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ABSTRACT

The work carried out in this doctoral thesis investigated the septation of
statistical sound properties in human auditory cortex. It addresae#dy aspects in
auditory neuroscience: the representation of different anatymis windows in
auditory cortex; mechanisms for the analysis and segregati@uditory objects;
information-theoretic constraints on pitch sequence processing; arahahesis of
local and global pitch patterns. The majority of the studies ereglay parametric
design in which the statistical properties of a single acopstiameter were altered

along a continuum, while keeping other sound properties fixed.

The thesis is divided into four parts. Part | (Chapter 1) ex@srprinciples of
anatomical and functional organisation that constrain the proldddressed. Part I
(Chapter 2) introduces approaches to digital stimulus designjgesof functional
magnetic resonance imaging (fMRI), and the analysis oflftiéa. Part 11l (Chapters
3-6) reports five experimental studies. Study 1 controlled thectspiemporal
correlation in complex acoustic spectra and showed that actimityauiditory
association cortex increases as a function of spectrotempmralation. Study 2
demonstrated a functional hierarchy of the representation of oauddbject
boundaries and object salience. Studies 3 and 4 investigated laneic@anisms for
encoding entropy in pitch sequences and showed that the planum tenagtsas a
computational hub, requiring more computational resources for segueitbehigh
entropy than for those with high redundancy. Study 5 provided evidence for a
hierarchical organisation of local and global pitch pattern prawggsineurologically
normal participants. Finally, Part IV (Chapter 7) concludah wigeneral discussion

of the results and future perspectives.
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GENERAL INTRODUCTION

Chapter 1. GENERAL INTRODUCTION

The acoustic environment comprises a multitude of simultanandsconsecutive
acoustic events. The human auditory system has evolved reneadedabilities to
decode the acoustic information within this complex heterophony wjhrant ease.
For example, when engaging in a conversation with a friend ateption while
multiple other people speak simultaneously and music playseitbackground, we
are able to follow the conversation while ignoring the intanfgecoustic information

from the other sound sources (the so-called ‘cocktail p#egte Cherry, 1953).

This thesis addresses fundamental mechanisms of auditoryppences such
complex and dynamically changing acoustic environments. Specifithiy thesis
investigates cortical principles for segregating and grouplegents within the
auditory scene (Bregman, 1990), both at the level of individual ayddbjects
(Griffiths & Warren, 2004) and at the level of grouped objectintied streams of
objects. Such auditory scene analysis requires the auditorymsysteassess the
statistical properties of the acoustic signal so as to exthase spectrotemporal
patterns of the signal that comprise the relevant acoustiodésah the signal (e.g. the
conversation with the friend), while simultaneously filtering atrelevant or
redundant information (e.g. the background noise emanating fromesheof the

room).

From an information-theoretic perspective, the auditory Bysteeds to assess
those statistical properties that contribute relevant infoomatbmprising an auditory
object and optimise its coding of these features. At the senee the neural code
representing auditory objects must be robust enough to allow onehansame
auditory object to be recognised irrespective of differentamigttions (e.g.
recognising the vowela/ irrespective of whether it is pronounced with or without
background noise or by different speakers). The auditory systenh fonalser
establish object boundary properties, which allow it to detectsitions between
auditory objects, and thus segregate between auditory objquiget in time when

those properties change.



CHAPTER1

The information-theoretic approach regards the brain as a iBayegerence
generator, which forms predictions from the statistical pt@=eof sensory input and
evaluates these predictions based on stored, experience-degentsates or priors
(Friston, 2003a, 2005). Within this framework, the auditory systemoistantly
evaluating the incoming signal with respect to its statispoaperties, from which it
forms predictions that are the basis for detecting transitiorthe auditory scene

when the signal properties change.

There is a considerable body of work investigating the princfplegrocessing
basic and relatively deterministic acoustic signal propertyes, the knowledge
obtained from these studies, while valuable, is necessamitet by the simplicity of
the experimental stimuli used. What is needed is an apptbathoffers a bridge
between the representation of highly controlled, deterministiw;lével acoustic
features, and the highly complex nature of the real acoustimament, while still
maintaining control over the experimental stimulus manipulationis. thesis aims to
provide such an approach by taking advantage of the computational povieblava
for signal processing and digital sound synthesis in order teeageatric sounds that
approximate a level of complexity that is comparable to many aibtusccurring
sounds. The use of synthetic sounds allows the precise manipulaticzoatrol of
sophisticated higher-order statistical signal properties tihat clharacteristic of
complex ethological sounds. At the same time, the generic rafttine experimental
stimuli allows inferences with respect to general principfesuditory processing that

likely apply to a variety of sound classes such as speethisic.

Such higher-order signal properties are likely represented ah@etvdevels of
the auditory system such as auditory cortex. The methodology used in all
experimental studies of this work, functional magnetic resonanaging (fMRI),
allows the investigation of acoustic information processirteaheural network level
across multiple levels of the auditory system, including aongditortex, with high
spatial (on the order of a few cubic millimetres) and considersdshporal (on the
order of a couple seconds) resolution (Logothetis, 2008). It isfthhereell suited to
investigating the neural substrates underlying the processinghafrfogder statistical

properties in acoustic signals.



GENERAL INTRODUCTION

The aim of the General Introduction is to provide a conceptual Wwankefor
the studies carried out in this thesis. In particular, followirgief overview of the
functional anatomy of the auditory cortex (Section 1.1), thee@s Introduction will
review experimental approaches towards elucidating the encadingtatistical
properties in acoustic signals (Section 1.2), before introdudiagkey problems

addressed in the experimental work of this thesis (Sect®)n 1

1.1 Functional anatomy of the auditory system

The acoustic information that reaches the cochlea is processadseries of brain
structures that form the ascending auditory pathway. Bri#fy,mechano-electrical
transduction of the travelling sound wave into neuronal signals isngtisbed by the
hair cells on the basilar membrane of the inner ear (Hudspé8g8). Once the
incoming mechanical signal has been transduced into an electmicahsignal, it is
then projected along the auditory nerve, which terminates in dblelear nucleus
(CN). Most fibres leaving the CN cross the midline and coneeystic information
to auditory structures in the contralateral hemisphere, \ahdlmall number continue
ipsilaterally. The major subcortical structures of the auglisystem are the superior
olivary complex (SOC) and the nucleus of the lateral lemnifdusof the pons, the
inferior colliculus (IC) of the midbrain, and the medial geniailaddy (MGB) of the
thalamus. Neurons of the MGB then project to primary and secondditpry areas

within the temporal lobe of the cortex cerebrum.

The peripheral and subcortical auditory structures set up impoudastraints
or principles for subsequent stages of auditory information processinf, as the
orderly series of frequency bandpass filters instantiateleobdsilar membrane (von
Békésy, 1960), or binaural analysis mechanisms in SOC arttatCallow sound
localisation via interaural time and level differences (I&Bd ILD, respectively;
McAlpine, 2005). Furthermore, far from being mere relay statiorthe ascending
auditory pathway, subcortical structures already perform afisigmi amount of
information processing of complex acoustic features (Miller al, 2001;
Rauschecker, 1998; Winer & Lee, 2007).
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Nevertheless, the processing of higher-order statistical piegpean acoustic
signals, which is the focus of the present body of work, depends amvtilieement
of auditory cortex for accurate and efficient representatitve fbllowing sections
therefore provide in more detail a review of the anatomaaanisation and
parcellation of auditory cortex (Sections 1.1.1 and 1.1&prb discussing some of
its basic functional properties (Sections 1.1.3 to 1.1.pgcffically, the following
overview takes an approach that focuses on certain charactiE#gures of auditory
cortex (e.g. macroanatomy, cytoarchitecture, or functional n@gton) that are
preserved across a variety of species, instead of aespmsmtred approach. As an
organisational principle, within each section these propertikéfinat be presented for
non-human primates and then for humans; further, the general satyamiproceeds
from the description of primary areas to higher-level ar&his approach enables a
direct comparison between species and highlights the phylogenetigesoe of

generic principles of auditory cortex organisation (Hacem7).

1.1.1 Macroscopic organisation of the auditory cortex

Auditory cortex covers much of the superior temporal plane (STPheofemporal
lobe and is conventionally defined as the region that receivgsiigry afferents
from ventral or dorsal MGB (Hackett, 2007). Allometric measuets (surface area
and volume) of the superior temporal gyrus (STG) reveal thatcieases about
threefold each time in the progression from squirrel monkey, macaqokey, and
chimpanzee, to human (Rilling & Seligman, 2002) (Figure 1-1jad¢h most of the
increase in humans can be attributed to a relative expansiardibbrgt association
cortex in the temporal lobe. In all primates, a signifigamtion of auditory cortex is
‘hidden’ beneath the Sylvian fissure (or lateral sulcus, L$ioim-human primates),

separating the parietal and temporal lobes, on the dorso-rsadide of the STP.
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Figure 1-1  Schematic drawings of the cerebral cortex and the location of auditory cortex
in several primates. Each panel depicts a lateral view of the left hemisphere and a coronal
section through right auditory cortex. (a) Marmoset monkey (Callithric jaccus jaccus); (b)
squirrel monkey (Saimiri squireus); (c) macaque monkey (Macaca mulatta); (d)
chimpanzee (Pan troglodytes); (e) human (Homo sapiens). The core area is shaded in dark
grey. MB, medial belt region; LB, lateral belt region; PB, parabelt region; ?, region not
defined; LS, lateral sulcus; STS, superior temporal sulcus. Scale bars: 5 mm (coronal
sections); 10 mm (lateral views). Modified from Hackett (2007) with permission from

Elsevier.

The general organisation of the auditory cortex of non-human gsnsicommonly
divided into core, belt, and parabelt regions. Three primary $dbfierm the core of
auditory cortex, while about seven to eight surrounding belt subfigldssome two
to three parabelt subfields have been identified (Haekedl, 2001; Hacketet al,

1998a) (Figure 1-2). The core area consists of a primary afdagAd more anterior
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rostral (R) and rostrotemporal (RT) areas. The belt and paraiggdns are labelled
according to their anatomical location (e.g. anterolaterh), ok caudomedial, CM;

see Figure 1-2).

Figure 1-2  Schematic diagram of monkey auditory cortex illustrated for the macaque
monkey. (a) Lateral view of the superior temporal gyrus (STG) with rostral (RPB) and
caudal (CPB) parabelt areas. (b) Virtual cut to reveal auditory areas lying on the lower bank
of the lateral sulcus (LS). (c) Close-up of (b), also revealing the flow of information (arrows)
and tonotopic gradients (white letters H, high frequency, and L, low frequency). The three
areas with dark shading represent the core of auditory cortex (auditory area 1, Al; rostral,
R; rostrotemporal, RT); surrounding it are the eight belt regions in light shading
(caudomedial, CM; caudolateral, CL; middle medial, MM; middle lateral, ML; rostromedial,
RM; anterolateral, AL; rostrotemporal medial, RTM; rostrotemporal lateral, RTL). The
rostral (RPB) and caudal (CBP) parabelt areas on the STG are shown in medium shading.
Scale bar: 10 mm. From Hackett (2007) with permission from Elsevier.
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In humans, core, belt, and parabelt regions likely correspond toanyrim
secondary, and association cortex, respectively, comprsange 30 functionally
distinct subfields (Hackett, 2007); however, the precise e@&fion of the subfields
varies considerably between researchers (Figure 1-3). Arclynithese regions
encompass the first transverse gyrus of Heschl, or Hesphills (HG), the posterior
lying planum temporale (PT), and the STG. These correspond to Bmodaraas
(BA) 41, 42, 52, and 22 (Brodmann, 1909). Areas in the superiorotamngulcus
(STS) and, more rostrally towards the planum polare (PRheatemporal pole, are

considered auditory related cortex (Hackett, 2007).

Figure 1-3  Parcellation of the human superior temporal cortex by different investigators.
Schematic figures are standardised and normalised (the STG is not visible). Dark shading
indicates the core region, medium shading indicates belt regions, and light shading
indicates parabelt and possibly other regions. Posterior is up, lateral is right. For detailed
description of the abbreviations see the original publications: (a) Brodmann (1909); (b) von
Economo & Koskinas (1925) and von Economo & Horn (1930); (c) Beck (1928); (d)
Galaburda & Sanides (1980); (e) Rivier & Clarke (1997) and Wallace et al. (2002); (f)
Morosan et al. (2001; 2005). Modified from Hackett (2007) with permission from Elsevier.

In humans and chimpanzees, some individuals display a duplicatedoH&ifin one
or both hemispheres (this feature is absent in all other non-hurmaaitesi Hacketet
al., 2001; Leonarcet al, 1998; Rademacheat al, 1993; Sweeet al, 2005). In the

7
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case of a single HG, primary auditory cortex covers abouthirtdstof HG and does
not extend past its anterior and sulcal boundaries. Where thareluplicate HG,
primary auditory cortex usually spans parts of both gyri and itbbermediate

transverse sulcus.

Perhaps the best described human auditory association area i$, then@
posterolateral to HG on the STP; it is thought to contain muléiptétory subfields
(Rivier & Clarke, 1997; Wallacet al, 2002), which might explain its participation in
a multitude of perceptual processes (Griffiths & Warren, 200)e gross
morphology of PT varies considerably (Westbatyl, 1999), and often shows a left-
hemispheric asymmetry (Dorsaint-Piegteal, 2006; Eckeret al, 2006; Foundast
al., 1994; Steinmetet al, 1989); however, such demonstration might in part reflect
the stereotactic method used (Westbeinal, 1999). This has traditionally led to the
conclusion that PT forms a special role in language processing (Feetrala 1994);
more recent findings suggest, however, that there is no dogespondence between
leftward asymmetry and language function (Dorsaint-Pietriad, 2006; Eckeret al,
2006).

Thus, both in non-human and human primates, auditory cortex displays a
parcellation into three anatomically distinct regions (core, &edt parabelt in non-
human primates; primary, secondary, and association cortex in hurkrevedver,
while homologies between different species are often assurapdcially between
non-human primates and humans), this has only been shown convincinglyrfarypr
auditory cortex; homologies of higher-order auditory cortex are praiiemand
certain areas of human association cortex may not have homolwgyesnates
(Hackettet al, 2001).

1.1.2 Cytoarchitecture

The core area of monkey auditory cortex and its three subfieldeydiapdistinct
cytoarchitecture. The core region as a whole exhibits typézdlfes of primary- or

koniocortex, as it contains a dense layer IV, indicating promitfedamocortical
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connections (Galaburda & Pandya, 1983). Furthermore, the core regims s
prominently for the calcium binding protein parvalbumin, is higghanular and
myelinated, and displays high metabolic activity (Josteal, 1995; Kaas & Hackett,
2000; Morelet al, 1993; Pandya, 1995). These features are most pronounced for area
Al and least present for area RT (Hacladttal, 1998a). The narrow band of belt
subfields surrounding the core displays reduced cell density and @lwepacing,
larger pyramidal cells and a less dense myelination thacotieeareas (Hackett al,
1998a). The parabelt region stains less darkly than core anedielhs and displays
other features that distinguish parabelt from core and belt, suchtemnger tendency
to be arranged in vertical columns and an even lower cell gefsickettet al,
1998a). A subdivision of the parabelt region into two subfields ihaebus from
cytoarchitectonic markers, but rather is based on corticceabrtionnectivity: the
rostral parabelt (RPB) subfield shares connections within riteriar temporal lobe
and ventrolateral frontal cortex, while the caudal parabeRBjCsubfield projects
caudally to the temporo-parietal junction and dorsolateral fraatdéx (Hackettet
al., 1999; Kaas & Hackett, 2000; Romanskial, 1999).

The human homologue of the core in non-human primates can be similarly
divided into three subfields: one primary area in central HG, wadé&condary areas
in medial and anterolateral HG (Morosetnal, 2001; Rademachet al, 2001); these
are sometimes denoted as areas Tel.0, Tel.1l, and esp&ctively (Morosaet al,
2001; Morosanet al, 2005) (see also Figure 1-3). The cytoarchitectonic
characteristics of these three subfields are similar toetlimoghe core of monkey
auditory cortex: all areas display prominent cytochrome oxidasealpamin and
acetylcholinesterase staining in cortical layers llic aidClarke & Rivier, 1998;
Hackettet al, 2001; Hacketiet al, 1998a; Rivier & Clarke, 1997; Wallac al,
2002); a high density of small cells is particularly marked iredgyl and 1V; and
layers V and VI are relatively thick (Galaburda & Sanid&830; Wallaceet al,
2002). The secondary subfields in medial and lateral HG show |ove¢abolic
activity in layer IV than the primary subfield (Wallacet al, 2002). The
cytoarchitectonic characteristics of human auditory associatigions are less well
defined, rendering comparisons to belt and parabelt regions in ncemhpimates
problematic (Hackett, 2007).
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While cytoarchitectonic studies of post-mortem brains have signific
advanced our understanding of auditory cortex, the results carpavile limited
functional information, for example on whether or not a given newam i‘auditory
neuron’; this caveat is sometimes circumvented by exposing Brioneertain sounds
or behavioural tasks before sacrifice and subsequent mapping o€hleistical
markers (Bajoet al, 2007; Kaczmarek & Robertson, 2002; Overath, 2004b;
Rauscheckeet al, 1997). Immunohistochemistry using antero- and retrograde tracers
can inform about the macroscopic organisational connectivity ketweortical
subfields. These studies highlight both hierarchical and parabekegsing streams

that show a considerable degree of preservation betweeespeci

In monkeys, the core region receives its main afferents frentral MGB,
while projecting to ipsilateral and contralateral core regamwell as to adjacent belt
regions (Hackettet al, 1998b; Kaas & Hackett, 2000; Moret al, 1993). The
ipsilateral connections between core and belt are relatdeitospatial positions, in
that anatomically neighbouring areas share stronger connectionsidéhaadjacent
areas (Galaburda & Pandya, 1983; Haclettal, 1998a; Morelet al, 1993). The
dorsal nucleus of the MGB provides the main afferents to belietddfwhich share
multiple interconnections with each other as well as with dbee and parabelt
regions. Parabelt subfields receive subcortical input frardtrsal MGB (as well as
strong afferents from medial pulvinar, suprageniculate andal® nuclei, see
Hackettet al, 1998b) and are mainly indirectly connected to the core visabedis.
Direct connections from the core to parabelt areas are alififackettet al, 1998a).
Parabelt areas project to destinations in frontal, pariatal, temporal cortex for

higher-level stages of processing.

In humans, similar processing schemes have been suggestemaging
techniques that track the diffusion in white matter axon bundles ¢alate intrinsic
functional connectivity between brain areas (Behrens & Johansen-R605;
Behrenset al, 2003). These studies confirm the general functional arahigsetithin
human auditory cortex (Upadhyay al, 2007; Upadhyagt al, 2008).

10
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1.1.3 Electrophysiology

A large part of our understanding of the functional characterisfitise subfields of
auditory cortex is derived from invasive techniques applied irhuonan primates,
such as electrophysiology and lesion studies. These techniques provalengxc
spatial and temporal (in the case of electrophysiology) resolution ared deen
invaluable in advancing auditory neuroscience. The most common neaseare
peristimulus response histograms (reflecting the firing céta certain neuron or
neural ensemble to a specific stimulus), and response synchronigatil@cting
temporal distributions of neural discharges). However, cautionesded when
interpreting electrophysiological responses obtained in anaesthetismals, since
these can differ from those of awake and behaving animhblk recordings in non-
anaesthetised animals can also address effects of attentnmthllation (Wang,
2000). In rare cases, depth-electrode and surface grid meastgarae be acquired
in humans during the pre-surgical evaluation of patients with tatseecepilepsy (e.g.
Howard et al, 1996; Howardet al, 2000; Liégeois-Chauvedt al, 2001; Liégeois-
Chauvelet al, 1994; Liégeois-Chauvelt al, 1991).

A general processing scheme in auditory cortex based on electapbicsl
data across species including humans suggests that core and podsilaied®
encode basic spectral and temporal acoustic features, befwee complex signal
attributes are processed in parabelt regions (Rauschecker, E89&xample, core
areas respond more vigorously to pure sounds (or sinusoids), whikntdgbarabelt
areas respond more strongly to complex sounds (rather than to sijusidialso to
species-specific vocalisations (Rauschecker, 1998; Rausché&ck&ran, 2000;
Rauscheckeet al, 1995; Rauschecket al, 1997; Tianet al, 2001). Neurons in the
core regions show narrow frequency tuning to pure tones, while thrgtproperties
of belt and parabelt neurons are increasingly broad (Bendor & W20083;
Rauscheckeet al, 1995; Rauscheckest al, 1997). However, ablation of primary
auditory cortex in rhesus monkeys does not abolish neuronal pure toitevisens
(Heffner & Heffner, 1986), suggesting an additional pargilelcessing stream that
likely relies on the preservation of an orderly frequency enco@ieg Section 1.1.4

below) in lower structures of the auditory system.
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The hierarchical flow of information in auditory cortex is alsoftored by the
latency of neuronal responses. In humans, responses in mediaghrH@&ready be
recorded approximately 20 ms post stimulus onset, while centrddiznal HG show
slightly longer latencies at 50 ms and 60-75 ms, respectigaly,responses in PT
peak at around 100 ms (Brugge al, 2008; Liégeois-Chauvedt al, 1994; 1991).
Similarly, in some cases direct intracortical stimulatdrprimary auditory cortex in
posteromedial HG can produce propagated responses towards ld@rand
association areas (Brugge al, 2003; Howarcet al, 2000; Liégeois-Chauvadt al,
1994; 1991). Response latencies increase and become more \asiahkprogresses
to structures in the STG and parietal operculum (Celesia, 199@eois-Chauvekt
al., 1991); there is also evidence for back-projections from STEBX¢Bruggeet al,
2003), likely facilitating neuronal modulation of afferent sign&esponses in the
hemisphere contralateral to acoustic stimulation are strahgarthose to ipsilateral
stimulation, while binaural stimulation leads to the strohgesponse amplitudes
(Liégeois-Chauvett al, 1991).

1.1.4 Tonotopy

One prominent principle of auditory functional organisation across expésithe
conservation of an orderly frequency representation, or tonotopy, througteut
ascending auditory pathway. This is similar to comparable anzdbrarganising
schemes in other senses (e.g. retinotopy in vision). Théan®al characteristics of
the basilar membrane set up a series of frequency bandpass fitt which high
frequencies lead to maximum movement excursions at the bases lshikr
frequencies are represented towards the apex of the basitabrane (von Békésy,
1960) (Figure 1-4). This mapping of frequency to spatial positioraiatained in the
auditory nerve leading to the cochlear nucleus, and is subsequentgreed in
subcortical structures including IC (e.g. Schreiner & Langh@88, 1997) as well as
the ventral MGB as part of the lemniscal ascending auditory paththe non-
lemniscal dorsal MGB does not show a tonotopic organisation; feviaw, see
Jones, 2003). This is usually demonstrated via best or cemjreefreies (BF or CF,

respectively) using electrophysiological recordings. Sevsudifields of auditory
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cortex each show tonotopic frequency gradients (see below); in fhet
demonstration of frequency gradient reversals often functions ienee for

boundaries between functionally different cortical fields.
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Figure 1-4  Frequency responses at six different positions along the basilar membrane
(see von Békésy, 1960). Distance is indicated with respect to the apex of the basilar

membrane. Reprinted from Moore (1999) with permission from Macmillan Publishers Ltd.

Tonotopic gradients in primary auditory cortex have been shown variaty of
species with electrophysiological and immunohistochemical tratiraies, as well as
a post hoc combination of the two (Joetsal, 2004; Kosakkt al, 1997; Morelet al,
1993). In monkeys, the primary field Al displays a tonotopic gradient figim to
low as one moves from rostral to caudal; subfield R shows aseevenotopic
gradient, while the tonotopic gradient in RT is similar to Alg@Fe 1-2). At least
four of the approximately seven belt areas (namely AL, CL, ®M) also display a
tonotopic organisation (Kosaket al, 1997; Morelet al, 1993). However, the
frequency tuning in belt areas is generally broader than thoseuobns in the core
areas (Kosaket al, 1997; Recanzonet al, 2000).

Recently, tonotopic frequency gradient reversals have beenrrmedfiin
monkey auditory cortex using fMRI (Petk@t al, 2006). In humans, Talavage and
colleagues (2000) demonstrated eight distinct tonotopic fieltb®tim HG and STG.
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However, an alternative account posits that areas with pedfenigh or low
frequencies represent distinct fields instead of represethtengorder between fields
(Schoénwiesneet al, 2002). One potentially significant caveat of many functiona
imaging studies investigating tonotopic organisation in the audisystem is,
however, that stimuli are generally presented at a leveblf@mve their response
threshold (Kim & Molnar, 1979), thereby blurring the frequency sefiéctiand

spatial resolution of the results.

For frequencies up to a certain frequency cut-off (which vieéseen species,
see Joriet al, 2004; Middlebrooks, 2008), responses in the auditory nerve are phase-
locked to the instantaneous phase of the motion produced on the basilbrame.
Frequencies above this threshold are likely represented viaeaaga firing pattern
across different neurons, where each neuron might only fire atl@ple of the
frequency. Both midbrain and cortical structures retain theseiples of frequency
representation, although the upper frequency limit for phase-lockéngeases with

each step along the ascending auditory pathway @ais 2004).

1.1.5 Spectrotemporal receptive fields

A further approach to elucidating functional characteristicsuditary cortex is the
description of spectrotemporal receptive field (STRF) promemieauditory neurons
(Aertsen & Johannesma, 1981a, b; Eggernedratl, 1981). The STRF of a neuron is
represented by a kernel (in the spectral and temporal dorah)describes its
dynamic spectrotemporal response properties (Cedttal, 2008). STRFs can
therefore be regarded as representing characteristic coropatgiroperties in single
neurons or small neuronal ensembles (Elhiledi al, 2007). Importantly, the
calculation of a neuron’s STRF reveals both excitatory and iohjbitesponse
properties in both spectral and temporal domains and thus provides antport
information beyond other descriptions, for example a neuron’s BRtasliiced in

the previous Section 1.1.4.
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Studies investigating STRF properties in the primary auditoriex of awake
ferrets demonstrated a co-existence of stability and gigsthat allows optimal
coding of acoustic features in a dynamically changing world Iglret al, 2007).
For example, while neurons display stable STRFs to certain acdeatures when
these are not behaviourally relevant, STRF properties can unpiasgtic modulation
within hours or minutes if these acoustic features becomerg¢sskant (Fritzet al,
2003; Fritzet al, 2007; Fritzet al, 2005).

In the primary auditory cortex of non-anaesthetised monkeys, STERB&es
display on-excitation as well as off-excitation or on-inhibitiohamcteristics,
providing a sophisticated and flexible neural code to integratenplex
spectrotemporal information, such as in natural sounds and specidg&spec
vocalisations (deCharmest al, 1998; Pelleg-Toiba & Wollberg, 1989; Shamma &
Symmes, 1985). Furthermore, inhibitory responses slightly lagagswgitresponses,
which opens a short time window during which neurons can initially respbuas, t
establishing an equilibrium of excitatory and inhibitory responsesallats fine-
tuning of firing precision and optimal information processing (Weh£a%or, 2003;
Zhanget al, 2003).

1.1.6 Processing streams

The above Section 1.1.3 on electrophysiological recordings in oaydiortex
discussed a processing hierarchy in which the encoded acoustie$emicrease in
complexity as one ascends in the auditory hierarchy. Thereaseaidence of two
parallel processing streams in the auditory cortex that mpréso types of auditory
information; the identity (‘what’) and spatial location (‘wher®j acoustic signals
(Kaas & Hackett, 1999; Rauschecker & Tian, 2000; Romaeiski, 1999; Tianet
al., 2001). According to this model, auditory ‘what’ information is procgssea
rostral or anterior pathway along the temporal lobe and prefrontedxcavhile
auditory ‘where’ information is processed along a dorsal route viggpmstemporal
cortex, posterior parietal lobe and frontal cortex. This orgtaigd scheme is similar

to the ‘what’ and ‘where’ pathways in vision (UngerleideH&xby, 1994).
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Anterior and caudal belt areas in the auditory cortex of rhesus n®display
differential sensitivity to the type or spatial position of apecific vocalisations,
respectively (Tiaret al, 2001). In humans, the processing scheme is now relatively
well established for the rostral ‘what’ pathway. For exam@ghatorre and colleagues
(2004) demonstrated increased activation within the upper bank ofgtiteanterior
STS as well as the right inferior frontal gyrus as a fmctf the distinctness of
auditory object identities (see also Section 1.2.1). HoweNemight be more
appropriate to conceive of relative gradients for processingt*whad ‘where’)

information instead of exclusive processing streams (Kiketchl, 2007).

Evidence for the dorsal ‘where’ pathway has proven to be more cergraly
mainly because posterior temporal cortex also responds to conspeciilisations
in addition to anterior temporal cortex (Poremdgtaal, 2004; Tianet al, 2001),
suggesting that a distinction between ‘what’ and ‘where’ infolwnanay be relative
rather than absolute. This has led some researchers to eseptresimportance of
procedural ‘how’ information in the acoustic signal to explain thectfanal
significance of a dorsal processing stream (Belin & Zatd2@€)0; Middlebrooks,
2002; Zatorreet al, 2002b). This view highlights articulatory aspects of the stimuli
used (i.e. conspecific vocalisations and speech) to explain theofrdlee dorsal
pathway (Hickok & Poeppel, 2007; Warrenal, 2005b). This is in agreement with
later conceptualisations of the original ‘where’ pathway inonighat emphasise its
functional role in visuomotor integration (Milner & Goodale, 1995;zRiatti et al,
1997).

The previous sections provided a general framework of the functinatiray
of auditory cortex, highlighting basic principles of auditory processogh as the
co-existence of serial and parallel processing streams lendepresentation of
increasingly complex acoustic features along the ascending aupitinway. These
provide a foundation for investigating more complex functional propeeiaswed

next.
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1.2 Experimental approaches to auditory cortex function

The following sections review several experimental approachedutodating the
representation of statistical signal properties within subidivisof auditory cortex.
Following a brief introduction to auditory objects (Section 1.2réyarded as the
‘building blocks’ of auditory scene analysis, the two subsequenbasatiill discuss
pitch (Section 1.2.2) and timbre (Section 1.2.3) ascatitbbject features that require
the integration of higher-order statistical properties. Subségueprocesses
underlying the grouping of linked objects will be reviewed (Section J1.2ith a

special emphasis on the extraction of statistical regisuin auditory streams.

1.2.1 Auditory object analysis

The concept and definition of auditory objects and auditory object sieadye
controversial (Griffiths & Warren, 2004; Kubovy & Van ValkenburgD20Nelken,
2004; Scholl, 2001; Scott, 2005). Griffiths and Warren (2004) propose fourgbesci
of auditory object analysis. First, auditory object analysispr@®es the processing of
information that corresponds to entities in the physical or sersmystic world.
Second, auditory object analysis requires perceptual meclatisihsegregate the
object itself from other objects and from the rest of the amoasvironment. Third,
auditory object analysis must abstract characteristic olgesgterties in order to
enable a stable representation or object identity even whenptmserties undergo
minor stochastic variations (e.g. the characteristic feataf a speaker’s voice must
be maintained irrespective of the speaker’s spatial posittanjrth, in a multimodal
world, object information should generalise across sensesasughen associating a
face with a voice. From an information theoretic perspectiShannon, 1948),
auditory object analysis requires computational mechanismsatieaboth robust
(allowing the maintenance of object identity) as well exssgive to critical acoustic

changes (allowing the detection of transitions and the sdgredmetween objects).

