, 2, 3, or 4 sec.) and 

separated by a mean inter-stimulus interval (ISI) of 2 sec. (range: 1.5-2.5 sec.) as well 

as occasional silence trials of 6 sec. duration (20 per session). Stimuli were presented 

in a pseudorandom order, with 20 exemplars for each level per session (80 stimuli per 

level in total, amounting to a total presentation time of 200 sec. per level). Participants 

performed a stimulus-irrelevant task by pressing a button after each sound. 

Stimuli were presented via NordicNeuroLab (http://www.nordicneurolab.com) 

electrostatic headphones at 80 dB sound pressure level (SPL) using Cogent software 

(http://www.vislab.ucl.ac.uk/Cogent). 

 

3.2.4 fMRI protocol and analysis 

Gradient weighted echo planar images (EPI) (see Section 2.3.1) were acquired on a 3 

Tesla Siemens Allegra system (Erlangen, Germany), using a continuous imaging 

protocol with 42 contiguous slices per volume (time to repeat/time to echo, 2730/30 

ms). Continuous imaging was chosen to ensure a better temporal resolution than that 

offered by sparse imaging protocols; this would then facilitate an additional 

examination of the data with respect to its network dynamics using analysis 

techniques such as dynamic causal modelling (DCM Friston et al., 2003; Penny et al., 

2004). The volume was tilted forward such that slices were parallel to the superior 

temporal plane. Participants completed four sessions of 250 volumes each, resulting 

in a total of 1000 volumes. To correct for geometric distortions in the EPI due to B0 

field variations, Siemens fieldmaps were acquired for each subject, usually after the 

second session (Cusack et al., 2003; Hutton et al., 2002). A structural T1 weighted 

scan was acquired for each participant (Deichmann et al., 2004). 

Imaging data were processed and analysed using Statistical Parametric Mapping 

software (SPM5, http://www.fil.ion.ucl.ac.uk/spm) (see also Sections 2.5-2.6). The 

first four volumes in each session were discarded to control for saturation effects. The 

resulting 984 volumes were realigned to the first volume and unwarped using the 

fieldmap parameters, spatially normalised to stereotactic space (Friston et al., 1995a) 

and smoothed with an isotropic Gaussian kernel of 8 mm full-width-at-half-maximum 

(FWHM). The standard exponential decay function (Eq. 3-1) for the six levels of 
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correlation yielded time windows of [0  20.00  35.13  63.01  144.25  305.51] 

milliseconds or [0  1  1.76  3.15  7.21  15.28] lags (as depicted on the right and left y-

axis y-axis in the top inset of Figure 3-3, respectively). The corresponding contrast 

values at the single subject level probing for an effect of time window length over the 

six levels were then mean centred to yield [-2.94,  -2.32,  -1.85,  -0.98,  1.54,  6.55]. 

Statistical analysis at the group level used a random-effects model within the context 

of the general linear model (Friston et al., 1995b), and data were thresholded at p < 

0.001 (uncorrected for multiple comparisons across the brain) for areas with an a 

priori  hypothesis, i.e. auditory cortex. Where the results survived a more conservative 

threshold of p < 0.05 (family-wise error corrected for multiple comparisons across the 

brain), results are reported at this threshold. 

For the test of lateralisation, two sets of images were created: both a set of 

‘flipped’ left-right unwarped images as well as the original unwarped images were 

normalised to a symmetrical template so as to enable a direct comparison between the 

activations in the left and right AC. Note that the resulting symmetrical stereotactic 

space will differ slightly from MNI stereotactic space. These original and flipped 

normalised scans were smoothed with an 8 mm FWHM smoothing kernel, as above. 

Both original and flipped scans were then combined in one design to enable a direct 

comparison. Statistical analysis at the group level was thresholded at p < 0.001 

(uncorrected for multiple comparisons across the brain). 

To compare in detail the response in subareas of auditory cortex as a function of 

spectrotemporal correlation, local maxima coordinates were identified based on the 

main contrast of spectrotemporal correlation (for PT, aSTG, and STS), and based on a 

[sound – silence] contrast for left and right HG that are most similar to central HG or 

SAC (Morosan et al., 2001; Patterson et al., 2002; Rademacher et al., 2001). Finally, 

the parameter estimates of the BOLD signal were extracted at these coordinates. 
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3.3 Results 

The psychometric functions obtained from the psychophysics prior to scanning are 

displayed in Figure 3-2. For all participants, the perceptual threshold lay between the 

second and third levels, corresponding to r = 0.2 and r = 0.4. 

An analysis was carried out to seek areas where the activity increased or 

decreased as a function of correlation and the associated window length (see Materials 

and Methods). The results show bilateral activity in AAC as a function of increasing 

correlation or temporal window, in particular in planum temporale (PT) and anterior 

superior temporal gyrus (aSTG), while also extending into right STS (Figure 3-3, see 

also Table 1 for coordinates of local maxima). It was formally tested whether this 

effect arises in and is specific to AAC in PT and aSTG and is not already present in 

HG (see also Figure 3-3) by extracting the BOLD signal (see Materials and Methods) 

in central HG, which is most similar to SAC (Morosan et al., 2001; Patterson et al., 

2002; Rademacher et al., 2001), and the association areas that showed an increase in 

activity as a function of correlation. Two separate (for PT and aSTG) repeated 

measures ANOVAs with factors 2 Hemisphere (left, right) × 2 Area (HG, [PT or 

aSTG]) × 6 Correlation level (1-6) demonstrated an Area × Correlation level 

interaction (F(5,80) = 8.28, p < 0.001 for PT; and F(5,80) = 5.19, p < 0.01 for aSTG). 
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Figure 3-3 Main results. Areas increasing in activity as a function of spectrotemporal 

correlation (red) and areas responding to sound in general (blue). Results are rendered on 

a tilted (pitch = -0.5 radians) section of the normalised average structural along STG and 

thresholded at p < 0.05 (FWE corrected). The bar plots at the sides show the signal at the 

respective coordinates for the six levels of correlation (± 95% confidence interval). The top 

figure displays the average lag (in 20 ms frames) and associated time window length (in 

ms) for which there exists a correlation r > 0.2 for the six levels of correlation, as 

determined by the exponential decay function (inset formula). 

 

To compare directly the response in left and right auditory cortices, a formal test of 

lateralisation was performed by ‘flipping’ and normalising the functional scans to a 

symmetrical template (see Materials and Methods). Activity in PT and aSTG did not 

differ between left and right hemispheres. However, right STS showed significantly 

stronger activation as a function of increasing correlation than its left hemisphere 

homologue (Figure 3-4 and Table 1). A repeated-measures ANOVA with 2 Area (left 

STS, right STS) × 6 Correlation level (1-6) as factors revealed a significant 

interaction (F(5,80) = 2.33, p = 0.05). That is, while PT and aSTG in both hemispheres 
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are equally involved in processing longer spectrotemporal correlation over time, the 

data suggest a right-lateralised preference in STS. 

 

 

Figure 3-4 STS lateralisation. Areas showing a significantly stronger increase in activity 

in right STS than left STS (red) together with areas that show an increase as a function of 

correlation (blue). Results are rendered on a tilted (pitch = -0.5 radians) section of the 

symmetrical normalised average structural along STS and thresholded at p < 0.001 

(uncorrected). The bar plots at the sides show the signal at the respective coordinates for 

the six levels of correlation (± 95% confidence interval). 

 

Table 3-1  MNI coordinates of local maxima. The table displays MNI coordinates of local 

maxima (p < 0.05, FWE) in PT and aSTG as a function of increasing time window 

correlation and coordinates of local maxima (p < 0.001, uncorrected) in right STS for the 

lateralisation test. Note that the coordinates for STS are only approximations, since they 

were normalised to a symmetrical template. 

      
    left hemisphere   right hemisphere  

Contrast Area x y z t-value  x y z t-value 
           

                 
window increase PT -62 -24 8 10.52  58 -16 2 13.49 

           66 -16 0 12.83 
                
   aSTG -50 -6 -14 11.10  46 4 -18 9.91 
     -54 -6 -2 8.71  56 10 -12 9.54 
                       
                

lateralisation STS       66 -22 -8 5.10 
           56 -44 6 4.56 
           54 -10 -16 5.34 
           48 12 -24 3.90 
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The relationship between the BOLD signal and correlation r appears non-linear 

in the right hemisphere and linear in the left (Figure 3-3). It was therefore specifically 

tested i) whether the relationship between BOLD and r is better fitted by a linear or 

exponential function in these areas, and ii) whether carrying out a linear contrast 

based on r rather than a contrast based on window length better fits the data. Curve-

fitting algorithms were performed on areas in higher-order auditory cortex that were 

revealed by the analysis of the imaging data to test whether the relationship between 

BOLD signal and correlation r better fits a linear versus exponential function. The 

curve-fitting algorithms were part of the Ezyfit Toolbox for Matlab (www.fast.u-

psud.fr/ezyfit). The linear function was of the form: baxxy +=)( , where a represents 

the slope and b the y-intercept; the exponential function was of the form 

caxy bx +=)( , where a is the base, b is the slope and c represents the y-intercept. 

Areas in left aSTG show a better fit for a linear function (no exponential 

function can be fitted to the data) (Figure 3-5). Conversely, the response in right 

aSTG is better described by exponential functions (Figure 3-6). 

      

Figure 3-5 Plots of the two local maxima in left aSTG (laSTGi refers to the more inferior 

[-50 -6 -14], and laSTGs refers to the more superior [-54 -6 -2]). The data are plotted in 

blue along with the linear (green) fitted function and its parameters. An exponential function 

could not be fitted to these data. 
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Figure 3-6 Plots of the two local maxima in right aSTG (raSTGa refers to more anterior 

[56 10 -12], and raSTGp refers to the more posterior [46 4 -18]). The data are plotted in 

blue along with the linear (green) and exponential (red) fitted functions and their 

parameters. 

 

 

With respect to PT, left PT (lPT) shows a slightly better fit to an exponential 

function than linear (Figure 3-7); the more medial local maximum in right PT (rPTm) 

also shows a better fit to an exponential function, while no exponential function could 

be fitted to the more lateral local maximum in right PT (rPTl) (Figure 3-8). 

 

 

Figure 3-7  Plots of the local maximum in left PT (lPT refers to [-64 -24 8]). The data are 

plotted in blue along with the linear (green) and exponential (red) fitted functions and their 

parameters. 
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Figure 3-8 Plots of the two local maxima in right PT (rPTm refers to the more medial [58 

-16 2], and rPTl refers to the more lateral [66 -16 0]). The data are plotted in blue along 

with the linear (green) and exponential (red) fitted functions and their parameters. An 

exponential function could not be fitted to these data for rPTl. 

 

A linear contrast [-2.5 -1.5 -0.5 0.5 1.5 2.5] was performed to assess whether 

this form of increasing function showed a different network of areas from the 

(exponential) contrast based on the window length. As can be seen in Table 3-2, the 

coordinates in both PT and aSTG are generally very similar and in some cases 

identical. This is the same when using a contrast based on the individual psychometric 

function obtained for each participant, highlighting the fact that the statistical routines 

within SPM are not very sensitive to different shapes of responses across levels. 

 

Table 3-2 MNI coordinates of local maxima (FWE, p < 0.05) in PT and aSTG as a 

function of a linear increase  and based on participants psychometric functions (see Table 

3-1 for comparison). 

      
    

left 
  

right 
 

Area x y z t-value  x y z t-value Contrast 
                                     PT -62 -24 8 9.44  60 -16 0 13.64 
             

window increase 
(lin) 

                aSTG -54 -6 -2 9.70  58 10 -12 10.00 
           54 -2 -6 9.30 
                        

PT -62 -22 8 8.66  60 -14 0 9.79 
          

window increase 
(psy) 

            aSTG -52 -6 -4 11.13  58 10 -10 8.65 
        54 -2 -6 9.11 



CHAPTER 3 

 80 

In summary, the data show that in the right hemispheric areas the relationship 

between BOLD and r is generally better fitted by an exponential function and in the 

left areas by a linear function. Nevertheless, a very similar network of areas is 

demonstrated by contrasts based on either r (linear) or window length (exponential). 

 

There was no evidence for an effect of decreasing correlation; that is, no area 

showed a signal increase as the time window associated with each level of correlation 

decreased. Even lowering the statistical threshold to a very lenient p = 0.1 

(uncorrected for multiple comparisons) did not yield any activation in the auditory 

system. Consequently, there was no detectable lateralisation as a function of 

decreasing correlation. 

 

 

3.4 Discussion 

In this study, the spectrotemporal correlation in complex sounds was systematically 

varied, demonstrating an increase in activation in AAC as a function of spectral 

correlation over time (or equivalently as a function of time window length). PT and 

aSTG showed a bilateral increase in activity with increasing correlation and it was 

shown that this relationship arises in AAC and is not already present in Heschl’s 

gyrus (i.e. in PAC or SAC). Furthermore, activity along the upper bank of right STS 

increased to a greater extent than left STS as a function of increasing correlation. 

There were no areas that showed an increase in activity as a function of decreasing 

correlation over time (shorter time windows). 

The stimuli in the current study were based on complex spectra with multiple 

frequencies which varied over time in statistically controlled ways that are similar to 

ethological sounds including speech. In contrast, previous neurophysiological studies 

of temporal analysis in animal cortex have generally used more deterministic stimuli 

including sinusoidal amplitude modulation of narrow-band stimuli or noise (Joris et 

al., 2004; but see Malone et al., 2007). Neurophysiological studies of amplitude 

modulation in (mainly primary) auditory cortex in humans (Liégeois-Chauvel et al., 
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2004) and mammals (Joris et al., 2004) show preferred responses to rates of less than 

20 Hz, corresponding to temporal windows at the level of tens to hundreds of 

milliseconds, as used in the present study. Several human imaging studies have used 

more complex types of temporal modulation (Boemio et al., 2005; Schönwiesner et 

al., 2005; Zatorre & Belin, 2001), but none have controlled the change in complex 

spectra from one moment to the next as in the present study. 

The contribution of different areas of auditory cortex was explicitly tested and 

this revealed different response profiles across the six levels of correlation between 

HG on the one hand and AAC on the other. HG did not differentiate between the 

experimental levels, while AAC – with maxima in PT and aSTG – displayed a 

systematic BOLD signal increase as a function of spectral correlation. Previous 

models have tended to emphasise differences in temporal analysis between 

hemispheres, rather than differences between the specific areas of auditory cortex 

within hemispheres or differences between lateralisation in different areas. Human 

anatomical (Morosan et al., 2001; Rademacher et al., 2001) and functional imaging 

studies (e.g. Patterson et al., 2002) have demonstrated one primary area and two 

secondary areas in Heschl’s Gyrus that might correspond to ‘core’ areas in macaque, 

as opposed to human homologues of belt areas of AAC in the planum temporale (PT) 

and superior temporal gyrus STG (Hackett, 2007). Areas of AAC in the superior 

temporal sulcus may correspond to parabelt in the macaque. Whilst the homology 

with macaque schemes is still being explored, it is clear that there is an extensive 

functional architecture for auditory analysis that might allow different 

subspecialisations for various types of temporal analysis between areas and between 

the hemispheres. The present study demonstrates subspecialisations for auditory 

analysis between different areas, and does not support any simple model based on 

similar temporal analysis in all the auditory cortical areas on either side. 

Using BOLD as a measure of local ensemble activity, the data did not show a 

preference for short time windows (at the level of tens of milliseconds) in any area of 

auditory cortex, even when the statistical threshold was lowered substantially. A 

potential explanation for this might be the existence of different neural coding 

schemes for slow versus fast temporal modulations to which the BOLD signal might 

not be as sensitive. For example, Lu and colleagues (2001; see also Wang et al., 2003) 
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have demonstrated that slow temporal modulations are encoded explicitly via 

synchronised discharge rates, whereas fast modulations are encoded implicitly via 

non-synchronised discharges. There is further evidence that neural synchronisation in 

the gamma frequency range is tightly coupled to the haemodynamic response in 

cortex (Niessing et al., 2005). 

However, some studies have reported signal increases as a function of 

increasing rates of temporal modulation. Specifically, Zatorre and Belin (2001) and 

Schönwiesner and colleagues (2005) demonstrated increased activity in primary and 

secondary auditory cortex with increasing rate of sound fluctuation (see also Jamison 

et al., 2006). Zatorre and Belin (2001) altered the fluctuation rate of two sinusoidal 

components (500 and 1000 Hz) and thus arguably used a substantially different 

stimulus compared to the present study; however, the broadband stimuli in 

Schönwiesner and colleagues (2005) are similar in acoustic complexity to those used 

in the present study, although not controlling changes in the spectral shape from one 

moment to the next as here. 

Thus, so far, both the hypothesised preference for short temporal windows in 

left auditory cortex (Poeppel, 2003; Zatorre & Belin, 2001) as well as the 

hypothesised preference for longer temporal windows in right auditory cortex 

(Poeppel, 2003) have been demonstrated; however, each of them has only been 

demonstrated between studies, but not within studies. In other words, studies that 

found evidence for a leftwards asymmetry for processing shorter temporal windows 

did not find evidence for a rightward asymmetry for processing longer temporal 

windows (Jamison et al., 2006; Schönwiesner et al., 2005; Zatorre & Belin, 2001); 

conversely, those studies that found a rightward asymmetry for processing longer 

temporal windows did not find evidence for a leftward asymmetry for processing 

shorter temporal windows (Belin et al., 1998; Boemio et al., 2005; as well as the 

current study). 

Spectrotemporal trade-off (Zatorre et al., 2002a) and AST (Poeppel, 2003) 

theories describe similar phenomena from slightly different viewpoints. Both theories 

posit an increased temporal resolution in left auditory cortex, while their view of the 

sensitivity of the right auditory cortex is complementary: according to the 

spectrotemporal trade-off theory, increased spectral resolution can only be achieved at 
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the cost of temporal resolution, i.e. longer temporal windows, which is a slightly 

different but convergent formulation of what the AST posits for right auditory cortex. 

In this context, the results for a right-lateralised sensitivity for increasing spectral 

resolution (Schönwiesner et al., 2005; Zatorre & Belin, 2001) and increasing temporal 

windows or decreasing temporal resolution (Boemio et al., 2005; current study) seem 

to converge. However, this does not explain why one set of studies does not find 

evidence for a right-lateralised sensitivity for increasing temporal windows 

(Schönwiesner et al., 2005; Zatorre & Belin, 2001), while the other set of studies does 

not find evidence for a left-lateralised sensitivity of increasing temporal windows 

(Boemio et al., 2005; current study), despite their use of a similar experimental 

manipulation (sound segment length) and similar temporal window lengths to test 

their complementary hypotheses. 