A slightly different conceptualisation highlights the importaéegperceptual

segregation mechanisms for auditory object analysis (Kubowa& Valkenburg,
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2001). The authors propose that the defining process of auditory oisjdadsire-
ground segregation. This posits that auditory object analybesisd on the detection
of boundaries in frequency-time space within which statisticghasi regularities
apply. This allows the integration and disambiguation of audibygcts in complex
auditory scenes. Further, Kubovy & Van Valkenburg (2001) conceive of auditor
object analysis as a hierarchical process: the output of ealdgpsical processing
stages represents basic acoustic features in the auditowy @ require grouping;
grouping in turn produces putative perceptual objects according talQaciples
(Wertheimer, 1922, 1923); in a complex auditory scene, attentipraesses
subsequently select which of the perceptual objects become,fagudt which become

(back-) ground.

In the present context, auditory objects are conceptualised inmefion
theoretic terms, such that a given auditory object is chaisederthrough its
probabilistic higher-order statistical properties; in turn, bouedabetween auditory
objects are indicated by transitions in these statisticallagties (Kubovy & Van
Valkenburg, 2001). That is, at a generic descriptive level, aydibjects are defined
in terms of their distinct statistical signal charasters, which simultaneously
distinguish them from other auditory objects (and possibly other objastes).
Statistical regularities thus provide important informationduditory scene analysis,
as they allow the perceptual organisation of the acoustic envérin(a.g. figure-
ground segregation). The focus here is on the analysis atisttcharacteristics that
are inherent in the acoustic signal; in the case of natowalds, these are represented

as abstract templates and thereby provide distinct informati@uditory objects.

The four principles proposed by Griffiths & Warren (2004) and the engpbas
figure-ground segregation (Kubovy & Van Valkenburg, 2001) together hi¢h t
conceptualisation of auditory objects as characterised bytisttigroperties provide
a general framework for experimental investigations of auditbject analysis.
However, the devil is in the detail (just as in the visuatey: Feldman, 2003).
Consider a speaker producing the vove#l should the speaker (or sound source) be
regarded as an auditory object, or the vowkltself, or the speaker’s position, or all
of them together? Griffiths & Warren (2004) argue that any hafsé object

characteristics can be regarded as an auditory object; arhesd tan define an
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auditory object based on the four basic principles. For exarimeauditory object

could be the speaker or the vowel; at the same time,cohebination of the

constituent objects could also comprise an auditory object, sitilgisual objects

and perceptual Gestalt phenomena (Wertheimer, 1922, 1923). Hisrargued that

each of the constituent objects has characteristic gtatigiroperties that can be
extracted, maintained and disambiguated according to the principleduced above

(Griffiths & Warren, 2004).

Bregman (1990) emphasised the temporal aspect of audition and sddbaste
auditory streams are the equivalent of visual objects (sept€@hl.2.4.2); in this
regard, auditory events that are grouped together or perceieedliasnct auditory
stream form an object of audition. A further view suggestsayslightly different
conceptualisation by equating auditory objects with auditory stre@han(ma,
2008). However, a direct comparison between visual and auditory ohlgects
necessarily limited by their differential reliance on spand frequency: whereas
visual objects exist in space-time (and can be static), ayditbjects exist over
frequency-time space (and are rarely static). For exantwie, different pitches
arising in the same location can be heard as distinct, Wwlédentical pitches in two
different locations will likely be perceived as a single soiKdbovy & Van
Valkenburg, 2001). Conversely, two colours emerging from the saaital location
will likely blend into one colour percept, while they will berpeived as two light

sources if they emerge from two spatial location (KubovyahWalkenburg, 2001).

These conceptualisations of auditory object analysis address twarfentdd
and complementary requirements of the auditory system, o&&arread to as
simultaneous and sequential grouping (Bregman, 1990; Carlyon, 2004; DE9&if,
Darwin & Carlyon, 1995; Griffiths & Warren, 2004). First, acaugvents must be
grouped together, for example with respect to their identitysaurce. Second,
acoustic events must be parsed or segregated, for exampleinguist between
different sound sources. At relatively short time scalesettiendamental processes
are relevant for binding together acoustic information and pencgias an entity
individual auditory objects (Griffiths & Warren, 2004); at thedkeof longer time
scales, they are relevant for the analysis of linked or gbgpeams of objects
(Bregman, 1990).
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The studies in this thesis explored mechanisms for both the @nallys
individual objects characterised by higher-order statisticalasigroperties (Studies
1-2, Chapters 3-4) as well as for processing higher-ordettis@tsignal properties in
linked streams of objects such as in pitch sequences (S8i8ie€hapters 5-6). The
following two sections briefly review two features of auditohyjects, pitch (Section
1.2.2) and timbre (Section 1.2.3), which are relevant foetperimental work of this

thesis.

1.2.2 Pitch

Pitch is a fundamental feature of the auditory scene (Hetmld@75) and a universal
element in music across human cultures (McDermott & Hauser, 2008)recent
American National Standards definition states: “Pitch fligdt attribute of auditory
sensation in terms of which sounds may be ordered on a scale exteodirigw to
high. Pitch depends primarily on the frequency content of the soumdisd, but it
also depends on the sound pressure and the waveform of the stirdN®s, {994).
Nevertheless, after decades of research, many aspethe ofeuronal and neural
mechanisms underlying the perception of pitch are stillcoohpletely understood
(Plack et al, 2005), and the current section will therefore attempt onlyief br

overview.

Pitch and frequency are not identical. Pitch refers to theljjosygical) percept
and can differ from (physical) frequency. In the case @uee tone with a fixed
frequency, pitch is identical to frequency. However, most alyuoccurring sounds
are complex sounds consisting of multiple frequencies that areoh&s of the
lowest or fundamental frequend® that is present in the sound. As a general
approximation, the perceived pitch of a complex periodic tone correspmilost of
thefO (however, see Fastl & Zwicker, 2007). Therefore, instead rckpeng several
distinct frequencies making up the signal, the spectralnrdton is integrated across
frequency bands, leading to a single, coherent pitch percephdlydbe different from

its physical stimulus properties. This is likely achieved byhdigprder pattern
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matching mechanisms that operate over multiple frequency baed€ieveigné,
2005).

A prominent example highlighting the pattern matching mechanismslyinde
pitch perception is the ‘missing fundamental’ phenomenon (de Boes; T@rhardt,
1974; Winkleret al, 1997). In this auditory illusion, a complex periodic tone of
several harmonics is presented without its fundamental freqi@ndye percept of
this complex tone is that of a pitch an octave lower thatowest physically present
frequency, leading to an ‘illusory’ percept (corresponding to thssing f0). As
indicated by the missing fundamental phenomenon, pitch perception cagednen
the spectral information present in the sound, and is best deseigbtt repetition
rate of a sound. For natural sounds consisting of a fundamentalrfoycaed several
harmonics that are integer multiplesfof the slowest repetition rate of the complex
sound is equal to the period of the fundamental frequency. Whemridarmental
frequency is removed, the repetition rate of the complex soundnemachanged.
This also holds when removing more than one frequency (e.qg. ite fif’e
frequencies of a complex periodic sound consisting of ten harmoiiicsjefore,
sounds with the same repetition rate, but very different spaaraevoke the same
pitch (Plack & Oxenham, 2005). Furthermore, pitch can be evoked by we@sol
harmonics alone; however, the strength of the pitch percept ilanafrmagnitude
stronger in the presence of resolved harmonics. In fact, thetthiitth harmonics

contribute most strongly to a pitch percept (Moore, 2003; Placké&@am, 2005).

There are two prominent theories of pitch perception mechar(Bracket al,
2005). One posits that the place on the basilar membranenakimum movement
excursion determines the pitch percept (place pitch theory)pttiex highlights the
temporal aspect of pitch and posits that the repetition rate ope&hedic sound
determines its pitch (temporal pitch theory). Neither theoan explain all
experimental data. In fact, since at least some spataoe information is necessary
for pitch perception (Oxenhaet al, 2004), it has been suggested that pitch is coded
by a place-specific temporal code (Shannon, 2005). It is furtivereivable that there
is more than one pitch encoding mechanism, since resolved amsdluattharmonics
are represented via different neural codes (Pécd, 2005). Thus, pitch perception

is situated at the interface between sensation and percepiiboffers a unique
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window into how the auditory system makes inferences based ostatistical

evaluation of (sometimes ambiguous) acoustic information.

Given the complexity of pitch perception and its reliance on npattetching
mechanisms, it seems reasonable to assume that pitalbtexfrmechanisms emerge
relatively late in the auditory hierarchy. Early evidenaaf patients with temporal
lobectomies suggested that the right temporal lobe including H@&psriant for
detecting the direction (up or down) of a pitch pair with missimglamentals, but not
with present fundamental frequencies (Zatorre, 1988). Subsequetiessthave
refined these findings and suggest that the lateral aspeasohls gyrus as part of

secondary auditory cortex plays a crucial role in processiog pitormation.

Griffiths and colleagues (2001) created a repetition pitch by sysieatly
varying the temporal regularity of sounds via a delay-and-fdithm (Yostet al,
1996); generally, pitch salience increases with the tempegalarity created by the
number of delay-and-add iterations. They demonstrated activityGnthat was
stronger for pitch evoking sounds than for noise (see also Pattetrsan 2002).
However, the manipulation of repetition pitch via the numbeiteshtions cannot
directly address whether activation increases due to (physeraporal regularity or
(perceptual) pitch salience. Making use of the fact that gisdience of sounds with
only resolved or only unresolved harmonics differs, while tempogala&ty remains
constant, Penagos and colleagues (2004) were able to |qutdisesalience to lateral
Heschl's gyrus as part of secondary auditory cortex. Simjladiivity in lateral HG
is specific to the percept of temporal pitch and not generalisaolalgsis of temporal
structure as such, as in spatial width perception introduceddrpumal delay (Halet
al., 2005). Electrophysiological recordings in the primary auditory xodke the
marmoset monkey confirmed these findings for various types of complexis that
all shared a pitch percept within a low-frequency regionetiterolateral border of
areas Al and R (Bendor & Wang, 2006; Bendor & Wang, 2005).

Warren and colleagues (2003) expanded these findings for two furfiesatsas
of pitch, namely pitch chroma and pitch height. Pitch can be neaddalbng a helix,
where pitch chroma is represented by angular position along the aetli pitch
height by elevation (Bachem, 1950; Krumhansl, 1990). In this heliodempitches

an octave apart (frequency ratio of 2:1) share the same pitch ahlarh are of
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different pitch height. The authors showed that pitch chroma ank Ipdight are
encoded in distinct cortical areas anterior and posterior tapyi auditory cortex,
respectively. These results suggest a processing hierarettyich the basic features
of pitch are encoded first in lateral HG, and are subsequesilyered to a more
refined analysis with respect to pitch chroma and pitch h@ightiditory association

cortex.

1.2.3 Timbre

Timbre is a further perceptual attribute that reflects higinder auditory object
perception and segregation. Timbre, known evocatively in Germdfiaagfarbe
(‘sound colour’), commonly refers to those aspects of a sound thaigdisth it from
another sound with identical pitch, duration and intensity (ANSI, 19%ither than
being a unitary entity, however, timbre is best conceptualisddnwa perceptual
‘timbre space’ consisting of multiple temporal and spectraledisions (Cacliret al,
2005; Hajdaet al, 1997; McAdamset al, 1995). Studies using multidimensional
scaling (MDS) techniques (Caclet al, 2005; McAdamst al, 1995) suggest three
to four principal dimensions: the attack or log-rise time, spkcentroid, spectral
fine structure, and to a lesser extent spectral variatiopemtral flux (for a slightly
different weighting of timbral dimensions see Kendallal, 1999). Thus, timbre

relies on the statistical evaluation and integration ofipilalstimulus dimensions.

The principles underlying timbre perception provide important informdton
auditory object analysis, such as object recognition and seigredbtandel, 1995;
McAdams, 1993). For example, for short tones produced by impulsive irsttsim
(e.g. piano or drums), the information in the log-rise time tal ¥or auditory object
or instrument identification, while the spectral information comgim the sustained
part of longer instrument sounds is sufficient for recognition (Hajt299).
Furthermore, auditory streaming (Section 1.2.4.2) is stroimjlyenced by timbre
(Bregman, 1990).
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Until about 1850, in Western tonal music, timbre was mainly anseo
distinguish the instrument carrying the melodic line from thoseyirga the
accompaniment, or to signal boundaries by changes in instrumentatioaqGeiutsy,
the richness of the symphonic orchestra of the late Romaatierabled composers
to make timbre itself a distinctive attribute via sophisédaorchestration techniques,
e.g. by combining different instruments to form different timbréke aesthetic
epitome of this timbre feature was the concept kéfaangfarbenmelodig‘tone colour
melody’) based on timbral sequences, introduced in tHe @mtury by Arnold
Schonberg and Anton Webern in their compositions. Electronically ageder
synthetic sounds later opened the door to an unlimited vasfetyusical timbres
(McAdams, 1996). The complexity of timbre perception is underscoretiebyact
that even today’'s sophisticated computational pattern matchingtlaigsrare not
capable of disambiguating the various instruments in an orchesteat that the
human auditory system performs with apparent ease. In speeeéls are the prime
example of timbre. We distinguish & from a/u/ by virtue of their different spectral
shape, or the different profile of their harmonics, commonlyrredieto as formants
(Rogers, 2000).

On a more abstract scale, affine transpositions of timhetlars are perceived
as more similar than non-affine timbral transpositions, underggthie higher-order
perceptual properties of timbre (McAdams & Cunibile, 1992). Shyilait is
possible, though generally quite difficult, to disambiguate via &nabone two sound
sources or auditory objects that differ in pitch; for exampldjngigishing a violin
playing an A4 from a flute playing a C5 (Handel & Erickson, 2004)aAyeneral rule
of thumb (Handel & Erickson, 2001), this generalisation of timhtaibutes across
instrumental pitch is only possible for sounds that are within aveadbeach other
(for similar findings concerning speech vowels, see Ericledal, 2001; Erickson &
Perry, 2003).

Given the complex interplay of multiple acoustic features or dgoas within
the perceptual attribute timbre, it is reasonable to hypoth#siséimbre is processed
or assembled in auditory association areas. At the samepossiply because of its
complexity, the precise neural correlates of timbre and itsembions are still

relatively little understood. A study in which multiple timbedtributes were varied
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simultaneously found bilateral posterior superior temporal &ctiWlenon et al,
2002), while changes in the spectral envelope activated a netwBik arfid posterior
STS (Warrenet al, 2005a). Furthermore, the latter network seems to be serially
organised, so that the extraction of the spectral envelope beuddtained between
HG and PT, where PT functions as a computational hub, forwargénopfiormation

to posterior STS (Kumaet al, 2007). These results are supported by a patient with a
right-lateralised lesion confined to areas within this netwadh(rlateral HG, PT,
posterior STG, and posterior STS), who had impaired differentiatfomarious
timbres (dystimbria) (Griffithet al, 2007). However, there is also evidence for an at
least partially parallel representation of the different dismens of timbre (Cacliret

al., 2006), with potential hierarchies only arising at later prosgsstages (Cacliet

al., 2007; Cacliret al, 2008).

Despite important recent advances with respect to elucgdatie neural
representation or representations of the multidimensional audittripute timbre,
these likely reveal only the tip of the iceberg and manytoresstill remain. The
precise neural representations of the different timbral dirmessthat have been
established via MDS techniques remain unclear, as does thé@quasivhich stages
in the auditory system these dimensions interact. Furthes, uniesolved to what
extent the processing of the different timbral dimensions isroldcal versus parallel
(Caclinet al, 2006; Cacliret al, 2007).

1.2.4 Sound and pitch sequences

The acoustic scene does not only consist of single auditory obgegtsp{tch or
timbre), of course, but is often a pattern or sequence of soundsotijat conveys
acoustic information, such as in musical melodies or the prosogfyoEn sentences
('t Hartet al, 1990; Patel, 2008). These auditory streams can themselvegdvdad
as forming auditory objects (Bregman, 1990). Several experimpatatigms have
investigated the underlying neural mechanisms for organisinguttiéory scene, such

as tracking and grouping sound sequences. The following sectionsv riviee
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approaches to elucidating how the auditory system evaluatedatisical signal

properties of sound and pitch sequences.

1.2.4.1 Mismatch negativity

A classical experimental paradigm that provides a window into t@watuditory
system makes inferences based on statistical stimuluactéastics in the auditory
scene is the mismatch negativity (MMN) paradigm (N&nai995; Naataneet al,
2007). The MMN is traditionally recorded non-invasively withcélephysiological
techniques, such as electro- and magneto-encephalography @EHEGMEG,
respectively). Subtracting the event-related response )(ERPrequent ‘standard’
stimuli (e.g. a sinusoid of 1000 Hz) from the response to infreqdemtant’ or
oddball stimuli (e.g. a sinusoid of 1100 Hz) reveals a negatimgonent, the MMN,
at 150-250 ms post stimulus onset, with a maximal deflectionoatoficentral
electrodes and a typical sign reversal at the mastoids wsieg a nose reference
(Naataneret al, 1978; Samst al, 1985a; Samst al, 1985b).

The MMN is thought to reflect the pre-attentive processing ofdisgernable
violation of a previously established context. The larger the diffsx between
standard and deviant stimuli, the earlier and larger the MB&imget al, 1985a;
Tiitinen et al, 1994). Furthermore, equivalent current dipole (ECD) modelling
suggests that there might be feature-specific MMN generadorse some studies
show spatially distinct ECD sources for frequency, intensgitgr-stimulus-interval,
and duration oddballs (Deouell & Bentin, 1998; Deoe¢lal, 1998; Frodl-Bauclet
al., 1997; Giardet al, 1995; Levaneret al, 1993; Rosburg, 2003) (but see Sashs
al., 1991). The MMN is also elicited by more complex acoustic ctalsgeh as
deviating phonemes (for a review see Naatdnen, 2001; seed&iltiniret al, 1997;
Winkler et al, 1999), rhythms (Vuustt al, 2005), timbre (Cacliet al, 2006, 2007,
2008), and musical pitch sequences (van Zugjeal, 2004; Winkleret al, 2006). Its
pre-attentive nature makes it a promising tool in infants anccalipiopulations (for
reviews see Kujalat al, 2007; Naatanen, 2000, 2003).
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The cortical generators of the mismatch response are likelglised in
secondary or association auditory cortex on the STP, with a pbtadtd#ional
source in right inferior frontal cortex, as has been demonstuated ECD modelling
in EEG (Giardet al, 1995; Jemeeét al, 2002; Scher@t al, 1989) and MEG studies
(Alho et al, 1998a; Alhoet al, 1998b; Hariet al, 1984; Levanert al, 1996; Sams
et al, 1991), as well as with fMRI (Opitet al, 1999; Opitzet al, 2002; Rinneet al,
2005) and intracortical recordings (Halgren al, 1995; Halgrenet al, 1998;
Kropotovet al, 2000; Kropotowet al, 1995; Rosburgt al, 2005).

Whether the MMN reflects a distinct neural mismatch sour&TP or is due to
sensory adaptation processes within a single neuronal population istlguarenatter
of debate (Jaaskeldinest al, 2004; Naatanemt al, 2005). The classical, echoic
memory-trace hypothesis argues that the mismatch responsésrdile@ctivity of a
specific subpopulation that compares the current sensory input wptieveously
established context and signals upon detection of a violationa(foeview see
Naatanenret al, 2005). In this framework, the MMN would reflect activity that
distinct from other, temporally close evoked responses, sutte &100 or N1 (or its
magnetic equivalent the N100m or N1m), which is the main evokedtiveega
deflection to sound onset and is composed of at least two subcom p@éstiEnen
& Picton, 1987). The alternative adaptation hypothesis of the MMMharm@sms
highlights the existence of these different N100 subcomponemartioular the more
posterior N1p (which peaks at around 85 ms) and more anterior N1la (which ate
around 150 ms) components. It argues that the MMN is a subtractiefacar
attributable to different features of N1p and Nla: the narrow freyueming of the
Nla generators would show sensory adaptation to the standard stimdlua a
subsequently larger response to a frequency deviant; convehselyroad frequency
tuning of the N1p generators would also adapt to the standard, but siomd a
larger response only to wide frequency deviations. Thus, subtraetmged
responses to standards from deviants would produce a negative iakeflecthe

latency of the N1a, leading to a misattribution of the MMN.

There are several results that suggest that sensory adamatinot explain all
results in the vast MMN literature (reviewed in Naataaeal, 2005). For example,

an MMN is also present when the oddball is not physically diffdrent the standard
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or reflects a complex rule change that is unlikely to be confoundedebgory
adaptation (van Zuijeet al, 2004). However, recent studies suggest that the MMN
might reflect a temporal combination of sensory (adaptation) andtiv@g(memory-
trace) processes (Maessal, 2007). Similarly, a scheme based on predictive coding
(Friston, 2003a, 2005) of sensory input processing that encompasses botie $gpot
has been proposed to underlie cortical MMN mechanisms (Gaatriglp 2008).

1.2.4.2 Auditory streaming

One fundamental requirement of the auditory system is to be@bdiaw a sound
source irrespective of distraction from other sound sources, ofésoribed as
auditory scene analysis (Bregman, 1990). One prominent examplechoffigure-
ground segregation is the ‘cocktail party effect’ mentioned akoterry, 1953); the
brain far surpasses the ability of sophisticated computatidgaiitams in its ability
to segregate sound sources (Haykin & Chen, 2005). Classical studistgating the
underlying perceptual mechanisms have employed an auditory stgepariadigm,
first introduced by Bregman and Campbell (1971; further exploredeiail in the
doctoral thesis by van Noorden, 1975), which highlights the neural meoisni
underlying the extraction of statistical signal propertiesvesie for figure-ground

segregation.

In the classical auditory streaming paradigm, two pure tonesnd B of
different frequencies are presented in an alternating patteen,most common
patterns being ABAB and ABA_sequences (where ‘' represesiterd gap before
the repetition of the triplet). Whether the pattern is heardaasingle stream of
alternating A and B frequencies (stream integration or fusiorgsotwo separate
streams where each stream is formed by A or B tones omdalfstsegregation or
fission), depends on the presentation rate and the differenagjirefrcy ( f) between
A and B. As a general principle, the faster the presentedterand the larger f, the

more likely stream segregation occurs.
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The stimulus paradigm may seem overly simplistic and fawoved from the
complex acoustic environment. However, its generality and metevéor auditory
perception is underscored by the demonstration of behavioural stgpephr@nomena
in songbirds (Hulset al, 1997; MacDougall-Shackletast al, 1998) and non-human
primates (Izumi, 2002). Furthermore, as will be discussed bekither than being a
stimulus-driven bottom-up phenomenon, it can be modulated by attentiordipgov

evidence for statistical inference in the brain.

One prominent theory — the peripheral channelling hypothesis (Hart&ann
Johnson, 1991) — that attempts to describe the neural mechanisenlyingdstream
segregation, highlights the role of auditory filters in the sgnperiphery (see also
Beauvois & Meddis, 1996). According to the peripheral channellipgptmesis, if A
and B are close in frequency and therefore pass through thexaditay filter on the
basilar membrane, they will excite the same neural populatiothe ascending
auditory system, leading to a percept of a single streaaterhating A and B tones.
Conversely, if the difference in frequency f between A @ large enough so that
A and B will pass through different filters and excite sepamateal populations, this
leads to a two-stream percept or stream segregatione\WHid theory is able to
explain much of the experimental data of stream segreg@soreviewed in Darwin,
1997; Micheylet al, 2007; Moore & Gockel, 2002; Snyder & Alain, 2007), there are

two aspects in particular that cannot be explained by peripihecianisms alone.

First, stream segregation can also occur for sounds in which tighqral
coding does not differ: for example, when two complex tones A and Br diffly
with respect to their unresolved harmonics, while the resapedtrum of the two
tones is kept identical (Grimaudt al, 2000; Gutschallet al, 2007; Vliegenet al,
1999; Vliegen & Oxenham, 1999). Similarly, streaming can ocdtlr temporal cues
only, but otherwise identical long-term power spectra (Grimetudtl, 2002; Roberts
et al, 2002). Second, stream segregation is sensitive to attemti@was already
acknowledged by van Noorden (1975), who discovered that attention can bias
perception towards segregation or integration in ambiguous ABA esegsl with
intermediate f. A related aspect is that stream segieg has a temporal component

that can be influenced by attention, in the sense that sgegragation often requires
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several seconds to build up (Carlyetnal, 2001; Carlyoret al, 2003), and this build-

up seems to be ‘reset’ when switching attention (Cusaek 2004).

The physiological bases of streaming have only been studiedeblatcently.
A general principle underlying stream segregation seems ‘forlagrd suppression’.
For example, intracortical recordings (multiunit activity and entrisource density) in
Al of awake monkeys, where the A tone in ABAB sequences wa®dent the best
frequency (BF) of the recording site, showed decreased respimngesones as a
function of presentation rate and f (Fishmas al, 2001). For slow presentation
rates, both A and B frequencies elicited large responses; hqwewe fast
presentation rates, only A tones elicited clear responseie the magnitude of
responses to B tones decreased. This effect increasedfwiftshman and colleagues
(2001) interpreted these findings in terms of a forward maskiregteffiat A tones
exert on B tones. While these effects could also be explained te flact that with
increasing f, B tones moved farther away from the best feeqgy region of the
recording site, Micheyl and colleagues (2005), recording in macatjugquantified
that forward suppression is at least a contributing factor by aomgpa@sponses to B
tones in an ABA_ paradigm, to responses to B tones alone. A subsstasntound
that inter-tone-interval, i.e. the time interval beéweones, is more crucial for stream
segregation than the presentation rate (Fishetaal, 2004); this is consistent with

psychoacoustic results (Bregmeinal, 2000).

As mentioned earlier, stream segregation often has a builarepof several
seconds (Carlyoret al, 2001; Cusacket al, 2004). Generally, the faster the
presentation rate, the faster the build-up of stream sdgmegaMicheyl and
colleagues (2005) showed that this perceptual switch (as measurathans) has a
similar time-course representation to the corresponding nesgnse (as measured
in monkey Al). This is similar to a reduced N1m/P1m compleXecathg the
stimulus onset response to the B tone in ABA sequences as affunft f
(Gutschalk et al, 2005; see also Snydest al, 2006). For ambiguous f, the
N1m/P1lm complex was similarly reduced whenever participantsaisdica two-
stream percept as opposed to a one-stream percept (GuischglR005). Somewhat
at odds with the neurophysiological data in non-human primates (Fisktnah
2004; Fishmaret al, 2001; Micheylet al, 2005), the source reconstruction indicated
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an origin in secondary and association cortex (Gutsabiait, 2005; Snydeet al,
2006). However, a more recent study (Gutscletlial, 2007) using both MEG and
fMRI reported a source origin and haemodynamic activity in auditmitex,
including primary cortex, that correlated with a two-strgarcept (see also Deilat
al., 2004; Wilsonet al, 2007). However, there is also evidence for extra-auditory
areas participating in streaming: Cusack (Cusack, 2005) found redaterof stream
segregation in auditory cortex, but instead activity in theparietal sulcus (IPS) that
covaried with a two-stream percept in ambiguous f sequencesntiiguing recent
result suggests that stream segregation is not specific toguchrtex, but is already
present in the cochlear nucleus of the anaesthetised guigpg®ressnitzeet al,
2008).

While these studies provide a critical insight into the corécals relevant for
stream segregation, they nevertheless say relatively lathout the neuronal
mechanism. For example, some studies also report a geffecalag adaptation for
both A and B responses as a function of presentation rate {ghqdnet al, 2004,
Fishmanet al, 2001; Gutschallet al, 2005; Micheylet al, 2005). How forward
suppression and adaptation mechanisms interact in the paradigmeistly unclear;
for example, as stream segregation builds up (forward suppresiergtrength of
the neuronal responses recedes (adaptation). Furthermore, tpgéicsymechanisms
underlying forward suppression have yet to be elucidated (Brossth&einer, 1997;
Calford & Semple, 1995; Denham, 2001; Eggermont, 1999). The mutipldi
factors determining auditory streaming (Moore & Gockel, 2002) stggas
distributed network contributing to auditory streaming instead of imggessubstrate.
Nevertheless, theories emphasising the degree of specttahatopic separation
(Hartmann & Johnson, 1991) likely explain most, while certainly hobfthe stream
segregation phenomenon. At the same time, there still necuastanding questions
regarding (i) the role of peripheral vs. central mechanisihghé role of attention on
stream formation, and (iii) the contribution of different auditorgaa as well as that

of non-auditory areas.
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1.2.4.3 Complex pitch sequences

While the two previous paradigms (MMN and auditory streaming) lygtdd basic
properties of auditory perception, one significant restrictidhasg repetitive and thus
deterministic nature. The MMN reflects sensory and comparaechanisms over
relatively short time scales and under arguably simple oryogeterministic acoustic
stimulation conditions (except for the occasional rule violatiormgiied by the

oddball stimulus). This is similar in the auditory streamingag@am, in which a set

pattern generally consisting of only two frequencies is tepeaver and over.

However, real-life acoustic events generally have a codtplethat is
magnitudes greater. For example, pitch sequences such asntmogsical melodies
extend over several seconds and often span multiple pitches cdnibiaghythmic
and harmonic structure, and thus are likely to require perceptoedgses with a
complexity that far surpasses those necessary for simple tofsrdatection in a
repetitive sequence. In fact, a significant aspect contribtirmgusic appreciation is
its complexity, exemplified by the balance between expeatdduaexpected musical
events (Huron, 2006). Similarly, speech perception involves the gmioge of
complex consonant-vowel transitions over different time-scalese(Rdk992), as

well as the tracking of prosodic structure.

Section 1.1.4 noted that initial perception of single fregies engages primary
and secondary auditory areas, while a more integrated pitchppdikady arises in
lateral HG (Section 1.2.2) (Bendor & Wang, 2005; Griffiths, 20105; Pattersoat
al.,, 2002). In contrast, the perception of a complex series of pitcbgquires
perceptual grouping mechanisms and is thus likely to engage mgaisd primary
cortex (see also the two preceding Sections 1.2.4.1 and2).2.4sions to parabelt
areas in macaques (Cowey & Weiskrantz, 1976) and association cofemans
(Patelet al, 1998; Peretet al, 1994), sparing primary cortex, lead to impairments of

auditory pattern perception such as pitch sequence processing.

Both the direction (up or down) and the precise size of intervaisebat
successive pitches provide important information for pitch sequeeceeption
(Peretz, 1990). The simplest process required is the deteaxftihe direction of pitch
change between two successive pitches; patient studies iniaathis computation
depends on right lateral HG (Johnsrueteal, 2000). In one of the first studies
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investigating the perception of longer musical pitch sequencesr&aind colleagues
(1994) used positron emission tomography (PET) to compare the respausitany
cortex to simple melodies against the response to acousticaighed noise
sequences; this revealed increased activity in right SF@&eélodies. Lateral HG and
PT participate in the perception of lively pitch sequences cardpt fixed-pitch
sequences (Griffithst al, 2001), while anterior and posterior temporal cortices show
a parametric increase with temporal structure for musiceth gequences (Griffithet

al., 1998). Furthermore, there is evidence that duration and pitch segquare

processed in overlapping areas in the temporal lobes (Gsiéf al, 1999).