A promising recent approach (Giraud et al., 2007) combined fMRI and EEG 

recordings of spontaneous spectral power (in the absence of any experimental 

acoustic stimulation, but in the presence of scanner noise) to test the AST hypothesis 

and found activity in left and right HG (but not AAC) that correlated with fast (~28-

40 Hz) and slow (~3-6 Hz) neural oscillations, respectively. While these findings 

somewhat contradict the precise anatomical locations of the earlier findings of 

Boemio and colleagues (2005) for longer temporal windows, they might nevertheless 

offer a bridge in that they show a left-lateralisation for fast temporal modulations (as 

posited by both AST and spectrotemporal trade-off theories) and a right-lateralisation 

for slower temporal modulations (as posited by AST). However, comparisons 

between studies of spontaneous activity in the absence of experimental acoustic input 

and the temporal structure of stimuli producing the greatest regional activity need to 

be made with caution. A convincing explanation for the divergence of results between 

the previous studies despite similar experimental manipulations has yet to be provided 

(Hickok & Poeppel, 2007; Zatorre & Gandour, 2008). 

The psychometric functions show a clear perceptual threshold that is situated 

between levels 2 and 3 for most participants. This is in contrast to the haemodynamic 

response to increasing temporal windows in AAC, which shows a more exponential 

function, especially in right AAC (see Figures 3-5 to 3-8). However, as demonstrated 

by probing the imaging data with different response functions across the six levels of 
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correlation (Table 3-2), the statistics employed within SPM are rather insensitive to 

different response functions. Further investigations are required to elucidate whether, 

and to what degree, left and right AAC indeed show different response functions (e.g. 

linear vs. exponential). For example, introducing a stimulus-relevant task might yield 

response functions that are more similar to the behavioural data; in the current Study 

1, the psychophysics prior to scanning employed an explicit threshold detection task, 

while in the functional imaging paradigm participants were not asked to evaluate the 

spectrotemporal statistics of the stimuli. Although occurring in ‘higher’ association 

cortex, the main effect of increasing window length is present even though 

participants in the studies (Boemio et al., 2005; Schönwiesner et al., 2005; Zatorre & 

Belin, 2001; Study 1) performed no task or a stimulus-irrelevant task, and can thus be 

argued to be an obligatory correlate of perception. Introducing a stimulus-relevant 

task might also reveal the engagement of prefrontal areas. For example, Johnsrude 

and colleagues (1997) found no effect in auditory cortex for differential temporal rates 

in either hemisphere with an explicit stimulus-relevant task; however, left prefrontal 

cortex showed a short temporal window preference (see also Temple et al., 2000). In 

the current Study 1, no areas in prefrontal cortex showed a parametric preference for 

shorter time windows, even at very lenient statistical thresholds.  

The present study has demonstrated the analysis of longer temporal windows in 

the syllabic range that is bilateral in AAC in STG and right lateralised in STS. In 

Boemio and colleagues (2005), the analysis of longer time segments was similarly 

right lateralised and involved STS. An open question remains as to why longer 

temporal windows, which are important for syllabic information and speech 

intelligibility (Greenberg et al., 2003; Luo & Poeppel, 2007) and which have been 

shown to engage a left-lateralised network (Narain et al., 2003; Scott et al., 2000), 

should be lateralised towards right AC, as posited by the AST hypothesis (Poeppel, 

2003). In contrast, the present data, as well as those of Boemio and colleagues (2005), 

revealed a significant right-lateralisation in STS for increasing time windows (see also 

Belin et al., 1998). It should be pointed out that this level of temporal analysis is 

relevant to a variety of sounds including speech, but is not specific to speech. 

The present study highlights the power of parametrically varying statistical 

properties of complex acoustic stimuli to investigate systematically principles of 
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processing in auditory cortex (Nelken & Chechik, 2007; Overath et al., 2007). This 

study introduces a novel stimulus with statistical stimulus characteristics that vary in a 

similar fashion to naturally occurring sounds including speech and demonstrates a 

network comprising auditory association cortex that plays a crucial role in tracking 

spectral correlation over different time scales. 
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Chapter 4. ENCODING OF SPECTROTEMPORAL 

COHERENCE IN ‘AUDITORY TEXTURES’ 

Summary 

In a complex and dynamic acoustic environment, we must constantly identify 

and segregate the many often rapidly changing sound elements or auditory 

objects that constitute the auditory scene. This auditory object analysis 

requires two fundamental perceptual mechanisms. Firstly, it must define 

boundaries between two adjacent objects. Secondly, it requires abstraction 

processes that allow defining features of an object to be recognised, 

irrespective of local stochastic variation. Study 2 considered the cortical bases 

for these two processes by creating a novel stimulus (an ‘auditory texture’) in 

which auditory objects are defined by their spectrotemporal coherence. 

Auditory objects were identified by the percentage of randomly distributed 

frequency-modulated (FM) ramps in frequency-time space that had identical 

direction and trajectory (spectrotemporal coherence), while boundaries were 

introduced by juxtaposing auditory objects of different spectrotemporal 

coherence levels. Using fMRI, Study 2 sought areas that signal the detection 

of a boundary between auditory objects of different coherence levels (change 

in spectrotemporal coherence) from areas that encode the salience of the 

object (absolute coherence). The data show that mechanisms defining object 

boundaries (changes in coherence) are represented in primary and 

association auditory cortex. In contrast, the representation of the salience of 

the object (percentage of coherence) occurs only in auditory association 

cortex. Furthermore, participants’ superior detection of boundaries across 

which coherence increased was reflected in a greater neural response at 

these boundaries. The anatomical organisation revealed by these results 

suggests a hierarchical mechanism for the analysis of auditory objects: 

boundaries between objects are first detected as a change in statistical 

coherence over frequency-time space, before a representation that 

corresponds to the salience of the perceived object is formed. 
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4.1 Introduction 

The analysis of auditory objects requires two fundamental perceptual processes 

(Griffiths & Warren, 2004). The boundaries between two adjacent objects must be 

defined (Chait et al., 2007; Chait et al., 2008; Kubovy & Van Valkenburg, 2001), 

whilst characteristic features of an object must be abstracted, irrespective of stochastic 

variations (Griffiths & Warren, 2004; Nelken, 2004). Such object boundaries often do 

not ‘exist’ as low-level physical sound features at one particular point, especially in 

the presence of acoustic noise (Gutschalk et al., 2008; Nahum et al., 2008); rather, 

detection of boundaries requires a mechanism that identifies a change in the statistical 

rules governing areas of frequency-time space corresponding to different objects. 

Further, auditory object recognition requires abstraction processes that allow 

characteristic features of objects in frequency-time space to be recognised, while 

ignoring local stochastic variation within one object region (Griffiths & Warren, 

2004; Nelken, 2004). 

While it is intuitive to assume that the detection of a statistical change at object 

boundaries precedes the subsequent precise representation of the object (Chait et al., 

2007; Chait et al., 2008; Ohl et al., 2001; Scholte et al., 2008), the specific underlying 

cortical mechanisms for segregating and encoding auditory objects within the auditory 

scene have not been addressed directly. For example, Zatorre and colleagues (2004) 

parametrically varied the distinctiveness or identity of auditory object features by 

combining auditory objects to create a new object (distinctiveness decreased with the 

number of auditory objects that were combined). The authors presented several 

sounds with a fixed level of distinctiveness within one 60 s trial (each sound was 500 

ms in duration) and demonstrated activity within right STS and right inferior frontal 

gyrus (IFG) that increased with object distinctness. These results support an anterior 

processing stream for object identity or auditory ‘what’ information (Kaas & Hackett, 

1999; Rauschecker & Tian, 2000; Romanski et al., 1999; Tian et al., 2001) (however, 

see Belin & Zatorre, 2000; Middlebrooks, 2002; Zatorre et al., 2002b). 

However, strictly speaking, this design cannot differentiate whether parametric 

increase in activation in STS and IFG was due to object distinctness or due to a 

change percept between objects. That is, as the distinctness between objects increased, 

participants would also increasingly hear an object change at object boundaries. 
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Furthermore, the auditory objects used were ethological sounds and are likely 

confounded by semantic associations instead of highlighting which acoustic features 

were perceptually relevant (or which acoustic features were important for object 

distinctness). Other experimental approaches have focussed on the neural correlates of 

boundary or ‘auditory edge’ detection without investigating in detail processes 

necessary for object formation (Chait et al., 2007; Chait et al., 2008). One notable 

study (Schönwiesner et al., 2007) investigated the perception of different levels of 

acoustic duration changes in the context of an MMN paradigm. The authors found a 

cortical hierarchy as indicated by three distinct stages for processing duration 

changes: an initial automatic change detection mechanism in primary auditory cortex, 

followed by a more detailed analysis in association cortex and attentional mechanisms 

originating in frontal cortex. 

The present study used a form of FM to create object regions and object 

boundaries in frequency-time space. The stimulus, an ’auditory texture’, was based on 

randomly distributed linear FM ramps with varying trajectories (Figure 4-1, see also 

Materials and Methods). The percentage of coherent modulation, i.e. the proportion of 

ramps with identical direction (slope-sign) and trajectory (slope-value), was 

systematically varied, creating different auditory objects, the salience of which 

increases with coherence. The analysis of such auditory objects comprising different 

spectrotemporal coherence requires perceptual mechanisms that can assess common 

statistical properties of the stimulus irrespective of local stochastic variation within an 

object, and detect transitions when these properties change. Such generic mechanisms 

are fundamental for auditory object formation and object segregation in ethological 

sounds, where statistical properties of the acoustic signal need to be evaluated with 

respect to pre-existing templates (Griffiths & Warren, 2002). It should be noted that 

while this manipulation is merely one way to define auditory objects and is not 

intended to speak for all possible auditory objects, it nevertheless addresses generic 

processes underlying complex auditory object perception. While coherent FM is 

arguably a relatively weak grouping cue (Carlyon, 1991; Darwin & Carlyon, 1995; 

Summerfield & Culling, 1992), coherent FM nevertheless is one basis upon which 

figure-ground selection can occur (McAdams, 1989). 
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In Figure 4-1, a 3.5-s segment with 100% coherence (all ramps move upwards 

and with the same trajectory) is followed by a 4.5-s segment of 0% coherence (ramps 

with random direction and trajectories) and so forth. The associated change in 

coherence at the boundary between segments is also shown. Note that a +40% change 

in coherence can be obtained in a number of ways by arranging successive pairs of 

stimuli with certain absolute coherence levels (0%-40% and 40%-80%, in Figure 4-1). 

Thus, this stimulus enables a direct assessment of (i) the mechanisms detecting 

boundaries between auditory objects, represented by the change in coherence between 

sound segments, and (ii) the representation of the salience of complex auditory 

objects, determined by the absolute coherence of a sound segment. 

These two factors were orthogonalised in the experimental design so as to 

dissociate neural processes signalling object boundaries from those representing 

absolute object properties (see Section 4.2). Within the framework of auditory object 

analysis, it was hypothesised that the detection of a change in coherence would 

engage auditory areas including primary cortex (Schönwiesner et al., 2007), while 

auditory object salience would be encoded in higher-level auditory areas only (Zatorre 

et al., 2004). 
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4.2 Materials and Methods 

4.2.1 Participants 

23 right-handed participants (aged 18-31, mean age = 25.04, 12 females) with normal 

hearing and no history of audiological or neurological disorders provided written 

consent prior to the study. The study was approved by the National NHS Research 

Ethics Committee. 

 

4.2.2 Stimuli 

All stimuli were created digitally in the frequency domain using Matlab 

(http://www.mathworks.com) at a sampling frequency of 44.1 kHz and 16 bit 

resolution. Stimuli consisted of a dense texture of linear FM ramps; each ramp had a 

duration of 300 ms and started at a random time and frequency (passband 250-6000 

Hz), with a density of 80 glides per second, roughly equalling one ramp per critical 

band (see Figure 4-2). For ramps that extended beyond the passband, i.e. went below 

250 Hz or beyond 6000 Hz, a wraparound was implemented such that the ramps 

‘continued’ at the other extreme of the frequency band, i.e. at 6000 Hz or 250 Hz, 

respectively. Stimuli differed in terms of the coherent movement of the ramps: six 

different coherence conditions were created, where the percentage of ramps moving in 

the same direction for a given sound segment was systematically varied from 0% 

coherence to 100% coherence in 20% increments. Thus, for a given sound segment 

with 40% coherence, 40% of the ramps increased (or decreased) in frequency with an 

excursion traversing 2.5 octaves / 300 ms; the direction and excursion of the 

remaining 60% of the FM ramps were randomised. Crucially, the only difference 

between the six levels is the degree of coherence or ‘common fate’ of the ramps; the 

total number of ramps, the number of ramps in a critical band as well as the passband 

of each stimulus did not differ systematically across the levels (Figure 4-2). 

 

4.2.3 Experimental design 

Prior to scanning, participants were familiarised with and trained on the stimuli and 

then performed 2I2AFC psychophysics distinguishing the non-random against a 
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random reference (0% coherence) sound. Stimuli were two seconds long and the 

direction of the FM glides (up versus down) was counterbalanced. There were 30 

pairs for each of the six levels (0%-100% coherence in 20% steps). Participants had to 

reach at least 90% correct performance for the last level (100% coherence) to be 

included in the fMRI study. Psychometric functions and 95% correct perceptual 

thresholds were estimated via a Weibull boot-strapping procedure (Wichmann & Hill, 

2001). 

Stimuli in the scanner were presented in blocks of sound with an average 

duration of 16 seconds (range: 11 to 18 seconds). The blocks contained four 

contiguous segments with a given absolute spectrotemporal coherence (0%, 20%, 

40%, 60%, 80%, or 100%). Within a block, the direction (up versus down) of the 

coherent ramps was maintained. The length of the segments varied (1.5, 3, 3.5, 4.5, 5, 

or 6.5 seconds) and was randomised within a block. Thus, a given block might have 

[20% 100% 60% 60%] contiguous coherence segments with durations [1.5 6.5 3.5 

4.5] seconds. The associated change in coherence between segments within this block 

of sound is [+80 -40 0], between segments two through four of the block. Stimuli 

were presented in one of six pseudorandom permutations which orthogonalised 

absolute coherence and change in coherence (average correlation between absolute 

coherence and change in coherence across the six permutations: r = 0.06, p > 0.1). 

The task of participants was to detect a change in coherence within the block, 

regardless of whether that change was from less coherent to more coherent or vice 

versa. Participants were required to press a button whenever they heard such a change 

and were instructed that the frequency of perceptual changes within one block likely 

ranged from no perceptual change (e.g. a block consisting of [0% 20% 40% 20%] 

coherence segments, since here the changes are likely to be too small to be detected) 

to a few changes (e.g. a lock consisting of [0% 100% 20% 80%] segments). Sound 

blocks were separated by a silence of 6 seconds, in which participants were told to 

relax. 
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In each of three experimental sessions, each coherence level was presented 30 

times, amounting to a total of 7.2 minutes presentation time per coherence level. The 

number of times each of the six different levels of change in coherence (regardless of 

their direction) occurred can, consequently, not be perfectly balanced; however, 

permutations were created such that the change that occurred most often occurred less 

than three times as often as the change that occurred least frequently. 

Stimuli were presented via electrostatic headphones (NordicNeuroLab, 

http://www.nordicneurolab.com) at a sound pressure level of 85 dB. Participants saw 

a cross at the centre of the screen and were asked to look at this cross during the 

experiment. 

 

4.2.4 Behavioural data analysis 

Participants’ button presses where recorded and analysed with respect to the onset of 

each segment within a sound block. Responses were only counted if they occurred 

within three seconds after the onset of a segment (and within 1.5 seconds after the 

onset of the shortest segments). The average percentage correct response was then 

computed by comparing the number of responses to a given change in 

spectrotemporal coherence to the actual number of those changes. ‘Responses’ to 0% 

changes served as a chance baseline. 

 

4.2.5 fMRI protocol and analysis 

Gradient weighted echo planar images (EPI) (see Section 2.3.1) were acquired on a 3 

Tesla Siemens Allegra system (Erlangen, Germany), using a continuous imaging 

design with 42 contiguous slices per volume (time to repeat/time to echo, 2730/30 

ms). A continuous instead of a sparse imaging protocol was used, since the 

experimental question required a design whose effects could only be captured with the 

superior temporal resolution of a continuous imaging protocol. The volume was tilted 

forward such that slices were parallel to and centred on the superior temporal gyrus. 

Participants completed three sessions of 372 volumes each, resulting in a total of 1116 

volumes. To correct for geometric distortions in the EPI due to B0 field variations, 
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Siemens fieldmaps were acquired for each subject, usually after the second session 

(Cusack et al., 2003; Hutton et al., 2002). A structural T1 weighted scan was acquired 

for each participant (Deichmann et al., 2004). 

Imaging data were processed and analysed using Statistical Parametric Mapping 

software (SPM5, http://www.fil.ion.ucl.ac.uk/spm) (see also Sections 2.5-2.6). The 

first four volumes in each session were discarded to control for saturation effects. The 

resulting 1104 volumes were realigned to the first volume and unwarped using the 

fieldmap parameters, spatially normalised to stereotactic space (Friston et al., 1995a) 

and smoothed with an isotropic Gaussian kernel of 8 mm full-width-at-half-maximum 

(FWHM). Statistical analysis used a random-effects model within the context of the 

general linear model (Friston et al., 1995b), and data were thresholded at p < 0.001 

for areas with an a priori hypothesis, i.e. auditory cortex.  

Each design matrix consisted of 18 regressors. All regressors collapsed across 

the direction of the coherent ramps, i.e. 100% coherent segments in which the ramps 

moved up were collapsed with 100% coherent segments in which the ramps moved 

down. The first regressor modelled the haemodynamic response to the onset of each 

block as a stick function. Regressors 2-7 modelled the onset and duration of the 

segments within a block corresponding to one of the six levels of spectrotemporal 

coherence (0%, 20%, 40%, 60%, 80%, 100%). Regressors 8-18 modelled the 

response to changes in coherence as stick functions, with the eighth regressor 

modelling 0% changes (i.e. all consecutive coherence pairs of 0-0, 20-20, 40-40, 60-

60, 80-80, 100-100), while the subsequent pairs of regressors modelled positive and 

negative changes of a given magnitude (+20%, -20%, +40%, -40%, +60%, -60%, 

+80%, -80%, +100%, -100%). 

The following planned contrasts were performed. To probe for an effect of 

increase in activity with increasing absolute coherence, regressors 2-7 were weighted 

[0 -2.5 -1.5 -0.5 0.5 1.5 2.5 0 0 0 0 0 0 0 0 0 0 0]. 

To probe for an effect of increasing change in coherence, regressors 8-18 were 

weighted 

[0 0 0 0 0 0 0 -2.73 -1.73 -1.73 -0.73 -0.73 0.27 0.27 1.27 1.27 2.27 2.27]. 
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These values are all mean centred on zero. 