Patterson and colleagues (2002) suggest a hierarchical organishtich
sequence processing, in which precise temporal information iesesged in
subcortical structures, before the emergence of a pitch perciteral HG and the
representation or integration of increasingly complex pitch segagas in a melody)
in association areas. The authors presented four types of soundhcesqueoise,
fixed-pitch, random, and diatonic pitch sequences (similar fodiges). The stimuli
used were repetition pitch (iterated rippled noise, IRN) to corftollow-level
acoustic complexity. All four types of sound sequences actiyaiethry, secondary
and association cortex. Furthermore, primary auditory cortex resgaitbngest to
noise, while activation for fixed-pitch sequences extended intaldteschl’s gyrus.
Random and diatonic pitch sequences resulted in activation beyandrprand
secondary auditory cortices along the anterior superior temporal, gyotably the
planum polare (PP). Interestingly, the authors found no consistesitedifes across
participants for the random and diatonic pitch sequences (siriltret results by
Griffiths et al, 2001). Nevertheless, the results demonstrate a hierargrpcéessing
temporal pitch information at the level of the cortex, extenttioig an initial analysis
in primary and secondary areas to auditory association arg¢as saperior temporal

plane.

Further, studies of pitch sequence processing have highlightegaetbeptual
cues of global and local contour information (Liégeois-Chaetell, 1998; Peretz,
1990). The global contour of a pitch sequence describes its pattéeapsdfand

‘downs’, while the local contour denotes the exact interval. Study 5 of this thesis
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(Chapter 6) investigated the underlying neural correlates for Iglabd local

processing of pitch patterns in healthy volunteers.

In summary, some general principles of auditory cortex funettwass species
can be highlighted. First, the information flow in auditory cotiteboth hierarchical
and parallel, enabling dynamic and highly adaptable processing of eombustic
information, in which bottom-up, top-down and lateral signallingekist. Second,
the complexity of acoustic information represented in each regaadses from core
via belt to parabelt cortex (and their likely human homologues).edery there is
currently no consensus as to whether structures in the ascenditwyapdihway
process similar acoustic features (e.g. tonotopic maps ausgastages in the auditory
pathway) at different levels of complexity and generalitywbether these structures
share a division of labour where each processes different soubdtar(Griffithset
al., 2004; Nelken, 2004; Pressnitagral, 2008; Scott, 2005). A related outstanding
problem is whether auditory cortex represents complex auditorytehjeespective
of local stochastic variations (e.g. represents a voresgective of its location or
background noise) or, rather, according to invariant acoustic feghatonly lead to
the emergence of auditory objects via the synchronisation of rlamgeral
populations, which each code a particular invariant acoustic fedetken (2004)
argues that these levels co-exist and that it is indeedbfso$sr auditory cortex to
represent complex auditory objects as such. It has been hypgethdkiat such
redundancy reduction may in fact be a general principle in trendisg auditory
system: while neuronal responses in auditory cortex may indeedderrtban those
in subcortical structures, at the same time they can bedatgiee less redundant than
subcortical structures, which often faithfully represent a eingtysical stimulus
attribute multiple times (Chechit al, 2006). The increasing complexity in auditory
cortex implicates computational processes at the leveingle neurons, and quite
probably neuronal populations, which provide a less faithful representitprecise
physical stimulus attributes than that provided by previoustategin the auditory
hierarchy. Such a computational scheme suggests that redundaedyced as one
ascends along the auditory hierarchy and that redundant signals résuae

computational resources.
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1.3 Key problems addressed in this thesis

Previous approaches to auditory processing, such as the MMN and astigarying
paradigms, have typically used deterministic stimulus designdich the statistical
properties of the experimental stimulus were relatively ttaimed. While the
mechanisms and topography of the underlying processes are nowehglatil
understood, inferences from these data are necessarilydiiteéhe scope of the
experimental stimuli. Thus, current outstanding questions concerreginesentation
of less deterministic and higher-order stimulus properties. Thisomdcthesis
addresses the representation of higher-order statistical pegpeitacoustic signals in
human auditory cortex; in particular, it investigates the ppaing structures and
their organisation (e.g. hierarchical or parallel) for repr¢ing various higher-order

statistical properties in acoustic signals.

The majority of the studies herein employ a parametric desigmhioh the
statistical properties of a single acoustic parameter k- @si@ntropy, correlation over
time, or spectrotemporal coherence — are altered along a cont{fuiston, 2003b).
The advantage of a parametric approach is that it providesrpestunderstanding of
the representation of a particular acoustic stimulus paranstess different
instantiations; in particular, parametric designs enable thestigaéor to probe
precisely the brain’s response to a particular parametersacap®us instantiations,
while keeping other lower-level acoustic properties, e.g. sgiqmikver or bandwidth,
constant. This is in contrast to classical categorical ¢doffiat designs, which contrast
the effect of an experimental variable with a control conditienthe presence versus
the absence of the experimental variable, on the response in, @rtethus cannot
inform on the precise effect of the experimental variable acrdgferent
instantiations. Furthermore, while categorical designs hingeheratlequacy of a
control condition and are prone to problems associated with cognitivectidyiror
pure insertion (Fristoret al, 1996a), the different levels of parametric designs
function as their own internal control stimulus and allow the dieteof non-linear
responses across levels (Friston, 2003b). This thesis spegitaladls an information-
theoretic approach in the sense that statistical signal pegente systematically
varied, thereby tracking cortical areas that encode thel pgmgerties over different

instantiations.
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The detailed investigation of complex sound properties is only maddleosgi
modern signal processing techniques, whose computational power heasattr
significantly over the last decade. Current signal processaityvare allows the
sophisticated manipulation of complex higher-order statistical piepart generic,
synthetic sounds that share many of the characteristic featunegurally occurring
sounds, while avoiding their semantic connotations. As a consequbiseayark
addresses neural processing mechanisms for the abstractioneoic gagher-order
statistical acoustic properties at the level of neural @joms in neurologically
normal participants. The following sections provide a brieScdption of the

motivation for each of the five studies comprising thesithe

1.3.1 Chapter 3 — Study 1

Are there distinct time scales over which the auditory codgdresses statistical
signal properties, and can these operations be assigned to distinct ardas wi

auditory cortex?

Acoustic information evolves over several time scales, framroseconds
(relevant for sound localisation and spectral pitch resolutiortgrn® of milliseconds
(e.g. phonemes) and hundreds of milliseconds (e.g. syllablegydmasseconds (e.g.
musical melodies or spoken sentences) (Rosen, 1992). Accordihglyauditory
system needs to assess acoustic information over a rangmeofstiales or time
windows. One way to achieve this is to vary the correlatiohgratoustic signal over
different time scales to assess brain activation thatkdraacoustic information
evolving over one of those time windows (Luo & Poeppel, 2007). Tleegidence
that processing of information encapsulated in time windowsnsf and hundreds of
milliseconds is lateralised towards the left and right auditangices, respectively
(Boemio et al, 2005; Poeppel, 2003). However, the precise conceptualisation and
representation suggested by different studies is not consisténOfteseret al,
2008; Schonwiesneet al, 2005; Zatorre & Belin, 2001). Further, the division of
labour between primary, secondary, and association areas fer diffsgent time

windows of analysis has so far not been clearly establishesd.stuly investigated
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the notion of distinct time windows by representing the diffespettrotemporal time

windows via correlation in the acoustic spectrum.

1.3.2 Chapter 4 — Study 2

How are auditory objects represented and segregated in the audidexe

The auditory system has developed remarkable precision in idegtiBs well
as segregating, distinct auditory objects (Griffiths & Wayr2004; Nelken, 2004;
Scott, 2005). In order to achieve this, it needs to assestatisical object properties
to detect boundaries or transitions between objects as wethaastain object
constancy. However, little is known about the underlying corticathaagisms for
these two fundamental perceptual mechanisms. This study introducesvel
stimulus, in which auditory objects were identified by the peemgntof randomly
distributed frequency ramps with identical direction and trajectdhus, auditory
object perception depended on the detection of higher-order spectrotemporal
coherence; similarly, object segregation depended on the detexftia change in
coherence over frequency-time space. This study investig#ted cortical
representation for segregating and integrating auditory oldjasesd on higher-order

statistical properties such as spectrotemporal coherence.

1.3.3 Chapter 5 — Studies 3 & 4

Can the planum temporale be described as a neural engine that requiras fewe
computational resources for redundant signals than for those with high information
content?

Within the auditory system, the planum temporale of human auditory
association cortex is thought to represent a ‘computational hubcdmapares the

neuronal pattern of incoming information to pre-existing templatessubsequently
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gates the information along the auditory hierarchy for furthergasing (Griffiths &
Warren, 2002). The ‘computational hub’ model of PT function integregsults from
a variety of studies investigating a multitude of auditory fiems. However, the
model has not been tested explicitly, and studies 3 and 4 invedtigagespecific
prediction that arises from the ‘computational hub’ model: actiwityT should

increase as a function of the entropy, or information produdtigritch sequences.

1.3.4 Chapter 6 — Study 5

Is there a cortical hierarchy and lateralisation scheme for prsices local and

global information in pitch patterns?

Pitch sequences consist of two structural levels; the glekal tomprises the
pattern of ‘ups’ and ‘downs’ that forms the contour of the pitch semgenhile the
local level denotes the precise interval size between git@awling, 1978; Dowling
& Fujitani, 1971; Dowling et al, 1987). Behavioural and patient studies have
demonstrated a hierarchical organisation of pitch pattern perception that global
processing precedes local processing. However, the notion that gtobassing is
right-lateralised, while local processing is left-latesedl, has been less consistently
supported between studies (Liégeois-Chaetell, 1998; Peretz, 1990; Schuppett
al., 2000). Further, accounts of the underlying brain structuresduafar only come
from patients with cerebral damage. This study tested tharbtingr and lateralisation

accounts in neurologically normal participants.
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Chapter 2. TECHNIQUES AND METHODS

Signal processing and digital stimulus synthesis form the thealretire of this work.
The advances over the past decade in computing power and softwaisdicaipdm
have made it possible to generate complex acoustic stimulailoa researchers to
generate and manipulate sounds seemingly at their will. The eogrerimental
methodology employed in this thesis is functional magnetic resonamaging
(fMRI). Here, too, increased magnetic field strengths andvations in the design of
acquisition sequences and data analysis have made ladgs stnd now provide a
powerful tool to investigate brain function. This chapter introduggdications of
signal processing and digital stimulus design in auditory neuragci@ection 2.1),
followed by a brief review of the basis of MRI and fMRI (Secs 2.2 and 2.3),
specific considerations for studying auditory perception with fM&ction 2.4), and

an outline of fMRI data analysis (Section 2.5).

2.1 Approaches to stimulus design for auditory neurosence

Digital stimulus design has become an invaluable tool intaydneuroscience. With
respect to this thesis, digital stimulus synthesis providaesdge between bottom-up
and top-down approaches to acoustic information processing. The bottom-up
approach allows individual acoustic characteristics to be swsitatty created and
manipulated from first principles, thereby investigating basilesr determining
auditory scene analysis (Section 2.1.1). The top-down apprdaunlts dhe systematic
manipulation of natural acoustic signals (Section 2.1.2). rAptementary approach
using digital stimulus synthesis enables the generation of sicptesl acoustic
signals that can be as complex as natural sounds, but in whictttehastic stimulus
features can be tightly controlled (Section 2.1.3). Furthermodiyidual sound
features (such as spectrotemporal correlation in complex acosgictra or
information production in pitch sequences) can be designed to obeybitistica
rather than deterministic principles, and thus approximate prepesfi ethological

sounds.
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2.1.1 Simple synthetic stimuli

Acoustic signals in the real world are continuous, or analogue.etaw most
contemporary computing devices operate in the digital domaireftimer acoustic
signals are discretised or sampled at a certain sampligAatording to Shannon’s
sampling theorem, the sampling rate must be at least &#daigh as the highest
frequency in the original analogue signal in order to faithfullptwe the signal
(Shannon, 1949). This is also often called the Nyquist rate. A corsaropling rate
discretises the signal at 44100 Hz; according to the samplingethe this faithfully
captures frequencies in the signal of up to 22050 Hz, which is abowveotheal
hearing threshold of humans. The number of bits per sample thasedeo encode
the signal provides a second dimension of fidelity; the highendihgber of bits, the
more precise the correspondence between analogue and digitdl sigommon bit

rate is 16 bits/sample.

The following sections give brief mathematical descriptions usfdémental
types of stimuli employed to elucidate generic mechanismauditory perception
(frequency and pitch, Sections 2.1.1.1 and 2.1.1.2; amplitude miodul&ection
2.1.1.3; frequency modulation, Section 2.1.1.4). These haare used successfully in
numerous experimental studies employing electrophysiology, functioagiing and
psychophysics in humans and animals (e.g. Fastl & Zwicker, 200% efai, 2004,
Laureyset al, 2003; Moore, 2003; Pattersen al, 2002; Rees & Malmierca, 2005;
Warren, 2008). Their experimental power lies in the tight conthat the
experimenter has over the acoustic feature that is maniputhtednsures that any
observable effect (behavioural or neural) can be attributed ehedes the stimulus

manipulation.

However, a notable caveat is their relative simplicity datkrministic nature,
limiting the validity of direct comparisons with natural sounideducing the neural
representation of complex natural sounds from that of pure tones wouldtmee
assume that the auditory system behaves in a linear way) ishiot the case (Hagt
al., 2003; Maloneet al, 2007; Rauschecket al, 1995).
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2.1.1.1 Pure tones and decomposition of complex soundgune tone

components

In mathematical terms, a pure tone can be described as
X(t) = Asin(Zp% +f), (Eq. 2-1)

which, as a function of timg has amplitudé, period (or time to repeat) and initial
phasef. A commonly used measure of the period is in #&cinversel/T, called the
frequencyf, which denotes the number of periods per secohd.angular frequency

w; in radians, is then defined a&s=2pf . Note that a pure tone can also be expressed
in mathematical terms when substituting cosine $&me, where the relation
cos) =sin(x+p /2) holds. For brevity, a pure tone waxg) will sometimes also

be referred to as a frequency.

According to the principles of Fourier analysid,smlunds can be described as a
composition of one or more frequencies. Most ndifucecurring sounds originating
from animate sources are periodic sounds and dasfsiaultiple frequencies, where
the constituent frequencies are integer multiplethe lowest frequencyf@) present
in the sound. The principle of Fourier analysighat every periodic sound can be
written as the sum of its constituent frequencas] the Fourier series provides a

mathematical description of this principle.

The Fourier series of a signdt) with periodT may be defined as

¥

X(t)=A+ (A, cosit)+ B, sinwmt)). (Eq. 2-2)

n

where u,, =2pnf, (Hartmann, 2000). The Fourier coefficie{s andB, are defined

forn>0as

T/2 T/2

A\F% X(t)cos(y,t)dt, and B :$ x(t)sin(w,t)dt,

n
-T/2 -T/2

and forn = 0 by
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T/2

1
A= ?_mx(t) dt.
The equations defining the Fourier coefficientsirefthe Fourier transform in the
context of the Fourier series. In general, the FEouransform is an operator that
allows one to pass freely between two types ofasgmtations for a signa(t): the
time and the frequency domains. In the time domnthimsignal is defined in terms of
sound pressure present at each point in time, whilee frequency domain the signal

is defined via the amplitude (and phase) of eacistitoient frequency.

For digitally sampled signals, the discrete Foutransform (DFT) must be

used (Hartmann, 2000). For a time series

Xys X s Xy

with N sampling points, the DFT is defined by computiogdach > n> N

N .
X, = xeN, (Eq. 2-3)

k=1
This allows the time series to be reconstructedhaanverse DFT (IDFT)

N

i f(ke-Zp'kr‘I/N ] (Eq- 2_4)
N =

X, =
A naive algorithm for computing the DFT would reguapproximately\? operations,

which for large N, would require substantial congtianal resources. For example,
with a sampling rate of 44.1 kHz (as for the stinmlthis thesis), sounds of several
seconds duration would have hundreds of thousahdaropling points. Therefore,
the fast Fourier transform (FFT), which perform& thame computation in only

approximatelyN log N operations, is commonly used in digital signalgeissing (the

same holds for the inverse FFT, IFFT).
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2.1.1.2 Iterated rippled noise (IRN)

A large body of work emphasises the temporal strecof sounds, rather than the
spectral structure considered above, as relevapitth (de Cheveigné, 2005) (see
also Section 1.2.2). Work by Yost and PattersortéPsonet al, 1996; Yostet al,
1996) introduced noise stimuli associated withlpitt which the temporal regularity
of the sound and associated pitch can be manipllateilst controlling the spectral
structure that is resolved by the auditory syst8aoth stimuli are used in this thesis as
a way of controlling the resolved spectrum in pitebguences, to allow clearer
interpretation of the data in terms of complex Ipisequence properties rather than
lower level frequency representations (see Chaypterhese stimuli are referred to as
iterated rippled noise (IRN) or regular intervalieds (Pattersost al, 1996; Yostet
al., 1996). In IRN sounds, a noise sample is itergtigeded to itself with a delay (in
ms), where the delay determines the period of thumd that is produced. There are
two basic methods to generate IRN sounds: one ithareadd the original noise
sample, or the running noise sample. The tempdrattsire, or periodic quality,
introduced by iteratively adding the samples witlixed delay increases with the
number of iterations. Thus, in the spectral domiiN sounds contain all frequencies

within a certain passband (a property inherenbies).

In mathematical terms, the original noise samplehoek can be described as

follows. If x(t) is the original noise sample, then

X(t) = ’ X(t - kDt) (Eq. 2-5)

k=0

gives the IRN with K iterations and delay Technically, this equation is restricted to

t 7 K t, but this simply amounts to cropping the sounthatbeginning.

The running noise sampling method is defined iteet. If xo(t) = X(t), then
the first iteration is defined ag(t) = Xo(t)+ Xo(t- t), the second as(t) = X1 (t)+ X4(t-

t), and so on. ThK-th iteration
X(t) = Xk (t) = XK—l(t) + XK—l(t - Dt)

then gives a running noise IRN withiterations and delay timet.
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2.1.1.3 Amplitude modulation (AM)

Amplitude modulation (AM) of natural sounds candmmnsidered at the level of the
whole waveform (when it is determined by the ‘eopel’) and at the level of changes
in intensity within particular frequency regions, @sed to simulate natural sounds in
‘vocoding’ (see Section 2.1.2). Most naturally agowg sounds vary constantly not
only because of their sinusoidal nature, but alscabhse of varying amplitude or
frequency. AM occurs when the amplitude A of thgnai is also a function of time,
A(t). The two most common forms of AM are sinusoidad linear AM. For

sinusoidal AM (SAM), the modulating amplitudét) is itself given by a wave,
Alt) =1+ msin@f t+7).

The modulation depth @i(t) is defined as its fixed amplituage and can be any value
betweenm = 0 (0%, no modulation) andh = 1 (100%, maximum modulation).
Furthermore, the functioA(t), as a scaling factor, must always be non-negaitna,
is 0 > m> 1 The frequency of the original signa(t) is now called the carrier
frequencyf;, while the frequency, of A(t) is called the modulation frequency. The

combined amplitude modulated signal is then giwen b
x(t) = A(t)sinof t+£). (Eq. 2-6)

In the frequency domain, an AM sound with carrisxgbiencyf. and modulation
frequencyfy, is represented by a central pealkatith two subsidiary sideband peaks
atf. + f. The amplitudes of the two side bands are alwdgstical, and are precisely
half that off. at 100% modulation depth.

SAM is the simplest form of AM, consisting of a gi@ modulation frequency.
Different modulation waveforms can be constructegsingi Fourier series. For
example, a square wave has multiple harmonics dt inttger multiples of the
fundamental that decrease in magnitude with inangaequency. A square wave
can therefore be constructed from the sum of a eummbsinusoidal modulations. The
same applies to other modulation waveforms suckamgooth or ramp changes in

intensity.
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2.1.1.4 Frequency modulation (FM)

Frequency modulation (FM) occurs when the frequehof the signalx(t) is a
function of time f(t). Again, the most common forms of FM are sinusoatal linear.
When the instantaneous frequency() is sinusoidal, the FM signal can be written

as
X(t) = Asin(ut + Df sinu,t), (Eq. 2-7)

whereA is a fixed amplitudep, = 2¢f. denotes the carrier frequency in radians, and
w,, =2pf, denotes the modulation frequency in radiarfsspecifies the maximum

frequency modulation; forf C O, the frequency spectrum of the resulting FM sound
gains multiple sidebands aroufgd forming a complex spectrum. Depending on the
exact value of f, the carrier frequencf can even disappear from the spectrum.

Vibrato is one example of naturally occurring simidsl FM.

When the instantaneous frequerf@y is linear, this is given in general by a

linear equation of the formmt+b. An explicit linear equation of the form

f(t) = %Hfl

produces a linear sweep from the starting frequéntythe ending frequendy over

a time periodr, with a slope%.

In the linear case, the total FM signal is desctibg

X(t) = cos@uf (1)t +7). (Eq. 2-8)

2.1.2 Sampled natural stimuli

A second approach to auditory stimulus designasuse and specific manipulation of
natural sounds. This has been particularly useiubhderstanding the perception of

ethological sounds such as speech (or speciesispeatalisations in general) and
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music. The advantage of this approach is its ethcdd validity, since it most closely
approaches real world listening situations. Fomepla, the STS of both human and
non-human primates, respectively, is sensitivepecsic timbral cues such as those
present in voices or con-specific vocalisationsi(B006; von Kriegstein & Giraud,
2004). However, this approach faces the difficoltycontrolling stimulus parameters
such that the observed responses are not confounydieav-level acoustic confounds
(such as spectral or temporal complexity). A furtbaveat is that the use of natural
stimuli constrains the possible inferences to thewdus material used; that is, natural
stimuli automatically evoke semantic associatiamsyhich case the degree to which
behavioural or neural responses are attributabfleet@coustic parameters or stimulus
semantics is difficult to assess, or needs to becipally addressed in the

experimental design (von Kriegstazhal, 2003).

Two approaches can be distinguished: one usesahataunds as such, or
natural sounds that are minimally manipulated tacértain secondary criteria (e.qg.
sound duration), so as to most closely emulategpéian in a complex world (Nelken
et al, 1999; Schnupget al, 2006; Wang, 2000; Wang & Kadia, 2001). This applo
has yielded important insights into higher cogmitiprocesses such as language
(Hickok & Poeppel, 2007; Price, 2000) or music peton (Stewaret al, 2006).

The second approach directly manipulates specifiaracteristics of the
auditory signal so as to isolate critical determisaof the signal. A prominent
experimental paradigm is the use of vocoding teqples and its variations, which
allow the control of spectral and temporal inforimatin the acoustic signal (Davis &
Johnsrude, 2003; Naragt al, 2003; Obleseet al, 2008; Overath, 2004a; Scait
al., 2000; Scotet al, 2006; Shannoet al, 1995; Smithet al, 2002). For example, in
noise vocoding (Shannoet al, 1995), the speech signal is divided into a fixed
number of spectral bands (from just one band tdipdelcontiguous bands), and the
spectral information of the speech signal in al blands is replaced with white noise;
this procedure retains the overall temporal stmectof the speech signal in the
spectral bands, while altering the spectral infdroma Speech intelligibility is
retained with the presence of only a few spectralds; thus, much of the information
for speech intelligibility is carried in the envpl (Shannomt al, 1995; Smithet al,
2002). At the level of the cortex, Scott and callees (2000; Narain, 2003) showed
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that both normal speech and noise-vocoded speathais still intelligible led to
activations in a left-lateralised temporal lobe wak when compared with

acoustically matched, but unintelligible, speed®e(also Girauét al, 2004).

Conversely, spectral resolution is critical for meuperception (Smitket al,
2002); spectral information in speech operatesataaser spectral resolution (e.g. in
the case of formants). The importance of specesblution for music perception is
also evident from patients with cochlear implantsowgenerally are unable to
appreciate music, since the physical constraintoohlear implants limit the number
of spectral channels (Shannon, 2005). The spentpueal trade-off theory (Zatorre
& Belin, 2001; Zatorreet al, 2002a) draws on this dissociation by highlightthg
differential importance of spectral and tempordbimation for music and speech

perception, respectively (see also Study 1, Ch&)ter

2.1.3 Complex probabilistic stimuli

2.1.3.1 Spectrotemporal correlation in complex AM spectra

As described in Section 2.1.1.3 above, the amgitfthatural sounds fluctuates over
time. A common approach for investigating principlef AM processing in the

auditory system utilises SAM. The systematic inchej@mt or interactive manipulation
of modulation rate and modulation depth in SAM sigignables the investigation of
basic principles of AM processing in the auditoygtem. However, SAM is a rather
deterministic stimulus manipulation, since a givesund commonly has a fixed
modulation ratef,, and a fixed modulation deptm. In contrast, the envelope in
ethological sounds varies over different time scaded to different degrees in a
complex and often non-deterministic manner. Thatandsystem needs to both track
and integrate the information in the signal ovdfedent time scales and frequency

regions so as to perceive auditory objects andrhgguate between auditory objects.

One approach to conceive of the probabilistic ratfrethological sounds is in
terms of spectrotemporal correlation. In this framek, correlation can be regarded

as a probabilistic principle, such that the indiadinstantiations of the signal obey
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certain global constraints over a given time framhbile their precise instantiations
are non-deterministic and can take any form witthie constraints. This approach
allows the synthesis of sounds with specific glatmaistraints, set by a given degree

of correlation, while keeping other stimulus paréene constant.

In general, many ethological sounds contain varialys rates or modulation
rates simultaneously; for example, phonemes andldgs in speech operate over
different modulation rates, the former at the ordketens of milliseconds, the latter
over hundreds of milliseconds (Poeppel, 2003; Ro4682). These rates or time
scales can be described in terms of spectrotemporeglation and implemented in
synthetic sounds (see Study 1 in Chapter 3). Gavamit frame length of 20 ms
within a longer sound, the degree of correlatiotwken any two consecutive frames
introduces time windows of different lengths: loarelation values result in short
time windows within which correlation exists (i.some 20 ms), while high
correlation values result in longer time windowsusping hundreds of milliseconds.
The probabilistic nature of such synthetic soumgilen by the degree of correlation,
closely resembles that of naturally occurring spescunds such as phonemes or

syllables.

In mathematical terms, the degree of AM in compleounds can be
operationalized in terms of the Pearson product emroorrelatiorr. For a complex
spectrum with a fixed set af constituent frequencies, the degree of correlation

between two framesandy can be described as

L 504 9)
r(x,y)=- - = ss, , (Eq. 2-8)

Here,x andy are vectors representing the instantaneous amelitalues (in dB) of

the frequencies in the spectrum,and y are the arithmetic meansfndy, ands;

ands, represent the standard deviations ahdy.

In this implementation, at the local level, eadqgfrency has an independent or
stochastic AM profile that is constrained at a glolevel by the overall degree of
correlation between the two spectra as a wholemFam information theoretic

perspective, the processing of such signals regjdire assessment of higher-order
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statistical properties, while ignoring local fluations. Essentially, the auditory
system must track the properties of the acouggicasiwith respect to different time
windows and detect higher-order statistical prapsrtsuch as spectrotemporal
correlation in complex acoustic spectra consistiigmultiple frequencies. Such
sounds approach the complexity of natural soundslevtheir statistical properties
can be controlled.

2.1.3.2 Spectrotemporal coherence

Many naturally occurring sounds are characterisgdFM, and mechanisms for
processing single FM ramps of different slope aambe, at the level of subcortical
and cortical structures, have been studied in ldéRees & Malmierca, 2005).
However, single FM sweeps are still far removednfrthe complexity of FM in
ethological sounds. For example, many monkey vsattins and speech sounds
comprise coherent FM across multiple frequencies,which the fundamental
frequencyfO and its harmonics move coherently up or down agdiency (Rees &
Malmierca, 2005).

In a complex acoustic world, coherently moving frencies are likely to
emanate from the same source and are thus intedpastbeing part of or forming an
auditory object. To achieve this, the auditory sgstneeds to assess the acoustic
signal over various frequency bands and time scafesltaneously. Again, this is a
higher-order process that requires the detectionglobal statistical properties
irrespective of local fluctuations. Furthermore,arfes in the global statistical
properties are likely to signal transitions betwexdnjects, and the auditory system
thus needs to detect these changes at a higherieveé of integration that allows it

to disambiguate them from mere (stochastic) ldcak@iations.

The stimulus used in Study 2 (Chapter 4) assesBedneural correlates
underlying the higher-order integration and sediegaof auditory objects in
complex sounds, in which distinct objects were fdiea by higher-order

spectrotemporal coherence. Specifically, soundssistad of multiple linear FM
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ramps that were randomly distributed in frequenmetspace, forming an ‘auditory
texture’. The degree of coherence was defined eapéncentage of FM ramps with
identical frequency trajectory (slope) and direct{ap or down) (while the remaining
FM ramps had random trajectories and directionBus] since the FM ramps were
randomly distributed, a mechanism detecting sptatrporal coherence needed to
assess the acoustic signal over multiple frequéacyls and time windows covering
hundreds of milliseconds. Similarly, mechanisms edi#ng spectrotemporal
coherence transitions needed to assess stimuhsstibas at a higher-order statistical

level covering multiple FM ramps, rather than & léavel of individual FM ramps.

2.1.3.3 Information theoretic properties of pitch sequences

As described in the General Introduction, experitaleparadigms such as the MMN
or auditory streaming paradigms, which investiggémeric principles of auditory
scene analysis, are limited by their deterministiture. While it is inherent to the
MMN paradigm to have ‘non-deterministic’ oddballinstli, which violate the

seemingly established statistical rules represetmgdhe standard stimulus, the
overall complexity still does not compare to thenptexity encountered in natural

sounds.

An elegant way to define global information themreproperties of pitch
sequences without explicitly defining the precisteivals or local fluctuations is to
derive pitch sequences from exponential power spedh mathematical terms,

exponential power spectra are defined by
| =kf", (Eq. 2-9)

where k is a constant and the exponantdetermines the slope of the amplitude
spectrum across frequencied-orn = 0, lp is constant across all frequencies (white
noise); as increases, the exponential slope increases asdaach low-pass filter.
Performing an inverse FFT (IFFT) on a power spectiith a given exponerm
gives a time series; the time points in this seci&s then be treated as representing

pitches to form a pitch series. ‘Fractal’ pitch seaces based on inverse Fourier
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transforms of f " power spectra (Patel & Balaban, 2000; SchmuckleGi&len,
1993) provide a means to control directly the gmrof the sequence via the

exponenn (see Chapter 5).

2.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) has its basis uclear magnetic resonance
(NMR) of the nucleus of individual atoms. NMR caa tvaced back to the 1940s
(Bloch et al., 1946; Purcell et al., 1946). The avbruclear’ was later dropped in the
clinical environment in favour of MRI, to avoid al$e connection with nuclear

radioactivity.

If an atomic nucleus has an odd number of protodsnaicleons, this imbalance
causes the atomic nucleus to spin around its akigs creating a magnetic
momentum. Atomic nuclei with an even number of pnstand nucleons, or an even
atomic mass number, do not have a net spin or angubmentum and thus do not
emit NMR signals. In particular, hydrogeH)(atoms not only have a pronounced
nuclear momentum, but are also abundant in natisgles. In the absence of a strong
magnetic field, the orientation of the atomic nualenormal tissue is random, and no
net magnetic field can be detected. However, if@ng external magnetic field0 is
applied, the magnetic moments align either par&did0 (low-energy state) or anti-
parallel toBO (high-energy-state). The magnetic field strengtdanoted in Tesld],
where 1 Tesla = 10,000 Gauss. For comparison, dmgnetic field strength of the
earth is approximately 0.5 Gauss. Typical magnétd strengths for human-
compatible MRI scanners are 1.5, 3, or &, Avhile some high-field MRI scanners
reach TT.

NMR makes use of two properties of atomic nucleeirt alignment and their
precession around themselves. A small majorityhefdtomic nuclei align in the low-
energy state parallel 80, leading to a small net magnetization effect (in.a T

scanner, this ratio is about 1/10,000 000). Thdendlo not align precisely parallel or
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anti-parallel toBO, but precess arour®D, much like a spinning top. The speed of the

precession is proportional BO and is defined by the Larmor equation:
w = g0 (Eqg. 2-10)

Here, is the (Larmor) frequency in MHz (2 ), is the gyromagnetic ratio in
MHz/Tesla for the spin under consideration, &@lis the external magnetic field
strength. The Larmor frequency of hydrogen atom#2i§78 MHz/Tesla. In a three-
dimensional reference frame or coordinate systgrzxthere are two magnetisations
at work due to the alignment and precession of tinelei. The longitudinal
magnetisation denotes the magnetic moment dueetoribntation of the nuclei (the
z-axis is defined to be aligned wit0); the transverse magnetisation denotes the
magnetisation in the x-y plane due to the precassfahe nuclei around the z-axis.
Since all nuclei precess in random phase, theraoisnet detectable transverse
magnetisation. At this stage, the longitudinal negation is the only detectable
magnetisation due to the slight excess of nuclei #re aligned in the low-energy

state parallel t@&0.

The application of a brief (~ 1 ms) radio frequefR¥{) excitation pulse at time
t0 with the same frequency as the precessth@toms introduces an additional
magnetic fieldB1 perpendicular t@B0. This has two effects: firstly, the longitudinal
magnetisation of the nuclei is tilted towarB4 and the magnetisation in the z-
direction is reduced. The time for the longitudinsgnetisation tancreaseto within
63% of its magnetisation at tint® is denoted a31. Secondly, the RF pulse with
Larmor frequency causes the nuclei to precess in phase, thus pnggdor the first
time, a transverse magnetisation in the x-y plaleage the term magnetic resonance).
After cessation of the RF signal, the precessiothefindividual nuclei begins to de-
phase again (mainly through mutual interference tuspatial proximity), thereby
releasing a small amount of radiation at the Larftegquency and consequently
reducing the transverse magnetisation. The timeHertransverse magnetisation to
decreaseo within 63% of its magnetisation at tin@is denoted a32. T2 assumes
an ideal tissue where magnetisation is homogenbusughout. However, the
macroscopic geometry and composition of the imagguple, e.g. the head, vary
greatly and influence the magnetic susceptibilliye effective time in normal tissue

for the transverse magnetisation to decrease torwé3% of its magnetisation at time
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t0 is denoted ag2*. For example, the transition from tissue to aihigh have
different magnetic susceptibilities) at the sinusss particularly pronounced.
Importantly for fMRI, magnetic susceptibility vatians are also present around blood
vessels, where the de-oxyhaemoglobin (dHb) leviecedf T2* in the surrounding
tissue. An RF receiver coil can then detect andlifynipe signal related t@1 and
T2*.

Importantly, the NMR signal is proportional to tdensity of the protons in
each tissue antil andT2* differ for different tissues. The most common taghe in
NMR is a spin-echo technique. Generally, a 90° RIEgperturbs the tissue at titde
and the time at which the decay signal is readnatit an RF receiver coil is the time
to echo (TE). The calibration of TE and the timedpeat (TR) determine the contrast
and quality of an MR image. Due to inhomogeneitirethe magnetic field and those
introduced by the tissue, the transverse magnietisdecay will vary across different
spatial locationsT(2*). A second ‘echo’ RF pulse of 180° is thereforglega to
‘refocus’ the transverse magnetisation decay a¢ fire/2 and essentially neutralise
the effects off2* dephasing (i.e. the spin-echo acquisition is fesgeptible td2*
effects). The NMR signal received at the RF reaeigeil at time TE is then
decomposed via a Fourier transform. An alternatadnique in NMR is a gradient-
echo technique. This acquisition technique rectindssignal after the initial 90° RF
pulse without phase refocusing and is thus moreegpiible toT2* effects; for this

reason, it is commonly used in fMRI.

As described thus far, NMR has been restrictedstu¢ classification without
any spatial information. The birth of MRI can baded to the 1970s, when it was
realised that NMR could also reveal spatial prapsrof tissues by spatially varying
the magnetic field, and consequently the Larmomuency, along a gradient
(Damadiaret al, 1977; Lauterbur, 1973; Mansfield & Grannel, 197y inducing a
gradient field along the three main coordinateg-@); the received signal can then be
decomposed using Fourier transforms and it is plessio spatially reproduce
anatomical properties of the tissue. That is, #ueived or resonant frequency is now

a function of spatial position within the imagesktie.

Generally, the steeper the slope of the magnetdignt and the longer its

application, the higher the spatial frequency netsmh, and vice versa (DelLaPaz,
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1994). Thus, the combination of amplitude and domnadf the gradients determine the
spatial frequency encoding. The spatial frequenfigrination is represented in planar
k-space, where the x-axis represents the ‘read-gnatlient (&) that encodes the
spatial frequency, and the y-axis represents thasg-encode’ gradient (s High
spatial frequencies are represented towards thpheey and low frequencies at the
centre of k-space. The k-space trajectory alonghwvttie signal is encoded traverses
the different phases (via a series of appropridtepRises) of a spatial frequency
before advancing to and repeating the same proedduthe next spatial frequency.
The application of a slice-selection gradieng)(tBat is perpendicular to the x-y plane
enables the acquisition of multiple planes of thaged tissue. This gradient ensures
that only protons in a selected slice (x-y plarre)‘sesonant’ to the applied RF pulses
and emit a signal. Finally, an inverse Fourier sfarm of the frequency-phase

information within each plane can reveal the spatiaperties of the imaged tissue.

2.3 Functional magnetic resonance imaging

2.3.1 Echo-planar imaging

The image acquisition techniques described soréareatively slow (on the order of
several minutes for one volume, e.g. to cover #edhof a person), since essentially
each row of the k-space is preceded by an RF éxcitaulse. However, in order to
track physiological changes, e.g. changes dueffiereint oxygenation levels in blood
vessels (see Chapter 2.3.2), scan volumes need #cduired faster. Echo-planar
imaging (EPI; Mansfield, 1977) allows ultra-fasigacsition of the x-y plane with a
single RF excitation pulse (‘single shot’), whishan the order of tens of milliseconds
per volume. This is achieved by rapid (~1 kHz) shiihg of the frequency (pand
phase (@ gradients to cover the entire plane. Commonlyi, iEperformed with a
gradient-echo acquisition sequence instead of rzeghio sequence, since the former
IS more sensitive t@2* changes (see Chapters 2.2 and 2.3.2). Such gratiboes
are generated via an oscillating gradient alongele-out (G) direction, following a
‘zig-zag' trajectory in k-space. In EPI, the TEdsfined as the time from the RF

excitation pulse to the centre of k-space, whichapproximately equal tdr2*
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(Logothetis, 2002). While EPI is extremely powerfilrequires dedicated hardware
that can withstand the taxing physical stress ajmatic gradient switching, and it is

prone to artefacts (DeLaPaz, 1994).

2.3.2 Physiological basis of BOLD signal and haemodynamsponse

function

In their seminal studies, Ogawa and colleagues f@ga Lee, 1990; Ogawat al,
1990a; Ogawaet al, 1990b) discovered that the NMR signal in bloodsets in the
rat brain varied with changes in blood oxygenatidemand, or blood flow.
Specifically, paramagnetic dHb (Pauling & CoryelD36) causes a susceptibility
difference between the vessel and its surroundssyi¢, which in turn leads to an
increased dephasing of the protons and a decredbe iassociated T2* signal. The
diamagnetic oxyhaemoglobin (oHb) does not produecé sn effect. If a brain area is
activated, cells consume oxygen from nearby bloessels, leading to a temporary
increase of the dHb/oHb ratio. However, soon afteran overshoot mechanism,
blood is directed towards the active site, leadinga net increase in oHb and a
decrease in the dHb/oHb ratio; this increase in aldoses an increase in the
previously disturbed spin coherence (T2*) and cqusatly an NMR signal intensity
increase. The resulting blood oxygen level dependBOLD) signal is thus an

indirect index of neural activity.

The BOLD signal has its physiological basis in gwecalled haemodynamic
response function (hrf) and can be divided into esalv characteristic phases
(Logothetis, 2002). An initial undershoot (Malon&kGrinvald, 1996) is followed
after about 2 seconds by an increase in the BOgbasithat is mainly due to increase
in blood flow directed towards the active regiooXR Raichle, 1986). The hrf peaks
approximately 4-6 seconds after onset of stimutasind decreases fairly rapidly after
cessation of the activating stimulus. This is fakal by an undershoot phase in which
the BOLD signal decreases to below its initial magte, which can be explained by
vasodilatation and an increase in local venousdlaume (Buxtonet al, 1998).

The BOLD signal returns to normal after approxima®? seconds. The associated
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BOLD signal changes are minute, on the order of5%lin the auditory cortex
(Talavageet al, 1999).

From first principles, the BOLD signal is consideran ‘indirect’ measure of
neural activity and its precise neuronal underpiggiare still under investigation
(e.g. Logothetis, 2002, 2003, 2004, 2008). Howepameering work by Logothetis
and colleagues, combining intracortical electrofblggiical recordings and fMRI in
anaesthetised (Logothetet al, 2001) and unanaesthetised macaques (Goense &
Logothetis, 2008), showed that the fMRI BOLD sigealkrelates better with local
field potentials (LFPs), an index of pre-synaptitegration, than with post-synaptic
action potentials, as assessed via multi-unit egtfdMUA). Furthermore, when MUA
responses adapt while LFPs remain unaffected, @elBsignal remains unaltered.
Thus, the best predictor of the BOLD signal is L&fivity in the gamma frequency
range (20-60 Hz), implicating the importance of ne@oodulatory processes (Goense
& Logothetis, 2008).

2.4 fMRI and auditory stimulus presentation

Acoustic noise due to the mechanical switchinghaf inagnetic gradient coils is a
serious constraint for fMRI studies investigatingliory processing. In conventional
continuous 1.5 T and 3 T EPI, sound pressure lendlse bore of the scanner exceed
120 dB (Priceet al, 2001; Raviczt al, 2000). The main source of acoustic noise is
the readout phase during the imaging protocol, witter ambient noise factors such
as the helium cooling pump and air conditioningtesysonly contributing relatively
little to the total noise level (Raviez al, 2000). Furthermore, the noise produced by
the scanner has a broad spectrum from 250 Hz tdzAwkth a typical peak at around
1-1.5 kHz (Chamberst al, 2001; Hallet al, 1999; Raviczt al, 2000), which covers

a crucial frequency range in human auditory pefoaptVhile ear protection such as
ear defenders can achieve some 20-40 dB noisetredlua significant part of the
scanner noise is still conductedh\the ear canal (< 500 Hz) and bones (> 500Hz)
(Ravicz & Melcher, 2001). Active noise cancellati@ehniques (Amaret al, 2002;
Chamberst al, 2001; Moelker & Pattynama, 2003) can further msdthe effect of
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the scanner noise, but their effectiveness is ayillimited by the contribution of

bone conduction (Ravicz & Melcher, 2001).

Apart from the generally unpleasant experiencetlier participant, the noise
also considerably reduces the signal to noise (&INR). That is, when presenting an
auditory stimulus while acquiring scan volumes, tr@modynamic response (and
consequently the BOLD signal) due to the stimulnd #hat due to the scanner noise
are confounded and difficult to disambiguate. Thastant background noise of the
scanner furthermore introduces a continuous stimdlr the auditory system,
resulting in adaptation or habituation, as wellrdsbitory processes, particularly in
subcortical and primary auditory structures. Sitlee haemodynamic response does
not behave linearly across sound levels, the effetioud background noise levels
are often unpredictable (Beliet al, 1999; Edmisteret al, 1999; Talavage &
Edmister, 2004), rendering the notion of a ‘sildraSeline condition problematic. For
example, subtracting the haemodynamic response ‘sideat’ baseline during the
presence of scanner noise from the haemodynampmomes to an experimental
stimulus during the presence of scanner noisar({gtis + scanner noise] — [‘silence’
+ scanner noise]) is not identical to subtractithgnse from an experimental stimulus
([stimulus — silence]) (Gaagt al, 2007). A further, more cognitive, constrainthait
the acoustic stimuli are difficult for participartts hear due to the background noise,
and the experiment essentially becomes a figurargtéask rather than a true sensory
or perceptual representation of the experimentalustis attributes per se (Scheieh
al., 1998).

A variety of imaging protocols have been introdutedcircumvent or avoid
these effects for studies investigating auditorsception. Principally, there are three
variants of ‘silent’ imaging designs that offerfdrient temporal resolutions. Eden and
colleagues (1999) used an imaging protocol in wiaidilent period (~ 2 seconds) is
inserted between scan volume acquisitions that laag enough to present a short
acoustic stimulus. The temporal resolution of sbehaviour interleaved gradients
(Edenet al, 1999) or compressed (Amaed al, 2002) protocols is not as precise as
conventional continuous imaging, but still on theer of a few seconds. Belin and
colleagues (1999) introduced an event-related ddsygengthening the silent period

between volume acquisitions to some 9 seconds \tideing the presentation of the
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acoustic stimulus within that silent period; thelmmdynamic response to the acoustic
stimulus is thus captured at different time poiktall and colleagues (1999) acquired
a volume only at the predicted peak of the haemaalyn response. This ‘sparse’
imaging protocol carries minimal information abaé shape of the haemodynamic
response to different experimental stimuli, i.e.témporal resolution is very limited.
However, it maximises the dissociation betweenhthemodynamic response of the
experimental stimulus and that of the scanner naisd thereby significantly
improves the SNR (Ha#t al, 1999).

Apart from the trade-off with respect to time regmn, a further constraint of
these designs is the considerable length of thenstg procedure required to obtain
reasonable SNR, which makes its use difficult intade subject populations (e.g.
clinical patients). In general, when the experimequestion is weighted towards the
sensory representation of certain acoustic atetiat are likely to be influenced by
adaptation and background noise, ‘silent’ or ‘spaimaging protocols should be
preferred. However, if temporal resolution is ok thssence or the experimental
guestion addresses higher level auditory processasn-primary cortex that are less
likely to be significantly affected by the scanm&ise, continuous imaging protocols
should be preferred. In the work presented in ttmesis, both continuous and sparse
acquisition protocols were used. Continuous adipiswas the protocol of choice
for Studies 1 and 2, since in these studies th@aesmh dynamics of the data were of
particular interest; furthermore, the experimergaéstion for Study 2 required an
experimental design whose effects could only betured with the temporal
resolution of a continuous imaging protocol. In traest, Studies 3-5 used a sparse
acquisition paradigm, since the pitch sequencedmmg in these studies extended
over multiple seconds, making it possible for tHeLB® signal to be captured at the

end of each stimulus block or pitch sequence.
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2.5 Image pre-processing

The analysis of functional imaging data requiresbetate pre-processing algorithms
before any statistical analysis with respect to theerimental effects can be
performed. Specifically, the successive scans rieeble realigned to account for
movement of the participants, normalised to a stethdtereotactic reference frame
that allows between-subject comparisons, and firathoothed to increase the SNR.
Each of these steps, executed within StatisticedwrRatric Mapping (SPM) software
(http://www.fil.ion.ucl.ac.uk/spry) and encompassing a sophisticated theoretical and

mathematical background, is described briefly below

2.5.1 Realignment and unwarping

The successive scan volumes in fMRI are treatedtase series. In an ideal world, a
given image volume element (voxel) would repregbet same cortical area across
scans. However, the spatial resolution of fMRI 383 mm) means that even tiny
movements lead to misalignment across successares s fact, movement on the
scale of micro-millimetres can significantly affaébe data (Fristoet al, 1995a) and
can contribute as much as 90% of the varianceeotifta (Fristoret al, 1996b). This
leads to signal changes in a given voxel that mitign be misattributed as
‘activation’. While the most serious movement ate$ are due to participants’ head
movements, even small movements due to the cacglide movement are a source of
scan misalignment, particularly in brainstem suues. Motion that is uncorrelated
with the experimental conditions generally introgsiexternal noise and consequently
decreases the detection of true activation; coelgrenotion that is correlated with
an experimental task can lead to misattributiosighal changes as ‘activation’. Thus,

it is essential to remove movement artefacts.

Typically, the first image of the time series iedted as a global reference for
the first scans of subsequent sessions, whictarein turn used as references for the
remaining scans within their session. The realigmnmeutine uses a least squares

approach and a 6 parameter (three translationshame rotations) affine ‘rigid-body’
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spatial transformation to calculate the motion esged with each scan (Anderssein
al., 2001; Fristoret al, 1995a). These parameters are then used to &kle scan to
the new grid coordinates, usually via sinc inteatioh (Grootoonket al, 2000).
There are, however, additional non-linear movemelasted artefacts; specifically,
magnetic inhomogeneities particularly in regionshvan air-tissue interface, such as
the orbitofrontal cortex or the anterior inferi@mporal lobes, cause deformations in
the sampling matrix (Anderssat al, 2001) and are further distorted by movement.
The unwarping routine takes account of such susziytby-movement
interactions. It can be further informed by the wsijion of BO magnetic fieldmaps
for each participant, which provide an explicit @ ofBO inhomogeneities and

associated geometric distortions (Cusathkl, 2003; Huttoret al, 2002).

2.5.2 Normalisation

Since the anatomy of individual brains differsisitnecessary to transform the scans
into a stereotactical reference space that allamsparisons across participants. The
realign and unwarping routine implemented withinVSEreates a mean functional
image of all functional scans; this image is subsetly used to estimate warping
parameters that map it onto a common stereotaptices (Talairach & Tournoux,
1988; Togaet al, 1994) or an average brain derived from large sétprevious
imaging data (Evanst al, 1993; Mazziotteet al, 1995; Roland & Zilles, 1994). The
estimation is commonly achieved via a 12-paramedffine transformation
(translations, rotations, zooms, and shears), wterggarameters constitute a spatial
transformation matrix (Friston, 2003b). This isrthiollowed by an iterative non-

linear estimation of spatial deformation patterns.
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2.5.3 Smoothing

The final stage of the preprocessing routines clues the data with an isotropic
Gaussian smoothing kernel. The primary motivation $moothing the data is to
increase the SNR ratio (Friston, 2003b), albeittret cost of spatial resolution.
Confounding effects of noise at the level of indisal voxels can be reduced by
convolution with a smoothing kernel whose supperbout 2-3 times the voxel size.
Generally, a smoothing kernel of 6 mm full-widthkatlf-maximum (FWHM) is
appropriate at the single-subject level, while anr8 kernel at the group level is able
to take into consideration the morphological diéferes between participants.
However, small structures, such as nuclei in tlanistem, require smaller smoothing
kernels of about 4 mm FWHM.

2.6 Statistical analysis

The pre-processing routines described above erthbleexamination of regionally
specific effects of the experimentally manipulateatiable(s) within a statistical
framework. SPM software combines the General Lindadel (GLM), described in
Section 2.6.1, to estimate the effects of intedes to the experimental variable(s)
with Gaussian Random Field (GRF) theory to modeitialy extended processes
(Section 2.6.2). The result is a statistical pataicmenap (SPM) that represents the

regionally-specific effects of the experimentalighte(s).

2.6.1 General Linear Model (GLM)

The GLM provides a framework for the statisticaalysis of functional imaging data.
It incorporates common statistical tests such adesit’st-test or analyses of variance
(ANOVASs). Essentially, the signal intensity of eaahxel within a scan is treated as a

time series across scans and approximated vieethergl equation
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Y=Xb+e (Eq. 2-11)

Here, Y is the data matrix with cellg for j voxels (rows) across i scans (columns); X
is the design matrix with cellsgxwith one column for every effect of interest ach
row; is a parameter matrix whergis a column vector of parameter estimates for
each row; is a matrix of normally distributed error termgsigfon et al, 1995b). The
effects of interest in are modelled via convolution with a canonical (sée Section
2.3.2). The experimental conditions and their gponding parameter estimates are
contrasted against each other by appropriately Mieig the columns;. A normalt
statistic can then be obtained for each voxel Via tatio of contrast-weighted

parameter estimates to the estimated standardternor

2.6.2 Gaussian Random Field (GRF) theory

GRF theory assumes that, under the null hypoth&#/s of the voxel parameter
estimates for a given condition are distributedoaging to a known probability
density function, normally Studentts or F distributions. Any deviations of this
distribution that surpass a set (significance) shoédd can be attributed to the
experimental variable with a certainly , where is the Type | error of falsely

rejecting the null hypothesis.

In a typical fMRI study with whole head coveragesiagle scan volume
comprises tens of thousands of voxels. The stistiomparison of each voxel with
all other voxels so as to estimate the effect efdkperimental variable(s) introduces
a considerable likelihood of false positives (Hoetgp & Tamhane, 1987). For
example, when testing 200,000 voxels at a sigmfieathreshold op < 0.001 (a
common statistical threshold in fMRI), about 20keils can be expected to show
chance, and therefore potentially false, ‘activ@tid conservative, straightforward
approach would be to control for multiple companswia the Bonferroni correction
by dividing the statistical threshold by the numlmdrindependent comparisons
(Logan & Rowe, 2004). However, in this case, tlaistical threshold would be very
stringent p = 0.05/200,000 = 0.00000025~urthermore, the voxel time series are not
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strictly independent, since neighbouring voxels dilely correlated due to

macroscopic anatomy (e.g. blood vessels) and dgaspxtent of the hrf.

Using a conservative threshold also reduces theeptmwdetect activation (or it
increases the likelihood of falsely rejecting trgtive voxels). Thus, a common
convention sets a significance thresholdpok 0.001 for brain areas where the
researcher has aa priori hypothesis (e.g. auditory cortex). In more explona
studies or for activations in brain areas whererédsearcher did not have arpriori
hypothesis, a more conservative threshold thatuadsdor the problem of multiple
comparisons is prudent so as to avoid false rejestiof the null hypothesis. A
common approach is the family-wise error (FWE) (&@gan & Rowe, 2004; Nandy
& Cordes, 2007). Here, the tens of thousands oVidlal voxels are collected in a

family , with an associated family of null hypothedgs, : w1 W} . The omnibus

null hypothesidH is then rejected if at least ohk is rejected for a set threshald
the individual thresholdu can be chosen so that the threshold for the dutiilfy gives

the desired level of certainty (commonly 0.05).

2.6.3 Random-effects analysis

There are two main types of analyses, which diff&h respect to their scope of
inference (Fristoret al, 1999). Generally, fixed-effects analyses allovieiances

concerning the typical behaviour of the group atipgants tested in the study, while
random-effects analyses allow inferences to be drawout the average behaviour of
the general population. Specifically, fixed-effe@ralyses disregard inter-subject
variability and essentially treat each participasta session within a longer time
series; thus, the only error source that is modetled accounted for is the error
variance between scans. Fixed-effects analyses aavwgh number of degrees of

freedom (slightly less than the number of scarad)tot

Conversely, random-effects analyses also accoumter-subject variability as
an additional source of variance, resultingnn— 1 degrees of freedom fon

participants, reducing the effect of subject ouslie\ random-effects analysis requires
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a sufficient number of participants (at least €ight as to reliably estimate inter-
subject variability and obtain adequate power ttedeeffects of interest. Random-
effects analyses incorporate a two stage proceerere the contrast of interest is
computed at the single-subject level before itval@ated at the group level. All

studies in this thesis used random-effects analyses
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Chapter 3.  ENCODING OF SPECTROTEMPORAL
CORRELATION IN COMPLEX ACOUSTIC

SPECTRA

Summary

Acoustic information in natural sounds evolves over a range of time scales. In
speech, for example, phonemes and syllables unfold over two distinct time
windows, the former on the order of tens of milliseconds, the latter over
hundreds of milliseconds. The auditory system needs to track the acoustic
information over these different analysis windows. Recent studies suggest
differences in the encoding of short (tens of ms) and longer (hundreds of ms)
time windows in left and right auditory cortex, respectively. Study 1 assessed
brain activation in response to the systematic variation of the time window
over which complex spectra change. The different time windows were realised
by controlling the degree of correlation between successive time frames of the
spectrum: the greater the correlation of the spectrum between successive
time frames, the longer the time window for a given change. The parameters
were chosen such that stimuli corresponded to time windows between 20-300
ms. The data show bilateral activity in the planum temporale (PT) and anterior
superior temporal gyrus (aSTG) as a function of increasing time window, as
well as activity in the superior temporal sulcus (STS) that was significantly
lateralised to the right. No cortical areas increased their activity as a function
of decreasing time windows. The network revealed as a function of increasing
time windows represents a generic mechanism for the analysis of temporal
structure in natural sounds. Furthermore, the data suggest a complex
lateralisation model where different levels of analysis occur within different

subareas of auditory cortex.
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3.1 Introduction

This study considers the neural bases of diffetentporal analysis windows for
natural sounds. There is accumulating evidence dlalitory perception extracts
acoustic information over different time scalesspeech, for example, phonemic and
syllabic rates operate over two distinct time ssalbe former on the order of tens of
milliseconds, the latter over hundreds of millised® (Rosen, 1992). One model of
speech perception, the ‘asymmetric sampling in'tiA&T) hypothesis (Poeppel,
2003), draws on this dissociation. It posits arkdisation scheme in auditory cortex
(AC) by which slower modulations (~3-6 Hz or ~15003ms) preferentially engage
right AC, whereas fast modulations (~20-40 Hz ob-5P ms) are preferentially
processed in left AC. The present study considengigc mechanisms for the analysis
of the temporal structure of novel sounds withrailgir level of complexity to that of

speech sounds.

Previous investigations (Boema al, 2005; Schonwiesnet al, 2005; Zatorre
& Belin, 2001) have manipulated the acoustic sedmength within multiple-
segment sounds to probe for distinct processingjftdrent temporal modulations or
time windows. However, results in these studiesfeddfi with respect to
specialisations of different subareas in auditooytex for temporal modulations,
either within or between hemispheres. For examptemio and colleagues (2005)
demonstrated sensitivity to decreasing temporal uladidn rates in auditory
association cortex (AAC), with a right-hemisphdsias that was most pronounced in
right superior temporal sulcus (STS). The authoid ot find evidence for
differential temporal sensitivity in primary or sewlary auditory cortices (PAC and
SAC) as part of Heschl's gyrus (HG).

However, others (Schonwiesnet al, 2005; Zatorre & Belin, 2001) have
shown sensitivity to increasing temporal modulatrates in HG, which was more
marked on the left. These studies (Schonwieshat, 2005; Zatorre & Belin, 2001)
did not find evidence for differential temporal sgéiity in AAC. Obleser and
colleagues (2008) used a more natural stimulusirgstdad manipulated the spectral
and temporal resolution of speech signals, dematisgr slight lateralisation
preferences in right and left AAC (specifically ST&r spectral and temporal

resolution, respectively. Thus, critical yet unteed questions relate to (i) the extent
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to which the analysis of different levels of temgdastructure depends on primary and
secondary auditory cortex as opposed to ‘higheerduditory association cortex,
and (ii) the lateralisation of temporal analysishivi these different areas (Hickok &
Poeppel, 2007; Zatoret al, 2002a; Zatorre & Gandour, 2008).

Furthermore, natural sounds including speech ca®pmodulations of a
complex spectrum over time, where the spectrum gégmmynamically and where
changes in the spectrum convey information abouindoevents (relevant to
communication) and sources (relevant to identiiicgt The temporal variation of the
spectrum of naturally occurring sounds generallyfoons to statistical distributions;
the spectrum at any given point cannot be precigedglicted, but it will be within a
range that can be defined by a statistical ditiobu None of the previous studies

captured this complexity of natural sounds in tlegperimental manipulations.

In this study, a novel stimulus (Figure 3-1) isragluced that is based on the
systematic manipulation of the degree of statisficatuation over time in complex
acoustic spectra. The rate of fluctuation is openalized as the mean Pearson
product-moment correlatiom)(between amplitude spectra in adjacent time frames
used in previous behavioural studies of timbre (iGaat al, 2005; Krimphoff, 1993;
Krimphoff et al, 1994; Krumhansl, 1989; McAdanet al, 1995). Rapid modulation
of the spectrum (at the phonemic rate in speechds)ucorresponds to short time
windows within which a given degree of correlatignalways present between any
two time frames of the spectrum, even if thesenateadjacent. Slow modulation of
the spectrum (at the syllabic rate in speech sQuasesponds to long time windows
within which a given degree of correlation is alwgyesent between any two time

frames.

For a sound composed of 20 randomly chosen fregegribe intensity of each
frequency was allowed to vary between adjacent fiaees such that the Pearson
correlation ) between the adjacent time frames as a whole sprreled to a fixed
valuer. For a sound with high correlation between adjatere frames (e.g. = 0.9),
the correlation between non-adjacent time framesayke exponentially with the
number of time frames (or lag) between the nonemdjatime frames. The window
length of this decay process is defined as thetidaraover which the correlation

between any two non-adjacent time frames reachemianum value ( = 0.2, in the
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present case) from its initial valuebetween adjacent time frames. It is calculated by
the following Equation 3-1:
. _ . In(0.2)
window_length (0.2) = frame_ durationx——=- (Eq. 3-1)
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Figure 3-1  Auditory stimulus. Spectrograms of representative stimuli from each level of

correlation.

In the case of small initial values pfe.g.r = 0 orr = 0.2), the correlation between
non-adjacent time frames is not appreciably difiefeom that between adjacent time
frames. Figure 3-3 (inset) shows the relationst@fwken the correlatiorr)(and the
window length when the frame duration is 20ms:vivedow length corresponding to
values ofr between 0.2 and 0.9 varies between 20ms and 30&me®mpassing

windows relevant to phonemic and syllabic procagsiespectively (Rosen, 1992).
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The stimuli are more similar to the acoustic comipjeof speech and other naturally
occurring sounds than the stimuli used in previstiglies (Boemicet al, 2005;
Schonwiesneret al, 2005; Zatorre & Belin, 2001). Unlike speech, huer the
stimuli allow systematic manipulation of the timéendows over which correlation-
controlled change in the spectrum occurs withoyt semantic confound, enabling

the investigation of fundamental mechanisms foirtgranalysis.

Using fMRI, haemodynamic activity was measured w/iphrticipants listened
to stimuli with multiple components where the ctatien () across the spectrum was
varied in six steps between a value producing meetagion between adjacent time
frames ( = 0) to one producing strong correlation=0.9). Specifically, differences
in activation were sought as a function of incregsaand decreasing spectrotemporal
correlation and the associated window length betw@e primary and secondary
cortices in HG, and AAC, and (ii) between the tvemiispheres of the brain.

3.2 Materials and Methods

3.2.1 Participants

17 right-handed participants (aged 18-31, mean=ag®.35, 9 females) with normal
hearing and no history of audiological or neuratadjidisorders provided written
consent prior to the study. The study was apprdxethe National NHS Research
Ethics Committee.