To probe for an effect of relative object salience, changes across which 

coherence increased (‘positive’ changes or regressors 9, 11, 13, 15, 17) were 

exclusively masked with changes across which coherence decreased (‘negative’ 

changes or regressors 10, 12, 14, 16, 18). 

 

 

4.3 Results 

The psychometric functions obtained from the psychophysics prior to scanning are 

displayed in Figure 4-3. For the majority of participants, the perceptual threshold lay 

between the second and fourth levels, corresponding to 20% and 60% coherence. 

Behavioural results (d’ scores) for detecting a change in coherence during 

scanning are shown in Figure 4-4. Performance increased with the magnitude of 

change (both for changes across which coherence increased or decreased) and was 

significantly better than chance performance corresponding to 0% change: two 

separate repeated-measures ANOVAs with factor ChangeLevel (0% - 100%) for 

either changes across which coherence increased or decreased revealed main effects 

of ChangeLevel(increase), F(5,110) = 58.0, p < 0.001, and ChangeLevel(decrease), 

F(5,110) = 23.04, p < 0.001. Pairwise comparisons (two-tailed t-tests) with 0% 

performance were all significant (p < 0.05) for change levels greater than 0% 

(increase) and 40% (decrease). Furthermore, performance was better for changes 

across which coherence increased: a repeated-measures ANOVA with factors 

ChangeLevel (0% - 100%) and ChangeType (increase vs. decrease) revealed main 

effects for ChangeLevel (F(5,110) = 52.05, p < 0.001) and ChangeType (F(1,22) = 52.32, 

p < 0.001), as well as a significant interaction (F(5,110) = 7.87, p < 0.001). 
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Figure 4-3 Psychometric functions from all participants. The x-axis denotes the six levels 

of coherence, the y-axis denotes performance. The red bar indicates the 95% confidence 

limits for the perceptual threshold. 
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Figure 4-4 d’ scores for detecting changes in coherence in the MRI scanner. White bars 

indicate performance for changes with increasing coherence, and grey bars indicate 

performance for changes with decreasing coherence. 

 

 

An analysis was carried out to seek areas in auditory cortex that parametrically varied 

in activity as a function of increasing change in coherence at the boundaries between 

adjacent segments. The analysis revealed strong activation increases in HG, PT, TPJ 

and superior temporal sulcus (STS) as a function of change magnitude (see Table 

4-1). The bar charts in Figure 4-5 show (in red) the BOLD signal across the different 

degrees of change in coherence in all of these areas of auditory cortex. 

Next, an analysis was carried out that sought activity within areas of auditory 

cortex that varied as a function of increasing auditory object salience or 

spectrotemporal coherence. Bilateral areas in auditory association cortex, including 

PT and extending into TPJ (Figure 4-5, in blue, and Table 4-1), showed a BOLD 

signal increase with increasing absolute spectrotemporal coherence. Crucially, activity 

in HG and STS did not differ across the six levels of spectrotemporal coherence and 

thus was significantly different from the responses in these areas to increasing change 

in coherence: two separate 2 Hemisphere (left, right) × 2 Condition (absolute 

coherence, change in coherence) × 6 Level (1-6) repeated-measures ANOVAs 
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revealed Condition × Level interactions for both HG (F(5,110) = 3.63, p < 0.01) and 

STS (F(5,110) = 3.98, p < 0.01). 

 

 

 

Figure 4-5 Main results. Areas showing an increased haemodynamic response as a 

function of increasing absolute coherence (blue) and change in coherence (red). Results 

are rendered on coronal (y = -24, top) and tilted (pitch = -0.5 radians, middle (superior 

temporal plane) and bottom (STS)) sections of participants’ normalised average structural 

scans. The bar charts show the BOLD signal (± SEM) corresponding to the six levels of 

absolute coherence (blue) and the six levels of change in coherence (red). The charts 

nearest the brain show the response at the local maxima for increasing change in 

coherence; those at the sides show the local maxima for increasing absolute coherence. 

Note that the placement of the identifying letter in the brain sections only approximate the 

precise stereotactic [x y z] coordinates at the bottom corner of each chart, since no single 

planar section can contain all the local maxima simultaneously. 
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Table 4-1 MNI coordinates of local maxima. Local maxima for the effects of increasing 

change in coherence and increasing absolute coherence. 

   left hemisphere    right hemisphere  
 Contrast     x y z t-value   x y z t-value 

             change in coherence HG -46 -24 6 4.86   46 -24 10 3.80 
                            PT -62 -28 6 5.45   64 -24 4 6.94 
                            TPJ -48 -40 16 6.34   68 -42 16 7.63 
                            STS -64 -30 -2 4.55   64 -22 -8 6.16 
                          

absolute coherence PT -56 -24 4 4.58   68 -20 8 6.71 
                            TPJ -48 -38 18 4.91   64 -30 8 7.39 
              

 

The experimental design also enabled a more detailed investigation of an effect of 

object salience by way of changes in relative coherence. Behavioural results in Figure 

4-4 showed that changes across which coherence increased are generally more salient 

than changes across which coherence decreased, supporting the notion of increasing 

object salience with increasing spectrotemporal coherence. It was tested whether this 

perceptual asymmetry (Cusack & Carlyon, 2003) was also reflected at the neural level 

(see Section 4.2). Figure 4-6 shows this was the case in PT and STS, which showed 

stronger responses to changes with increasing relative coherence than vice versa. 

 

 

Figure 4-6 Changes in increasing vs. decreasing relative coherence. Coronal (y = -32) 

section showing areas that display a stronger increase for changes across which 

coherence increased than for changes across which coherence decreased. 
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4.3.1 Pilot study results 

It could be argued that the results are confounded by the behavioural task, which 

required participants to detect changes in coherence. At this point it is helpful to point 

out a pilot study in which participants were required to detect the overall coherence of 

the stimuli, but which nevertheless yielded very similar results to the main study. In 

this pilot study, 6 s long sounds of set coherence (0%, 20%, 40%, 60%, 80%, or 

100%) were presented, in which the direction of the coherent ramps changed every 

1.5 seconds (i.e. either up-down-up-down or vice versa). In every other respect, for 

example bandwidth or number of ramps per second, the stimulus of the pilot study 

was identical to the main study. In a sparse imaging protocol (TR = 8.8 s, Belin et al., 

1999; Hall et al., 1999), four participants categorically evaluated the coherence of the 

stimuli by indicating whether the stimulus had been ‘random’ or ‘coherent’ 

(participants pressed on of two buttons during the acquisition of a scan volume 

following the presentation of the sound). Importantly, participants in this pilot study 

evaluated the overall spectrotemporal coherence of the sound and not a change in 

coherence as in the paradigm of the main study. As can be seen when comparing the 

results of the pilot study (Figure 4-7) with those of the main study (Figure 4-5 and 

Figure 4-6), the results in both studies are very similar despite the different tasks for 

participants, making it unlikely that the results reported in the main text are due to a 

task confound. 

However, the stimulus design in the pilot study, which had a change in direction 

(up/down) every 1.5 seconds, confounded absolute coherence and change percept, 

since increasing absolute coherence was accompanied by an increasing change 

percept at the boundaries of the 1.5 segments making up the 6 s long sound. That is, 

for 6 s long sounds with alternating up/down 100% coherent ramps, the encoding of 

the absolute coherence would be accompanied by a perceived change in direction 

every 1.5 seconds; in contrast, for a 20% coherent sound, the change in direction of 

20% of the ramps every 1.5 seconds would not be noticeable (and completely absent 

for 0% coherent sounds). For this reason, the main study employed an experimental 

design that allowed the disambiguation of processing absolute coherence versus 

change in coherence. 
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Figure 4-7 Pilot study results. The figure shows areas in PT, TPJ and STS that 

increased with increasing coherence of the sound (or increasing change in direction, since 

these are not separable effects in this study). Results are superimposed on participants’ 

mean structural scan (y = -36) and are based on a fixed-effects analysis within the context 

of the general linear model (thresholded at p < 0.001, uncorrected for multiple comparisons 

across the brain). 

 

 

 

4.4 Discussion 

The results demonstrate a specific mapping of object boundaries and object salience 

to distinct regions of auditory cortex. Activity in auditory cortex including HG, PT, 

TPJ and STS increased as a function of the change in spectrotemporal coherence at 

the object boundaries. Further, activity as a function of the absolute spectrotemporal 

coherence and object salience increased in auditory association cortex in PT and in 

TPJ. Finally, increases in spectrotemporal coherence at segment boundaries were 

more perceptually salient than decreases in spectrotemporal coherence at segment 

boundaries, and this was reflected by stronger neural activity for these changes. 

While the observed parametric responses to absolute coherence and change in 

coherence show some overlap in cortical resources (in PT and TPJ), they are likely 

separable processes, since the experimental design orthogonalised absolute coherence 

and change in coherence. This indicates that the overlapping representations of 
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change in coherence and absolute coherence in the non-primary auditory areas in PT 

and TPJ represent a distinct mapping of these two processes in similar cortical areas; 

it is hypothesised that these mappings are subserved by activity within distinct units 

or networks in those areas. Furthermore, the results are unlikely to be confounded by 

the behavioural change detection task, since a pilot study with a different task that 

asked participants to detect the absolute coherence in the sounds yielded very similar 

results (Figure 4-7). Nevertheless, the perceptual task was quite demanding, as 

indicated by the psychophysical thresholds (Figure 4-3) and the relatively low d’ 

scores, particularly for changes across which coherence decreased (Figure 4-4). This 

can be attributed to the relative weakness of FM as grouping cues (Carlyon, 1991; 

Darwin & Carlyon, 1995; Summerfield & Culling, 1992), and will need to be 

addressed further in subsequent studies. 

The response to increasing change in spectrotemporal coherence requires 

mechanisms that integrate statistical features across spectrotemporal regions and 

assess statistical changes across the integrated whole. That is, boundary detection 

must depend on the assessment of statistical properties (i.e. the percentage of coherent 

FM ramps), since other low-level acoustic features such as the density of FM ramps 

and overall frequency-time space were kept constant (Figure 4-2). This response 

occurs as early as primary auditory cortex, in which FM direction sensitive neurons 

have been demonstrated in rats (Ricketts et al., 1998), cats (Heil et al., 1992; 

Mendelson & Cynader, 1985), and rhesus monkeys (Tian & Rauschecker, 2004) (for 

a review see Rees & Malmierca, 2005). Single-unit studies of coherent FM have 

generally not investigated coherent FM across different spectrotemporal regions, but 

it is hypothesised that this property is encoded at the level of neural ensembles rather 

than the single neuron level, since the tuning of most single units would be too narrow 

to encompass the spectral range of the stimulus. 

The present study provides a contrasting approach to change detection 

mechanisms from the classical mismatch negativity (MMN) paradigm, which is 

thought to reflect the violation of a previously established regularity (Näätänen & 

Winkler, 1999). The results suggest that, in the current stimulus paradigm, the 

emergence of regularity or coherence has a different representation to its 

disappearance. Recently, Chait and colleagues (2007; 2008) demonstrated distinct 
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cortical mechanisms for the detection of auditory ‘edges’ based on statistical signal 

properties, where the detection of a statistical regularity (in violation of a previous 

irregularity) had a different cortical signature than the discovery of a violation of a 

statistical regularity. The current results support the existence of such a perceptual 

asymmetry (Figure 4-4). It is proposed that the degree of spectrotemporal coherence 

is encoded in a continuous manner, with neurons tuned to sounds that are equal or 

greater in coherence than the neurons’ thresholds. Such a cumulative neural code 

contains an inherent asymmetry (Cusack & Carlyon, 2003; Treisman & Gelade, 

1980): transitions to more coherent sounds excite a larger neural population, rendering 

them more perceptually salient. This is then also reflected in the haemodynamic 

response (Figure 4-6). 

The data reported here move beyond the analysis of simple FM sounds to the 

analysis of auditory object patterns within stochastic stimuli which is dependent on 

mechanisms that are fundamental for the analysis of ethological sounds in a dynamic 

acoustic environment. This study demonstrates a mechanism for the assessment of 

auditory object boundaries that is already present in primary cortex, based on 

integrating dynamic statistical properties governing the object region within a 

spectrotemporal field. Such a mechanism precedes the encoding in higher-level 

auditory association cortex of the absolute properties of the object region. 
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Chapter 5. ENCODING OF THE RATE OF INFORMATION 

PRODUCTION IN PITCH SEQUENCES 

Summary 

The entropy metric derived from information theory provides a means to 

quantify the amount of information transmitted in acoustic streams like speech 

or music. Brain areas in which neural activity and energetic demands increase 

as a function of entropy or the rate of information production can be 

investigated by systematically varying the entropy of pitch sequences. Such a 

relationship between acoustic information content and neural activity is 

predicted to occur via an efficient encoding mechanism that uses fewer 

computational resources when less information is present in the signal. 

Specifically, it was hypothesised that such a relationship is present in the 

planum temporale (PT), which has been described as a ‘computational hub’ 

within auditory cortex. In two convergent fMRI studies (Studies 3 and 4), this 

relationship is demonstrated in PT for encoding of pitch sequences: activity in 

PT increased as a function of the amount of information in the pitch 

sequences. In contrast, a distributed fronto-parietal network for retrieval of 

acoustic information operated independently of entropy. The results establish 

PT as an efficient neural engine that demands fewer computational resources 

to encode redundant signals than those with high information content. 
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5.1 Introduction 

We are constantly required to perceive, distinguish and identify signals in our acoustic 

environment. A critical first stage of these processes is the encoding of the 

information into a robust neural code that allows efficient subsequent processing in 

the auditory system (Lewicki, 2002). In the current study, the properties of such a 

robust neural code at the level of the cortex were investigated by varying the amount 

of information, or entropy, in the acoustic signal. 

In the context of information theory (Attneave, 1959; Shannon, 1948), entropy 

(H) denotes the uncertainty associated with an event and thus provides a metric to 

quantify information content: a rare, or uncertain, event carries more information than 

a common, or predictable, event. The properties of many information transmitting 

systems can be characterised in terms of entropy. Indeed, Shannon originally applied 

information entropy to describe transitional probabilities in language (Shannon, 

1948): in English, less common letters (e.g. ‘k’) have a lower probability (or higher 

uncertainty) than more common letters (e.g. ‘e’) and therefore carry higher 

information and entropy. Similarly, entropy can be used to characterise pitch 

transition probabilities in simple musical melodies (Pearce & Wiggins, 2004; Pearce 

& Wiggins, 2006). In the present context, entropy is applied to quantify the 

information content of pitch sequences. 

‘Fractal’ pitch sequences based on inverse Fourier transforms of f - n power 

spectra (Patel & Balaban, 2000; Schmuckler & Gilden, 1993) provide a means to 

control directly the entropy of the sequence via the exponent n (Figure 5-1). For n = 0, 

the excursion of the pitch sequence is equivalent to fixed-amplitude-random-phase 

noise and thus is completely random (high entropy). In the context of information 

theory, the high degree of randomness in this signal does not correspond to noise that 

must be removed by the system, but to a low predictability of the stimulus that results 

in each individual element of the sequence making a high degree of contribution to 

the information in the sequence. As n increases, a single stream gradually dominates 

the local pitch fluctuations and successive pitches become increasingly predictable 

(low entropy). Such stimuli are more predictable so that each element of the sequence 

makes little contribution to the overall information in the stimulus. These families of 

pitch sequences with different values of n are statistical ‘fractals’ (Eke et al., 2002) in 
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the sense that their statistical properties are scale-independent (Schmuckler & Gilden, 

1993). For present purposes, the critical property of these pitch sequences that is 

exploited here is not their ‘fractal’ behaviour, but the variation of entropy that is 

produced as n varies, whilst pitch range, tempo and pitch probability remain largely 

constant (however, it is inherent to the system that for large exponents n > 4 the pitch 

distribution approaches a sinusoid and consequently the corresponding probability 

density function is tilted towards the extremes of the pitch range and also that the 

average interval size between successive pitches decreases for increasing exponents 

n). 

Entropy for pitch sequences generated with a given value of exponent n can be 

determined by computing the sample entropy (HSampEn) (Richman & Moorman, 2000). 

Intuitively, HSampEn is based on the conditional probability that two subsequences of 

length m that match within a tolerance of r standard deviations remain within a 

tolerance r of each other at the next point m+1. Explicitly, for a signal or time series 

of length N, HSampEn is defined as: 
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SampEn , (Eq. 5-1) 

where Ar(m) (or Ar(m+1)) denotes the probability that two subsequences of length m 

(or m+1) match within a tolerance r. Two sequences ‘match’ if their maximum 

absolute point-by-point difference is within a tolerance of r standard deviations. That 

is, sample entropy is essentially a measure of self-similarity, where highly self-similar 

time series signify high redundancy and therefore low entropy, while time series with 

low self-similarity represent a high degree of uncertainty and therefore high entropy. 

Furthermore, sample entropy is a non-parametric measure in the sense that it does not 

require a priori knowledge of the true probability density function of the underlying 

time series. In the present case, the parameters were chosen as m = 2, r = 0.5, while N 

represents the number of tones of the pitch sequence. 
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Figure 5-1 Auditory stimulus. Examples of fractal waveforms (blue) and the related pitch 

sequences (red, rounded to the nearest integer) based on inverse Fourier transforms of 

f - n power spectra, with exponent n = 0 (top), n = 0.9 (middle), n = 1.5 (bottom). 

Equitempered pitch (10-note octave, ranging over two octaves, resulting in 21 possible 

pitches, with ordinal indices 0 to 21 corresponding to 300 Hz to 1200 Hz) is denoted on the 

y-axis, time (in seconds) on the x-axis. Entropy is largest for the top pitch sequence and 

decreases as exponent n increases. 
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By varying information theoretic properties of pitch sequences, this addresses 

encoding mechanisms applied to sounds at a level of generic processing that is not 

specific to any semantic category. Even before such encoding mechanisms are 

engaged, the auditory system must represent spectrotemporal features of the stimulus 

in sufficient detail such that a number of different aspects of the stimulus can be 

encoded, in order to allow different types of subsequent categorical and semantic 

processing. In the current context, encoding constitutes the stage of analysis between 

the detailed representation of the spectrotemporal structure of the stimulus and the 

subsequent categorical analysis of abstracted acoustic forms. A single sound may be 

associated with more than one abstracted form: for example, one might obtain vowel, 

speaker and position from a single sound, where each feature can undergo subsequent 

categorical and semantic processing. Here, information theory is used to demonstrate 

encoding mechanisms in the brain that result in the abstraction of a form of the 

stimulus. 

It was hypothesised that, if such encoding mechanisms are efficient, they will 

use less computational resource for stimuli that have low information content 

compared to stimuli that have high information content. This hypothesis is tested by 

measuring the fMRI BOLD signal as an estimate of neural activity and computational 

resource during encoding of auditory stimuli in which the information content is 

systematically varied. It was further hypothesised that processing in primary auditory 

cortex in Heschl’s Gyrus (HG) corresponds to a stage at which the detailed 

spectrotemporal structure of sounds is represented (deCharms et al., 1998; Nelken et 

al., 1999; Schnupp, 2001), and where such a relationship will not be observed. 

Instead, such a relationship is expected to be observed in distinct auditory association 

cortex in planum temporale (PT), which has previously been characterised as a 

‘computational hub’ (Griffiths & Warren, 2002) that is required to convert 

spectrotemporal representations into ‘templates’: sparse symbolic neural 

representations that are the basis for categorical, semantic and spatial processing. For 

example, the spectral envelope of a sound would represent such a ‘template’ for 

vowel processing (Warren et al., 2005a). The model was developed to account for the 

involvement of PT in the analysis of a variety of complex sounds that can be 

processed categorically (speech, music, and environmental sounds) as well as 

different spatial attributes (for a review, see Griffiths & Warren, 2002). 
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Study 3 investigated the encoding of pitch sequences that can be like melodies 

in their structure, but in which the structure and information content is determined by 

statistical rules. It was predicted that brain areas will display a positive relationship 

between the information content or entropy of pitch sequences and neural activity as 

assessed by the BOLD signal during encoding. Specifically, it was hypothesised that 

such a relationship exists in PT but not in earlier auditory areas. 

 

 

5.2 Materials and Methods (Study 3) 

5.2.1 Participants 

30 right-handed participants (aged 18-43 years, mean age = 24.9; 19 females) with 

normal hearing and no history of audiological or neurological disorders provided 

written consent prior to the experiment. None of the participants were professional 

musicians. The study was approved by the National NHS Research Ethics Committee. 

Eight participants had to be excluded due to excessive head movements (more than 5 

mm translation or 5 degree rotation within one session) or not meeting the 

psychophysical assessment criteria (see below), leaving a total of 22 participants 

(aged 18-40, mean age = 24.2 years; 12 females). 

 

5.2.2 Stimuli 

All stimuli were created digitally in the frequency domain using Matlab 

(www.mathworks.com) at a sampling frequency of 44.1 kHz and 16 bit resolution.. 

Stimuli were ‘fractal’ sine tone sequences based on inverse Fourier transforms of f - n 

power spectra (Patel & Balaban; Schmuckler & Gilden, 1993) for six levels of n (0, 

0.3, 0.6, 0.9, 1.2, 1.5), where pitch sequences ranged from totally random (n = 0; high 

entropy) to more coherent or predictable (n = 1.5; low entropy). By randomising the 

phase spectrum, each exemplar is unique, while at the same time displaying the same 

characteristic correlational properties of a given level. The pitch range spanned two 

octaves from 300-1200 Hz, with each octave split into 10 discrete equidistant pitches. 
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Pitch sequences were presented at a tempo of five notes per second, with a total 

duration of 7.6 seconds for each pitch sequence (38 notes per sequence). There were 

60 exemplars for n = 0 and 30 exemplars for the remaining five levels of n. 

The mean entropy for each level of exponent n was calculated using the sample 

entropy HSampEn (Richman & Moorman, 2000) measure, as described in the 

Introduction: 
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Ar(m) denotes the probability that two subsequences of length m match within a 

tolerance r, i.e. Ar(m) is the ratio of [all pairs of subsequences of length m that match] 

divided by [all possible pairs of subsequences of length m]; the same applies to 

Ar(m+1). Guided by Lake and colleagues (2002), a tolerance r = 0.5 and length of 

subsequence m = 2 as parameter values were chosen. As Eke and colleagues (2002) 

point out, taking a subset of data points from a fractal time series essentially 

introduces noise into the resulting time series, leading to lower n and consequently 

higher entropy estimates relative to the original values. Table 5-1 therefore lists the 

mean sample entropy values for the time series of the 38 notes in each pitch sequence. 

 

5.2.3 Experimental design 

In a behavioural experiment prior to scanning, full psychometric functions were 

acquired from participants discriminating the non-random pitch sequence against a 

random reference (n = 0) in a 2I2AFC paradigm. Participants were not given 

feedback. Stimuli were not the same as in the subsequent imaging paradigm and there 

were 72 trials (12 trials per level). Psychometric functions and 75% correct thresholds 

were estimated via a Weibull boot-strapping procedure (Wichmann & Hill, 2001). 

Participants who did not reach at least 80% performance for levels 5 or 6 were not 

included in the fMRI analysis. In the functional imaging paradigm, participants were 

asked to categorise whether or not the pitch sequence was random by pressing the 

corresponding button at the end of each pitch sequence, bearing in mind that pitch 

sequences of intermediate levels (n = 0.6 to 0.9) are neither completely random nor 
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completely coherent (in these cases, participants should nevertheless indicate their 

predominant percept). Stimuli were presented via custom-built electrostatic 

headphones at 70 dB SPL using Cogent software 

(http://www.vislab.ucl.ac.uk/Cogent/). 

 

5.2.4 fMRI protocol and analysis 

Gradient weighted echo planar images (EPI) (see Section 2.3.1) were acquired with a 

3 Tesla Siemens Allegra MRI system (Erlangen, Germany), using a sparse temporal 

sampling technique (Belin et al., 1999; Hall et al., 1999) (time to repeat/time to echo, 

TR/TE = 10,530/30 ms), where each volume was cardiac gated. A total of 246 

volumes (42 slices, 3x3x3 mm voxel resolution) were acquired over three sessions (82 

per session), including 60 volumes for n = 0 and 30 volumes for the other levels of n, 

as well as 30 silent control trials (the first two volumes of each session were discarded 

to allow for saturation effects). To correct for geometric distortions in the EPI images 

due to B0 field variations, Siemens fieldmaps were acquired for each participant 

(Cusack et al., 2003; Hutton et al., 2002). A structural T1 weighted scan was acquired 

for each participant (Deichmann et al., 2004). 

Imaging data were processed and analysed using Statistical Parametric Mapping 

software (SPM2, http://www.fil.ion.ucl.ac.uk/spm) (see also Sections 2.5-2.6). 

Volumes were realigned and unwarped using the fieldmap parameters, spatially 

normalised (Friston et al., 1995a) to standard stereotactic space and smoothed with an 

isotropic Gaussian kernel of 8 mm full-width-at-half-maximum. Statistical parametric 

maps were generated using a Finite Impulse Response (FIR) box-car function in the 

context of the general linear model (Friston et al., 1995b). The six conditions were 

parametrically modulated based on the average sample entropy (Richman & 

Moorman, 2000) value for each level of n (see Table 5-1), statistically evaluated using 

a random-effects model and thresholded at p < 0.001 (uncorrected for multiple 

comparisons across the brain) for areas with an a priori hypothesis, i.e. in auditory 

cortex and specifically PT. In addition, a volume-of-interest analysis was carried out 

controlling for multiple comparisons within PT by centring a 1 cm sphere around the 

centroid of the triangular anterior part of PT situated within the superior temporal 

plane as opposed to the more posterior part that abuts the parietal lobe ([-56 -28 6] 
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and [58 -24 8] for left and right PT, respectively). The choice of volume was based on 

the identification of the anterior part of PT in the studies that suggested the 

‘computational hub’ model (Griffiths & Warren, 2002). For areas that were not 

predicted a priori, a statistical threshold of p < 0.05 after family-wise error (FWE) 

correction was adopted. 

A potential effect of adaptation in frequency bands at an earlier sensory level 

was investigated in detail, since pitch sequences with low entropy tend to spend more 

time within each critical band. Study 3 did not allow disambiguation of the three 

cytoarchitectonically (Morosan et al., 2001) and functionally (Patterson et al., 2002) 

distinct areas in HG, namely medial, central, and lateral HG (see Study 4 below for 

further discussion). Therefore, single coordinates were identified based on local 

maxima of a sound minus silence contrast for left [-46 -24 6] and right [50 -24 8] HG 

that are most similar to central HG (Morosan et al., 2001; Patterson et al., 2002), and 

the first eigenvariate of the BOLD signal at these coordinates was extracted (see 

Figure 5-2). 

The BOLD signal was extracted using a standard procedure in SPM: the time 

series of a given voxel (e.g. the peak activation voxel for the entropy effect) is 

provided by SPM via a volume-of-interest (VOI) routine. At the second level 

statistical analysis, this results in a time series for each contrast where each data point 

corresponds to a participant. The routine is executed for each contrast, in the current 

case either six (Study 3) or five (Study 4) [Level – Silence] contrasts, resulting in a 

22X6 or 24X5 matrix (22 or 24 participants, respectively), where each row 

corresponds to a participant and each column to a contrast. The threshold at which the 

BOLD signal was extracted was p < 0.05 (uncorrected for multiple comparisons). The 

values are then normalised to the maximum value. 

Note that the interaction described here between the BOLD signal in HG and PT 

across levels assumes that the coupling between neuronal response and the 

haemodynamic BOLD signal is identical in the two brain regions. While there is no 

reason to assume the contrary, it has also not been proven that this is indeed the case. 
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5.3 Results (Study 3) 

Participants were presented with pure tone pitch sequences which were based on f - n 

power spectra with n ranging from n = 0 to 1.5 in five steps of 0.3. In a behavioural 

experiment prior to scanning, full psychometric functions were acquired 

demonstrating that all of the 22 participants could reliably distinguish a non-random 

pitch sequence from a random (n = 0) reference in a 2I2AFC paradigm (see Materials 

and Methods). Perceptual thresholds for discriminating non-random from a random 

pitch sequence lay between n = 0.6 and n = 0.9 for the majority of participants. 

 In a sparse fMRI paradigm (Belin et al., 1999; Hall et al., 1999), participants 

listened to pitch sequences of a given value for n and indicated whether it was random 

or not. A parametric regressor based on the mean sample entropy (Richman & 

Moorman, 2000) value at each of the six levels of n (Table 5-1) was used to probe for 

cortical areas that increased their activity with increasing entropy. The fMRI analysis 

revealed a BOLD signal increase in PT as a function of increasing entropy at a 

significance level of p < 0.001 (uncorrected for multiple comparisons, see Figure 5-2 

and Table 5-2) and using a small volume correction for the anterior part of PT at a 

significance level of p < 0.05 (see Section 5.2). No area increased its activity as a 

function of decreasing entropy, i.e. increasing predictability or redundancy. 

 

 

Table 5-1 Mean sample entropy HSampEn values (standard error of the mean in 

parentheses) of the pitch sequences across levels in the two studies. The values for each 

level differ slightly between the studies because pitch sequences in Study 3 consisted of 38 

notes, while those in Study 4 consisted of 24 notes. 

   Level1 Level2 Level3 Level4 Level5 Level6 
                              Study 3 1.38 (.25) 1.39 (.24) 1.32 (.21) 1.05 (.19) 0.75 (.19) 0.48 (.16) 
                             Study 4 1.49 (.33) 1.54 (.35) 1.39 (.31) 1.18 (.27) 0.87 (.23)  
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These results suggest a greater computational and energetic demand for 

encoding in PT as the information content of acoustic sequences (as assessed by 

entropy) increases. However, the third study has three potential confounds, which 

were addressed in a fourth study. Firstly, the effect of entropy in PT might reflect 

adaptation of the sensory cortical representation of frequency, as the pitch sequences 

were based on pure tones: for low values of exponent n, the frequency excursions or 

intervals are greater on average, so that the signal moves more between specific 

frequency representations and PT might adapt less and thus produce a greater local 

activity. Such a mechanism would also be expected to occur in primary and secondary 

auditory cortex within HG. Therefore, the specific relationship between fractal 

exponent and local activity in HG and PT was explored by extracting the first 

eigenvariate of the BOLD signal in left and right HG as well as the local maxima in 

PT (see Materials and Methods). No significant difference across entropy levels was 

demonstrated in HG (2 (Hemisphere) ´  6 (Entropy level) repeated measures ANOVA: 

no main effect of Entropy level (F(5,17) = 1.11, p > 0.1); Figure 5-2). Furthermore, a 2 

(Area [PT vs. HG]) ́ 6 (Entropy level) ́ 2 (Hemisphere) repeated measures ANOVA 

demonstrated a significant difference in the relationship between BOLD signal across 

Entropy levels in PT versus HG: Area ´  Entropy level interaction (F(5,17) = 4.86, p < 

0.001). 

The existence of the effect in auditory association cortex in PT, the absence of 

an effect in HG, and a significant interaction between effects in the two areas are 

indirect evidence against an explanation of the results based on sensory adaptation. 

Nevertheless, a putative sensory explanation was addressed in a fourth study by using 

regular-interval noise where sounds have identical passband regardless of their pitch 

(Griffiths et al., 1998; Patterson et al., 1996; Yost et al., 1996). 

Secondly, the effect of entropy might reflect perceptual adaptation at the level 

of the representation of pitch. Again, such an effect would not be expected in 

association cortex, but in a proposed ‘pitch centre’ in secondary cortex (Bendor & 

Wang, 2005; Patterson et al., 2002; Penagos et al., 2004). The fourth study therefore 

incorporated a more suitable design to detect a potential differential response to the 

entropy of the acoustic stimuli in cytoarchitectonic (Morosan et al., 2001) and 
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functional (Patterson et al., 2002) subdivisions of HG in medial, central and lateral 

HG. 

Finally, participants in the third study were explicitly required to assess whether 

the sequences were random or not. This made it possible that the results reflected a 

category judgment rather than a fundamental encoding mechanism. To test this, the 

fourth study differentially examined encoding and retrieval components as a function 

of entropy, but independent of any other stimulus-related classification task. 

 

 

5.4 Materials and Methods (Study 4) 

5.4.1 Participants 

30 right-handed participants (aged 20-44 years, mean age = 28.0 years; 16 females) 

with normal hearing and no history of audiological or neurological disorders provided 

written consent prior to the experiment. The study was approved by the National NHS 

Research Ethics Committee. Six participants had to be excluded because of excessive 

head movements (more than 5 mm translation or 5 degree rotation within one 

session), leaving a total of 24 participants (aged 20-44, mean age = 28.58 years; 12 

females). 

 

5.4.2 Stimuli 

As in Study 3, pitch sequences were again based on f - n power spectra for five levels 

of n (0, 0.3, 0.6, 0.9, 1.2). Each pitch was based on regular-interval noise created 

using a delay-and-add algorithm (Griffiths et al., 1998; Patterson et al., 1996; Yost et 

al., 1996) with 16 iterations. The pitch range spanned two octaves from 150-600 Hz, 

with each octave split into 10 discrete equidistant pitches. Pitch sequences were 

presented at a tempo of four notes per second, with a total duration of 6 seconds for 

each pitch sequence (24 notes per sequence). The mean entropy values for each level 

of n are depicted in Table 5-1 and are slightly different from Study 3 because each 

pitch sequence had 24 notes instead of 38. There were 30 exemplars for each level of 
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n, and stimuli were presented via custom-built electrostatic headphones at 70 dB SPL 

using Cogent software (http://www.vislab.ucl.ac.uk/Cogent/). 

 

5.4.3 Experimental design 

In a sparse-imaging paradigm (Belin et al., 1999; Hall et al., 1999), participants were 

scanned 1) after being required to encode a pitch sequence with a particular entropy 

value and 2) after listening to a second pitch sequence that was either the same 

sequence or a different sequence from the same entropy level and indicating whether 

this was the same pitch sequence or different (see also Figure 5-3). To de-correlate 

(Henson, 2006) activations due to the first and second pitch sequence, the second 

pitch sequence followed the first pitch sequence either immediately in the next TR, or 

with two or three TR’s delay (within-trial delay). Similarly, the first pitch sequence of 

the next pair could follow the second pitch sequence of the previous pair immediately, 

or with one or two TR’s delay (between-trial delay). There were 20 pitch sequence 

pairs for each level, amounting to 100 encoding and 100 retrieval stimuli across the 

five levels of exponent n. In addition, there were a total of 100 within-trial volumes 

and 100 between-trial rest volumes. For each level of exponent n, 10 out of 20 pairs 

were identical, and 10 were different. Stimuli were counterbalanced between 

participants. 

To guide participants, a ‘1’ was displayed at the centre of the screen from the 

start of the first pitch sequence until the start of the second pitch sequence, when a ‘2’ 

was displayed. At the end of the second pitch sequence, participants briefly saw a ‘?’ 

to indicate they should now give their response as to whether they thought the second 

pitch sequence was the same as or different from the first pitch sequence. Participants 

received immediate feedback. During the rest period between trials, participants saw a 

fixation cross ‘+’ at the centre of the screen and were instructed to relax. 

 

5.4.4 fMRI protocol and analysis 

Gradient weighted echo planar images (EPI) were acquired with a 3 Tesla Siemens 

Allegra MRI system (Erlangen, Germany), using a sparse temporal sampling 
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technique (Belin et al., 1999; Hall et al.), where each volume was cardiac gated to 

reduce motion artefacts (TR/TE = ca. 8,800/30 ms). A total of 404 volumes (42 slices, 

3x3x3 mm voxel resolution) were acquired over two sessions (the first two volumes 

of each session were discarded to allow for saturation effects). Subsequent to the 

functional paradigm, a structural T1 weighted scan was acquired for each participant 

(Deichmann et al., 2004). 

Imaging data were processed and analysed using Statistical Parametric Mapping 

software (SPM5, http://www.fil.ion.ucl.ac.uk/spm) (see also Sections 2.5-2.6). 

Volumes were realigned and unwarped, spatially normalised (Friston et al., 1995a) to 

MNI standard stereotactic space and smoothed with an isotropic Gaussian kernel of 8 

mm FWHM. Statistical parametric maps were generated by modelling the evoked 

haemodynamic response to the stimuli and the delay period in the context of the 

general linear model (Friston et al., 1995b). 

To probe for an effect of entropy on encoding, a contrast was carried out to 

identify areas in which the BOLD signal in the first and second scans increased as a 

function of a parametric regressor based on the mean sample entropy value at each 

level (Table 5-1). A second contrast investigated the effect of retrieval and 

comparison independent of encoding by subtracting the effect of encoding of the first 

stimulus only (corresponding to the first scan) from that to encoding of the second 

stimulus, retrieval of the first, and comparison of the two (corresponding to the 

second scan). A third contrast examined the effect of entropy on retrieval by 

subtracting [first scan entropy increase] from [second scan entropy increase]. 