3.2.2 Stimuli

All stimuli were created digitally in the frequencgomain using Matlab
(http://www.mathworks.comat a sampling rate of 44.1 kHz and 16 bit resotut

Each sound consisted of 20 sinusoids randomly chdsem a pool of 101
logarithmically spaced frequencies between 2463544z. The particular parameters
were chosen so as to approximate respective faamreaturally occurring sounds,

which typically have complex spectra with multipfeequencies present. The
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bandpass (246 — 4435 Hz) covers the acoustic ridwagés most important for human
auditory perception, and the number of frequenaidisin this pool (101 frequencies)
are a result of this range. The amplitude spectua® defined in 20 ms frames such
that the correlation from one frame to the next wperationalized as the Pearson

product moment correlatian

T x-9- (- 9)
r(xy)=- " = 5s (Eq. 3-2)

wherex andy are the amplitude (in dB) vectors over the 20deeey components of
two consecutive frames) is the number of frequencies, and s, represent the
standard deviations of andy, and X and y are the arithmetic means wfandy,
respectively. Thus, the amplitude spectrum of @&misound varied with a specified
correlation ¢ = 0, 0.2, 0.4, 0.6, 0.8, 0.9) between the 20 ngsnsats. Linear spline
interpolation amplitude transitions were applietwsen frames, so that sounds were
continuous and did not have any sudden amplitung$u This was applied in order
to render the sounds more similar to most etholdgiounds; however, some speech
sounds like plosives or consonant-vowel do displayden amplitude jumps (Rogers,
2000). Importantly, the mean amplitude (65 dB) atmhdard deviation (SD = 15)
were identical for each frequency component invemisound and across correlation

levels. Each sound had a rise and fall time of 80 m

3.2.3 Experimental design

Prior to the experiment in the MRI scanner, pgracts were familiarised with the
stimuli and then performed 2I2AFC psychophysicshwit= 0 as reference sounds.
Stimuli were 2 sec. long and were different exemgplaom the ones subsequently
used in the scanner. Psychophysics ensured thatijpants were able to distinguish a
highly correlated sound from the reference sound, they needed to reach at least
90% correct performance for the strongest cor@afi = 0.9) to be included in the
fMRI study. Psychometric functions and 95% corrpetceptual thresholds were

estimated via a Weibull boot-strapping procedurécfiiann & Hill, 2001).
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Stimuli in the scanner were of different duratiofis 2, 3, or 4 sec.) and
separated by a mean inter-stimulus interval (I8 sec. (range: 1.5-2.5 sec.) as well
as occasional silence trials of 6 sec. durationp@O0session). Stimuli were presented
in a pseudorandom order, with 20 exemplars for éaxa per session (80 stimuli per
level in total, amounting to a total presentatiomet of 200 sec. per level). Participants

performed a stimulus-irrelevant task by pressibgthon after each sound.

Stimuli were presented via NordicNeuroLdiitg://www.nordicneurolab.com

electrostatic headphones at 80 dB sound pressugk (l8PL) using Cogent software

(http://www.vislab.ucl.ac.uk/Cogent

3.2.4 fMRI protocol and analysis

Gradient weighted echo planar images (EPI) (seéd®e2.3.1) were acquired on a 3
Tesla Siemens Allegra system (Erlangen, Germarsiygua continuous imaging
protocol with 42 contiguous slices per volume (titbeepeat/time to echo, 2730/30
ms). Continuous imaging was chosen to ensure arltetnporal resolution than that
offered by sparse imaging protocols; this would nthiacilitate an additional
examination of the data with respect to its netwaijnamics using analysis
techniques such as dynamic causal modelling (DGBtdfret al, 2003; Pennt al,
2004). The volume was tilted forward such thateslievere parallel to the superior
temporal plane. Participants completed four sessair?50 volumes each, resulting
in a total of 1000 volumes. To correct for geoneetfistortions in the EPI due to BO
field variations, Siemens fieldmaps were acquir@deach subject, usually after the
second session (Cusaek al, 2003; Huttonet al, 2002). A structural T1 weighted
scan was acquired for each participant (Deichnetral, 2004).

Imaging data were processed and analysed usingtisttParametric Mapping

software (SPM5 http://www.fil.ion.ucl.ac.uk/spm (see also Sections 2.5-2.6). The

first four volumes in each session were discardezbntrol for saturation effects. The
resulting 984 volumes were realigned to the firslune and unwarped using the
fieldmap parameters, spatially normalised to stadiw space (Fristoat al, 1995a)
and smoothed with an isotropic Gaussian kernelmf8full-width-at-half-maximum
(FWHM). The standard exponential decay function.(B¢l) for the six levels of
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correlation yielded time windows of [0 20.00 35.163.01 144.25 305.51]
milliseconds or [0 1 1.76 3.15 7.21 15.28klé@s depicted on the right and left y-
axis y-axis in the top inset of Figure 3-3, respety). The corresponding contrast
values at the single subject level probing for #ieat of time window length over the
six levels were then mean centred to yield [-2.92.32, -1.85, -0.98, 1.54, 6.55].
Statistical analysis at the group level used aaandffects model within the context
of the general linear model (Fristen al, 1995b), and data were thresholded at p <
0.001 (uncorrected for multiple comparisons actihgs brain) for areas with aa
priori hypothesis, i.e. auditory cortex. Where the rassiirvived a more conservative
threshold of p < 0.05 (family-wise error corrected multiple comparisons across the

brain), results are reported at this threshold.

For the test of lateralisation, two sets of imagese created: both a set of
‘flipped’ left-right unwarped images as well as tbeginal unwarped images were
normalised to a symmetrical template so as to eraldlirect comparison between the
activations in the left and right AC. Note that ttesulting symmetrical stereotactic
space will differ slightly from MNI stereotactic &pe. These original and flipped
normalised scans were smoothed with an 8 mm FWHMosinng kernel, as above.
Both original and flipped scans were then combimedne design to enable a direct
comparison. Statistical analysis at the group levak thresholded at p < 0.001

(uncorrected for multiple comparisons across tlaénfr

To compare in detail the response in subareasdifoay cortex as a function of
spectrotemporal correlation, local maxima coordisatvere identified based on the
main contrast of spectrotemporal correlation (for 8TG, and STS), and based on a
[sound — silence] contrast for left and right H@tthre most similar to central HG or
SAC (Morosaret al, 2001; Pattersoat al, 2002; Rademachet al, 2001). Finally,

the parameter estimates of the BOLD signal wermetdd at these coordinates.
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3.3 Results

The psychometric functions obtained from the psptlysics prior to scanning are
displayed in Figure 3-2. For all participants, gerceptual threshold lay between the

second and third levels, corresponding t00.2 and = 0.4.

An analysis was carried out to seek areas whereathieity increased or
decreased as a function of correlation and thecagsd window length (see Materials
and Methods). The results show bilateral actiwityAIAC as a function of increasing
correlation or temporal window, in particular irmpum temporale (PT) and anterior
superior temporal gyrus (aSTG), while also extegdirto right STS (Figure 3-3, see
also Table 1 for coordinates of local maxima). Bswformally tested whether this
effect arises in and is specific to AAC in PT ai@'& and is not already present in
HG (see also Figure 3-3) by extracting the BOLDhalgsee Materials and Methods)
in central HG, which is most similar to SAC (Moraset al, 2001; Pattersoet al,
2002; Rademachest al, 2001), and the association areas that showedcagaise in
activity as a function of correlation. Two separdter PT and aSTG) repeated
measures ANOVAs with factors 2 Hemisphere (lefght) x 2 Area (HG, [PT or
aSTG]) x 6 Correlation level (1-6) demonstrated Amea x Correlation level
interaction (ks.g0)= 8.28, p < 0.001 for PT; angko)= 5.19, p < 0.01 for aSTG).
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BOLD signal

Figure 3-3 Main results. Areas increasing in activity as a function of spectrotemporal
correlation (red) and areas responding to sound in general (blue). Results are rendered on
a tilted (pitch = -0.5 radians) section of the normalised average structural along STG and
thresholded at p < 0.05 (FWE corrected). The bar plots at the sides show the signal at the
respective coordinates for the six levels of correlation (+ 95% confidence interval). The top
figure displays the average lag (in 20 ms frames) and associated time window length (in
ms) for which there exists a correlation r > 0.2 for the six levels of correlation, as

determined by the exponential decay function (inset formula).

To compare directly the response in left and raginditory cortices, a formal test of
lateralisation was performed by ‘flipping’ and naiising the functional scans to a
symmetrical template (see Materials and MethodsjivAy in PT and aSTG did not
differ between left and right hemispheres. Howevight STS showed significantly
stronger activation as a function of increasingredation than its left hemisphere
homologue (Figure 3-4 and Table 1). A repeated-oreasANOVA with 2 Area (left

STS, right STS) x 6 Correlation level (1-6) as d¢ast revealed a significant
interaction (ks g0y = 2.33, p = 0.05). That is, while PT and aSTG athihemispheres
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are equally involved in processing longer specinperal correlation over time, the

data suggest a right-lateralised preference in STS.

o left STS (-62-22 -8)

g

right 5TS (62-22-8)

|

correlation (r)

30

2.00

il

correlation (r)

BOLD signal

Figure 3-4  STS lateralisation. Areas showing a significantly stronger increase in activity
in right STS than left STS (red) together with areas that show an increase as a function of
correlation (blue). Results are rendered on a tilted (pitch = -0.5 radians) section of the
symmetrical normalised average structural along STS and thresholded at p < 0.001
(uncorrected). The bar plots at the sides show the signal at the respective coordinates for

the six levels of correlation (£ 95% confidence interval).

Table 3-1 MNI coordinates of local maxima. The table displays MNI coordinates of local
maxima (p < 0.05, FWE) in PT and aSTG as a function of increasing time window
correlation and coordinates of local maxima (p < 0.001, uncorrected) in right STS for the
lateralisation test. Note that the coordinates for STS are only approximations, since they

were normalised to a symmetrical template.

left hemisphere right hemisphere
Contrast Area X y z t-value X y z t-value
window increase PT | -62 -24 8 10.52 58 -16 2 |13.49
66 -16 0 | 12.83
aSTG | -50 -6 -14 | 11.10 46 4 -18 9.91
-54 -6 -2 8.71 56 10 -12 9.54
lateralisation STS 66 -22 -8 5.10

56 -44 6 4.56
54 -10 -16 5.34
48 12 -24 3.90
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The relationship between the BOLD signal and catirehr appears non-linear
in the right hemisphere and linear in the left (fFeg3-3). It was therefore specifically
tested i) whether the relationship between BOLD maiglbetter fitted by a linear or
exponential function in these areas, and ii) whettarying out a linear contrast
based orr rather than a contrast based on window lengttebéts the data. Curve-
fitting algorithms were performed on areas in higbelder auditory cortex that were
revealed by the analysis of the imaging data tbwé®ther the relationship between
BOLD signal and correlation better fits a linear versus exponential functidhe
curve-fitting algorithms were part of the Ezyfit dibox for Matlab www.fast.u-
psud.fr/ezyfij. The linear function was of the forny(x) = ax+b, wherea represents

the slope andb the y-intercept; the exponential function was die tform

y(x) =a”™ +c, wherea is the basd) is the slope andrepresents the y-intercept.

Areas in left aSTG show a better fit for a lineandtion (no exponential
function can be fitted to the data) (Figure 3-5pn@ersely, the response in right
aSTG is better described by exponential functiéingufe 3-6).

laSTGI laSTGs

Y =ax+h Y =ax+h

Al [2=0 10850 a=043198
b=23735 1 b=55564

R =0.90009 {lin) 851 IR = 097923 (in)

BOLD signal
BOLD signal

25

correlation {r) correlation (r)

Figure 3-5 Plots of the two local maxima in left aSTG (laSTGi refers to the more inferior
[-50 -6 -14], and 1aSTGs refers to the more superior [-54 -6 -2]). The data are plotted in
blue along with the linear (green) fitted function and its parameters. An exponential function

could not be fitted to these data.
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Figure 3-6  Plots of the two local maxima in right aSTG (raSTGa refers to more anterior
[56 10 -12], and raSTGp refers to the more posterior [46 4 -18]). The data are plotted in
blue along with the linear (green) and exponential (red) fitted functions and their

parameters.

With respect to PT, left PT (IPT) shows a slightigtter fit to an exponential
function than linear (Figure 3-7); the more medahl maximum in right PT (rPTm)
also shows a better fit to an exponential functi@iile no exponential function could
be fitted to the more lateral local maximum in tigfT (rPTI) (Figure 3-8).

yi)=ax+b
a=044182

1251 1 =g8.7307
92021 (lin)

BOLD signal

. . . . . .
[} 2 4 [ ] 9
correlation (r)

Figure 3-7  Plots of the local maximum in left PT (IPT refers to [-64 -24 8]). The data are
plotted in blue along with the linear (green) and exponential (red) fitted functions and their

parameters.
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Figure 3-8  Plots of the two local maxima in right PT (rPTm refers to the more medial [58
-16 2], and rPTI refers to the more lateral [66 -16 0]). The data are plotted in blue along
with the linear (green) and exponential (red) fitted functions and their parameters. An
exponential function could not be fitted to these data for rPTI.

A linear contrast [-2.5 -1.5 -0.5 0.5 1.5 2.5] wesformed to assess whether
this form of increasing function showed a differamtwork of areas from the
(exponential) contrast based on the window lengthcan be seen in Table 3-2, the
coordinates in both PT and aSTG are generally wimjlar and in some cases
identical. This is the same when using a contraset on the individual psychometric
function obtained for each participant, highligititne fact that the statistical routines

within SPM are not very sensitive to different skepf responses across levels.

Table 3-2 MNI coordinates of local maxima (FWE, p < 0.05) in PT and aSTG as a
function of a linear increase and based on participants psychometric functions (see Table

3-1 for comparison).

left right

Contrast Area X y z t-value X y z t-value

window increase PT -62 -24 8 9.44 60 -16 0 13.64
(lin)

aSTG -54 -6 -2 9.70 58 10 -12 10.00

54 -2 -6 9.30

window increase PT | -62 -22 8 8.66 60 -14 0 9.79
(psy)

aSTG | -52 -6 -4 | 11.13 58 10 -10 8.65

54 -2 -6 9.11
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In summary, the data show that in the right hermasighareas the relationship
between BOLD and is generally better fitted by an exponential fumectand in the
left areas by a linear function. Nevertheless, & \@milar network of areas is

demonstrated by contrasts based on eitlfgnear) or window length (exponential).

There was no evidence for an effect of decreasomgelation; that is, no area
showed a signal increase as the time window agsdcwth each level of correlation
decreased. Even lowering the statistical thresholda very lenient p = 0.1
(uncorrected for multiple comparisons) did not gielny activation in the auditory
system. Consequently, there was no detectablealstsion as a function of

decreasing correlation.

3.4 Discussion

In this study, the spectrotemporal correlation amplex sounds was systematically
varied, demonstrating an increase in activatioPAKC as a function of spectral
correlation over time (or equivalently as a funatf time window length). PT and
aSTG showed a bilateral increase in activity witbréasing correlation and it was
shown that this relationship arises in AAC and @& already present in Heschl’'s
gyrus (i.e. in PAC or SAC). Furthermore, activitprag the upper bank of right STS
increased to a greater extent than left STS asetifun of increasing correlation.
There were no areas that showed an increase wita@s a function of decreasing

correlation over time (shorter time windows).

The stimuli in the current study were based on demppectra with multiple
frequencies which varied over time in statisticalntrolled ways that are similar to
ethological sounds including speech. In contraglyipus neurophysiological studies
of temporal analysis in animal cortex have gengnadled more deterministic stimuli
including sinusoidal amplitude modulation of narrband stimuli or noise (Jorist
al., 2004; but see Malonet al, 2007). Neurophysiological studies of amplitude

modulation in (mainly primary) auditory cortex imrmans (Liégeois-Chauvett al,
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2004) and mammals (Jorg al, 2004) show preferred responses to rates of tegs t
20 Hz, corresponding to temporal windows at theelleaf tens to hundreds of
milliseconds, as used in the present study. Semeralan imaging studies have used
more complex types of temporal modulation (Boemtial, 2005; Schonwiesneat
al., 2005; Zatorre & Belin, 2001), but none have coligd the change in complex

spectra from one moment to the next as in the ptesedy.

The contribution of different areas of auditory tearwas explicitly tested and
this revealed different response profiles acrosssik levels of correlation between
HG on the one hand and AAC on the other. HG did differentiate between the
experimental levels, while AAC — with maxima in Rihd aSTG - displayed a
systematic BOLD signal increase as a function aécspl correlation. Previous
models have tended to emphasise differences in aerhpanalysis between
hemispheres, rather than differences between theifepareas of auditory cortex
within hemispheres or differences between latextiia in different areas. Human
anatomical (Morosart al, 2001; Rademachat al, 2001) and functional imaging
studies (e.g. Pattersost al, 2002) have demonstrated one primary area and two
secondary areas in Heschl's Gyrus that might cpoed to ‘core’ areas in macaque,
as opposed to human homologues of belt areas of BARE planum temporale (PT)
and superior temporal gyrus STG (Hackett, 2007ea&rof AAC in the superior
temporal sulcus may correspond to parabelt in theague. Whilst the homology
with macaque schemes is still being explored, itlear that there is an extensive
functional architecture for auditory analysis thahight allow different
subspecialisations for various types of temporalysis between areas and between
the hemispheres. The present study demonstratespestilisations for auditory
analysis between different areas, and does notosuppy simple model based on

similar temporal analysis in all the auditory coatiareas on either side.

Using BOLD as a measure of local ensemble actitiitg, data did not show a
preference for short time windows (at the levelesfs of milliseconds) in any area of
auditory cortex, even when the statistical thredhebs lowered substantially. A
potential explanation for this might be the exiserof different neural coding
schemes for slow versus fast temporal modulationshtich the BOLD signal might

not be as sensitive. For example, Lu and colleaR@X1; see also Wargg al, 2003)
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have demonstrated that slow temporal modulatiores emcoded explicitly via
synchronised discharge rates, whereas fast mooluatire encoded implicitly via
non-synchronised discharges. There is further egiel¢hat neural synchronisation in
the gamma frequency range is tightly coupled to haemodynamic response in

cortex (Niessinget al, 2005).

However, some studies have reported signal incsease a function of
increasing rates of temporal modulation. Specifjcaatorre and Belin (2001) and
Schonwiesner and colleagues (2005) demonstratedaised activity in primary and
secondary auditory cortex with increasing rateafrsl fluctuation (see also Jamison
et al, 2006). Zatorre and Belin (2001) altered the filation rate of two sinusoidal
components (500 and 1000 Hz) and thus arguably asedbstantially different
stimulus compared to the present study; howevee, Mbinoadband stimuli in
Schonwiesner and colleagues (2005) are similacaustic complexity to those used
in the present study, although not controlling g@emin the spectral shape from one

moment to the next as here.

Thus, so far, both the hypothesised preferencestiort temporal windows in
left auditory cortex (Poeppel, 2003; Zatorre & Beli2001) as well as the
hypothesised preference for longer temporal windamwsright auditory cortex
(Poeppel, 2003) have been demonstrated; howeveh efkthem has only been
demonstrated between studies, but not within studie other words, studies that
found evidence for a leftwards asymmetry for preces shorter temporal windows
did not find evidence for a rightward asymmetry fmocessing longer temporal
windows (Jamisoret al, 2006; Schonwiesnest al, 2005; Zatorre & Belin, 2001);
conversely, those studies that found a rightwangdnasetry for processing longer
temporal windows did not find evidence for a leftdvaasymmetry for processing
shorter temporal windows (Beliat al, 1998; Boemioet al, 2005; as well as the

current study).

Spectrotemporal trade-off (Zatoret al, 2002a) and AST (Poeppel, 2003)
theories describe similar phenomena from slightfieent viewpoints. Both theories
posit an increased temporal resolution in left targicortex, while their view of the
sensitivity of the right auditory cortex is complentary: according to the

spectrotemporal trade-off theory, increased spe@salution can only be achieved at
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the cost of temporal resolution, i.e. longer terapavindows, which is a slightly
different but convergent formulation of what theTASosits for right auditory cortex.
In this context, the results for a right-lateradisgensitivity for increasing spectral
resolution (Schonwiesnet al, 2005; Zatorre & Belin, 2001) and increasing temapo
windows or decreasing temporal resolution (Boeatial, 2005; current study) seem
to converge. However, this does not explain why setof studies does not find
evidence for a right-lateralised sensitivity forcilieasing temporal windows
(Schonwiesneet al, 2005; Zatorre & Belin, 2001), while the other séstudies does
not find evidence for a left-lateralised sensijivif increasing temporal windows
(Boemio et al, 2005; current study), despite their use of a laimexperimental

manipulation (sound segment length) and similarp@ma window lengths to test

their complementary hypotheses.

A promising recent approach (Giraed al, 2007) combined fMRI and EEG
recordings of spontaneous spectral power (in theerade of any experimental
acoustic stimulation, but in the presence of scanoese) to test the AST hypothesis
and found activity in left and right HG (but not &A that correlated with fast (~28-
40 Hz) and slow (~3-6 Hz) neural oscillations, exgjvely. While these findings
somewhat contradict the precise anatomical locatioh the earlier findings of
Boemio and colleagues (2005) for longer temporaldaws, they might nevertheless
offer a bridge in that they show a left-lateralisatfor fast temporal modulations (as
posited by both AST and spectrotemporal tradefadbties) and a right-lateralisation
for slower temporal modulations (as posited by ASHpwever, comparisons
between studies of spontaneous activity in theratgsef experimental acoustic input
and the temporal structure of stimuli producing gineatest regional activity need to
be made with caution. A convincing explanationtfa divergence of results between
the previous studies despite similar experimentahipulations has yet to be provided
(Hickok & Poeppel, 2007; Zatorre & Gandour, 2008).

The psychometric functions show a clear percepfugshold that is situated
between levels 2 and 3 for most participants. Thia contrast to the haemodynamic
response to increasing temporal windows in AAC,clhhshows a more exponential
function, especially in right AAC (see Figures 3853-8). However, as demonstrated

by probing the imaging data with different respohsections across the six levels of
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correlation (Table 3-2), the statistics employedhimi SPM are rather insensitive to
different response functions. Further investigatiane required to elucidate whether,
and to what degree, left and right AAC indeed slidferent response functions (e.g.
linear vs. exponential). For example, introducingtimmulus-relevant task might yield
response functions that are more similar to theatelral data; in the current Study
1, the psychophysics prior to scanning employeéxticit threshold detection task,
while in the functional imaging paradigm participgmere not asked to evaluate the
spectrotemporal statistics of the stimuli. Althougtcurring in ‘higher’ association
cortex, the main effect of increasing window length present even though
participants in the studies (Boeneb al, 2005; Schénwiesnet al, 2005; Zatorre &
Belin, 2001; Study 1) performed no task or a stimdtrelevant task, and can thus be
argued to be an obligatory correlate of perceptlatroducing a stimulus-relevant
task might also reveal the engagement of prefraatahs. For example, Johnsrude
and colleagues (1997) found no effect in auditamex for differential temporal rates
in either hemisphere with an explicit stimulus-vealet task; however, left prefrontal
cortex showed a short temporal window preferenee édso Templet al, 2000). In
the current Study 1, no areas in prefrontal costeswed a parametric preference for

shorter time windows, even at very lenient statitihresholds.

The present study has demonstrated the analysim@ér temporal windows in
the syllabic range that is bilateral in AAC in ST&d right lateralised in STS. In
Boemio and colleagues (2005), the analysis of Iptigee segments was similarly
right lateralised and involved STS. An open queéstiemains as to why longer
temporal windows, which are important for syllabieformation and speech
intelligibility (Greenberget al, 2003; Luo & Poeppel, 2007) and which have been
shown to engage a left-lateralised network (Naetiral, 2003; Scottet al, 2000),
should be lateralised towards right AC, as posiigdhe AST hypothesis (Poeppel,
2003). In contrast, the present data, as well @asetlof Boemio and colleagues (2005),
revealed a significant right-lateralisation in Sf6increasing time windows (see also
Belin et al, 1998). It should be pointed out that this levElteamporal analysis is

relevant to a variety of sounds including speecihjsnot specific to speech.

The present study highlights the power of parametyi varying statistical

properties of complex acoustic stimuli to investiyaystematically principles of
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processing in auditory cortex (Nelken & ChechikP200verathet al, 2007). This
study introduces a novel stimulus with statiststahulus characteristics that vary in a
similar fashion to naturally occurring sounds imthg speech and demonstrates a
network comprising auditory association cortex tplatys a crucial role in tracking

spectral correlation over different time scales.
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Chapter 4. ENCODING OF SPECTROTEMPORAL

COHERENCE IN ‘AUDITORY TEXTURES’

Summary

In a complex and dynamic acoustic environment, we must constantly identify
and segregate the many often rapidly changing sound elements or auditory
objects that constitute the auditory scene. This auditory object analysis
requires two fundamental perceptual mechanisms. Firstly, it must define
boundaries between two adjacent objects. Secondly, it requires abstraction
processes that allow defining features of an object to be recognised,
irrespective of local stochastic variation. Study 2 considered the cortical bases
for these two processes by creating a novel stimulus (an ‘auditory texture’) in
which auditory objects are defined by their spectrotemporal coherence.
Auditory objects were identified by the percentage of randomly distributed
frequency-modulated (FM) ramps in frequency-time space that had identical
direction and trajectory (spectrotemporal coherence), while boundaries were
introduced by juxtaposing auditory objects of different spectrotemporal
coherence levels. Using fMRI, Study 2 sought areas that signal the detection
of a boundary between auditory objects of different coherence levels (change
in spectrotemporal coherence) from areas that encode the salience of the
object (absolute coherence). The data show that mechanisms defining object
boundaries (changes in coherence) are represented in primary and
association auditory cortex. In contrast, the representation of the salience of
the object (percentage of coherence) occurs only in auditory association
cortex. Furthermore, participants’ superior detection of boundaries across
which coherence increased was reflected in a greater neural response at
these boundaries. The anatomical organisation revealed by these results
suggests a hierarchical mechanism for the analysis of auditory objects:
boundaries between objects are first detected as a change in statistical
coherence over frequency-time space, before a representation that

corresponds to the salience of the perceived object is formed.
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4.1 Introduction

The analysis of auditory objects requires two funmdatal perceptual processes
(Griffiths & Warren, 2004). The boundaries betwdem adjacent objects must be
defined (Chaitet al, 2007; Chaitet al, 2008; Kubovy & Van Valkenburg, 2001),
whilst characteristic features of an object musabstracted, irrespective of stochastic
variations (Griffiths & Warren, 2004; Nelken, 2008uch object boundaries often do
not ‘exist’ as low-level physical sound featuresoat particular point, especially in
the presence of acoustic noise (Gutschallal, 2008; Nahumet al, 2008); rather,
detection of boundaries requires a mechanism degitifies a change in the statistical
rules governing areas of frequency-time space spomding to different objects.
Further, auditory object recognition requires agion processes that allow
characteristic features of objects in frequencyetispace to be recognised, while
ignoring local stochastic variation within one atijeegion (Griffiths & Warren,
2004; Nelken, 2004).

While it is intuitive to assume that the detectadra statistical change at object
boundaries precedes the subsequent precise rejattsef the object (Chait al,
2007; Chaitet al, 2008; Ohlet al, 2001; Scholtet al, 2008), the specific underlying
cortical mechanisms for segregating and encodidg@y objects within the auditory
scene have not been addressed directly. For exa@glierre and colleagues (2004)
parametrically varied the distinctiveness or idgntf auditory object features by
combining auditory objects to create a new objdidtifictiveness decreased with the
number of auditory objects that were combined). Huthors presented several
sounds with a fixed level of distinctiveness witlime 60 s trial (each sound was 500
ms in duration) and demonstrated activity withighti STS and right inferior frontal
gyrus (IFG) that increased with object distinctnélsese results support an anterior
processing stream for object identity or auditampat’ information (Kaas & Hackett,
1999; Rauschecker & Tian, 2000; Romaretkal, 1999; Tiaret al, 2001) (however,
see Belin & Zatorre, 2000; Middlebrooks, 2002; Ze¢@t al, 2002b).

However, strictly speaking, this design cannotedéhtiate whether parametric
increase in activation in STS and IFG was due teabhbdistinctness or due to a
change percept between objects. That is, as thealieess between objects increased,

participants would also increasingly hear an objgtange at object boundaries.
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Furthermore, the auditory objects used were ethodbgsounds and are likely
confounded by semantic associations instead ofligilghng which acoustic features
were perceptually relevant (or which acoustic feeguwere important for object
distinctness). Other experimental approaches hasuessed on the neural correlates of
boundary or ‘auditory edge’ detection without intwgating in detail processes
necessary for object formation (Chait al, 2007; Chaitet al, 2008). One notable
study (Schonwiesneet al, 2007) investigated the perception of differentele of
acoustic duration changes in the context of an Mpéixadigm. The authors found a
cortical hierarchy as indicated by three distinthges for processing duration
changes: an initial automatic change detection an@sim in primary auditory cortex,
followed by a more detailed analysis in associatioriex and attentional mechanisms

originating in frontal cortex.

The present study used a form of FM to create ohjegions and object
boundaries in frequency-time space. The stimulusaaditory texture’, was based on
randomly distributed linear FM ramps with varyingjéctories (Figure 4-1, see also
Materials and Methods). The percentage of coheneatulation, i.e. the proportion of
ramps with identical direction (slope-sign) and jectory (slope-value), was
systematically varied, creating different auditanpjects, the salience of which
increases with coherence. The analysis of such@aydibjects comprising different
spectrotemporal coherence requires perceptual merha that can assess common
statistical properties of the stimulus irrespect¥éocal stochastic variation within an
object, and detect transitions when these progectiange. Such generic mechanisms
are fundamental for auditory object formation arjeot segregation in ethological
sounds, where statistical properties of the acowstjinal need to be evaluated with
respect to pre-existing templates (Griffiths & Wy 2002). It should be noted that
while this manipulation is merely one way to defiaeditory objects and is not
intended to speak for all possible auditory objeitteevertheless addresses generic
processes underlying complex auditory object peiwep While coherent FM is
arguably a relatively weak grouping cue (Carlyo@91; Darwin & Carlyon, 1995;
Summerfield & Culling, 1992), coherent FM neverdsd is one basis upon which

figure-ground selection can occur (McAdams, 1989).
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In Figure 4-1, a 3.5-s segment with 100% coherdalteamps move upwards
and with the same trajectory) is followed by a ¢.&egment of 0% coherence (ramps
with random direction and trajectories) and so hforThe associated change in
coherence at the boundary between segments istadsm. Note that a +40% change
in coherence can be obtained in a number of wayarktanging successive pairs of
stimuli with certain absolute coherence levels @9%%6 and 40%-80%, in Figure 4-1).
Thus, this stimulus enables a direct assessmerft) dhe mechanisms detecting
boundaries between auditory objects, representdédebghange in coherence between
sound segments, and (i) the representation ofstédeence of complex auditory

objects, determined by the absolute coherencesotiad segment.

These two factors were orthogonalised in the erpamtal design so as to
dissociate neural processes signalling object bmuesl from those representing
absolute object properties (see Section 4.2). Witte framework of auditory object
analysis, it was hypothesised that the detectiora athange in coherence would
engage auditory areas including primary cortex 8ahesneret al, 2007), while
auditory object salience would be encoded in higéveel auditory areas only (Zatorre
et al, 2004).
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4.2 Materials and Methods

4.2.1 Participants

23 right-handed participants (aged 18-31, meanagfe. 04, 12 females) with normal
hearing and no history of audiological or neuratadjidisorders provided written
consent prior to the study. The study was apprdsethe National NHS Research

Ethics Committee.

4.2.2 Stimuli

All stimuli were created digitally in the frequencgomain using Matlab

(http://www.mathworks.coin at a sampling frequency of 44.1 kHz and 16 bit

resolution. Stimuli consisted of a dense texturénagfar FM ramps; each ramp had a
duration of 300 ms and started at a random timefaggiency (passband 250-6000
Hz), with a density of 80 glides per second, roygidualling one ramp per critical
band (see Figure 4-2). For ramps that extendedngetfee passband, i.e. went below
250 Hz or beyond 6000 Hz, a wraparound was impléecesuch that the ramps
‘continued’ at the other extreme of the frequeneydy i.e. at 6000 Hz or 250 Hz,
respectively. Stimuli differed in terms of the colr® movement of the ramps: six
different coherence conditions were created, wtieg@ercentage of ramps moving in
the same direction for a given sound segment watesptically varied from 0%
coherence to 100% coherence in 20% increments., Tauga given sound segment
with 40% coherence, 40% of the ramps increaseddoreased) in frequency with an
excursion traversing 2.5 octaves / 300 ms; thectime and excursion of the
remaining 60% of the FM ramps were randomised. i@lyc the only difference
between the six levels is the degree of coherent@mmon fate’ of the ramps; the
total number of ramps, the number of ramps in tcatiband as well as the passband

of each stimulus did not differ systematically asrthe levels (Figure 4-2).