Statistical results are based on a random-effects model and thresholded at p < 0.001 

(uncorrected for multiple comparisons across the brain) for areas with an a priori 

prediction, i.e. PT, in addition to the same small volume correction (p < 0.05 

corrected for multiple comparisons) as in Study 3. For areas that were not predicted a 

priori , a more conservative statistical threshold of p < 0.05 after FWE correction was 

adopted. 

The fourth study was better suited to identify the three cytoarchitectonically 

(Morosan et al., 2001) and functionally (Patterson et al., 2002) distinct areas within 

HG based on the sound minus silence contrast because of 1) the greater number of 

silent trials and 2) the use of broadband stimuli. Three activations were identified in 
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HG in either hemisphere, primarily to locate the lateral area previously implicated in 

perceptual pitch analysis (Patterson et al., 2002; Penagos et al., 2004) and to allow a 

comparison of the effect of entropy on activity here with that in PT (for individual 

coordinates see Table 5-2 for PT, Figure 5-5 for central and Figure 5-6 for medial and 

lateral HG). 

Cardiac gating in Study 4 produced a reliable signal in subcortical structures IC 

and MGB (Figure 5-7). The data were therefore reanalysed with a 4 mm FWHM 

smoothing kernel that is appropriate to these structures. Local maxima based on a 

sound minus silence contrast were identified in left IC ([-6 -34 -12]) and right IC ([6 -

34 -10]) and left MGB ([-14 -26 -8]) and right MGB ([12 -24 -8]). 

For further analysis considerations see Section also 5.6. 

 

 

5.5 Results (Study 4) 

In a sparse fMRI paradigm (Belin et al., 1999; Hall et al., 1999), participants were 

presented with fractal pitch sequences based on f - n power spectra, with n ranging 

from n = 0 to 1.2 in four steps of 0.3. The separate pitches corresponded to regular-

interval noise (Griffiths et al., 1998; Patterson et al., 1996; Yost et al., 1996)  (see 

Materials and Methods). By using broadband stimuli and an increased number of 

silent trials, the fourth study employed a more suitable design to allow disambiguation 

of the medial functional area in HG that corresponds to primary auditory cortex and 

areas in lateral HG that correspond to secondary cortices, including the area within 

which activity corresponds to pitch salience (Patterson et al., 2002; Penagos et al., 

2004). The second paradigm also enabled the disambiguation of encoding and 

retrieval mechanisms. Participants were scanned 1) after being required to encode a 

pitch sequence with a particular entropy value and 2) after listening to a second pitch 

sequence that was either identical to the first sequence or different from the first 

sequence but with the same entropy value. Activity during the first scan reflects the 

energetic demands of encoding the first sequence, whilst activity during the second 

scan reflects encoding of the second sequence, retrieval of the first, and comparison of 
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the two. In order to decorrelate the two scans (Henson, 2006), a delay of one, two, or 

three scans was introduced between the pitch sequences (see Section 5.4.3 and Figure 

5-3). In contrast to the third study, participants were not informed about the nature of 

the pitch sequences and instead were only told that they would hear pairs of pitch 

sequences and that their task would be to say whether the second was same or 

different. 

Participants’ behavioural performance in the scanner was assessed via hits (hit) 

and correct rejections (cr) percent scores (see also Figure 5-4). Both mean hit 

(74.25% ± 3.14 SEM) and mean cr (73.42% ± 3.31 SEM) scores were significantly 

above chance (50%) (one-sample t-test, hit: t23 = 7.73; cr: t23 = 7.08, both p < 0.001). 

Furthermore, a 2 (Response [hit vs. cr]) ´  5 (Entropy Level) ́  3 (Delay) repeated-

measures ANOVA showed no main effect in any of the three factors (F(23,1) = 0.33; 

F(20,4) = 1.1; F(22,2) = 0.53; all p > 0.05, for Response, Entropy Level and Delay, 

respectively). There was no Response ´  Entropy Level interaction (F(20,4) = 1.01, p > 

0.05), indicating that participants’ performance was not influenced by the Entropy 

Level of the pitch sequences. Participants had higher cr than hit scores for Delay 3, 

while there were more hits than cr for Delays 1 and 2 (Response ´  Delay interaction; 

F(22,2) = 7.91, p = 0.001). An Entropy Level ´  Delay interaction (F(16,8) = 2.14, p < 

0.05) showed a performance increase for Delay 1 from Entropy Level 1 to Entropy 

Level 5, while there was no such systematic effect for Delay 2 or Delay 3. There was 

no Response ´  Entropy Level ́  Delay interaction (F(16,8) = 0.45, p > 0.1). 

The imaging results replicate the findings of the third study, demonstrating that 

activity in PT for encoding (as assessed by both the first and second scan of each pair) 

increased significantly as a function of entropy for the same significance thresholds as 

in the third study (Figure 5-5 and Table 5-2). The effect at the level of primary and 

secondary auditory cortex was examined in detail by extracting the BOLD signal in 

medial, central and lateral HG (Morosan et al., 2001; Patterson et al., 2002) (Figure 

5-5 and Figure 5-6): three separate 5 (Entropy level) ´  2 (Hemisphere) repeated 

measures ANOVAs showed no main effect of Entropy Level (F(4,20) = 0.85, F(4,20) = 

0.77, F(4,20) = 1.83, all p > 0.1, for medial, central and lateral HG, respectively). 
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Figure 5-6 BOLD signal in medial and lateral HG. Normalised BOLD signal change (y-

axis) in left and right medial (top) and lateral HG (bottom) (mHG and lHG, respectively) 

plotted against the five levels of exponent n (x-axis) for Study 4. See Figure 5-5 for 

corresponding plots of BOLD signal in central HG. 

 

Table 5-2 MNI coordinates of local maxima in PT as a function of increasing entropy in 

the two studies. Coordinates in italics depict the arithmetic mean of the geometric MNI 

coordinates for left and right PT in the two studies. The last column lists the geometric 

distance between the arithmetic means; note that this is smaller than the smoothing kernel 

(8mm) applied to the data. 

  Study 3   Study 4  
   entropy increase   entropy increase  

Hemisphere   x y z t-value   x y z t-value  

geometric 
distance 

Study 3 vs. 
Study 4 

               left PT  -62 -24 8 5.70   -56 -30 8 3.83   
   -60 -38 16 5.02            
               mean  -61 -31 12    -56 -30 8   6.48 
                                        right PT  68 -20 0 4.74   66 -22 2 3.93   
   66 -30 4 4.39         
   66 -12 0 3.72            
               mean  67 -21 1    66 -22 2   1.73 
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Furthermore, the relationship between entropy and BOLD signal was 

significantly different between PT and all three subdivisions of HG:  2 (Area [PT vs. 

medial, central or lateral HG]) ´  5 (Entropy level) ́  2 (Hemisphere) repeated 

measures ANOVAs carried out separately for medial, central or lateral HG showed an 

Area ́  Entropy level interaction (F(4,20) = 2.61, p < 0.05; F(4,20) = 3.31, p < 0.05; F(4,20) 

= 5.55, p < 0.001), for medial, central and lateral HG, respectively). 

The cardiac gated image acquisition in Study 4 furthermore allowed an 

examination of a potential effect of stimulus entropy in subcortical auditory 

structures. The relationship between entropy and the activity in the medial geniculate 

body (MGB) and inferior colliculus (IC) was examined using a smaller smoothing 

kernel (4mm FWHM) appropriate for these subcortical structures (Figure 5-7). This 

analysis showed no main effect of entropy on the BOLD response in these areas (two 

separate 5 (Entropy Level) ´  2 (Hemisphere) repeated measures ANOVAs: F(4,20) = 

0.35, p > 0.1, for IC; F(4,20) = 1.32, p > 0.1, for MGB). Due to the different spatial 

smoothing, no meaningful interaction with the response in cortical structures can be 

computed. 
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A second analysis based on the contrast between the second and first scans 

sought areas involved in retrieval and comparison, but not encoding. This contrast 

highlighted activity within a bilateral fronto-parietal network, including the mid-

ventrolateral prefrontal cortex (mid-VLPFC) area 47/12, inferior parietal sulci, medial 

superior frontal gyri and dorsolateral prefrontal cortex (DLPFC) (p < 0.05, family-

wise error (FWE) corrected for multiple comparisons; Figure 5-8 and Table 5-3). A 

further contrast was carried out to identify an effect of entropy on retrieval and 

comparison, but not encoding. No effect of entropy on retrieval and comparison was 

demonstrated. 

 

 

Figure 5-8 Retrieval and comparison results. Areas that show stronger activation (p < 

0.05, FWE corrected) for retrieval and comparison than encoding, rendered on coronal (y = 

22 and y = -48, top left and right, respectively), and sagittal (x = 6, bottom left) sections of 

participants’ normalised average structural scan. See also Table 5-3 for exact MNI 

coordinates. 
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Table 5-3 MNI coordinates of local maxima. Local maxima coordinates for the main 

effect of Retrieval and comparison (contrast: [second scan – first scan]) at p <0.05 (FWE 

corrected for multiple comparisons across the brain). VLPFC, ventrolateral prefrontal 

cortex; IPS, intraparietal sulcus; mSFG, medial superior frontal gyrus; DLPFC, dorsolateral 

prefrontal cortex; IFG, inferior frontal gyrus. 

   Retrieval - Encoding 
Region Hemisphere x y z t-value 

                   mid-VLPFC left -28 22 -6 10.24 
       mid-VLPFC right 30 22 -8 10.20 
   32 26 2 8.70 
   44 22 -4 7.64 
       IPS right 46 -48 40 8.46 
       mSFG medial 6 14 46 8.81 
   -8 8 42 8.66 
   -6 2 52 8.58 
       motor cortex left -36 -6 62 8.19 
   -44 -28 48 7.82 
   -48 -20 60 7.48 
       IPS left -30 -44 -40 7.89 
   -36 -52 44 6.64 
   -30 -56 52 6.50 
       mid-DLPFC right 50 20 46 6.99 
       IFG right 48 30 24 6.79 
       thalamus left -10 6 2 6.65 
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5.6 Further analysis considerations 

For pitch sequences in Study 3 and Study 4 there was a significant effect of exponent 

n levels on the sample entropy estimates (ANOVA, F(5,204) = 197.814, and F(4,145) = 

28.03, both p < 0.001, respectively). Post-hoc pairwise comparisons revealed that all 

levels except levels 1 to 3 were statistically different from each other (all p < 0.05). 

The data were therefore analysed further by collapsing across those levels whose 

sample entropy estimates are not statistically different from each other (levels 1 to 3 

in Study 3 and Study 4, resulting in four and three levels, respectively). The results 

are very similar to the results for both studies as reported in the main text, providing 

strong support for the original results (Figure 5-9). 

 

Figure 5-9 Analysis considerations I. (Left) Comparison of results for Study 3 when 

analysing the data with respect to the original 6 exponent n levels (red) or collapsing 

across levels 1 to 3, resulting in a total of 4 levels (blue). (Right) Comparison of results for 

Study 4 when analysing the data with respect to the original 5 exponent n levels (red) or 

collapsing across levels 1 to 3, resulting in a total of 3 levels (blue). Results are 

thresholded at p < 0.001 (uncorrected) and rendered on the tilted (pitch = -.5) normalised 

mean structural of the 22 vs. 24 participants. 

 

The data were further analysed by (a) parametrically modulating each individual pitch 

sequence with its specific sample entropy value and (b) classifying pitch sequences 

according to their sample entropy values (ignoring the exponent n value from which 

they were derived). The second classification method resulted in the following 

descriptive data for the two studies (Table 5-4). 



ENCODING OF THE RATE OF INFORMATION PRODUCTION IN PITCH SEQUENCES 

 131 

Table 5-4 Descriptive data for the pitch sequences in the two studies with a 

classification scheme based on the sample entropy estimates. 

  Study 3  Study 4 

level mean 
(SEM) range # of 

exempl.   mean 
(SEM) range # of 

exempl. 
1 1.61 (0.03) H > 1.5 23  1.75 (0.04) H > 1.5 40 
2 1.35 (0.01) 1.2 > H > 1.5 87  1.35 (0.01) 1.2 > H > 1.5 49 
3 1.08 (0.01) 0.9 > H > 1.2 37  1.09 (0.01) 0.9 > H > 1.2 38 
4 0.74 (0.01) 0.6 > H > 0.9 35  0.73 (0.03) H > 0.9 23 
5 0.46 (0.01) H > 0.6 28     

 

There was a significant effect of entropy level for Study 3 and Study 4 (ANOVA, 

F(4,205) = 825.51 and F(3,146) = 241.71, both p < 0.001, respectively), and significant 

pairwise comparisons between all levels (all p < 0.05). Importantly, the two methods 

for grouping the data into levels (i.e. with respect to exponent n or sample entropy) 

yielded very similar classifications, as indicated by highly significant Spearman rank 

correlations for Study 3 and Study 4 (rho = 0.81, and rho = 0.64, both p < 0.001, 

respectively). 

 

In the case of Study 3, the results are almost identical to those reported in the 

main text, both when parametrically modulating each sequence with respect to its 

specific entropy value (analysis (a) above), as well as when parameterising using the 

mean sample entropy value for each of the five levels (analysis (b) above, Figure 

5-10, left). In Study 4, the results of both re-analysis techniques are visible as a trend 

at a reduced significance threshold (Figure 5-10, right). The greater divergence 

between the original analysis and reanalysis of Study 4 is likely due to the variance of 

sample entropy estimates for short time series. 
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Figure 5-10 Analysis considerations II. Comparison of results for the three types of 

analyses in the two studies (Study 3, left; Study 4, right). Original analysis based on mean 

entropy value of the six levels derived from exponent n (red); analysis based on individual 

sample entropy value of each pitch sequence (analysis (a), blue); analysis based on 

categorisation derived from entropy values irrespective of the exponent n value from which 

the stimuli were derived (analysis (b), cyan). Results for Study 3 are thresholded at p < 

0.001 (uncorrected); results for Study 4 are thresholded at p < 0.005 (red) and p < 0.05 

(blue and cyan) and are rendered on the tilted (pitch = -.5) normalised mean structural of 

the 22 vs. 24 participants. 

 

 

5.7 Discussion 

Both studies demonstrated an increase in the local neural activity as a function of the 

entropy of encoded pitch sequences in PT but not in HG. The results are consistent 

with a computational process in PT that requires increasing resource and energetic 

demands during encoding as the entropy of the sound stimulus is increased. 

In the third study, the use of pure tones could not exclude a possible alternative 

explanation of the data in terms of sensory adaptation within cortical frequency 

representations. The existence of the relationship in PT, but not in HG, was indirect 

evidence against such sensory adaptation. However, the fourth study used broadband 

stimuli that continually activate a broad range of cortical frequency representations 

irrespective of pitch, rendering explanations based on sensory adaptation untenable. 
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Another interpretation of these results could be based on perceptual adaptation 

within cortical correlates of pitch (as opposed to sensory adaptation of the stimulus 

representation). Previous studies have demonstrated mapping of activity within 

secondary auditory cortex in lateral HG as a correlate of the perceived pitch salience, 

whether the stimulus mapping was in the temporal domain (Patterson et al., 2002) or 

frequency domain (Penagos et al., 2004). An explanation of the results of either study 

might therefore be based on adaptation within the ‘pitch centre’ in lateral HG for pitch 

sequences with higher fractal exponent n. The fourth study enabled the identification 

of separate activations in medial, central and lateral HG. Contrary to an interpretation 

based on adaptation in pitch sensitive channels, there was no relationship between the 

entropy and local activity in any of the subfields of HG that would have supported 

such an explanation. Furthermore, the interaction between HG and PT provides 

additional evidence for an effect of entropy that is specific to PT. 

The most compelling explanation of these results is in terms of greater 

computational activity (and therefore local synaptic activity and BOLD signal: 

Goense & Logothetis, 2008; Logothetis et al., 2001) as a function of the information 

content or entropy of the encoded sound. This is the first explicit demonstration of 

such a relationship. The results suggest an efficient form of encoding within PT 

whereby sequences are encoded by a mechanism that demands fewer computational 

resource for sequences carrying low information content and high redundancy (due to 

the predictability of the sequence) than that required to encode sequences with little or 

no redundancy. ‘Sparse’ (DeWeese & Zador, 2006; Friston, 2003c; Olshausen & 

Field, 2004) and ‘predictive’ (Baldeweg, 2006; Friston, 2005; von Kriegstein & 

Giraud, 2006) coding both constitute such mechanisms and bases for PT acting as a 

‘computational hub’ (Griffiths & Warren, 2002). 

In contrast, retrieval and comparison do not depend on entropy in the same way, 

which is proposed to reflect the decreased computational and energetic demands of 

retrieving and comparing stimuli at symbolic levels beyond stimulus encoding. The 

initial encoding process depends on a computationally expensive process that must 

abstract features from a complex spectrotemporal structure. Beyond this stage, the 

subsequent categorical retrieval and comparison mechanism does not depend on the 

detailed spectrotemporal structure. Indeed, the ‘computational hub’ model (Griffiths 
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& Warren, 2002) states that PT gates its output towards higher-order cortical areas 

that perform analyses at a symbolic and semantic level. It is suggested that at least 

part of the function of PT is to compress the neural code corresponding to the initial 

acoustic signal (e.g. via sparse or predictive coding), and that subsequent processing 

is not dependent on stimulus entropy. 

That PT might even perform this type of analysis in more general or supra-

modal terms is suggested by work in the visual domain (Bischoff-Grethe et al., 2000) 

demonstrating activation in Wernicke’s area and its right-hemisphere homologue as a 

function of the entropy within a sequence of visually presented squares, irrespective 

of whether or not participants were aware of an underlying sequence. However, later 

studies using similar visual stimuli did not replicate this finding (Harrison et al., 2006; 

Strange et al., 2005). 

The retrieval and comparison phase highlighted a fronto-parietal network 

consisting of the anterior insulae and frontal opercula, inferior parietal sulci, medial 

superior frontal cortex and DLPFC. This activation pattern is common in the retrieval 

and comparison phase of (auditory) delayed match-to-sample tasks (e.g. Arnott et al., 

2005; Zatorre et al., 1998). In particular, the caudal part of mid-VLPFC is engaged in 

the top-down control of active retrieval processes (Kostopoulos & Petrides, 2008). In 

functional imaging studies, the mid-VLPFC is difficult to disambiguate from the 

anterior insula, which has been proposed as an additional auditory processing centre 

for allocating auditory attention, specifically with respect to sound sequences (for a 

review see Bamiou et al., 2003). However, cytoarchitectonically, the granular 

prefrontal cortex can be readily disambiguated from the more dysgranular insula as 

part of the limbic cortex (Petrides & Pandya, 1994, 2002). Parietal cortex is generally 

regarded as being important for attention to and binding of sensory information 

(Cusack, 2005), while activity in prefrontal cortex is often associated with response 

preparation and selection (Passingham & Sakai, 2004). 