4.2.3 Experimental design

Prior to scanning, participants were familiariseithvand trained on the stimuli and

then performed 2I12AFC psychophysics distinguishthg non-random against a
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random reference (0% coherence) sound. Stimuli vieoe seconds long and the
direction of the FM glides (up versus down) was rdetbalanced. There were 30
pairs for each of the six levels (0%-100% coheren@% steps). Participants had to
reach at least 90% correct performance for the le&aatl (100% coherence) to be
included in the fMRI study. Psychometric functioaad 95% correct perceptual
thresholds were estimated via a Weibull boot-sirapprocedure (Wichmann & Hill,
2001).

Stimuli in the scanner were presented in blockssafind with an average
duration of 16 seconds (range: 11 to 18 secondBg Blocks contained four
contiguous segments with a given absolute speotfmieal coherence (0%, 20%,
40%, 60%, 80%, or 100%). Within a block, the di@tt(up versus down) of the
coherent ramps was maintained. The length of tgmeats varied (1.5, 3, 3.5, 4.5, 5,
or 6.5 seconds) and was randomised within a bldbks, a given block might have
[20% 100% 60% 60%)] contiguous coherence segmerits durations [1.5 6.5 3.5
4.5] seconds. The associated change in coherehwedresegments within this block
of sound is [+80 -40 0], between segments two tnofour of the block. Stimuli
were presented in one of six pseudorandom permogativhich orthogonalised
absolute coherence and change in coherence (aveoagdation between absolute

coherence and change in coherence across thersiatagionsr = 0.06, p > 0.1).

The task of participants was to detect a changmirerence within the block,
regardless of whether that change was from lesereahto more coherent or vice
versa. Participants were required to press a buttemever they heard such a change
and were instructed that the frequency of percémtuanges within one block likely
ranged from no perceptual change (e.g. a blockistimg of [0% 20% 40% 20%)]
coherence segments, since here the changes dyetdikee too small to be detected)
to a few changes (e.g. a lock consisting of [0%% 0% 80%)] segments). Sound
blocks were separated by a silence of 6 secondshich participants were told to

relax.
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In each of three experimental sessions, each aoteidevel was presented 30
times, amounting to a total of 7.2 minutes predenidime per coherence level. The
number of times each of the six different levelslsinge in coherence (regardless of
their direction) occurred can, consequently, not peefectly balanced; however,
permutations were created such that the changetbatred most often occurred less

than three times as often as the change that ectleast frequently.

Stimuli were presented via electrostatic headphors®rdicNeuroLab,

http://www.nordicneurolab.cojrat a sound pressure level of 85 dB. Participaats

a cross at the centre of the screen and were askkxbk at this cross during the

experiment.

4.2.4 Behavioural data analysis

Participants’ button presses where recorded anlysathwith respect to the onset of
each segment within a sound block. Responses wdyecounted if they occurred
within three seconds after the onset of a segnam (vithin 1.5 seconds after the
onset of the shortest segments). The average pageerorrect response was then
computed by comparing the number of responses tagiven change in
spectrotemporal coherence to the actual numbdrositchanges. ‘Responses’ to 0%

changes served as a chance baseline.

4.2.5 fMRI protocol and analysis

Gradient weighted echo planar images (EPI) (seéd®e2.3.1) were acquired on a 3
Tesla Siemens Allegra system (Erlangen, Germarsiygua continuous imaging

design with 42 contiguous slices per volume (timedpeat/time to echo, 2730/30
ms). A continuous instead of a sparse imaging podtavas used, since the
experimental question required a design whose tsftamuld only be captured with the
superior temporal resolution of a continuous imgginotocol. The volume was tilted

forward such that slices were parallel to and eshtn the superior temporal gyrus.
Participants completed three sessions of 372 vaugaeh, resulting in a total of 1116

volumes. To correct for geometric distortions ie #BPI due to BO field variations,
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Siemens fieldmaps were acquired for each subjetially after the second session
(Cusacket al, 2003; Huttoret al, 2002). A structural T1 weighted scan was acquired
for each participant (Deichmart al, 2004).

Imaging data were processed and analysed usingtBttParametric Mapping

software (SPM5 http://www.fil.ion.ucl.ac.uk/spm (see also Sections 2.5-2.6). The

first four volumes in each session were discardezbhtrol for saturation effects. The
resulting 1104 volumes were realigned to the faigdume and unwarped using the
fieldmap parameters, spatially normalised to stadiw space (Fristoat al, 1995a)
and smoothed with an isotropic Gaussian kernelrmh8full-width-at-half-maximum
(FWHM). Statistical analysis used a random-effentsdel within the context of the
general linear model (Fristogt al, 1995b), and data were thresholded at p < 0.001

for areas with am priori hypothesis, i.e. auditory cortex.

Each design matrix consisted of 18 regressorsreijiessors collapsed across
the direction of the coherent ramps, i.e. 100% cafitesegments in which the ramps
moved up were collapsed with 100% coherent segnmentdich the ramps moved
down. The first regressor modelled the haemodynaesponse to the onset of each
block as a stick function. Regressors 2-7 modellezl onset and duration of the
segments within a block corresponding to one of dixelevels of spectrotemporal
coherence (0%, 20%, 40%, 60%, 80%, 100%). Regres8et8 modelled the
response to changes in coherence as stick functiwite the eighth regressor
modelling 0% changes (i.e. all consecutive cohexguairs of 0-0, 20-20, 40-40, 60-
60, 80-80, 100-100), while the subsequent pairegfessors modelled positive and
negative changes of a given magnitude (+20%, -2640%, -40%, +60%, -60%,
+80%, -80%, +100%, -100%).

The following planned contrasts were performed. pfobe for an effect of

increase in activity with increasing absolute cehee, regressors 2-7 were weighted
[0-25-15-0505152500000000Q4.00

To probe for an effect of increasing change in cehee, regressors 8-18 were

weighted

[0000000-2.73-1.73-1.73-0.73 -0.73 0.2/7AL..27 1.27 2.27 2.27].
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These values are all mean centred on zero.

To probe for an effect of relative object salienodanges across which
coherence increased (‘positive’ changes or regresSp 11, 13, 15, 17) were
exclusively masked with changes across which colteredecreased (‘negative’

changes or regressors 10, 12, 14, 16, 18).

4.3 Results

The psychometric functions obtained from the psptiysics prior to scanning are
displayed in Figure 4-3. For the majority of pagants, the perceptual threshold lay

between the second and fourth levels, corresporidi@§% and 60% coherence.

Behavioural results (d’ scores) for detecting ancfeain coherence during
scanning are shown in Figure 4-4. Performance ase@ with the magnitude of
change (both for changes across which coherenceaised or decreased) and was
significantly better than chance performance cpoading to 0% change: two
separate repeated-measures ANOVAs with factor GHangl (0% - 100%) for
either changes across which coherence increasddcoeased revealed main effects
of ChangelLevel(increase),ski0) = 58.0, p < 0.001, and ChangelLevel(decrease),
Fi1100 = 23.04, p < 0.001. Pairwise comparisons (tweethit-tests) with 0%
performance were all significant (p < 0.05) for oba levels greater than 0%
(increase) and 40% (decrease). Furthermore, pesftzen was better for changes
across which coherence increased: a repeated-reesa®MMOVA with factors
ChangelLevel (0% - 100%) and ChangeType (increaseleease) revealed main
effects for ChangeLevel @10)= 52.05, p < 0.001) and ChangeType £k = 52.32,

p <0.001), as well as a significant interactiog {fo)= 7.87, p < 0.001).
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Figure 4-3  Psychometric functions from all participants. The x-axis denotes the six levels
of coherence, the y-axis denotes performance. The red bar indicates the 95% confidence

limits for the perceptual threshold.
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Figure 4-4  d’ scores for detecting changes in coherence in the MRI scanner. White bars
indicate performance for changes with increasing coherence, and grey bars indicate
performance for changes with decreasing coherence.

An analysis was carried out to seek areas in ayditortex that parametrically varied
in activity as a function of increasing change amerence at the boundaries between
adjacent segments. The analysis revealed stronget increases in HG, PT, TPJ
and superior temporal sulcus (STS) as a functioshafinge magnitude (see Table
4-1). The bar charts in Figure 4-5 show (in re@) BOLD signal across the different
degrees of change in coherence in all of theses afeauditory cortex.

Next, an analysis was carried out that sought iagtwithin areas of auditory
cortex that varied as a function of increasing todi object salience or
spectrotemporal coherence. Bilateral areas in ayd@ssociation cortex, including
PT and extending into TPJ (Figure 4-5, in blue, dadlle 4-1), showed a BOLD
signal increase with increasing absolute spectnoteal coherence. Crucially, activity
in HG and STS did not differ across the six levdspectrotemporal coherence and
thus was significantly different from the responsethese areas to increasing change
in coherence: two separate 2 Hemisphere (left,t)righ 2 Condition (absolute

coherence, change in coherence) x 6 Level (1-6gated-measures ANOVAs
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revealed Condition x Level interactions for both Kgs 110y = 3.63, p < 0.01) and
STS (Rs,110)= 3.98, p < 0.01).

coherence maximum change maximum change maximum coherence maximum
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Figure 4-5 Main results. Areas showing an increased haemodynamic response as a
function of increasing absolute coherence (blue) and change in coherence (red). Results
are rendered on coronal (y = -24, top) and tilted (pitch = -0.5 radians, middle (superior
temporal plane) and bottom (STS)) sections of participants’ normalised average structural
scans. The bar charts show the BOLD signal (+ SEM) corresponding to the six levels of
absolute coherence (blue) and the six levels of change in coherence (red). The charts
nearest the brain show the response at the local maxima for increasing change in
coherence; those at the sides show the local maxima for increasing absolute coherence.
Note that the placement of the identifying letter in the brain sections only approximate the
precise stereotactic [x y z] coordinates at the bottom corner of each chart, since no single
planar section can contain all the local maxima simultaneously.
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Table 4-1  MNI coordinates of local maxima. Local maxima for the effects of increasing

change in coherence and increasing absolute coherence.

left hemisphere right hemisphere
Contrast X y z t-value X y z t-value

change in coherence HG -46 -24 6 | 4.86 46 -24 10 | 3.80

PT -62 -28 6 | 5.45 64 -24 4 | 694
TPJ -48 -40 16 | 6.34 68 -42 16 | 7.63
STS -64 -30 -2 | 455 64 -22 -8 | 6.16

absolute coherence PT -56 -24 4 4.58 68 -20 8 6.71
TPJ -48 -38 18 491 64 -30 8 7.39

The experimental design also enabled a more detailestigation of an effect of
object salience by way of changes in relative cehes. Behavioural results in Figure
4-4 showed that changes across which coherenceas®d are generally more salient
than changes across which coherence decreasedyrsagpghe notion of increasing
object salience with increasing spectrotemporakoeice. It was tested whether this
perceptual asymmetry (Cusack & Carlyon, 2003) wss ieflected at the neural level
(see Section 4.2). Figure 4-6 shows this was tee gaPT and STS, which showed

stronger responses to changes with increasingveeladherence than vice versa.

tvalue

Figure 4-6  Changes in increasing vs. decreasing relative coherence. Coronal (y = -32)
section showing areas that display a stronger increase for changes across which

coherence increased than for changes across which coherence decreased.
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4.3.1 Pilot study results

It could be argued that the results are confourtmedhe behavioural task, which
required participants to detect changes in cohereficthis point it is helpful to point
out a pilot study in which participants were regdito detect the overall coherence of
the stimuli, but which nevertheless yielded vemikir results to the main study. In
this pilot study, 6 s long sounds of set coheref@®é, 20%, 40%, 60%, 80%, or
100%) were presented, in which the direction of ¢bberent ramps changed every
1.5 seconds (i.e. either up-down-up-down or vicesae In every other respect, for
example bandwidth or number of ramps per secorastimulus of the pilot study
was identical to the main study. In a sparse inggnotocol (TR = 8.8 s, Beliat al,
1999; Hallet al, 1999), four participants categorically evaluatteel coherence of the
stimuli by indicating whether the stimulus had beandom’ or ‘coherent’
(participants pressed on of two buttons during &loguisition of a scan volume
following the presentation of the sound). Imporgnparticipants in this pilot study
evaluated the overall spectrotemporal coherencthefsound and not a change in
coherence as in the paradigm of the main studycalsbe seen when comparing the
results of the pilot study (Figure 4-7) with thaslethe main study (Figure 4-5 and
Figure 4-6), the results in both studies are vanjlar despite the different tasks for
participants, making it unlikely that the resukéported in the main text are due to a

task confound.

However, the stimulus design in the pilot studyjokihad a change in direction
(up/down) every 1.5 seconds, confounded absolutereace and change percept,
since increasing absolute coherence was accompdryiedn increasing change
percept at the boundaries of the 1.5 segments maidrthe 6 s long sound. That is,
for 6 s long sounds with alternating up/down 1008terent ramps, the encoding of
the absolute coherence would be accompanied byraeiped change in direction
every 1.5 seconds; in contrast, for a 20% coheseand, the change in direction of
20% of the ramps every 1.5 seconds would not biegadile (and completely absent
for 0% coherent sounds). For this reason, the msaidy employed an experimental
design that allowed the disambiguation of processabsolute coherence versus

change in coherence.
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t-value

Figure 4-7  Pilot study results. The figure shows areas in PT, TPJ and STS that
increased with increasing coherence of the sound (or increasing change in direction, since
these are not separable effects in this study). Results are superimposed on participants’
mean structural scan (y = -36) and are based on a fixed-effects analysis within the context
of the general linear model (thresholded at p < 0.001, uncorrected for multiple comparisons

across the brain).

4.4 Discussion

The results demonstrate a specific mapping of olijeandaries and object salience
to distinct regions of auditory cortex. Activity suditory cortex including HG, PT,

TPJ and STS increased as a function of the changpedctrotemporal coherence at
the object boundaries. Further, activity as a fiamcof the absolute spectrotemporal
coherence and object salience increased in audissgciation cortex in PT and in
TPJ. Finally, increases in spectrotemporal coheresitcsegment boundaries were
more perceptually salient than decreases in spgentporal coherence at segment

boundaries, and this was reflected by strongeraheuativity for these changes.

While the observed parametric responses to absohlterence and change in
coherence show some overlap in cortical resouiceBT and TPJ), they are likely
separable processes, since the experimental dexttgygonalised absolute coherence

and change in coherence. This indicates that thexlapping representations of
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change in coherence and absolute coherence iroti@nimary auditory areas in PT
and TPJ represent a distinct mapping of these twogsses in similar cortical areas;
it is hypothesised that these mappings are sulbdryectivity within distinct units
or networks in those areas. Furthermore, the esn#t unlikely to be confounded by
the behavioural change detection task, since d gilaly with a different task that
asked participants to detect the absolute cohelenttee sounds yielded very similar
results (Figure 4-7). Nevertheless, the perceptagsk was quite demanding, as
indicated by the psychophysical thresholds (Figét® and the relatively low d’
scores, particularly for changes across which @otes decreased (Figure 4-4). This
can be attributed to the relative weakness of FMyrasiping cues (Carlyon, 1991,
Darwin & Carlyon, 1995; Summerfield & Culling, 1992and will need to be

addressed further in subsequent studies.

The response to increasing change in spectroteinpotgerence requires
mechanisms that integrate statistical featuressacspectrotemporal regions and
assess statistical changes across the integrateté.whhat is, boundary detection
must depend on the assessment of statistical piepére. the percentage of coherent
FM ramps), since other low-level acoustic featugesh as the density of FM ramps
and overall frequency-time space were kept consfigure 4-2). This response
occurs as early as primary auditory cortex, in WHtdV direction sensitive neurons
have been demonstrated in rats (Rickeitsal, 1998), cats (Heilet al, 1992;
Mendelson & Cynader, 1985), and rhesus monkeys(&i&auschecker, 2004) (for
a review see Rees & Malmierca, 2005). Single-unitlies of coherent FM have
generally not investigated coherent FM across diffe spectrotemporal regions, but
it is hypothesised that this property is encodetthatevel of neural ensembles rather
than the single neuron level, since the tuning o$tnsingle units would be too narrow

to encompass the spectral range of the stimulus.

The present study provides a contrasting approachchiange detection
mechanisms from the classical mismatch negatiigM) paradigm, which is
thought to reflect the violation of a previouslytasdished regularity (Naatanen &
Winkler, 1999). The results suggest that, in theremt stimulus paradigm, the
emergence of regularity or coherence has a differ@mpresentation to its

disappearance. Recently, Chait and colleagues (20008) demonstrated distinct
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cortical mechanisms for the detection of audit@giges’ based on statistical signal
properties, where the detection of a statisticgliia@ity (in violation of a previous

irregularity) had a different cortical signatureaththe discovery of a violation of a
statistical regularity. The current results suppbg existence of such a perceptual
asymmetry (Figure 4-4). It is proposed that theréegf spectrotemporal coherence
is encoded in a continuous manner, with neuroneduon sounds that are equal or
greater in coherence than the neurons’ thresh@dsh a cumulative neural code
contains an inherent asymmetry (Cusack & Carlydd)32 Treisman & Gelade,

1980): transitions to more coherent sounds exdieger neural population, rendering
them more perceptually salient. This is then alstbected in the haemodynamic

response (Figure 4-6).

The data reported here move beyond the analysssmgile FM sounds to the
analysis of auditory object patterns within stocicastimuli which is dependent on
mechanisms that are fundamental for the analysethailogical sounds in a dynamic
acoustic environment. This study demonstrates ahamsm for the assessment of
auditory object boundaries that is already presanprimary cortex, based on
integrating dynamic statistical properties govegnithe object region within a
spectrotemporal field. Such a mechanism precedesetitoding in higher-level

auditory association cortex of the absolute progexf the object region.
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Chapter 5. ENCODING OF THE RATE OF INFORMATION
PRODUCTION IN PITCH SEQUENCES

Summary

The entropy metric derived from information theory provides a means to
quantify the amount of information transmitted in acoustic streams like speech
or music. Brain areas in which neural activity and energetic demands increase
as a function of entropy or the rate of information production can be
investigated by systematically varying the entropy of pitch sequences. Such a
relationship between acoustic information content and neural activity is
predicted to occur via an efficient encoding mechanism that uses fewer
computational resources when less information is present in the signal.
Specifically, it was hypothesised that such a relationship is present in the
planum temporale (PT), which has been described as a ‘computational hub’
within auditory cortex. In two convergent fMRI studies (Studies 3 and 4), this
relationship is demonstrated in PT for encoding of pitch sequences: activity in
PT increased as a function of the amount of information in the pitch
sequences. In contrast, a distributed fronto-parietal network for retrieval of
acoustic information operated independently of entropy. The results establish
PT as an efficient neural engine that demands fewer computational resources

to encode redundant signals than those with high information content.
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5.1 Introduction

We are constantly required to perceive, distingaisti identify signals in our acoustic
environment. A critical first stage of these pramss is the encoding of the
information into a robust neural code that allovficent subsequent processing in
the auditory system (Lewicki, 2002). In the currstudy, the properties of such a
robust neural code at the level of the cortex vimvestigated by varying the amount

of information, or entropy, in the acoustic signal.

In the context of information theory (Attneave, 29%hannon, 1948), entropy
(H) denotes the uncertainty associated with an emmdtthus provides a metric to
guantify information content: a rare, or uncert@went carries more information than
a common, or predictable, event. The propertiesnafhy information transmitting
systems can be characterised in terms of entropygeld, Shannon originally applied
information entropy to describe transitional prabaés in language (Shannon,
1948): in English, less common letters (e.g. ‘kAvé a lower probability (or higher
uncertainty) than more common letters (e.g. ‘e’)d atherefore carry higher
information and entropy. Similarly, entropy can heed to characterise pitch
transition probabilities in simple musical melod{@earce & Wiggins, 2004; Pearce
& Wiggins, 2006). In the present context, entropy dpplied to quantify the

information content of pitch sequences.

‘Fractal’ pitch sequences based on inverse Fourarsforms of f " power
spectra (Patel & Balaban, 2000; Schmuckler & Gild&®93) provide a means to
control directly the entropy of the sequence vadkponenh (Figure 5-1). Fon = 0,
the excursion of the pitch sequence is equivalerfixed-amplitude-random-phase
noise and thus is completely random (high entropy)the context of information
theory, the high degree of randomness in this sigoes not correspond to noise that
must be removed by the system, but to a low prabiilitty of the stimulus that results
in each individual element of the sequence makifggh degree of contribution to
the information in the sequence. Asncreases, a single stream gradually dominates
the local pitch fluctuations and successive pitchesome increasingly predictable
(low entropy). Such stimuli are more predictablelsat each element of the sequence
makes little contribution to the overall informatian the stimulus. These families of

pitch sequences with different valuesnadre statistical ‘fractals’ (Eket al, 2002) in
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the sense that their statistical properties arkegndependent (Schmuckler & Gilden,
1993). For present purposes, the critical propeftghese pitch sequences that is
exploited here is not their ‘fractal’ behaviour,tlihe variation of entropy that is
produced as varies, whilst pitch range, tempo and pitch pralitgtremain largely
constant (however, it is inherent to the systerh fitvalarge exponents > 4 the pitch
distribution approaches a sinusoid and consequehdlycorresponding probability
density function is tilted towards the extremestité pitch range and also that the

average interval size between successive pitcheeakes for increasing exponents

n).

Entropy for pitch sequences generated with a givalne of exponent can be
determined by computing the sample entrdfyafpe) (Richman & Moorman, 2000).
Intuitively, HsampeniS based on the conditional probability that twtsequences of
length m that match within a tolerance of standard deviations remain within a
tolerancer of each other at the next pomt+1. Explicitly, for a signal or time series

of lengthN, Hsampenis defined as:

A(m+1)
A(m)

HSampEr(mvr! N) =-1In ) (Eq 5-1)

whereA;(m) (or A,(m+1)) denotes the probability that two subsequencesrajtiem

(or m+1) match within a tolerance. Two sequences ‘match’ if their maximum
absolute point-by-point difference is within a talece ofr standard deviations. That
is, sample entropy is essentially a measure ofssalilarity, where highly self-similar
time series signify high redundancy and therefove éntropy, while time series with
low self-similarity represent a high degree of utaiaty and therefore high entropy.
Furthermore, sample entropy is a non-parametricsarean the sense that it does not
require a priori knowledge of the true probabilitgnsity function of the underlying
time series. In the present case, the parameteesaliiesen a1 = 2,r = 0.5, whileN

represents the number of tones of the pitch seguenc
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exponent n=0

pitch number

exponent n=1.5

0 1 2 3 4 5 6 7
time (s)

Figure 5-1  Auditory stimulus. Examples of fractal waveforms (blue) and the related pitch
sequences (red, rounded to the nearest integer) based on inverse Fourier transforms of
f " power spectra, with exponent n = 0 (top), n = 0.9 (middle), n = 1.5 (bottom).
Equitempered pitch (10-note octave, ranging over two octaves, resulting in 21 possible
pitches, with ordinal indices 0 to 21 corresponding to 300 Hz to 1200 Hz) is denoted on the
y-axis, time (in seconds) on the x-axis. Entropy is largest for the top pitch sequence and
decreases as exponent n increases.
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By varying information theoretic properties of pitsequences, this addresses
encoding mechanisms applied to sounds at a levgkepéric processing that is not
specific to any semantic category. Even before sewboding mechanisms are
engaged, the auditory system must represent sgatiporal features of the stimulus
in sufficient detail such that a number of diffarerspects of the stimulus can be
encoded, in order to allow different types of swjusmmt categorical and semantic
processing. In the current context, encoding ctuise8 the stage of analysis between
the detailed representation of the spectrotempstratcture of the stimulus and the
subsequent categorical analysis of abstracted acdasns. A single sound may be
associated with more than one abstracted formexample, one might obtain vowel,
speaker and position from a single sound, wherk &ssture can undergo subsequent
categorical and semantic processing. Here, infoomaheory is used to demonstrate
encoding mechanisms in the brain that result in ahstraction of a form of the

stimulus.

It was hypothesised that, if such encoding mechasiare efficient, they will
use less computational resource for stimuli thaveh#ow information content
compared to stimuli that have high information et This hypothesis is tested by
measuring the fMRI BOLD signal as an estimate afrakactivity and computational
resource during encoding of auditory stimuli in @hithe information content is
systematically varied. It was further hypothesittieat processing in primary auditory
cortex in Heschl's Gyrus (HG) corresponds to a esta which the detailed
spectrotemporal structure of sounds is represque@harmset al, 1998; Nelkeret
al., 1999; Schnupp, 2001), and where such a relatipnsill not be observed.
Instead, such a relationship is expected to berebden distinct auditory association
cortex in planum temporale (PT), which has previpuseen characterised as a
‘computational hub’ (Griffiths & Warren, 2002) thas required to convert
spectrotemporal representations into ‘templatesparse symbolic neural
representations that are the basis for categoseatantic and spatial processing. For
example, the spectral envelope of a sound wouldesemt such a ‘template’ for
vowel processing (Warreet al, 2005a). The model was developed to account for th
involvement of PT in the analysis of a variety amplex sounds that can be
processed categorically (speech, music, and enwieotal sounds) as well as

different spatial attributes (for a review, seeff@ns & Warren, 2002).
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Study 3 investigated the encoding of pitch sequemticat can be like melodies
in their structure, but in which the structure amfdrmation content is determined by
statistical rules. It was predicted that brain aredl display a positive relationship
between the information content or entropy of pielgquences and neural activity as
assessed by the BOLD signal during encoding. Spalty, it was hypothesised that

such a relationship exists in PT but not in eadigditory areas.

5.2 Materials and Methods (Study 3)

5.2.1 Participants

30 right-handed patrticipants (aged 18-43 years,nnagge = 24.9; 19 females) with
normal hearing and no history of audiological ounmwdogical disorders provided
written consent prior to the experiment. None & participants were professional
musicians. The study was approved by the Natiom#b IResearch Ethics Committee.
Eight participants had to be excluded due to exeedseead movements (more than 5
mm translation or 5 degree rotation within one im@gsor not meeting the
psychophysical assessment criteria (see belowyinigaa total of 22 participants

(aged 18-40, mean age = 24.2 years; 12 females).

5.2.2 Stimuli

All stimuli were created digitally in the frequencgdomain using Matlab

(www.mathworks.comat a sampling frequency of 44.1 kHz and 16 ksbhetion..

Stimuli were ‘fractal’ sine tone sequences basethearse Fourier transforms df "
power spectra (Patel & Balaban; Schmuckler & Gi|de9#93) for six levels of (0,
0.3, 0.6, 0.9, 1.2, 1.5), where pitch sequencegeifrom totally randorn(= 0; high
entropy) to more coherent or predictalle=(1.5; low entropy). By randomising the
phase spectrum, each exemplar is unique, whileeasame time displaying the same
characteristic correlational properties of a givewvel. The pitch range spanned two

octaves from 300-1200 Hz, with each octave spld kO discrete equidistant pitches.
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Pitch sequences were presented at a tempo of fvesmer second, with a total
duration of 7.6 seconds for each pitch sequencen@d8s per sequence). There were

60 exemplars fon = 0 and 30 exemplars for the remaining five leéls.

The mean entropy for each level of exponemtas calculated using the sample
entropy Hsampen (Richman & Moorman, 2000) measure, as describedthi

Introduction:

A(m+1)
Am)

HSampEr(m,r, N)=-1In

A:(m) denotes the probability that two subsequencesrafthm match within a
tolerancer, i.e. A(m) is the ratio of [all pairs of subsequences of tamgthat match]
divided by [all possible pairs of subsequenceseonfgth m|; the same applies to
A(m+1). Guided by Lake and colleagues (2002), a tolerareed.5 and length of
subsequencen = 2 as parameter values were chosen. As Eke diehgoes (2002)
point out, taking a subset of data points from actll time series essentially
introduces noise into the resulting time serieadieg to lowem and consequently
higher entropy estimates relative to the originalues. Table 5-1 therefore lists the

mean sample entropy values for the time serielseoB8 notes in each pitch sequence.

5.2.3 Experimental design

In a behavioural experiment prior to scanning, fodlychometric functions were
acquired from participants discriminating the nandom pitch sequence against a
random referencen(= 0) in a 2I12AFC paradigm. Participants were notegi
feedback. Stimuli were not the same as in the sules# imaging paradigm and there
were 72 trials (12 trials per level). Psychometuicctions and 75% correct thresholds
were estimated via a Weibull boot-strapping procediWichmann & Hill, 2001).
Participants who did not reach at least 80% perdmee for levels 5 or 6 were not
included in the fMRI analysis. In the functionaldaging paradigm, participants were
asked to categorise whether or not the pitch seueras random by pressing the
corresponding button at the end of each pitch sempjebearing in mind that pitch

sequences of intermediate levabs= 0.6 to 0.9) are neither completely random nor
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completely coherent (in these cases, participadmsild nevertheless indicate their
predominant percept). Stimuli were presented viastau-built electrostatic
headphones at 70 dB SPL using Cogent software
(http://www.vislab.ucl.ac.uk/Cogeit/

5.2.4 fMRI protocol and analysis

Gradient weighted echo planar images (EPI) (seédpe2.3.1) were acquired with a

3 Tesla Siemens Allegra MRI system (Erlangen, Gegpausing a sparse temporal
sampling technique (Beliat al, 1999; Hallet al, 1999) (time to repeat/time to echo,
TR/TE = 10,530/30 ms), where each volume was cardmed. A total of 246
volumes (42 slices, 3x3x3 mm voxel resolution) wacquired over three sessions (82
per session), including 60 volumes for 0 and 30 volumes for the other levelspf

as well as 30 silent control trials (the first twalumes of each session were discarded
to allow for saturation effects). To correct forogeetric distortions in the EPI images
due to BO field variations, Siemens fieldmaps wacguired for each participant
(Cusacket al, 2003; Huttoret al, 2002). A structural T1 weighted scan was acquired

for each participant (Deichmarmt al, 2004).

Imaging data were processed and analysed usingtBttParametric Mapping
software (SPM2, http://www.fil.ion.ucl.ac.uk/spm (see also Sections 2.5-2.6).

Volumes were realigned and unwarped using the rfiajd parameters, spatially
normalised (Fristomt al, 1995a) to standard stereotactic space and snubuiitie an
isotropic Gaussian kernel of 8 mm full-width-atfhadaximum. Statistical parametric
maps were generated using a Finite Impulse Resp@itlR¢ box-car function in the
context of the general linear model (Fristeinal, 1995b). The six conditions were
parametrically modulated based on the average sareptropy (Richman &
Moorman, 2000) value for each levelrofsee Table 5-1), statistically evaluated using
a random-effects model and thresholded at p < O@@torrected for multiple
comparisons across the brain) for areas witta gomiori hypothesis, i.e. in auditory
cortex and specifically PT. In addition, a volunferderest analysis was carried out
controlling for multiple comparisons within PT bgrdring a 1 cm sphere around the
centroid of the triangular anterior part of PT ated within the superior temporal

plane as opposed to the more posterior part thasdhe parietal lobe ([-56 -28 6]
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and [58 -24 8] for left and right PT, respectivelyhe choice of volume was based on
the identification of the anterior part of PT inetrstudies that suggested the
‘computational hub’ model (Griffiths & Warren, 2002For areas that were not
predicteda priori, a statistical threshold of p < 0.05 after familise error (FWE)

correction was adopted.