While the main aim was to study generic neural mechanisms of sound encoding 

as a function of entropy, the range of pitch sequences used included those 

approximatingf - 1 (‘one-over-f’) power spectra, which resemble many naturally 

occurring acoustic phenomena (de Coensel et al., 2003). Notably, music and speech 

display f - 1 power spectra characteristics, reflecting the relative balance of ‘surprises’ 
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(e.g. musical transitions) and predictability in such signals (Voss & Clarke, 1975, 

1978). Pertaining specifically to the signals used here falling in the range of f - 1, two 

recent electrophysiological studies demonstrated preference within primary sensory 

cortices for f - 1 signals (Garcia-Lazaro et al., 2006; Yu et al., 2005). The data did not 

demonstrate any ‘tuning’ to particular values of exponent in HG (no main effect of 

Entropy level; Figure 5-2, Figure 5-5, and Figure 5-6). While a neuronal preference 

for particular natural sequence categories at the level of HG in humans is conceivable, 

the current studies addressed the computational and energetic demands of the 

perceptual encoding of sounds, rather than their sensory representation. 

These studies used entropy to characterise pitch sequences here, but the 

information theoretic approach could be used to characterise sequences containing 

rhythm, or more complex natural sound sequences. The hypothesised mechanism in 

PT is not a specific pitch mechanism and also predicts a similar relationship between 

information content and the encoding of more natural stimuli. In summary, the present 

data implicate PT as a neural engine within which the computational and energetic 

demands of encoding are determined by the entropy of the acoustic signal.  
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Chapter 6. HIERARCHICAL ENCODING OF GLOBAL 

AND LOCAL INFORMATION IN PITCH 

PATTERNS 

Summary 

Pitch patterns, such as melodies, consist of two structural levels: a global 

level, comprising the pattern of ups and downs, or contour; and a local level, 

comprising the precise intervals that make up this contour. An influential 

neuropsychological model suggests that these two levels of processing are 

hierarchically linked, with processing of the global structure occurring within 

the right hemisphere in advance of local processing within the left. However, 

the predictions of this model and its anatomical basis have not been tested in 

neurologically normal individuals. Study 5 used fMRI and required participants 

to listen to consecutive pitch sequences while performing a same/different 

one-back task. Sequences, when different, either preserved (local) or violated 

(global) the contour of the sequence preceding them. When the activations for 

the local and global conditions were contrasted directly, additional activation 

was seen for local processing in right planum temporale and posterior 

superior temporal sulcus (pSTS). The presence of additional activation for 

local over global processing supports the hierarchical view that the global 

structure of a pitch sequence acts as a "framework" on which the local detail 

is subsequently hung. However, the lateralisation of activation seen in the 

present study, with global processing occurring in left pSTS and local 

processing occurring bilaterally, differed from that predicted by the 

neuropsychological model. A re-examination of the individual lesion data on 

which the neuropsychological model is based revealed that the lesion data 

equally well support the laterality scheme suggested by the current data. 

While Study 5 supports the hierarchical view of local and global processing, 

there is an evident need for further research, both in patients and 

neurologically normal individuals, before an understanding of the functional 

lateralisation of local and global processing can be considered established. 
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6.1 Introduction 

Cognitive neuropsychological studies have demonstrated that pitch patterns, such as 

melodies, consist of two structural levels: the contour or pattern of ups and downs – 

synonymous with the ‘global’ level; and the precise intervals that make up this 

contour – synonymous with the ‘local’ level. Early behavioural support for this 

hierarchical model came from same/different tasks in which pairs of novel pitch 

sequences could differ at a local level, where contour is preserved, or at a global level, 

where the overall contour is violated (Dowling, 1978; Dowling & Fujitani, 1971; 

Dowling et al., 1987). Individuals can reach high levels of accuracy in the detection of 

both types of change. However, if the second sequence is shifted in overall pitch, 

individuals are unable to detect differences where the contour is preserved. The 

dependence of participants’ accuracy on the presence or absence of a change in 

contour suggests that processing of contour provides a ‘scaffold’ on which the detail 

of the precise intervals are subsequently ‘hung’ (for further behavioural evidence of 

this model, see Bartlett & Dowling, 1980; Cuddy & Cohen, 1976; Trehub et al., 

1993).  

Evidence for the neuroanatomical basis of this model has come from patient 

studies. Peretz (1990) tested patients with heterogeneous left or right hemispheric 

damage (LHD or RHD, respectively) on tasks similar to those described above. 

Deficits in the detection of differences involving a contour violation always co-existed 

with deficits in the detection of differences where the contour was preserved. In 

contrast, selective deficits in discriminating melodies that shared the same contour 

were seen without accompanying deficits in discriminating melodies that differed in 

contour. Moreover, this pattern was associated with damage to different hemispheres: 

RHD patients were worse than normal control (NC) participants for the detection of 

both types of differences, while LHD patients performed significantly better for 

contour-violated than contour-preserved differences. 

A similar pattern of results was found by Liégeois-Chauvel and colleagues 

(1998) in patients with lesions confined to the temporal lobes. Lesions to right 

posterior temporal cortex were associated with deficits in the detection of contour-

preserved and contour-violated differences, while lesions to left posterior temporal 

cortex were associated with selective impairments for the detection of differences 



CHAPTER 6 

 138 

where the contour was preserved. Taken together, this pattern of results suggests a 

model of hierarchical co-operativity whereby contour processing precedes interval 

processing and these two stages of the hierarchy are right and left lateralised in 

posterior superior temporal cortex. However, in a study similar to Peretz (1990), 

Schuppert and colleagues (2000) confirmed the notion of a processing hierarchy in 

patients with heterogeneous cortical lesions, but the pattern of deficits did not support 

the proposed lateralisation dichotomy of global–right and local–left. Similarly, 

Zatorre (1985) found no statistically significant differences for detecting contour-

preserved or contour-violated changes in simple melodies between patients with left 

or right temporal lobe lesions. 

The neuropsychological approach in patients with brain lesions is of clear value 

in establishing the necessity of brain areas for given functions. However, several 

aspects of the approach caution against a sole reliance on lesion data to derive 

neuroanatomical models of cognitive processing. Brain lesions are rarely 

circumscribed, are heterogeneous across different patients, and may be functionally 

compensated for by other brain areas with a time-course that differs across patients. 

All these factors make assessment and interpretation of deficits challenging. Further, 

brain lesions occur within functional networks and particular damaged regions may 

not be sufficient in and of themselves to support the function, which may depend 

equally on other regions within a broader network. Functional imaging offers a 

valuable complement to the neuropsychological approach, providing a way to 

highlight the network of areas associated with the normal performance of a given 

function. The two approaches, when used in combination, provide a useful constraint 

on the interpretation of results and the formulation of new theories. 

The present study used fMRI to test the model of Peretz and colleagues 

(Liégeois-Chauvel et al., 1998; Peretz, 1990) in neurologically normal individuals. 

The paradigm was modelled on the same/different tasks used in behavioural (Bartlett 

& Dowling, 1980; Cuddy & Cohen, 1976; Dowling, 1978; Trehub et al., 1993) and 

patient studies (Liégeois-Chauvel et al., 1998; Peretz, 1990), but adapted to a one-

back format which was more suited to fMRI. In addition, pitches were used that were 

drawn from a non-musical scale, so that findings could be generalised outside the 

purely musical domain (Foxton et al., 2003; Patel & Iversen, 2008). The two 
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predictions arising from the model were tested: that the processing of pitch sequences 

involves a hierarchy (from a global to a local level) and that a different degree of 

lateralisation is seen for each of these stages (global – right; local – left). 

 

 

6.2 Materials and Methods  

6.2.1 Participants 

Twenty four participants were recruited for the study. All participants (10 male, 14 

female) reported an absence of any hearing or neurological disorder and gave their 

informed consent. The study was approved by the National NHS Research Ethics 

Committee. 

 

6.2.2 Stimuli and Experimental Procedure 

Since it was the intention to investigate local and global levels of auditory processing 

at a generic level, and not only in music, the pitches were drawn from a set of 

frequencies that does not typically appear in combination in the Western musical 

tradition. Ten pitches, equally spaced in logarithmic steps, were taken from a two-

octave range (120-480 Hz) (see also Chapter 5). Each pitch corresponded to a series 

of 30 harmonics with a trapezoidal spectral envelope, and a rise and decay time of 20 

ms and 30 ms, respectively. Sounds were created digitally at a 44.1 kHz sampling rate 

and 16 bit resolution using Matlab (www.mathworks.com). A pitch sequence 

consisted of four 300 ms long pitches, amounting to a duration of 1.2 seconds per 

sequence. Each trial was made up of four pitch sequences separated by an inter-

sequence interval of 800 ms. There were two experimental trial types: Local and 

Global (Figure 6-1). For both local and global trials, consecutive pitch sequences were 

the same (Lsame or Gsame) or different (Ldiff or Gdiff), with equal probability. In the 

Local trials, consecutive sequences, when different, had a pitch change at either the 

second or third element of the sequence with the constraint that this change did not 

alter the contour. Correct performance depended on perceiving a difference in the 
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exact pitches or intervals in the two sequences. In the Global trials, consecutive 

sequences, when different, contained a pitch change brought about by reversing the 

order of the second and third elements, which always resulted in a difference in 

contour. Correct performance depended upon the perception of a difference in 

contour, in addition to any difference in the exact pitches or intervals in the two 

sequences. Participants performed a one-back task by pressing a key beneath their 

index or middle finger to indicate that the current sequence was either the same or 

different to the previous. Participants were trained on each trial type outside the 

scanner, to a criterion level of 80%. During scanning, their performance was recorded 

and analyzed off-line for accuracy. In addition to Local and Global trials, there were 

also Silent trials comprising a period of silence matched to the duration of the other 

trial types. Participants performed two experimental sessions in which the three trial 

types: Local, Global and Silence were pseudo-randomly intermixed, with 64 instances 

for each of the two sessions. 

 

6.2.3 fMRI protocol and analysis 

Gradient weighted echo planar images (EPI) (see Section 2.3.1) were acquired on a 

1.5 Tesla Siemens Sonata system (Erlangen, Germany) using a sparse imaging 

protocol (repetition time 12.5 seconds), in order to temporally separate the scanner 

noise and the experimental sounds (Edmister et al., 1999; Hall et al., 1999) (see 

Section 2.4). A total of 48, 4mm axial slices were acquired, with an in-plane 

resolution of 3 x 3 mm. 192 brain volumes were acquired for each participant across 

the two sessions (64 for each condition). A high resolution T1 weighted structural 

image (1 x 1 x 1.5mm) was also obtained. During scanning, stimuli were presented 

using Cogent (www.vislab.ucl.ac.uk/Cogent) and delivered via an external sound card 

(www.edirol.com) at a sound pressure level of 70 dB over a custom built electrostatic 

system based on KossTM headphones. 

Imaging data were processed and analysed using Statistical Parametric Mapping 

software (SPM5, www.fil.ion.ucl.ac.uk/spm) (see also Sections 2.5-2.6). Scans from 

each participant were realigned to the first image of the time series and unwarped, 

spatially normalised to standard stereotactic space (Friston et al., 1995a) and 

smoothed with an isotropic Gaussian kernel of 10 mm full-width-at-half-maximum. 
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Population-level inferences were made through a two-stage procedure. First, the 

data from each participant were analysed within the context of the general linear 

model (Friston et al., 1995b). Pitch sequences were categorised according to 

condition: Local Same (Lsame), Local Different (Ldiff), Global Same (Gsame) and 

Global Different (Gdiff) (Figure 6-1). Note that Lsame and Gsame sequences were 

identical and that the only difference was the context in which they were presented, 

either in a Local or a Global trial. Hence they were modelled separately to take 

account of potential ‘cognitive set’ effects. Each sequence was modelled as a short 

event of 1.2 seconds duration and was convolved with a haemodynamic response 

function (Figure 6-2). The first sequence of each trial was not modelled explicitly, 

since it was neither the same nor different. This approach explicitly models variance 

due to whether a given pitch sequence was same or different. From this model, 

parameter estimates for each condition were derived. Planned contrasts were applied 

to assess differences in activation between the conditions, resulting in a contrast 

image. These contrast images were used in a second level random effects analysis. 

For each contrast of interest, a one-sample t-test was performed to derive statistical 

parametric maps (SPMs). Since the focus was on areas with an a priori prediction, i.e. 

in auditory cortex, SPMs were thresholded at p < 0.001 (uncorrected for multiple 

comparisons across the brain). 
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Figure 6-2 Schematic of the experimental design and modelled haemodynamic response 

functions (hrf’s). The figure is similar to Figure 6-1; the four pitch sequences are depicted 

as four stimulus blocks (green, red, blue, cyan; respectively), while the two black boxes 

represent the time of the volume acquisition. Various haemodynamic response functions 

for the different permutations are plotted. For example, a trial in which the second and 

fourth sequence were Ldiff sequences, would lead to the green dashed hrf (labelled ‘2+4’). 

The dashed vertical line represents the onset of the reference time window at which the 

BOLD signal is sampled. 

 

 

6.3 Results 

6.3.1 Behavioural results 

Twenty-four neurologically normal participants underwent behavioural testing. Four 

participants who showed a difference in accuracy of more than 10% between the 

Local and Global conditions were excluded, to avoid confounding the interpretation 

of the imaging findings by differential performance between the Local and Global 

conditions. Mean correct performance in the scanner for these 20 participants did not 

differ between Local (91.98%) and Global (93.15%) conditions (paired samples t-test, 

t19 = -1.17, p > 0.1) and was significantly above chance (50%) (one-sample t-test, t19 = 

28.07 and t19 = 39.12, both p < 0.001, for Local and Global conditions, respectively). 
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6.3.2 Effects of processing contour-preserved and contour-violated 

differences 

Activation for Lsame and Gsame sequences did not differ from another, ruling out a 

potential ‘cognitive set’ effect, and these two conditions were therefore pooled as 

Same. In order to assess separately areas that are involved in the processing of local 

differences and global differences, the following contrasts were performed; Local: 

([Ldiff – Same]) and Global: ([Gdiff – Same]). Local revealed bilateral activation in 

pSTS, while Global was lateralised to the left pSTS, even at a reduced statistical 

threshold of p < 0.05 (Figure 6-3; see also Figure 6-4 and Table 1). 

 

 

 

Figure 6-3 Main effects for Local and Global. Activations for the Local ([Ldiff – Same]) 

(red) and Global ([Gdiff – Same]) (blue) contrasts superimposed on a tilted (pitch: -0.5 

radians) normalised average structural scan covering STS. Activations are thresholded at p 

< 0.005 (uncorrected), for display purposes. Plots show the BOLD signal at local maxima in 

left and right pSTS. See also Figure 6-4. 
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Figure 6-4 Main effects for Local and Global (p < 0.05). Same as Figure 6-3, thresholded 

at p < 0.05, uncorrected for multiple comparisons. Note that Global does not reveal any 

activation in right pSTS. 

 

 

Table 6-1 MNI coordinates of local maxima. Stereotactic coordinates for the three 

contrasts Local, Global, and Local – Global. 

Contrast x y z t-value 
                     62 -52  4 4.31 

-68 -36 -8 4.00 
-68 -40 -8 3.92 

Local  [Ldiff - Same] 

-58 -36  0 3.65 
                   -60 -36 -2 3.94 Global  [Gdiff - Same] 

-54 -44  0 3.48 
                    68 -46  4 5.03 

 60 -30 -2 4.98 Local - Global  [Ldiff - Gdiff] 
 62 -22  8 4.75 

 

 

In order to test whether the activation patterns for these contrasts (Local and Global) 

were significantly lateralised, formal tests of lateralisation were performed (see also 

Section 3.2.4). A set of the original realigned and unwarped images and a set of 

‘flipped’ left-right realigned and unwarped images were normalised to a symmetrical 
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template and subsequently smoothed before the statistical analysis. To test for 

statistical differences between the left and right hemispheres for each contrast (Local 

and Global), a voxel-by-voxel pairwise t-test between the original and the flipped 

images was then performed. 

These tests of lateralisation confirmed that no areas showed any lateralisation 

for Local, while Global was significantly lateralised to the left pSTS (Figure 6-5). 

 

 

              

Figure 6-5 Results for the lateralisation test of (left) Local ([Ldiff – Same]) for original – 

flipped scans, and (right) Global ([Gdiff – Same]) for original – flipped scans. 

 

 

6.3.3 Comparison of Local and Global Processing 

It was examined whether the processing of local differences (contour-preserved) 

versus global differences (contour-violated) resulted in a distinct activation pattern via 

the contrasts Local – Global ([Ldiff – Gdiff]) and Global – Local ([Gdiff – Ldiff]). 

These contrasts directly compared activations corresponding to the detection of a 

contour-preserved difference versus a contour-violated difference and allowed to test 

for a hierarchical relation between these two processes. Local – Global revealed 

activations in the pSTS and planum temporale (PT) on the right, while there were no 

significant differences for the Global – Local contrast (Figure 6-6, see also Table 1). 
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A formal test of lateralisation confirmed these findings, showing right lateralised 

activations in pSTS and PT for Local – Global (Figure 6-7, see also Figure 6-4). 

 

 

 

Figure 6-6 Activations for the Local – Global ([Ldiff – Gdiff]) contrast. The results are 

superimposed on coronal sections of participants’ normalised average structural scan. 

Plots show the BOLD signal at local maxima in right PT (top right) and pSTS (bottom right). 
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Figure 6-7 Results for the lateralisation test of Local - Global ([Ldiff – Gdiff]) for original – 

flipped scans. 

 

 

 

6.4 Discussion 

The aim of this study was to test both aspects of the model put forward by Peretz and 

colleagues (Liégeois-Chauvel et al., 1998; Peretz, 1990) which holds that the 

processing of pitch sequences involves a hierarchy (from global processing to local 

processing) and differential hemispheric lateralisation of these stages (global – right; 

local – left). The results of the present study confirm the hierarchy predicted by the 

model: a direct comparison of activation for the detection of a contour-preserved 

versus a contour-violated difference revealed greater activation for processing 

contour-preserved differences. No areas were more activated for processing of a 

contour-violated difference compared with a contour-preserved difference. The 

presence of additional activation for contour-preserved differences over and above 

those for contour-violated differences is consistent with a processing hierarchy in 

which local processing requires additional neural resources compared with global 

processing. However, these results contrast with the lateralisation account of the 
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model proposed by Peretz and colleagues (Liégeois-Chauvel et al., 1998; Peretz, 

1990): rather than demonstrating an association of global and local processing with 

the right and left hemispheres respectively, processing of change at the global level 

was lateralised to the left posterior STS, while processing of change at the local level 

engaged bilateral posterior STS. The location of these activations is congruent with 

results in Liégeois-Chauvel and colleagues (1998), where damage to the posterior part 

of the superior temporal lobe (STL) was more detrimental for performance than 

anterior STL damage. 

The processing hierarchy demonstrated here accords with cognitive 

neuropsychological and lesion-based evidence, and can be conceptualised as a fast 

serial search strategy whereby the first pitch sequence is encoded and provides a 

reference for the comparison of each of the constituent events of the second sequence. 

In such a scheme, incoming events are compared with the corresponding event in the 

first sequence, initially for contour direction (global) and then for the precise interval 

information (local). If a difference is detected in contour, the search is terminated, 

otherwise the search process continues at the interval level. While the temporal 

resolution of fMRI is insufficient to provide direct support for this serial model, data 

including faster reaction times as well as earlier and greater event-related potentials to 

contour violations compared with contour-preserved differences provide strong 

evidence for such a serial search strategy (Schiavetto et al., 1999; Trainor et al., 1999; 

Trainor et al., 2002). 

The results concerning hemispheric lateralisation of local and global processing 

are at first more difficult to reconcile with lesion data and the predictions of the model 

by Peretz and colleagues which suggest a pattern of laterality such that local 

processing occurs within the left hemisphere and global processing within the right 

(Liégeois-Chauvel et al., 1998; Peretz, 1990). However, as mentioned in the 

Introduction to Study 5 (Section 6.1), other neuropsychological studies (Schuppert et 

al., 2000; Zatorre, 1985) did not support this hemispheric lateralisation account. 

Further, a close examination of the neuropsychological studies to date urges a more 

circumspect interpretation. Two of these studies (Peretz, 1990; Schuppert et al., 2000) 

used unconventional cut-offs for defining impaired performance (the worst score and 

the mean score of the normal control (NC) groups, respectively), increasing the 
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likelihood of false positive results. In the study of Peretz (1990), although at a group 

level there was a pattern of deficits suggestive of a right –global; left – local 

dissociation, only five out of ten of the RHD patients had genuine global deficits 

(performance below cut-off), and only three out of ten of the LHD patients had 

genuine selective local deficits. Equally, in Liégeois-Chauvel and colleagues (1998), 

where lesion locations were confined to temporal cortex, three out of five patients 

with damage to right posterior temporal cortex had global deficits and one out of three 

patients with damage to left posterior temporal cortex had selective local deficits. 

Taken together, this more detailed picture suggest that the lateralisation scheme 

proposed by Peretz and colleagues (Liégeois-Chauvel et al., 1998; Peretz, 1990) can 

only partially account for the pattern of deficits observed in these patients. 

It is suggest that the processing scheme suggested by the current data (global – 

left; local – bilateral) can account equally well for the pattern of results reported in 

previously published neuropsychological cases (Liégeois-Chauvel et al., 1998; Peretz, 

1990; Schuppert et al., 2000; Zatorre, 1985). For example, in Liégeois-Chauvel and 

colleagues (1998), two out of five cases with right posterior temporal lesions showed 

either no deficit for local and global tasks or selective deficits in the local task alone, 

while two out of three patients with left posterior temporal cortex lesions were below 

cut-off for both local and global tasks. Furthermore, while LHD patients in Peretz 

(1990) were better at global than local tasks, they nevertheless performed significantly 

worse than NC on both tasks. 

The concept of local and global signal properties and the notion of their 

respective hemispheric lateralisation is not unique to pitch sequences or melodies, but 

also has a long tradition in vision research (for reviews, see Hellige, 1996; Hübner & 

Volberg, 2005). The defining characteristics of local and global stimulus properties as 

used in vision (e.g. Martin, 1979; Navon, 1977) are that (i) one is embedded within 

the other (local within global) and that (ii) both are orthogonal. In this way, local 

stimulus properties can be arranged to yield global stimulus properties, while both can 

be manipulated independently. In vision, the distinct processing of local and global 

stimulus properties likely reflects different spatial frequency filters (Robertson, 1996; 

Shulman et al., 1986). 
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Recently, the representation of local and global stimulus properties as in Study 

5 has been questioned for not reflecting the characteristic of orthogonality between 

local and global stimulus properties (Justus & List, 2005; List & Justus, 2007; List et 

al., 2007; Sanders & Poeppel, 2007). These authors argue that a global violation in a 

pitch pattern also entails a local violation; this argument assumes that a pitch interval 

is not represented in terms of its absolute size, but rather together with its direction 

(e.g. a major third would be represented as an ascending major third or descending 

major third and not as a major third irrespective of its direction).  

The original studies (Dowling, 1978; Dowling & Fujitani, 1971; Dowling et al., 

1987) conceived of the ‘ups’ and ‘downs’ of the global contour of melodies in terms 

of ‘+’ and ‘-’, while the intervals were denoted in semitones with absolute integers. 

For example, a simple melody such as Frère Jacques could then be described at the 

global level as ‘+ + - 0 + + -’, and at the local level as ‘2 2 4 0 2 2 4’; in this 

conceptualisation, the global structure can indeed be modified independently from the 

local level simply by substituting ‘+’ and ‘-’. However, previous studies (including 

Study 5) did not control the absolute interval size (i.e. presumably maintaining the 

same local level) when introducing a global violation. Furthermore, a ‘+2’ (ascending 

major second) pitch interval and a ‘-2’ (descending major second) interval are 

unlikely to be perceived as similar (Russo & Thompson, 2005). In contrast, with 

respect to music theory, it is the relative inversion of intervals rather than the absolute 

inversion that relates musical intervals: for example, an ascending major third is more 

closely related to its inverse, a descending minor sixth, than to a descending major 

third (Hindemith, 1940; Schönberg, 1911). 

The current definition of local and global stimulus properties was originally 

motivated to capture two aspects of musical, or melody, information processing 

(Dowling, 1978; Dowling & Fujitani, 1971; Dowling et al., 1987). In fact, the early 

studies generally referred to the two levels as ‘contour’ and ‘pitch’ (or ‘pitch 

interval’), instead of local and global levels. It is conceivable that the 

conceptualisation of local and global stimulus properties as applied in these studies is 

specific to structural information in the musical domain instead of in the auditory 

domain in general (however, see Foxton et al., 2003; Patel & Iversen, 2008). In this 

case, a terminology using ‘contour’ and ‘pitch interval’ might be more appropriate, so 
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as to avoid possibly misleading comparisons with local and global stimulus properties 

used in vision research. While Study 5 based its stimulus manipulations on previous 

approaches derived from musical melodies (Dowling, 1978; Dowling & Fujitani, 

1971; Dowling et al., 1987), the 10-split octave and relatively short and generic pitch 

patterns (four pitches per pitch sequence) used in the study attempted to afford a more 

general interpretation of the results. For example, global and local levels in prosodic 

patterns have also been shown to be important aspects of speech perception (Foxton et 

al., 2003; Patel & Iversen, 2008). It is possible, however, that the use of a 10-split 

octave and the one-back task design could account for the differences from the model 

put forward by Peretz and colleagues (Liégeois-Chauvel et al., 1998; Peretz, 1990), 

which is based on longer melodies and individual pairwise comparisons. Further 

studies are required to determine to what extent these experimental design 

manipulations might account for the different lateralisation results. 

On a methodological note, the experimental design of this study (one-back task) 

allowed the presentation of two different stimulus types (Lsame and Ldiff, or Gsame 

and Gdiff) within one TR of a sparse imaging acquisition protocol (Figure 6-1 and 

Figure 6-2). This is the first time this approach has been implemented and it should 

lead to important advances and improved flexibility for sparse imaging protocols. 

Critically, the experimental design made it possible to investigate Local and Global 

processing as such (i.e. compared to a neutral baseline, Same), as opposed to with 

respect to each other (Ldiff versus Gdiff). This is an important advancement, since 

previous investigations have only been able to directly compare local versus global 

violations, but not their individual contributions. 

Thus, while studies investigating local and global levels of auditory processing 

have generally confirmed the hierarchical account, evidence for hemispheric 

lateralisation of these levels has been more diverse and elusive (Fujioka et al., 2004; 

Liégeois-Chauvel et al., 1998; Peretz, 1990; Schiavetto et al., 1999; Schuppert et al., 

2000; Trainor et al., 1999; Trainor et al., 2002). Clearly, further research using 

complementary experimental approaches and techniques is needed to refine the 

question of a lateralised hierarchy and to determine which parameters are relevant in 

driving the effect. In particular, there is a need for functional imaging studies of 
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patients with focal brain lesions to examine directly the distribution of processing 

following brain damage.  

In conclusion, the present study is the first to demonstrate the neural bases of 

local and global levels of processing in pitch patterns in neurologically normal 

participants. The results show that local and global processing within pitch sequences 

differentially engage substrates in the posterior STS and that additional neural 

resources are required in the right posterior STS and PT for local pitch change 

processing. The findings support the notion of a pitch pattern processing hierarchy 

that is likely to be generic rather than specific to music. Furthermore, the data suggest 

an alternative lateralisation scheme at these two levels of analysis which, while 

different to the traditionally held view, is equally consistent with the 

neuropsychological data from which this previous model is derived. The present study 

urges caution in accepting the traditional view of lateralisation, based on 

neuropsychological studies of local and global pitch sequence processing, and 

emphasizes the need for further research, both with patients and neurologically 

normal individuals, before an understanding of the functional lateralisation of local 

and global pitch sequence processing can be considered established.  
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Chapter 7. GENERAL DISCUSSION 

This thesis investigated cortical correlates of processing higher-order statistical 

properties in complex acoustic signals. Specifically, it addressed fundamental cortical 

mechanisms for representing and segregating individual auditory objects, as well as 

grouped objects or object streams, by parametrically controlling higher-order 

statistical properties of acoustic signals in order to characterise auditory objects. The 

parametric nature of the synthesised stimuli, together with an information theoretic 

approach, enabled a detailed investigation of generic processes underlying auditory 

perception in complex and dynamically changing acoustic environments. 

In particular, Study 1 (Chapter 3) assessed different temporal integration 

windows in auditory cortex by parametrically varying the spectrotemporal correlation 

in complex acoustic spectra. The results demonstrated increasing activity in auditory 

association cortex and a right-hemispheric lateralisation in STS as a function of 

spectrotemporal correlation, or, equivalently, increasing time windows. 

Study 2 (Chapter 4) investigated distinct mechanisms for segregating and 

representing auditory objects by parametrically varying the spectrotemporal 

coherence of complex ‘auditory textures’. The results revealed a cortical processing 

hierarchy, in which primary and association areas detect statistical transitions at object 

boundaries, while the subsequent precise representation of the object properties 

occurs only later in auditory association cortex. 

Studies 3 and 4 (Chapter 5) took an information theoretic approach to auditory 

encoding. By parametrically varying the entropy in complex pitch sequences, it was 

shown that the planum temporale of human auditory association cortex acts as a 

‘computational hub’ (Griffiths & Warren, 2002), in which the encoding of stimuli 

with redundant information requires fewer computational resources than the encoding 

of those with high information content. Further, the results suggest a ‘sparse’ or 

‘predictive’ coding scheme in PT that compresses the neural code such that 

subsequent stages of processing (e.g. the retrieval of pitch sequences) are independent 

of information entropy. 
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Finally, the fifth study (Chapter 6) investigated the cortical representation of 

two fundamental computational mechanisms for processing pitch transitions: 

encoding the direction (up/down) and precise size of intervals. The respective global 

and local levels (Dowling, 1978; Dowling & Fujitani, 1971; Dowling et al., 1987) of 

pitch pattern processing were shown to be hierarchically linked, such that processing 

of local information requires additional resources over and above those required for 

processing global information. 

The information theoretic approach employed in this thesis to control 

systematically statistical properties of acoustic signals conceptualises the brain as a 

dynamic system, which is constantly producing and testing hypotheses so as to 

optimise its coding (Friston, 2003a, 2005). Within this framework, cortical 

mechanisms compare the sensory input with pre-existing templates or priors and 

optimise or update the priors if they do not align with the sensory input (reducing the 

‘prediction error’ between sensory information and priors). The hypothesis put 

forward here is that the statistical properties of generic acoustic signals provide a 

critical means by which the auditory system encodes the signal and optimises its 

coding based on such Bayesian principles. While the stimuli employed in this thesis 

used abstract sounds to characterise auditory objects or object streams, it is 

hypothesised that the underlying mechanisms are generic, and that they are applied to 

a variety of sound types, including those with semantic associations (e.g. voices or 

phonemes, musical instruments, environmental sounds, to name just a few). Indeed, it 

is argued that semantic associations are the result of repeated associations of certain 

spectrotemporal characteristics or statistical signal properties and thus represent 

special auditory objects that arise from these principles. 

The following Sections 7.1–7.4 discuss the main implications and directions for 

future research raised by each of the five studies. Finally, a concluding section 

(Section 7.5) outlines a possible framework for processing statistical properties in a 

complex environment, informed by the results of this thesis. 
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7.1 The length of analysis time windows in auditory cortex increases 

from primary to association cortex 

Acoustic signals evolve over time and thus the auditory system has adapted to process 

information over a range of temporal windows simultaneously. The first study of this 

thesis (Chapter 3) investigated anatomically distinct representations for different time 

windows by parametrically controlling the spectrotemporal correlation in complex 

acoustic spectra. Such a stimulus manipulation requires the auditory system to apply 

different temporal windows so as to integrate the higher-order statistical properties 

across multiple frequency bands. 

An important advantage of the approach taken in Study 1 is the explicit control 

of spectrotemporal correlation in a stimulus whose complexity approaches that of 

ethological sounds. Previous investigations (Boemio et al., 2005; Schönwiesner et al., 

2005; Zatorre & Belin, 2001) manipulated the segment length in multi-segment 

sounds and thus introduced an arguably more artificial and more predictable stimulus 

manipulation. In contrast, the stimulus in Study 1 controlled the spectrotemporal 

correlation of the spectrum as a whole, mirroring continuous processes in naturally 

occurring sounds (instead of introducing abrupt segment boundaries). The different 

time windows within the stimulus emerged as a function of spectrotemporal 

correlation across multiple frequency bands; this is a fundamental property of natural 

sounds, in which the physical attributes of the sound-producing ‘instrument’ (e.g. the 

vocal folds or a violin) determine that adjacent time frames within a sound generally 

show a certain degree of correlation (instead of sudden changes). 

However, an important exception to this rule are segment boundaries in speech 

sounds, such as those introduced by plosives, or stop consonants (Rogers, 2000). It 

could be argued that the previous investigations addressed processes more relevant to 

these speech attributes, while the stimulus in Study 1 was more suited to addressing 

longer time windows. Nevertheless, the probabilistic nature introduced by 

spectrotemporal correlation is a significant improvement compared to previous 

approaches (which used a more deterministic manipulation, with a fixed segment 

length for each parametric level), since it required the tracking of higher-level 

statistical properties so as to integrate complex sounds across multiple time windows. 
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Further studies will need to go beyond the description of different analysis time 

windows to elucidating the inner dynamics of the underlying network. The main 

reason for choosing a continuous acquisition paradigm in Study 1, despite its obvious 

caveats (see Section 2.4), was to achieve a better temporal resolution that would 

enable or facilitate a causal investigation of haemodynamic responses using DCM 

(Friston et al., 2003; Penny et al., 2004). DCM enables a more detailed investigation 

of hierarchical contributions between primary, secondary, and association cortex. For 

example, the model suggested by Boemio and colleagues (2005) posits that 

hemispheric lateralisations only emerge later in the auditory hierarchy (at the level of 

the STS); this is supported by the results in Study 1. Preliminary investigations of a 

dynamic network underlying the results on Study 1 using DCM have so far not 

yielded convincing results. 

Future studies will also need to investigate the degree to which the differential 

representation of analysis time windows is pre-attentive (or intrinsic, Giraud et al., 

2007), or whether and to what degree it is influenced by attention. Studies to date 

have either had no experimental task (Boemio et al., 2005; Schönwiesner et al., 2005; 

Zatorre & Belin, 2001) or a stimulus irrelevant task (Study 1). It is conceivable that 

hemispheric preferences for different time windows emerge to a greater extent when 

they are task-relevant. For example, participants could be asked to rate the overall 

correlation within sounds such as those used in Study 1, while being scanned. DCM 

could then also address effects of attentional modulation within this network. 

A necessary further step towards elucidating different temporal analysis 

windows in auditory cortex is the use of methodologies that have a far superior 

temporal resolution than fMRI (e.g. EEG or MEG). Luo & Poeppel (2007) 

demonstrated a sliding analysis window of roughly 200 ms (likely corresponding to 

theta band activity of 4-8 Hz) which was right-lateralised and that emerged when 

noise-vocoded speech was intelligible (see also Ahissar et al., 2001; Elhilali et al., 

2003). Similarly, future investigations will need to study in detail such differentiations 

with respect to separate analysis time windows: one hypothesis would be that the 

power spectrum reveals entrainment effects to the different levels of spectrotemporal 

correlation. 
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Whether or not temporal analysis windows do indeed show a relative 

lateralisation preference (if not a selective preference) is currently still a matter of 

debate, given the often contradictory results between studies (Boemio et al., 2005; 

Hickok & Poeppel, 2007; Schönwiesner et al., 2005; Zatorre & Belin, 2001; Zatorre 

& Gandour, 2008). Furthermore, it is important to note that such lateralisation 

differences would reflect relative sensitivities instead of a categorical difference 

between left and right auditory cortex. For example, in the study by Obleser and 

colleagues (2008), the results show relatively small but nevertheless generally 

consistent lateralisation preferences for temporal and spectral resolution (especially in 

the case of a rightwards lateralisation of spectral resolution), in accordance with the 

spectrotemporal trade-off theory (Zatorre et al., 2002a). However, in Obleser and 

colleagues (2008), the right hemisphere seemed more sensitive to the spectral and 

temporal variations in the stimuli, showing a weaker activation for high temporal 

resolution in particular, while the left hemisphere across participants did not show a 

clear preference for temporal resolution. 