A potential effect of adaptation in frequency bamdisan earlier sensory level
was investigated in detail, since pitch sequenatslaw entropy tend to spend more
time within each critical band. Study 3 did notoall disambiguation of the three
cytoarchitectonically (Morosaat al, 2001) and functionally (Pattersen al, 2002)
distinct areas in HG, namely medial, central, satdral HG (see Study 4 below for
further discussion). Therefore, single coordinatese identified based on local
maxima of a sound minus silence contrast for &6 [[24 6] and right [50 -24 8] HG
that are most similar to central HG (Morosatral, 2001; Pattersost al, 2002), and
the first eigenvariate of the BOLD signal at thesmrdinates was extracted (see
Figure 5-2).

The BOLD signal was extracted using a standardguo@ in SPM: the time
series of a given voxel (e.g. the peak activatioxeV for the entropy effect) is
provided by SPM via a volume-of-interest (VOI) rogt At the second level
statistical analysis, this results in a time sefiesach contrast where each data point
corresponds to a participant. The routine is exatfior each contrast, in the current
case either six (Study 3) or five (Study 4) [LeveSbilence] contrasts, resulting in a
22X6 or 24X5 matrix (22 or 24 participants, respedy), where each row
corresponds to a participant and each column tm&ast. The threshold at which the
BOLD signal was extracted was p < 0.05 (uncorretdednultiple comparisons). The

values are then normalised to the maximum value.

Note that the interaction described here betweeBLD signal in HG and PT
across levels assumes that the coupling betweemomedu response and the
haemodynamic BOLD signal is identical in the twaibrregions. While there is no

reason to assume the contrary, it has also notfreeen that this is indeed the case.

113



CHAPTERS

5.3 Results (Study 3)

Participants were presented with pure tone pitcjuseces which were based én"
power spectra witm ranging fromn = 0 to 1.5 in five steps of 0.3. In a behavioural
experiment prior to scanning, full psychometric dtions were acquired
demonstrating that all of the 22 participants caelibbly distinguish a non-random
pitch sequence from a random= 0) reference in a 2I2AFC paradigm (see Materials
and Methods). Perceptual thresholds for discrinmigabon-random from a random

pitch sequence lay betwearr 0.6 anch = 0.9 for the majority of participants.

In a sparse fMRI paradigm (Belet al, 1999; Hallet al, 1999), participants
listened to pitch sequences of a given valuanfand indicated whether it was random
or not. A parametric regressor based on the meaplsaentropy (Richman &
Moorman, 2000) value at each of the six levela @Fable 5-1) was used to probe for
cortical areas that increased their activity witbreasing entropy. The fMRI analysis
revealed a BOLD signal increase in PT as a functibrincreasing entropy at a
significance level of p < 0.001 (uncorrected forltiple comparisons, see Figure 5-2
and Table 5-2) and using a small volume correctwrnthe anterior part of PT at a
significance level of p < 0.05 (see Section 5.2). &fea increased its activity as a

function of decreasing entropy, i.e. increasingljmtability or redundancy.

Table 5-1 Mean sample entropy Hsampen Values (standard error of the mean in
parentheses) of the pitch sequences across levels in the two studies. The values for each
level differ slightly between the studies because pitch sequences in Study 3 consisted of 38

notes, while those in Study 4 consisted of 24 notes.

Levell Level2 Level3 Level4 Level5 Level6

Study 3 [1.38 (.25) | 1.39 (.24) | 1.32 (.21) | 1.05 (.19) | 0.75 (.19) | 0.48 (.16)

Study 4 |1.49 (.33) | 1.54 (.35) | 1.39 (.31) | 1.18 (.27) | 0.87 (.23)
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These results suggest a greater computational aedgetic demand for
encoding in PT as the information content of adouséquences (as assessed by
entropy) increases. However, the third study hasettpotential confounds, which
were addressed in a fourth study. Firstly, theceffif entropy in PT might reflect
adaptation of the sensory cortical representatfdineguency, as the pitch sequences
were based on pure tones: for low values of expometine frequency excursions or
intervals are greater on average, so that the Isigioaes more between specific
frequency representations and PT might adapt ledstteus produce a greater local
activity. Such a mechanism would also be expedexteur in primary and secondary
auditory cortex within HG. Therefore, the specifielationship between fractal
exponent and local activity in HG and PT was exgdioby extracting the first
eigenvariate of the BOLD signal in left and righGHas well as the local maxima in
PT (see Materials and Methods). No significantet#hce across entropy levels was
demonstrated in HG (2 (Hemispheted (Entropy level) repeated measures ANOVA:
no main effect of Entropy level @7 = 1.11, p > 0.1); Figure 5-2). Furthermore, a 2
(Area [PT vs. HG]J 6 (Entropy levelj 2 (Hemisphere) repeated measures ANOVA
demonstrated a significant difference in the reteghip between BOLD signal across
Entropy levels in PT versus HG: AréaEntropy level interaction (£17)= 4.86, p <
0.001).

The existence of the effect in auditory associatiortex in PT, the absence of
an effect in HG, and a significant interaction bedw effects in the two areas are
indirect evidence against an explanation of theltesased on sensory adaptation.
Nevertheless, a putative sensory explanation wdeased in a fourth study by using
regular-interval noise where sounds have idenpealsband regardless of their pitch
(Griffiths et al, 1998; Pattersoat al, 1996; Yostt al, 1996).

Secondly, the effect of entropy might reflect pptoal adaptation at the level
of the representation of pitch. Again, such an affeould not be expected in
association cortex, but in a proposed ‘pitch cérntresecondary cortex (Bendor &
Wang, 2005; Pattersoet al, 2002; Penagost al, 2004). The fourth study therefore
incorporated a more suitable design to detect anpial differential response to the

entropy of the acoustic stimuli in cytoarchitecoriMorosanet al, 2001) and
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functional (Pattersort al, 2002) subdivisions of HG in medial, central aatkfal
HG.

Finally, participants in the third study were exfily required to assess whether
the sequences were random or not. This made iigp@dbat the results reflected a
category judgment rather than a fundamental engontiachanism. To test this, the
fourth study differentially examined encoding aettieval components as a function

of entropy, but independent of any other stimuklated classification task.

5.4 Materials and Methods (Study 4)

5.4.1 Participants

30 right-handed participants (aged 20-44 years,nnagg = 28.0 years; 16 females)
with normal hearing and no history of audiologioaheurological disorders provided
written consent prior to the experiment. The stwdg approved by the National NHS
Research Ethics Committee. Six participants hdsktexcluded because of excessive
head movements (more than 5 mm translation or Sedegotation within one
session), leaving a total of 24 participants (aB@dt4, mean age = 28.58 years; 12

females).

5.4.2 Stimuli

As in Study 3, pitch sequences were again basetl bipower spectra for five levels
of n (0, 0.3, 0.6, 0.9, 1.2). Each pitch was basedegular-interval noise created
using a delay-and-add algorithm (Griffites al, 1998; Pattersont al, 1996; Yostet
al., 1996) with 16 iterations. The pitch range spanivem octaves from 150-600 Hz,
with each octave split into 10 discrete equidistpitthes. Pitch sequences were
presented at a tempo of four notes per second,anithial duration of 6 seconds for
each pitch sequence (24 notes per sequence). Tére eméropy values for each level
of n are depicted in Table 5-1 and are slightly différ'om Study 3 because each

pitch sequence had 24 notes instead of 38. There 3@Gkexemplars for each level of
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n, and stimuli were presented via custom-built etestatic headphones at 70 dB SPL

using Cogent softwaréitp://www.vislab.ucl.ac.uk/Cogent/

5.4.3 Experimental design

In a sparse-imaging paradigm (Beéhal, 1999; Hallet al, 1999), participants were
scanned 1) after being required to encode a pegence with a particular entropy
value and 2) after listening to a second pitch eage that was either the same
sequence or a different sequence from the samepgnievel and indicating whether
this was the same pitch sequence or different d$se Figure 5-3). To de-correlate
(Henson, 2006) activations due to the first andosdcpitch sequence, the second
pitch sequence followed the first pitch sequentieeeimmediately in the next TR, or
with two or three TR’s delay (within-trial delay§imilarly, the first pitch sequence of
the next pair could follow the second pitch seqeemitthe previous pair immediately,
or with one or two TR'’s delay (between-trial delayhere were 20 pitch sequence
pairs for each level, amounting to 100 encoding &0 retrieval stimuli across the
five levels of exponem. In addition, there were a total of 100 withiratrvolumes
and 100 between-trial rest volumes. For each levexponent, 10 out of 20 pairs
were identical, and 10 were different. Stimuli weceunterbalanced between

participants.

To guide participants, a ‘1’ was displayed at teatoe of the screen from the
start of the first pitch sequence until the stéthe second pitch sequence, when a ‘2’
was displayed. At the end of the second pitch secpieparticipants briefly saw a *?’
to indicate they should now give their responstashether they thought the second
pitch sequence was the same as or different frenfitst pitch sequence. Participants
received immediate feedback. During the rest pdvetaveen trials, participants saw a

fixation cross ‘+’ at the centre of the screen wmde instructed to relax.

5.4.4 fMRI protocol and analysis

Gradient weighted echo planar images (EPI) werelieed with a 3 Tesla Siemens

Allegra MRI system (Erlangen, Germany), using arspatemporal sampling
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technique (Beliret al, 1999; Hallet al), where each volume was cardiac gated to
reduce motion artefacts (TR/TE = ca. 8,800/30 rgptal of 404 volumes (42 slices,
3x3x3 mm voxel resolution) were acquired over twssions (the first two volumes
of each session were discarded to allow for saturatffects). Subsequent to the
functional paradigm, a structural T1 weighted se@s acquired for each participant
(Deichmanret al, 2004).

Imaging data were processed and analysed usingtisttParametric Mapping

software (SPM5, http://www.fil.ion.ucl.ac.uk/spm (see also Sections 2.5-2.6).

Volumes were realigned and unwarped, spatially adised (Fristoret al, 1995a) to
MNI standard stereotactic space and smoothed witisairopic Gaussian kernel of 8
mm FWHM. Statistical parametric maps were generdgdnodelling the evoked
haemodynamic response to the stimuli and the deéod in the context of the
general linear model (Fristaet al, 1995b).

To probe for an effect of entropy on encoding, at@st was carried out to
identify areas in which the BOLD signal in the fiesxd second scans increased as a
function of a parametric regressor based on thennsaanple entropy value at each
level (Table 5-1). A second contrast investigatée teffect of retrieval and
comparison independent of encoding by subtractiegeffect of encoding of the first
stimulus only (corresponding to the first scan)irthat to encoding of the second
stimulus, retrieval of the first, and comparison tbé two (corresponding to the
second scan). A third contrast examined the effd@centropy on retrieval by
subtracting [first scan entropy increase] from {s®t scan entropy increase].
Statistical results are based on a random-effeodeimand thresholded at p < 0.001
(uncorrected for multiple comparisons across thanprfor areas with am priori
prediction, i.e. PT, in addition to the same smalume correction (p < 0.05
corrected for multiple comparisons) as in Studi@&. areas that were not predicted
priori, @ more conservative statistical threshold of @G85 after FWE correction was
adopted.

The fourth study was better suited to identify theee cytoarchitectonically
(Morosanet al, 2001) and functionally (Pattersan al, 2002) distinct areas within
HG based on the sound minus silence contrast beaafus) the greater number of

silent trials and 2) the use of broadband stimMihicee activations were identified in
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HG in either hemisphere, primarily to locate thiedal area previously implicated in
perceptual pitch analysis (Patterseinal, 2002; Penagost al, 2004) and to allow a
comparison of the effect of entropy on activity énevith that in PT (for individual

coordinates see Table 5-2 for PT, Figure 5-5 fotred and Figure 5-6 for medial and
lateral HG).

Cardiac gating in Study 4 produced a reliable dignaubcortical structures IC
and MGB (Figure 5-7). The data were therefore rigged with a 4 mm FWHM
smoothing kernel that is appropriate to these &iras. Local maxima based on a
sound minus silence contrast were identified inlef([-6 -34 -12]) and right IC ([6 -
34 -10]) and left MGB ([-14 -26 -8]) and right MGBL2 -24 -8]).

For further analysis considerations see SectianaB.

5.5 Results (Study 4)

In a sparse fMRI paradigm (Beliet al, 1999; Hallet al, 1999), participants were
presented with fractal pitch sequences based dnpower spectra, witm ranging
fromn =0 to 1.2 in four steps of 0.3. The separatehptccorresponded to regular-
interval noise (Griffithset al, 1998; Pattersoet al, 1996; Yostet al, 1996) (see
Materials and Methods). By using broadband stinamd an increased number of
silent trials, the fourth study employed a mordahle design to allow disambiguation
of the medial functional area in HG that correspotal primary auditory cortex and
areas in lateral HG that correspond to secondartyces, including the area within
which activity corresponds to pitch salience (Ratiget al, 2002; Penagost al,
2004). The second paradigm also enabled the digmaiton of encoding and
retrieval mechanisms. Participants were scanneafté) being required to encode a
pitch sequence with a particular entropy value 2ndfter listening to a second pitch
sequence that was either identical to the firsueage or different from the first
sequence but with the same entropy value. Actiditysing the first scan reflects the
energetic demands of encoding the first sequenbéstvactivity during the second

scan reflects encoding of the second sequencevatof the first, and comparison of
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the two. In order to decorrelate the two scans §den2006), a delay of one, two, or
three scans was introduced between the pitch segsésee Section 5.4.3 and Figure
5-3). In contrast to the third study, participawtse not informed about the nature of
the pitch sequences and instead were only toldttiegt would hear pairs of pitch
sequences and that their task would be to say whdtie second was same or
different.

Participants’ behavioural performance in the scamvees assessed via hitst]
and correct rejectionscr) percent scores (see also Figure 5-4). Both m@an
(74.25%= 3.14 SEM) and meaar (73.42%= 3.31 SEM) scores were significantly
above chance (50%) (one-sample t-thit,t,3 = 7.73;cr: t,3 = 7.08, both p < 0.001).
Furthermore, a 2 (Respondat[vs. cr]) © 5 (Entropy Level) 3 (Delay) repeated-
measures ANOVA showed no main effect in any ofttivee factors (3 1) = 0.33;
Feoa = 1.1; Rae2) = 0.53; all p > 0.05, for Response, Entropy Leastl Delay,
respectively). There was no RespohsEntropy Level interaction (fv 4 = 1.01, p >
0.05), indicating that participants’ performanceswaot influenced by the Entropy
Level of the pitch sequences. Participants hadenighthanhit scores for Delay 3,
while there were morhits thancr for Delays 1 and 2 (ResponseDelay interaction;
Fe22) = 7.91, p = 0.001). An Entropy Level Delay interaction (frsg) = 2.14, p <
0.05) showed a performance increase for Delay ih fEmtropy Level 1 to Entropy
Level 5, while there was no such systematic efiecDelay 2 or Delay 3. There was

no Responseé Entropy Level Delay interaction (frssy= 0.45, p > 0.1).

The imaging results replicate the findings of timrdt study, demonstrating that
activity in PT for encoding (as assessed by batHitlst and second scan of each pair)
increased significantly as a function of entropytfee same significance thresholds as
in the third study (Figure 5-5 and Table 5-2). Hifect at the level of primary and
secondary auditory cortex was examined in detaiextyacting the BOLD signal in
medial, central and lateral HG (Morosanal, 2001; Pattersoet al, 2002) (Figure
5-5 and Figure 5-6): three separate 5 (Entropyljeve2 (Hemisphere) repeated
measures ANOVAs showed no main effect of EntropyelléR, 20) = 0.85, 20y =
0.77, Ra20= 1.83, all p > 0.1, for medial, central and latédG, respectively).
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Figure 5-6  BOLD signal in medial and lateral HG. Normalised BOLD signal change (y-
axis) in left and right medial (top) and lateral HG (bottom) (mHG and IHG, respectively)
plotted against the five levels of exponent n (x-axis) for Study 4. See Figure 5-5 for
corresponding plots of BOLD signal in central HG.

Table 5-2  MNI coordinates of local maxima in PT as a function of increasing entropy in
the two studies. Coordinates in italics depict the arithmetic mean of the geometric MNI
coordinates for left and right PT in the two studies. The last column lists the geometric
distance between the arithmetic means; note that this is smaller than the smoothing kernel

(8mm) applied to the data.

Study 3 Study 4 geometric
i i distance
entropy increase entropy increase
Py il Study 3 vs.

Hemisphere X y z tvalue X 'y z tvalue | gydy4

left PT | 62 -24 8 5.70 -56 -30 8 3.83
-60 -38 16 5.02

mean | -61 -31 12 -56 -30 8 6.48
right PT 68 -20 O 4.74 66 -22 2 3.93
66 -30 4 4.39
66 -12 O 3.72
mean 67 -21 1 66 -22 2 1.73
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Furthermore, the relationship between entropy an@LB signal was
significantly different between PT and all threddivisions of HG: 2 (Area [PT vs.
medial, central or lateral HG]) 5 (Entropy level)” 2 (Hemisphere) repeated
measures ANOVAs carried out separately for medetiral or lateral HG showed an
Area” Entropy level interaction (k)= 2.61, p < 0.05; &20)= 3.31, p < 0.05; &20)
= 5.55, p < 0.001), for medial, central and latét&, respectively).

The cardiac gated image acquisition in Study 4h&mnhore allowed an
examination of a potential effect of stimulus eptroin subcortical auditory
structures. The relationship between entropy aadattivity in the medial geniculate
body (MGB) and inferior colliculus (IC) was examéh@sing a smaller smoothing
kernel (4mm FWHM) appropriate for these subcortstalictures (Figure 5-7). This
analysis showed no main effect of entropy on th&.B@esponse in these areas (two
separate 5 (Entropy Level) 2 (Hemisphere) repeated measures ANOVASofF=
0.35, p > 0.1, for IC; &20) = 1.32, p > 0.1, for MGB). Due to the differentasipl
smoothing, no meaningful interaction with the rasmin cortical structures can be

computed.
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A second analysis based on the contrast betweesebend and first scans
sought areas involved in retrieval and comparidmrt, not encoding. This contrast
highlighted activity within a bilateral fronto-patal network, including the mid-
ventrolateral prefrontal cortex (mid-VLPFC) ared? inferior parietal sulci, medial
superior frontal gyri and dorsolateral prefrontattex (DLPFC) (p < 0.05, family-
wise error (FWE) corrected for multiple comparisoRgjure 5-8 and Table 5-3). A
further contrast was carried out to identify aneeffof entropy on retrieval and
comparison, but not encoding. No effect of entropyretrieval and comparison was

demonstrated.

@ @
& |

0
t-value

Figure 5-8 Retrieval and comparison results. Areas that show stronger activation (p <
0.05, FWE corrected) for retrieval and comparison than encoding, rendered on coronal (y =
22 and y = -48, top left and right, respectively), and sagittal (x = 6, bottom left) sections of
participants’ normalised average structural scan. See also Table 5-3 for exact MNI

coordinates.
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Table 5-3  MNI coordinates of local maxima. Local maxima coordinates for the main
effect of Retrieval and comparison (contrast: [second scan — first scan]) at p <0.05 (FWE
corrected for multiple comparisons across the brain). VLPFC, ventrolateral prefrontal
cortex; IPS, intraparietal sulcus; mSFG, medial superior frontal gyrus; DLPFC, dorsolateral
prefrontal cortex; IFG, inferior frontal gyrus.

Retrieval - Encoding
Region Hemisphere X y z t-value
mid-VLPFC left | -28 22 -6 10.24
mid-VLPFC right 30 22 -8 10.20
32 26 2 8.70
44 22 -4 7.64
IPS right 46 -48 40 8.46
mSFG medial 6 14 46 8.81
-8 8 42 8.66
-6 2 52 8.58
motor cortex left | -36 -6 62 8.19
-44 -28 48 7.82
-48 -20 60 7.48
IPS left | -30 -44 -40 7.89
-36 -52 44 6.64
-30 -56 52 6.50
mid-DLPFC right 50 20 46 6.99
IFG right 48 30 24 6.79
thalamus left | -10 6 2 6.65

129



CHAPTERS

5.6 Further analysis considerations

For pitch sequences in Study 3 and Study 4 theeeansgnificant effect of exponent
n levels on the sample entropy estimates (ANOVA.d = 197.814, and 145 =

28.03, both p < 0.001, respectively). Post-hocwia& comparisons revealed that all
levels except levels 1 to 3 were statistically efiént from each other (all p < 0.05).
The data were therefore analysed further by cdhgpacross those levels whose
sample entropy estimates are not statisticallyeckfiit from each other (levels 1 to 3
in Study 3 and Study 4, resulting in four and thieeels, respectively). The results
are very similar to the results for both studiesegmrted in the main text, providing

strong support for the original results (Figure)5-9

g

Figure 5-9  Analysis considerations |. (Left) Comparison of results for Study 3 when
analysing the data with respect to the original 6 exponent n levels (red) or collapsing
across levels 1 to 3, resulting in a total of 4 levels (blue). (Right) Comparison of results for
Study 4 when analysing the data with respect to the original 5 exponent n levels (red) or
collapsing across levels 1 to 3, resulting in a total of 3 levels (blue). Results are
thresholded at p < 0.001 (uncorrected) and rendered on the tilted (pitch = -.5) normalised
mean structural of the 22 vs. 24 participants.

The data were further analysed by (a) parametyicatidulating each individual pitch
sequence with its specific sample entropy value @halassifying pitch sequences
according to their sample entropy values (ignotimg exponent value from which
they were derived). The second classification nekthesulted in the following

descriptive data for the two studies (Table 5-4).
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Table 5-4  Descriptive data for the pitch sequences in the two studies with a

classification scheme based on the sample entropy estimates.

Study 3 Study 4
level mean range # of mean range # of
(SEM) exempl. (SEM) exempl.
1 1.61 (0.03) H>15 23 1.75 (0.04) H>15 40
2 1.35(0.01) 12>H>15 87 1.35(0.01) 1.2>H>15 49
3 1.08 (0.01) 09>H>1.2 37 1.09(0.01) 09>H>1.2 38
4 0.74(0.01) 0.6>H=>0.9 35 0.73 (0.03) H>0.9 23
5 0.46 (0.01) H>0.6 28

There was a significant effect of entropy level #tudy 3 and Study 4 (ANOVA,
Fu.205) = 825.51 and E146) = 241.71, both p < 0.001, respectively), and $icgnt
pairwise comparisons between all levels (all p85). Importantly, the two methods
for grouping the data into levels (i.e. with redpgcexponenn or sample entropy)
yielded very similar classifications, as indicatgdhighly significant Spearman rank
correlations for Study 3 and Study 4 (rho = 0.81d aho = 0.64, both p < 0.001,

respectively).

In the case of Study 3, the results are almostticldrto those reported in the
main text, both when parametrically modulating eaelquence with respect to its
specific entropy value (analysis (a) above), ad a&when parameterising using the
mean sample entropy value for each of the fivelteyanalysis (b) above, Figure
5-10, left). In Study 4, the results of both red{gs@ techniques are visible as a trend
at a reduced significance threshold (Figure 5-i§hty. The greater divergence
between the original analysis and reanalysis ofiystuis likely due to the variance of

sample entropy estimates for short time series.
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Figure 5-10 Analysis considerations 1. Comparison of results for the three types of
analyses in the two studies (Study 3, left; Study 4, right). Original analysis based on mean
entropy value of the six levels derived from exponent n (red); analysis based on individual
sample entropy value of each pitch sequence (analysis (a), blue); analysis based on
categorisation derived from entropy values irrespective of the exponent n value from which
the stimuli were derived (analysis (b), cyan). Results for Study 3 are thresholded at p <
0.001 (uncorrected); results for Study 4 are thresholded at p < 0.005 (red) and p < 0.05
(blue and cyan) and are rendered on the tilted (pitch = -.5) normalised mean structural of

the 22 vs. 24 participants.

5.7 Discussion

Both studies demonstrated an increase in the tamaial activity as a function of the
entropy of encoded pitch sequences in PT but nétGn The results are consistent
with a computational process in PT that requireseasing resource and energetic

demands during encoding as the entropy of the sstimailus is increased.

In the third study, the use of pure tones couldaxaiude a possible alternative
explanation of the data in terms of sensory adeptawithin cortical frequency
representations. The existence of the relationshipT, but not in HG, was indirect
evidence against such sensory adaptation. Howtheefpurth study used broadband
stimuli that continually activate a broad rangecoftical frequency representations

irrespective of pitch, rendering explanations basedensory adaptation untenable.
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Another interpretation of these results could bgeldaon perceptual adaptation
within cortical correlates of pitch (as opposedsémsory adaptation of the stimulus
representation). Previous studies have demonstratepgping of activity within
secondary auditory cortex in lateral HG as a catecbf the perceived pitch salience,
whether the stimulus mapping was in the temporatalo (Pattersort al, 2002) or
frequency domain (Penagesal, 2004). An explanation of the results of eithexdgt
might therefore be based on adaptation within piteh centre’ in lateral HG for pitch
sequences with higher fractal exponentThe fourth study enabled the identification
of separate activations in medial, central anddhtdG. Contrary to an interpretation
based on adaptation in pitch sensitive channedsettvas no relationship between the
entropy and local activity in any of the subfielosHG that would have supported
such an explanation. Furthermore, the interactietween HG and PT provides

additional evidence for an effect of entropy tlsaspecific to PT.

The most compelling explanation of these resultsinisterms of greater
computational activity (and therefore local synapéctivity and BOLD signal:
Goense & Logothetis, 2008; Logotheéisal, 2001) as a function of the information
content or entropy of the encoded sound. This esfitlst explicit demonstration of
such a relationship. The results suggest an dfficierm of encoding within PT
whereby sequences are encoded by a mechanismetimainds fewer computational
resource for sequences carrying low informationteanand high redundancy (due to
the predictability of the sequence) than that neglito encode sequences with little or
no redundancy. ‘Sparse’ (DeWeese & Zador, 2006stém 2003c; Olshausen &
Field, 2004) and ‘predictive’ (Baldeweg, 2006; Eois 2005; von Kriegstein &
Giraud, 2006) coding both constitute such mechasiand bases for PT acting as a
‘computational hub’ (Griffiths & Warren, 2002).

In contrast, retrieval and comparison do not deendntropy in the same way,
which is proposed to reflect the decreased comiputdtand energetic demands of
retrieving and comparing stimuli at symbolic levelsyond stimulus encoding. The
initial encoding process depends on a computatipmadpensive process that must
abstract features from a complex spectrotemporattstre. Beyond this stage, the
subsequent categorical retrieval and comparisorharésm does not depend on the

detailed spectrotemporal structure. Indeed, thenfoatational hub’ model (Griffiths
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& Warren, 2002) states that PT gates its outputatde higher-order cortical areas
that perform analyses at a symbolic and semantiel.lét is suggested that at least
part of the function of PT is to compress the necoae corresponding to the initial
acoustic signal (e.g. via sparse or predictive mgyliand that subsequent processing

is not dependent on stimulus entropy.

That PT might even perform this type of analysismiore general or supra-
modal terms is suggested by work in the visual dor(Bischoff-Gretheet al, 2000)
demonstrating activation in Wernicke’s area andight-hemisphere homologue as a
function of the entropy within a sequence of viguaresented squares, irrespective
of whether or not participants were aware of aneulythg sequence. However, later
studies using similar visual stimuli did not replie this finding (Harrisoet al, 2006;
Strangeet al, 2005).

The retrieval and comparison phase highlighted antér-parietal network
consisting of the anterior insulae and frontal opk, inferior parietal sulci, medial
superior frontal cortex and DLPFC. This activatpattern is common in the retrieval
and comparison phase of (auditory) delayed matetatople tasks (e.g. Arnatt al,
2005; Zatorreet al, 1998). In particular, the caudal part of mid-VI®I5 engaged in
the top-down control of active retrieval proces@ésstopoulos & Petrides, 2008). In
functional imaging studies, the mid-VLPFC is diffic to disambiguate from the
anterior insula, which has been proposed as arniaad@i auditory processing centre
for allocating auditory attention, specifically Wwitespect to sound sequences (for a
review see Bamiouet al, 2003). However, cytoarchitectonically, the gramul
prefrontal cortex can be readily disambiguated fiibben more dysgranular insula as
part of the limbic cortex (Petrides & Pandya, 198d02). Parietal cortex is generally
regarded as being important for attention to amtibg of sensory information
(Cusack, 2005), while activity in prefrontal cortexoften associated with response

preparation and selection (Passingham & Sakai,)2004

While the main aim was to study generic neural mmagms of sound encoding
as a function of entropy, the range of pitch segasnused included those
approximatingf ' (‘one-over-f) power spectra, which resemble mamgturally
occurring acoustic phenomena (de Coemsall, 2003). Notably, music and speech

display f ' power spectra characteristics, reflecting thetinaebalance of ‘surprises’
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(e.g. musical transitions) and predictability incewsignals (Voss & Clarke, 1975,
1978). Pertaining specifically to the signals ukeck falling in the range of *, two

recent electrophysiological studies demonstratedepence within primary sensory
cortices for f** signals (Garcia-Lazaret al, 2006; Yuet al, 2005). The data did not
demonstrate any ‘tuning’ to particular values opexent in HG (no main effect of
Entropy level; Figure 5-2, Figure 5-5, and Figur6)5While a neuronal preference
for particular natural sequence categories atébel lof HG in humans is conceivable,
the current studies addressed the computational eareigetic demands of the

perceptual encoding of sounds, rather than thes@g representation.

These studies used entropy to characterise pitcjuesees here, but the
information theoretic approach could be used toratttarise sequences containing
rhythm, or more complex natural sound sequences.pothesised mechanism in
PT is not a specific pitch mechanism and also ptedi similar relationship between
information content and the encoding of more nastrnuli. In summary, the present
data implicate PT as a neural engine within whioh ¢computational and energetic

demands of encoding are determined by the entrbthyeacoustic signal.
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Chapter 6. HIERARCHICAL ENCODING OF GLOBAL
AND LOCAL INFORMATION IN PITCH

PATTERNS

Summary

Pitch patterns, such as melodies, consist of two structural levels: a global
level, comprising the pattern of ups and downs, or contour; and a local level,
comprising the precise intervals that make up this contour. An influential
neuropsychological model suggests that these two levels of processing are
hierarchically linked, with processing of the global structure occurring within
the right hemisphere in advance of local processing within the left. However,
the predictions of this model and its anatomical basis have not been tested in
neurologically normal individuals. Study 5 used fMRI and required participants
to listen to consecutive pitch sequences while performing a same/different
one-back task. Sequences, when different, either preserved (local) or violated
(global) the contour of the sequence preceding them. When the activations for
the local and global conditions were contrasted directly, additional activation
was seen for local processing in right planum temporale and posterior
superior temporal sulcus (pSTS). The presence of additional activation for
local over global processing supports the hierarchical view that the global
structure of a pitch sequence acts as a "framework" on which the local detalil
is subsequently hung. However, the lateralisation of activation seen in the
present study, with global processing occurring in left pSTS and local
processing occurring bilaterally, differed from that predicted by the
neuropsychological model. A re-examination of the individual lesion data on
which the neuropsychological model is based revealed that the lesion data
equally well support the laterality scheme suggested by the current data.
While Study 5 supports the hierarchical view of local and global processing,
there is an evident need for further research, both in patients and
neurologically normal individuals, before an understanding of the functional

lateralisation of local and global processing can be considered established.
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6.1 Introduction

Cognitive neuropsychological studies have demotestréhat pitch patterns, such as
melodies, consist of two structural levels: thetoan or pattern of ups and downs —
synonymous with the ‘global’ level, and the precis¢ervals that make up this
contour — synonymous with the ‘local’ level. Eatbhehavioural support for this
hierarchical model came from same/different taskswvhich pairs of novel pitch
sequences could differ at a local level, where @amnis preserved, or at a global level,
where the overall contour is violated (Dowling, 89Dowling & Fujitani, 1971;
Dowling et al, 1987). Individuals can reach high levels of aacyrin the detection of
both types of change. However, if the second sempés shifted in overall pitch,
individuals are unable to detect differences whitre contour is preserved. The
dependence of participants’ accuracy on the presemcabsence of a change in
contour suggests that processing of contour previdescaffold’ on which the detalil
of the precise intervals are subsequently ‘hungt {brther behavioural evidence of
this model, see Bartlett & Dowling, 1980; Cuddy &ft&n, 1976; Trehulet al,
1993).