Here it is hypothesised that relative lateralisation preferences are an emergent 

phenomenon of a hierarchical processing scheme in which the length of analysis time 

windows increases as one progresses along the hierarchy in auditory cortex. Studies 

using simple sinusoidal amplitude modulations with different modulation rates (and 

thus different temporal windows) support this notion, demonstrating increasing 

sensitivity for decreasing modulation rates in the auditory system as one progresses 

from subcortical to higher order auditory cortical structures, but no lateralisation 

preferences (Giraud et al., 2000; Harms & Melcher, 2002). This view of the 

representation of increasing temporal windows as one progresses in the cortical 

hierarchy would also be in agreement with recent conceptualisations in visual and 

theoretical neuroscience (Hasson et al., 2008; Kiebel et al., 2008), and would thus 

provide a general, modality-independent framework for processing temporal 

information in cortex. 
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7.2 The segregation and representation of auditory objects are 

hierarchically linked in auditory cortex 

Study 2 (Chapter 4) of this thesis investigated the segregation and integration of 

complex auditory objects and demonstrated a hierarchically organised network: the 

detection of auditory object boundaries based on transitions in higher-order statistical 

properties occurred earlier in the auditory hierarchy (primary and association auditory 

cortex) than the precise representation of auditory object properties (auditory 

association cortex). Importantly, these results revealed generic mechanisms 

underlying auditory object analysis, since the use of synthetic stimuli avoided 

semantic associations, suggesting that the auditory system abstracts statistical rules 

governing areas of frequency-time space; this provides a generic principle for 

auditory object analysis. At the same time, the experimental manipulation does not 

claim to address perceptual mechanisms for all auditory object classes; rather, it 

highlights one general acoustic dimension (spectrotemporal coherence) along which 

auditory objects can be differentiated and identified. 

Study 2 is the first to address such a differentiation between auditory object 

segregation and representation. In fact, it can be argued that previous studies that 

employed sparse imaging designs and contrasted a condition in which the parameter 

of interest changed between different instantiations within a trial, with a condition in 

which that parameter remained fixed, are confounded by this change in the stimulus 

(e.g. von Kriegstein et al., 2006; Warren et al., 2005a; Zatorre et al., 2004; pilot study 

to Study 2). From first principles, these designs reveal cortical substrates for the 

detection of changes in the parameter of interest, but not a cortical substrate for the 

parameter of interest as such. However, this does not exclude the possibility that these 

processes partially overlap, as was the case in Study 2 (in PT and TPJ). 

The hierarchical organisation scheme proposed as a result of the data is based 

on anatomical evidence, given that processing in primary auditory cortex precedes 

that in auditory association cortex (the underlying temporal processes are likely below 

the resolution of fMRI). The anatomical scheme is in agreement with Schönwiesner 

and colleagues (2007), who found a similar and convergent pattern of results to 

parametrically increasing sound duration deviants in a mismatch paradigm (using both 

EEG and fMRI): the initial detection of deviants was reflected in primary auditory 
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cortex, while later stages of processing, e.g. a more precise spectrotemporal analysis 

and attentional resource allocation, engaged auditory association cortex and prefrontal 

cortex, respectively. Furthermore, there is evidence that such a processing stream 

holds across modalities, as texture boundary detection and scene segmentation in the 

visual system reveal a similar hierarchical organisation (Scholte et al., 2008). Both 

studies (Scholte et al., 2008; Schönwiesner et al., 2007) report convergent findings 

from EEG and fMRI across modalities; similarly, a more precise understanding of the 

temporal hierarchy within the network demonstrated in study presented here will need 

to be addressed using methodologies with considerably higher temporal resolution, 

such as EEG or MEG. 

A future complementary approach should investigate in more detail the 

functional organisation of this hierarchical network, for example using DCM (Friston 

et al., 2003; Penny et al., 2004). Such work would investigate the degree to which 

change detection in primary auditory cortex modulates the subsequent representation 

of auditory objects in auditory association cortex (e.g. Schönwiesner et al., 2007). 

This bottom-up conceptualisation is based on the shorter response latencies in primary 

cortices reported in studies that had sufficient temporal resolution (Scholte et al., 

2008; Schönwiesner et al., 2007); however, an alternative conceptualisation would 

predict top-down modulations of primary cortex, in which higher order areas provide 

rapid feedback. Yet another possibility is that recurrent feedback loops within primary 

cortex exist, similar to lateral or balanced inhibition for frequency selectivity (Wehr & 

Zador, 2003; Wu et al., 2008), which in turn lead to differentiated feedforward 

propagations. This latter network architecture is perhaps least likely, given the 

complexity of the stimulus at hand and the need to integrate the spectrotemporal 

features across a broad frequency range and considerable time scales. Nevertheless, in 

DCM the Bayesian approach allows an explicit decision as to which of these models 

best fits the data and is thus a logical next step in delineating the network underlying 

auditory object segregation and integration. 

A number of studies using electrophysiological recordings have demonstrated 

neurons in the lateral belt area of rhesus monkeys (Tian & Rauschecker, 2004) and 

posterior auditory field in cats (Tian & Rauschecker, 1998) that are sensitive to the 

direction of FM ramps, with a slight preference for ramps increasing in frequency. 
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Such a preference was also visible in lateral HG in Study 2. The ‘auditory textures’ 

stimulus developed in this thesis should contribute to this line of research in non-

human primates, adding a critical new stimulus that moves beyond single FM ramps 

to the representation of statistical signal properties in a complex integrated whole. 

While Study 2 controlled the spectrotemporal statistics of FM ramps to create 

auditory objects, alternative approaches are conceivable that focus on AM or 

combinations of AM and FM (Luo et al., 2006) to generalise the present findings to 

other object classes. For example, it would be interesting to investigate whether a 

similar hierarchical network would be involved in detecting changes in 

spectrotemporal correlation as in Study 1, and to what degree this would be 

influenced by different analysis time windows in anatomically distinct regions of 

auditory cortex. It is important to note that defining auditory objects by their 

spectrotemporal statistics is a generic approach that lends itself to a whole range of 

other objects and object classes, thereby paving the way for further research 

investigating principles of auditory object analysis. 

Finally, the experimental design in Study 2 was critical to disambiguating two 

fundamental perceptual processes in auditory scene analysis: the representation and 

segregation of auditory objects. By combining a parametric (different levels) and 

factorial (change vs. absolute coherence) approach in one design, it was possible to 

dissociate these two processes. This is an important innovation, since comparing 

changing object sequences with fixed object sequences cannot tease apart processes 

that signal a change in auditory objects from those that represent the statistical object 

properties as such (see for example the Pilot study to Study 2). 

 

 

7.3 The planum temporale (PT) acts as a ‘computational hub’ 

In their review of the function of the planum temporale (PT) of human auditory 

association cortex, Griffiths and Warren (2002) proposed that the PT acts as a 

‘computational hub’, which compares incoming acoustic information to pre-existing 

templates and subsequently gates its output along the auditory hierarchy for further 
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processing.  This model predicts an increased computational demand within PT as the 

information carried in the acoustic signal increases. 

Studies 3 and 4 explicitly tested and demonstrated the dependency of PT 

activation on signal entropy. The results showed that the function of PT is different 

from that of preceding (e.g. HG and subcortical structures IC and MGB) and 

subsequent (e.g. IFG, DLPFC) processing stages; while the neural code of earlier 

structures is both more faithful and redundant (Chechik et al., 2006), that of 

subsequent structures reflects a neural code that is independent of the original signal 

entropy. This is an intriguing result, as it highlights the computational power achieved 

in PT and suggests a division of labour that allows subsequent structures to represent 

different aspects associated with the acoustic signal (e.g. retrieving the signal). 

It could be argued that the results reflect a perceptual (in contrast to sensory) 

representation of pitch interval size instead of signal entropy. The use of IRN pitch in 

Study 4 explicitly addressed this issue and made a sensory explanation of the results 

unlikely. Nevertheless, it is possible that the increased activation in PT reflects the 

processing of interval size (and not entropy as such), since interval size increased with 

entropy. Future investigations will need to address this potential confound. For 

example, one could use a more limited number of pitches and base pitch intervals on 

specified conditional probability matrices such that large intervals are just as likely as 

small intervals and would therefore convey an equal amount of information. The 

information theoretic properties would be based on specific pitch transition 

probabilities, irrespective of their size. However, one disadvantage of this approach 

would be a stimulus that is more deterministic than a stimulus derived from pitch 

sequences of specified random-phase power spectra. Furthermore, such pitch 

transition dependencies would first need to be established or learned, introducing 

additional and possibly confounding factors such as inter-subject learning rate 

variability. 

Studies 3 and 4 controlled the signal entropy by means of pitch; future 

investigations should address whether the encoding mechanism in PT generalises to 

other sound features, such as rhythm or timbre. For example, just as the fractal time 

series derived from the IFFT’s of specific power spectra was used to define pitch 

height, it could also be used to control the time interval between pitches (or any type 
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of sound), the number of harmonics of a complex sound (i.e. timbre variation) or 

spatial position. A further step would then be to test whether and in what form these 

different manipulations interact (e.g. pitch entropy with rhythm entropy). 

One aspect that requires additional investigation is to which degree the effect in 

PT is specific to encoding and to what extent subsequent processes (such as retrieval) 

are indeed independent of the entropy in the original signal. Behavioural results in 

Study 4 did not reveal any effect of signal entropy on performance, and this was 

reflected in the functional imaging data, since no area showed an increase in 

activation as a function of signal entropy during the retrieval and comparison stage. It 

was proposed that PT acts as a computational hub that uses neural mechanisms such 

as ‘sparse’ (DeWeese & Zador, 2006; Friston, 2003a; Olshausen & Field, 2004) or 

‘predictive’ (Baldeweg, 2006; Friston, 2005; von Kriegstein & Giraud, 2006) coding 

to compress the neural input and filter out redundancies (Chechik et al., 2006); the 

output for subsequent processing stages (e.g. in presumptive ‘what’ and ‘where’ 

pathways) would then be less dependent on signal entropy. This hypothesis will need 

to be tested further using electrophysiological recordings and computational models. 

 

 

7.4 Local and global information in pitch patterns is hierarchically 

organised 

Study 5 (Chapter 6) tested both the hierarchical and lateralisation accounts for 

processing local and global information in pitch patterns in neurologically normal 

participants using fMRI. The results supported a hierarchy between local and global 

processing stages such that the processing of local violations recruited additional 

resources (in right PT and right posterior STS) over and above those needed for 

processing global violations. However, the lateralisation revealed by the results did 

not confirm a strict local–left and global–right dichotomy; rather, while the processing 

of local violations recruited both left and right STS, global violations were lateralised 

towards left STS. As outlined in the Discussion of Study 5, this lateralisation account 

is in fact equally well supported by a close examination of the pattern of brain lesions 
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and perceptual deficits reported in previous patient studies upon which the local–left 

and global–right dichotomy was based (Liégeois-Chauvel et al., 1998; Peretz, 1990). 

Importantly, previous designs were only able to make direct comparisons 

between violations of local and global levels. In other words, these designs only 

allowed a description of local processing with respect to global processing, and, 

similarly, a description of global processing with respect to local processing. In 

contrast, the one-back design in Study 5 enabled a selective investigation of the 

processing of local violations as such and global violations as such, without a direct 

comparison between the two. These were revealed in STS (bilaterally for processing 

local violations, left-lateralised for processing global violations). The results suggest a 

processing hierarchy, in which individual pitches are encoded in secondary cortex 

(Bendor & Wang, 2005; Griffiths, 2005; Griffiths et al., 2001; Patterson et al., 2002; 

Penagos et al., 2004), before the representation of higher-order properties such as 

pitch interval contour and pitch interval size is achieved in higher order auditory 

association cortex. At the same time, the different experimental design (one-back 

design versus individual pair-wise comparisons) might account for the differences 

seen between previous studies and Study 5. One-back designs require a greater 

working memory load than individual pairwise comparisons, and it is possible that 

this contributed at least in part to the divergence in results. However, it is important to 

note that the pattern of results in Study 5 is equally well supported by the 

neuropsychological data from which the classical local-left; global-right dissociation 

was derived. 

Study 5 did not properly control for potentially confounding effects of absolute 

pitch, since the stimuli did not transpose consecutive pitch patterns (this was also the 

case in Liégeois-Chauvel et al., 1998; Peretz, 1990, who used melody pairs). The use 

of transposed pitch patterns is considered to be a less confounded test of the 

representation of global and local structural levels. However, the representation of the 

local level in particular is significantly diminished without absolute pitch information 

(Dowling et al., 1987), introducing a potential task difficulty confound. 

Study 5 was the first to probe the precise anatomical network participating in 

local and global pitch pattern analyses in the normal functioning brain (as opposed to 

patients with focal brain lesions), but there is an evident need for further studies. 
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These will need to further investigate the presumed hemispheric lateralisation scheme 

for processing local and global structural levels in pitch patterns and its conceptual 

usefulness. Similar to Study 1, it is conceivable that lateralisation preferences are at 

best relative or secondary effects of another hierarchical processing scheme. 

Similarly, it seems unlikely that the brain would have developed an absolute division 

of labour with respect to left and right auditory cortices. In this respect, the current 

experimental approach, which allowed a separate investigation of the cortical 

substrates processing local or global violations, gains importance, as direct 

comparisons between local and global processing emphasise their (potentially small) 

differences over their (potentially substantial) commonalities. 

 

 

7.5 Key future problems and implications for auditory neuroscience 

The experimental work of this thesis investigated how higher-level statistical signal 

properties are represented in the auditory cortex. While there is considerable 

knowledge of relatively simple, deterministic sound features, this thesis focussed on 

complex, non-deterministic sound features that can nevertheless be controlled within 

probabilistic constraints. The generic nature of the synthetic stimuli, combined with a 

parametric approach to control various instantiations of statistical signal properties, 

ensured that the mechanisms addressed allow inferences about a variety of acoustic 

signals and are not dependent on semantic associations. 

Critically, the acoustic stimuli employed in this thesis required mechanisms that 

evaluate the probabilistic properties of complex spectrotemporal signals. Within a 

Bayesian framework of probabilistic brain function (Friston, 2003a, 2005), sensory 

cortex evaluates the statistical properties of the signal so as to optimise its coding and 

make inferences based on previous experience or priors. The studies of this thesis 

support this view in the auditory domain, demonstrating neural mechanisms that 

encode, and in the case of PT compress, the information content of a variety of 

acoustic signals so as to facilitate subsequent processing stages. Furthermore, the 

results support the view of a hierarchical organisation of auditory perception that 
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allows dynamic processing including top-down modulations or the application of 

priors as in empirical Bayes (Friston, 2003a, 2005). 

Despite the various types of acoustic stimuli used in each study, all studies 

revealed involvement of PT as part of a network comprising distinct parts of auditory 

cortex. This is in accord with the hypothesis that PT forms a generic ‘computational 

hub’ that is not selective to a specific acoustic feature, but instead encodes and 

evaluates complex statistical properties based on experience-dependent templates 

(Griffiths & Warren, 2002). Such a process then facilitates further computations in 

subsequent structures along the auditory hierarchy, such as STS and anterior STG, 

whose increased temporal analysis windows lend themselves to complex integrative 

processes. Finally, task and attention related processes in frontal cortex likely provide 

top-down modulatory input. 

Constructing a more precise description of how PT achieves these computations 

remains a key challenge for research in auditory neuroscience. Up to now, the 

‘computational hub’ model (Griffiths & Warren, 2002) has been primarily a 

descriptive hypothesis without explicit quantitative predictions amenable to 

computational models that consider neuronal dynamics and connectivity. Future 

collaborations between auditory and computational neuroscience may build a 

computational model of how PT achieves the compression of the neural code to 

facilitate subsequent processing. Such a model would be very useful to guide future 

research in auditory neuroscience at the level of stimulus complexity employed in this 

thesis. 

One challenge to a computational model of PT function is its precise 

cytoarchitectonic, and consequently functional, parcellation. The PT occupies a large 

area posterior to the first transverse gyrus of Heschl (HG), and there are indications 

that it might divide into at least two subareas, one more rostral and one more caudal 

(or even additional gyri, Sweet et al., 2005), of which the caudal part extends into the 

TPJ and is especially expanded compared to non-human primates (Galaburda & 

Sanides, 1980). Furthermore, the inter-individual variability is considerable (for 

example, in Westbury et al., 1999, no individual voxel in PT was labelled with a 

probability of more than 65%), complicating any generalisations. 
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In functional imaging studies, this inter-individual variability is sometimes 

addressed by using fixed-effects statistics (see Section 2.6.3); indeed, random-effects 

statistics are relatively conservative and thereby increase the chance of falsely 

accepting the null hypothesis in a randomly selected sample of participants. Some 

studies (e.g. Patterson et al., 2002) have made the case that fixed-effects statistics are 

more appropriate for auditory association cortex in particular, which shows a more 

pronounced inter-individual variability than primary and secondary auditory cortices. 

However, this is controversial since it increases the likelihood of false positives and 

one must show that the fixed-effects group results are not driven by a few outliers in 

the group. The novelty of the complex probabilistic stimuli employed in this thesis 

called for the more conservative approach (i.e. random-effects statistics). 

In order to achieve a more explicit model of PT function, a necessary 

complement to neuroimaging techniques (such as fMRI, EEG, MEG) are invasive 

electrophysiological recordings, which can probe directly and with high temporal and 

spatial precision the degree to which PT compresses the incoming information, for 

example via ‘sparse’ (DeWeese & Zador, 2006; Friston, 2003a; Olshausen & Field, 

2004) or ‘predictive’ (Baldeweg, 2006; Friston, 2005; von Kriegstein & Giraud, 

2006) coding. However, in humans these are restricted mainly to pre-operative 

patients (Brugge et al., 2003; 2008; Howard et al., 1996; Liégeois-Chauvel et al., 

2001; 2004; 1994; 1991). Unfortunately, the significance of electrophysiological 

recordings from non-human primates, while undoubted with respect to primary and 

secondary auditory cortices, is limited with respect to auditory association cortex, as it 

is not clear whether PT has a homologue in non-human primates (Hackett, 2007). At 

the same time, the complex acoustic ecology of non-human primates is comparable to 

the sounds employed in this thesis, suggesting that auditory cortex of non-human 

primates might achieve similar computations, albeit possibly at a different stage in the 

auditory hierarchy (indeed, the generic approach of this thesis is readily applicable to 

non-human primates, enabling important direct comparisons between species with 

identical stimuli). Since the precise intra-cortical connectivity (e.g. between HG ant 

PT through the injection of immunohistochemical tracers) cannot be determined 

experimentally in humans (with the possible exception of novel non-invasive 

techniques such as DTI, Upadhyay et al., 2007, 2008), and because of the uncertainty 

whether PT has a homologue in non-human primates, a computationally sophisticated 
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model of PT function that takes into account its functional architecture with other 

cortical regions remains challenging. 

The studies in this thesis aimed to further our understanding of how statistical 

signal properties are represented in the auditory cortex of humans. The results 

demonstrated distinct hierarchical mechanisms for auditory object analysis and 

segregation. Nevertheless, many questions remain, and just how these mechanisms 

are realised at the neuronal level remains a key challenge for future research using a 

variety of methodologies, models and species (Griffiths et al., 2004). Thus, regardless 

of whether one’s philosophy inclines one to view the multitude of outstanding 

questions in auditory neuroscience as a glass half filled or half empty, this thesis 

hopes to have contributed a few drops towards filling the glass (without 

simultaneously extending the volume of the glass itself or instead merely causing 

waves). 
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