Evidence for the neuroanatomical basis of this rmbds come from patient
studies. Peretz (1990) tested patients with heteregus left or right hemispheric
damage (LHD or RHD, respectively) on tasks simtiarthose described above.
Deficits in the detection of differences involviagcontour violation always co-existed
with deficits in the detection of differences whdbe contour was preserved. In
contrast, selective deficits in discriminating no#é&s that shared the same contour
were seen without accompanying deficits in disaneting melodies that differed in
contour. Moreover, this pattern was associated déatmage to different hemispheres:
RHD patients were worse than normal control (NQ}ipi@ants for the detection of
both types of differences, while LHD patients peried significantly better for

contour-violated than contour-preserved differences

A similar pattern of results was found by LiégeGisauvel and colleagues
(1998) in patients with lesions confined to the penal lobes. Lesions to right
posterior temporal cortex were associated withaitefin the detection of contour-
preserved and contour-violated differences, wielgidns to left posterior temporal

cortex were associated with selective impairmentstifie detection of differences
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where the contour was preserved. Taken togethisr ptitern of results suggests a
model of hierarchical co-operativity whereby comtquocessing precedes interval
processing and these two stages of the hierarobyright and left lateralised in
posterior superior temporal cortex. However, intadg similar to Peretz (1990),
Schuppert and colleagues (2000) confirmed the natifoa processing hierarchy in
patients with heterogeneous cortical lesions, lheitpattern of deficits did not support
the proposed lateralisation dichotomy of globalrtigand local-left. Similarly,
Zatorre (1985) found no statistically significanffekences for detecting contour-
preserved or contour-violated changes in simpleodies between patients with left

or right temporal lobe lesions.

The neuropsychological approach in patients withirblesions is of clear value
in establishing the necessity of brain areas feemifunctions. However, several
aspects of the approach caution against a solanceli on lesion data to derive
neuroanatomical models of cognitive processing. irBrdesions are rarely
circumscribed, are heterogeneous across differati¢mis, and may be functionally
compensated for by other brain areas with a timesmthat differs across patients.
All these factors make assessment and interpretafiaeficits challenging. Further,
brain lesions occur within functional networks gmatticular damaged regions may
not be sufficient in and of themselves to suppbé tunction, which may depend
equally on other regions within a broader netwdfkinctional imaging offers a
valuable complement to the neuropsychological agpgrp providing a way to
highlight the network of areas associated with tieemal performance of a given
function. The two approaches, when used in comioinaprovide a useful constraint

on the interpretation of results and the formulavé new theories.

The present study used fMRI to test the model ofet2eand colleagues
(Liégeois-Chauvekt al, 1998; Peretz, 1990) in neurologically normal uidiials.
The paradigm was modelled on the same/differeistased in behavioural (Bartlett
& Dowling, 1980; Cuddy & Cohen, 1976; Dowling, 197Brehubet al, 1993) and
patient studies (Liégeois-Chauved al, 1998; Peretz, 1990), but adapted to a one-
back format which was more suited to fMRI. In agudit pitches were used that were
drawn from a non-musical scale, so that findingaldde generalised outside the

purely musical domain (Foxtoet al, 2003; Patel & Iversen, 2008). The two
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predictions arising from the model were testedt tha processing of pitch sequences
involves a hierarchy (from a global to a local I@wvend that a different degree of

lateralisation is seen for each of these stagebd)- right; local — left).

6.2 Materials and Methods

6.2.1 Participants

Twenty four participants were recruited for thedstuAll participants (10 male, 14
female) reported an absence of any hearing or tagical disorder and gave their
informed consent. The study was approved by theoNat NHS Research Ethics

Committee.

6.2.2 Stimuli and Experimental Procedure

Since it was the intention to investigate local gtabal levels of auditory processing
at a generic level, and not only in music, the @& were drawn from a set of
frequencies that does not typically appear in cowipdn in the Western musical
tradition. Ten pitches, equally spaced in logarithisteps, were taken from a two-
octave range (120-480 Hz) (see also Chapter 5h Rach corresponded to a series
of 30 harmonics with a trapezoidal spectral envel@nd a rise and decay time of 20
ms and 30 ms, respectively. Sounds were creatédltigat a 44.1 kHz sampling rate

and 16 bit resolution using Matlabm@w.mathworks.comm A pitch sequence

consisted of four 300 ms long pitches, amountin@ tduration of 1.2 seconds per
sequence. Each trial was made up of four pitch eseops separated by an inter-
sequence interval of 800 ms. There were two exmaat trial types: Local and
Global (Figure 6-1). For both local and globallgjaonsecutive pitch sequences were
the same (Lsame or Gsame) or different (Ldiff oiffpdvith equal probability. In the
Local trials, consecutive sequences, when differeatl a pitch change at either the
second or third element of the sequence with tmstcaint that this change did not

alter the contour. Correct performance dependegeaeiving a difference in the

139



CHAPTERG

exact pitches or intervals in the two sequencesthén Global trials, consecutive
sequences, when different, contained a pitch changeght about by reversing the
order of the second and third elements, which adwmagsulted in a difference in
contour. Correct performance depended upon theepgon of a difference in
contour, in addition to any difference in the expithes or intervals in the two
sequences. Participants performed a one-back tagkdssing a key beneath their
index or middle finger to indicate that the curreejuence was either the same or
different to the previous. Participants were trdiren each trial type outside the
scanner, to a criterion level of 80%. During scagntheir performance was recorded
and analyzed off-line for accuracy. In additionLtucal and Global trials, there were
also Silent trials comprising a period of silencatched to the duration of the other
trial types. Participants performed two experimesg&ssions in which the three trial
types: Local, Global and Silence were pseudo-ramgartermixed, with 64 instances

for each of the two sessions.

6.2.3 fMRI protocol and analysis

Gradient weighted echo planar images (EPI) (seéd®e2.3.1) were acquired on a
1.5 Tesla Siemens Sonata system (Erlangen, Germasigly a sparse imaging
protocol (repetition time 12.5 seconds), in ordeteémporally separate the scanner
noise and the experimental sounds (Edmistenl, 1999; Hallet al, 1999) (see
Section 2.4). A total of 48, 4mm axial slices wexrequired, with an in-plane
resolution of 3 x 3 mm. 192 brain volumes were @&egufor each participant across
the two sessions (64 for each condition). A higbohetion T1 weighted structural
image (1 x 1 x 1.5mm) was also obtained. Duringstay, stimuli were presented

using Cogentwww.vislab.ucl.ac.uk/Cogepand delivered via an external sound card

(www.edirol.con) at a sound pressure level of 70 dB over a custoifh electrostatic

system based on Kd8sheadphones.

Imaging data were processed and analysed usingtBttParametric Mapping

software (SPM5www.fil.ion.ucl.ac.uk/spm (see also Sections 2.5-2.6). Scans from

each participant were realigned to the first imafehe time series and unwarped,
spatially normalised to standard stereotactic sp@eiston et al, 1995a) and

smoothed with an isotropic Gaussian kernel of 10 fulirwidth-at-half-maximum.
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Population-level inferences were made through agi@ge procedure. First, the
data from each participant were analysed within ¢batext of the general linear
model (Fristonet al, 1995b). Pitch sequences were categorised acgortin
condition: Local Same (Lsame), Local Different (ifJi Global Same (Gsame) and
Global Different (Gdiff) (Figure 6-1). Note that &ime and Gsame sequences were
identical and that the only difference was the erntn which they were presented,
either in a Local or a Global trial. Hence they svenodelled separately to take
account of potential ‘cognitive set’ effects. Eadjuence was modelled as a short
event of 1.2 seconds duration and was convolved withaemodynamic response
function (Figure 6-2). The first sequence of eathl was not modelled explicitly,
since it was neither the same nor different. Tipigr@ach explicitly models variance
due to whether a given pitch sequence was samdfferedt. From this model,
parameter estimates for each condition were derir&thned contrasts were applied
to assess differences in activation between thalitons, resulting in a contrast
image. These contrast images were used in a sdevedrandom effects analysis.
For each contrast of interest, a one-sample twast performed to derive statistical
parametric maps (SPMs). Since the focus was ors aviéh ana priori prediction, i.e.
in auditory cortex, SPMs were thresholded at p B0D.(uncorrected for multiple
comparisons across the brain).
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Figure 6-2  Schematic of the experimental desigh and modelled haemodynamic response
functions (hrf's). The figure is similar to Figure 6-1; the four pitch sequences are depicted
as four stimulus blocks (green, red, blue, cyan; respectively), while the two black boxes
represent the time of the volume acquisition. Various haemodynamic response functions
for the different permutations are plotted. For example, a trial in which the second and
fourth sequence were Ldiff sequences, would lead to the green dashed hrf (labelled ‘2+4’).
The dashed vertical line represents the onset of the reference time window at which the

BOLD signal is sampled.

6.3 Results

6.3.1 Behavioural results

Twenty-four neurologically normal participants ungent behavioural testing. Four
participants who showed a difference in accuracynofe than 10% between the
Local and Global conditions were excluded, to awmndfounding the interpretation
of the imaging findings by differential performanbetween the Local and Global
conditions. Mean correct performance in the scaforethese 20 participants did not
differ between Local (91.98%) and Global (93.15%ditions (paired samples t-test,
tio=-1.17, p > 0.1) and was significantly above dea(50%) (one-sample t-tesf

28.07 andib = 39.12, both p < 0.001, for Local and Global dbads, respectively).
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6.3.2 Effects of processing contour-preserved and contmlated
differences

Activation for Lsame and Gsame sequences did rifgrdrom another, ruling out a
potential ‘cognitive set’ effect, and these two diions were therefore pooled as
Same. In order to assess separately areas thaivateed in the processing of local
differences and global differences, the followingntrasts were performed.ocal:
([Ldiff — Same]) andGlobal: ([Gdiff — Same]).Local revealed bilateral activation in
pSTS, whileGlobal was lateralised to the left pSTS, even at a retigtatistical
threshold of p < 0.05 (Figure 6-3; see also Figiiteand Table 1).

Figure 6-3 Main effects for Local and Global. Activations for the Local ([Ldiff — Same])
(red) and Global ([Gdiff — Same]) (blue) contrasts superimposed on a tilted (pitch: -0.5
radians) normalised average structural scan covering STS. Activations are thresholded at p
< 0.005 (uncorrected), for display purposes. Plots show the BOLD signal at local maxima in
left and right pSTS. See also Figure 6-4.
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Figure 6-4 Main effects for Local and Global (p < 0.05). Same as Figure 6-3, thresholded
at p < 0.05, uncorrected for multiple comparisons. Note that Global does not reveal any

activation in right pSTS.

Table 6-1 MNI coordinates of local maxima. Stereotactic coordinates for the three
contrasts Local, Global, and Local — Global.

Contrast X y z t-value

62 -52 4 431
-68 -36 -8 4.00
-68 -40 -8 3.92
-58 -36 0 3.65

60 -36 -2 | 3.94
54 44 0 | 3.48

68 -46 4 5.03
Local - Global [Ldiff - Gdiff] | 60 -30 -2 4.98

62 -22 8 4.75

Local [Ldiff - Same]

Global [Gdiff - Same]

In order to test whether the activation patternstliese contrastd.¢cal andGlobal)
were significantly lateralised, formal tests ofelalisation were performed (see also
Section 3.2.4). A set of the original realigned amdvarped images and a set of

‘flipped’ left-right realigned and unwarped imagaesre normalised to a symmetrical
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template and subsequently smoothed before theststati analysis. To test for
statistical differences between the left and rigianispheres for each contrasbgal
and Global), a voxel-by-voxel pairwise t-test between thegimal and the flipped

images was then performed.

These tests of lateralisation confirmed that nasrghowed any lateralisation
for Local, while Global was significantly lateralised to the left pSTSgiie 6-5).

Figure 6-5 Results for the lateralisation test of (left) Local ([Ldiff — Same]) for original —
flipped scans, and (right) Global ([Gdiff — Same]) for original — flipped scans.

6.3.3 Comparison of Local and Global Processing

It was examined whether the processing of localedihces (contour-preserved)
versus global differences (contour-violated) resiin a distinct activation pattern via
the contrastdocal — Global([Ldiff — Gdiff]) and Global — Local([Gdiff — Ldiff]).
These contrasts directly compared activations spoeding to the detection of a
contour-preserved difference versus a contour-tedlaifference and allowed to test
for a hierarchical relation between these two psees.Local — Global revealed
activations in the pSTS and planum temporale (Rifjhe right, while there were no

significant differences for th&lobal — Localcontrast (Figure 6-6, see also Table 1).
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A formal test of lateralisation confirmed thesediimgs, showing right lateralised

activations in pSTS and PT fbocal — Global(Figure 6-7, see also Figure 6-4).

Figure 6-6  Activations for the Local — Global ([Ldiff — Gdiff]) contrast. The results are
superimposed on coronal sections of participants’ normalised average structural scan.

Plots show the BOLD signal at local maxima in right PT (top right) and pSTS (bottom right).
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Figure 6-7 Results for the lateralisation test of Local - Global ([Ldiff — Gdiff]) for original —
flipped scans.

6.4 Discussion

The aim of this study was to test both aspecti@iodel put forward by Peretz and
colleagues (Liégeois-Chauvedt al, 1998; Peretz, 1990) which holds that the
processing of pitch sequences involves a hieraftroyn global processing to local
processing) and differential hemispheric lateréilisaof these stages (global — right;
local — left). The results of the present studyfeconthe hierarchy predicted by the
model: a direct comparison of activation for theéedéon of a contour-preserved
versus a contour-violated difference revealed egreaictivation for processing
contour-preserved differences. No areas were motieaged for processing of a
contour-violated difference compared with a comnpraserved difference. The
presence of additional activation for contour-presd differences over and above
those for contour-violated differences is consisteith a processing hierarchy in
which local processing requires additional neuedources compared with global

processing. However, these results contrast wigh |#teralisation account of the
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model proposed by Peretz and colleagues (Liégelogmril et al, 1998; Peretz,
1990): rather than demonstrating an associatioglaifal and local processing with
the right and left hemispheres respectively, prsiogsof change at the global level
was lateralised to the left posterior STS, whilegassing of change at the local level
engaged bilateral posterior STS. The location ek¢hactivations is congruent with
results in Liégeois-Chauvel and colleagues (19828gre damage to the posterior part
of the superior temporal lobe (STL) was more dedrital for performance than

anterior STL damage.

The processing hierarchy demonstrated here accamith cognitive
neuropsychological and lesion-based evidence, andbe conceptualised as a fast
serial search strategy whereby the first pitch eage is encoded and provides a
reference for the comparison of each of the caresiitevents of the second sequence.
In such a scheme, incoming events are comparedtiéticorresponding event in the
first sequence, initially for contour direction ¢bkl) and then for the precise interval
information (local). If a difference is detected dontour, the search is terminated,
otherwise the search process continues at thevattéevel. While the temporal
resolution of fMRI is insufficient to provide diresupport for this serial model, data
including faster reaction times as well as eadied greater event-related potentials to
contour violations compared with contour-presenwifferences provide strong
evidence for such a serial search strategy (Sctiastal, 1999; Trainoet al, 1999;
Trainoret al, 2002).

The results concerning hemispheric lateralisatiblocal and global processing
are at first more difficult to reconcile with lesialata and the predictions of the model
by Peretz and colleagues which suggest a pattertatefality such that local
processing occurs within the left hemisphere amdbal processing within the right
(Liégeois-Chauvelet al, 1998; Peretz, 1990). However, as mentioned in the
Introduction to Study 5 (Section 6.1), other nessmbhological studies (Schuppett
al., 2000; Zatorre, 1985) did not support this hemesjh lateralisation account.
Further, a close examination of the neuropsycholigitudies to date urges a more
circumspect interpretation. Two of these studies€¢i, 1990; Schuppest al, 2000)
used unconventional cut-offs for defining impaip&tformance (the worst score and

the mean score of the normal control (NC) grougspectively), increasing the
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likelihood of false positive results. In the stuofyPeretz (1990), although at a group
level there was a pattern of deficits suggestiveaofight —global; left — local
dissociation, only five out of ten of the RHD pati® had genuine global deficits
(performance below cut-off), and only three outtefi of the LHD patients had
genuine selective local deficits. Equally, in LiégeChauvel and colleagues (1998),
where lesion locations were confined to temporatecg three out of five patients
with damage to right posterior temporal cortex lubal deficits and one out of three
patients with damage to left posterior temporalteorhad selective local deficits.
Taken together, this more detailed picture sugdlest the lateralisation scheme
proposed by Peretz and colleagues (Liégeois-Chaaival, 1998; Peretz, 1990) can

only partially account for the pattern of defiaiisserved in these patients.

It is suggest that the processing scheme suggbgtdte current data (global —
left; local — bilateral) can account equally wedl the pattern of results reported in
previously published neuropsychological cases @dégrChauvekt al, 1998; Peretz,
1990; Schupperét al, 2000; Zatorre, 1985). For example, in Liégeois@rel and
colleagues (1998), two out of five cases with righsterior temporal lesions showed
either no deficit for local and global tasks oreséive deficits in the local task alone,
while two out of three patients with left postertemporal cortex lesions were below
cut-off for both local and global tasks. Furthermowhile LHD patients in Peretz
(1990) were better at global than local tasks, thexertheless performed significantly

worse than NC on both tasks.

The concept of local and global signal propertiesl dhe notion of their
respective hemispheric lateralisation is not unigupitch sequences or melodies, but
also has a long tradition in vision research (&riews, see Hellige, 1996; Hubner &
Volberg, 2005). The defining characteristics ofdlband global stimulus properties as
used in vision (e.g. Martin, 1979; Navon, 1977) #nat (i) one is embedded within
the other (local within global) and that (ii) bo#ine orthogonal. In this way, local
stimulus properties can be arranged to yield glsbalulus properties, while both can
be manipulated independently. In vision, the datiprocessing of local and global
stimulus properties likely reflects different spafirequency filters (Robertson, 1996;
Shulmaret al, 1986).
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Recently, the representation of local and globatwgtus properties as in Study
5 has been questioned for not reflecting the charatc of orthogonality between
local and global stimulus properties (Justus & ,L2605; List & Justus, 2007; List
al., 2007; Sanders & Poeppel, 2007). These authotseal@t a global violation in a
pitch pattern also entails a local violation; targument assumes that a pitch interval
is not represented in terms of its absolute simé réther together with its direction
(e.g. a major third would be represented as anndgog major third or descending

major third and not as a major third irrespectit/é@sodirection).

The original studies (Dowling, 1978; Dowling & Funi, 1971; Dowlinget al,
1987) conceived of the ‘ups’ and ‘downs’ of thelzbcontour of melodies in terms
of '+ and ‘-’, while the intervals were denoted semitones with absolute integers.
For example, a simple melody suchFagére Jacquesould then be described at the
global level as ‘+ + - 0 + + -, and at the locavél as '2 2 4 0 2 2 4’; in this
conceptualisation, the global structure can indeedhodified independently from the
local level simply by substituting ‘+’ and ‘-’. Hoswer, previous studies (including
Study 5) did not control the absolute interval sfze. presumably maintaining the
same local level) when introducing a global viaati Furthermore, a ‘+2’ (ascending
major second) pitch interval and a ‘-2’ (descendimgjor second) interval are
unlikely to be perceived as similar (Russo & Thoomps2005). In contrast, with
respect to music theory, it is the relative invemsof intervals rather than the absolute
inversion that relates musical intervals: for exlaman ascending major third is more
closely related to its inverse, a descending mgith, than to a descending major
third (Hindemith, 1940; Schonberg, 1911).

The current definition of local and global stimulpsoperties was originally
motivated to capture two aspects of musical, oromhel information processing
(Dowling, 1978; Dowling & Fujitani, 1971; Dowlingt al, 1987). In fact, the early
studies generally referred to the two levels asntgor and ‘pitch’ (or ‘pitch
interval’), instead of local and global levels. s conceivable that the
conceptualisation of local and global stimulus mbies as applied in these studies is
specific to structural information in the musicaintain instead of in the auditory
domain in general (however, see Foxtiral, 2003; Patel & Iversen, 2008). In this

case, a terminology using ‘contour’ and ‘pitch mtd’ might be more appropriate, so
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as to avoid possibly misleading comparisons wittal@and global stimulus properties
used in vision research. While Study 5 based iisutis manipulations on previous
approaches derived from musical melodies (Dowlib§78; Dowling & Fuijitani,
1971; Dowlinget al, 1987), the 10-split octave and relatively show generic pitch
patterns (four pitches per pitch sequence) uséukeistudy attempted to afford a more
general interpretation of the results. For examgliebal and local levels in prosodic
patterns have also been shown to be important tsspespeech perception (Foxtet
al., 2003; Patel & Iversen, 2008). It is possible, boer, that the use of a 10-split
octave and the one-back task design could accoutihé differences from the model
put forward by Peretz and colleagues (Liégeois-@bket al, 1998; Peretz, 1990),
which is based on longer melodies and individualwiae comparisons. Further
studies are required to determine to what extemsethexperimental design

manipulations might account for the different lateation results.

On a methodological note, the experimental desfghis study (one-back task)
allowed the presentation of two different stimutyges {sameandLdiff, or Gsame
and Gdiff) within one TR of a sparse imaging acquisitiontpeol (Figure 6-1 and
Figure 6-2). This is the first time this approacstbeen implemented and it should
lead to important advances and improved flexibifily sparse imaging protocols.
Critically, the experimental design made it possiti investigatd.ocal and Global
processing as such (i.e. compared to a neutralibas8ame, as opposed to with
respect to each othekLdiff versusGdiff). This is an important advancement, since
previous investigations have only been able toctliyfecompare local versus global

violations, but not their individual contributions.

Thus, while studies investigating local and gloleakls of auditory processing
have generally confirmed the hierarchical accouewjdence for hemispheric
lateralisation of these levels has been more divaral elusive (Fujiokat al, 2004;
Liégeois-Chauveet al, 1998; Peretz, 1990; Schiavetbal, 1999; Schuppest al,
2000; Trainoret al, 1999; Trainoret al, 2002). Clearly, further research using
complementary experimental approaches and techmigqueneeded to refine the
guestion of a lateralised hierarchy and to deteemwhich parameters are relevant in

driving the effect. In particular, there is a need functional imaging studies of
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patients with focal brain lesions to examine digethe distribution of processing

following brain damage.

In conclusion, the present study is the first tondestrate the neural bases of
local and global levels of processing in pitch @ats in neurologically normal
participants. The results show that local and dlpbacessing within pitch sequences
differentially engage substrates in the posteridiS Sand that additional neural
resources are required in the right posterior Sm8 BT for local pitch change
processing. The findings support the notion of ahppattern processing hierarchy
that is likely to be generic rather than specifiertusic. Furthermore, the data suggest
an alternative lateralisation scheme at these ®wel$ of analysis which, while
different to the traditionally held view, is equall consistent with the
neuropsychological data from which this previousddaias derived. The present study
urges caution in accepting the traditional view lafteralisation, based on
neuropsychological studies of local and global Ipitsequence processing, and
emphasizes the need for further research, both pétients and neurologically
normal individuals, before an understanding of filnectional lateralisation of local

and global pitch sequence processing can be coadidstablished.
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Chapter 7. GENERAL DISCUSSION

This thesis investigated cortical correlates of cpasing higher-order statistical
properties in complex acoustic signals. Specificalladdressed fundamental cortical
mechanisms for representing and segregating ingiiduditory objects, as well as
grouped objects or object streams, by parametyicabntrolling higher-order

statistical properties of acoustic signals in ordecharacterise auditory objects. The
parametric nature of the synthesised stimuli, togretvith an information theoretic

approach, enabled a detailed investigation of gen@ocesses underlying auditory

perception in complex and dynamically changing atiolenvironments.

In particular, Study 1 (Chapter 3) assessed difteiemporal integration
windows in auditory cortex by parametrically vanyithe spectrotemporal correlation
in complex acoustic spectra. The results demoestraiicreasing activity in auditory
association cortex and a right-hemispheric lateatibn in STS as a function of

spectrotemporal correlation, or, equivalently, @asing time windows.

Study 2 (Chapter 4) investigated distinct mechasidor segregating and
representing auditory objects by parametrically ywvay the spectrotemporal
coherence of complex ‘auditory textures’. The resuokvealed a cortical processing
hierarchy, in which primary and association aregted statistical transitions at object
boundaries, while the subsequent precise reprdgmntaf the object properties

occurs only later in auditory association cortex.

Studies 3 and 4 (Chapter 5) took an informatiomitbtic approach to auditory
encoding. By parametrically varying the entropycomplex pitch sequences, it was
shown that the planum temporale of human audit@soaation cortex acts as a
‘computational hub’ (Griffiths & Warren, 2002), which the encoding of stimuli
with redundant information requires fewer compuatiadil resources than the encoding
of those with high information content. Furthere thesults suggest a ‘sparse’ or
‘predictive’ coding scheme in PT that compresses tieural code such that
subsequent stages of processing (e.g. the retoéydtich sequences) are independent

of information entropy.
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Finally, the fifth study (Chapter 6) investigatdtketcortical representation of
two fundamental computational mechanisms for prgiogs pitch transitions:
encoding the direction (up/down) and precise sizmtervals. The respective global
and local levels (Dowling, 1978; Dowling & Fujitarfi971; Dowlinget al, 1987) of
pitch pattern processing were shown to be hiereadljilinked, such that processing
of local information requires additional resource®r and above those required for

processing global information.

The information theoretic approach employed in thigesis to control
systematically statistical properties of acousignals conceptualises the brain as a
dynamic system, which is constantly producing aesting hypotheses so as to
optimise its coding (Friston, 2003a, 2005). Withthis framework, cortical
mechanisms compare the sensory input with pretegisemplates or priors and
optimise or update the priors if they do not algth the sensory input (reducing the
‘prediction error’ between sensory information apdors). The hypothesis put
forward here is that the statistical propertiesgeheric acoustic signals provide a
critical means by which the auditory system encates signal and optimises its
coding based on such Bayesian principles. Whilestlmeuli employed in this thesis
used abstract sounds to characterise auditory tsbjec object streams, it is
hypothesised that the underlying mechanisms arergemand that they are applied to
a variety of sound types, including those with seticaassociations (e.g. voices or
phonemes, musical instruments, environmental sQuodsame just a few). Indeed, it
is argued that semantic associations are the rekuo#tpeated associations of certain
spectrotemporal characteristics or statistical aigoroperties and thus represent

special auditory objects that arise from theseqplas.

The following Sections 7.1-7.4 discuss the mainlicagons and directions for
future research raised by each of the five studisally, a concluding section
(Section 7.5) outlines a possible framework forgessing statistical properties in a

complex environment, informed by the results o$ thiesis.
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7.1 The length of analysis time windows in auditory caex increases

from primary to association cortex

Acoustic signals evolve over time and thus the tauglisystem has adapted to process
information over a range of temporal windows sirmoéously. The first study of this
thesis (Chapter 3) investigated anatomically distrepresentations for different time
windows by parametrically controlling the spectrop®ral correlation in complex
acoustic spectra. Such a stimulus manipulationiregjuhe auditory system to apply
different temporal windows so as to integrate tighér-order statistical properties

across multiple frequency bands.

An important advantage of the approach taken ihSiuis the explicit control
of spectrotemporal correlation in a stimulus whasenplexity approaches that of
ethological sounds. Previous investigations (Boesial, 2005; Schonwiesnet al,
2005; Zatorre & Belin, 2001) manipulated the segmiemgth in multi-segment
sounds and thus introduced an arguably more aatitexd more predictable stimulus
manipulation. In contrast, the stimulus in Studycdntrolled the spectrotemporal
correlation of the spectrum as a whole, mirrorilgittyuous processes in naturally
occurring sounds (instead of introducing abruptnssgt boundaries). The different
time windows within the stimulus emerged as a fiomctof spectrotemporal
correlation across multiple frequency bands; thia fundamental property of natural
sounds, in which the physical attributes of thensbproducing ‘instrument’ (e.g. the
vocal folds or a violin) determine that adjaceneiframes within a sound generally

show a certain degree of correlation (instead dflen changes).

However, an important exception to this rule amgnsent boundaries in speech
sounds, such as those introduced by plosives,opr @insonants (Rogers, 2000). It
could be argued that the previous investigatiorsested processes more relevant to
these speech attributes, while the stimulus inysfuevas more suited to addressing
longer time windows. Nevertheless, the probahilistature introduced by
spectrotemporal correlation is a significant imgment compared to previous
approaches (which used a more deterministic maatipul, with a fixed segment
length for each parametric level), since it reqdiihe tracking of higher-level

statistical properties so as to integrate compbexds across multiple time windows.
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Further studies will need to go beyond the desoripof different analysis time
windows to elucidating the inner dynamics of thedenying network. The main
reason for choosing a continuous acquisition pgradn Study 1, despite its obvious
caveats (see Section 2.4), was to achieve a ketteporal resolution that would
enable or facilitate a causal investigation of hagdymamic responses using DCM
(Fristonet al, 2003; Pennt al, 2004). DCM enables a more detailed investigation
of hierarchical contributions between primary, setary, and association cortex. For
example, the model suggested by Boemio and colesag2005) posits that
hemispheric lateralisations only emerge later endhditory hierarchy (at the level of
the STS); this is supported by the results in Studreliminary investigations of a
dynamic network underlying the results on Studysing DCM have so far not

yielded convincing results.

Future studies will also need to investigate thgrele to which the differential
representation of analysis time windows is prergitte (or intrinsic, Giraucet al,
2007), or whether and to what degree it is inflgehby attention. Studies to date
have either had no experimental task (Boeatial, 2005; Schonwiesnet al, 2005;
Zatorre & Belin, 2001) or a stimulus irrelevantkgStudy 1). It is conceivable that
hemispheric preferences for different time winda@mserge to a greater extent when
they are task-relevant. For example, participantdcc be asked to rate the overall
correlation within sounds such as those used idySty while being scanned. DCM

could then also address effects of attentional datide within this network.

A necessary further step towards elucidating daffiertemporal analysis
windows in auditory cortex is the use of method@egthat have a far superior
temporal resolution than fMRI (e.g. EEG or MEG). oLw& Poeppel (2007)
demonstrated a sliding analysis window of rough) 2ns (likely corresponding to
theta band activity of 4-8 Hz) which was right-latesed and that emerged when
noise-vocoded speech was intelligible (see alssgsriet al, 2001; Elhilaliet al,
2003). Similarly, future investigations will neemigtudy in detail such differentiations
with respect to separate analysis time windows: loymothesis would be that the
power spectrum reveals entrainment effects to ifierent levels of spectrotemporal
correlation.
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Whether or not temporal analysis windows do indedgobw a relative
lateralisation preference (if not a selective prefiee) is currently still a matter of
debate, given the often contradictory results betwstudies (Boemiet al, 2005;
Hickok & Poeppel, 2007; Schénwiesnetral, 2005; Zatorre & Belin, 2001; Zatorre
& Gandour, 2008). Furthermore, it is important toten that such lateralisation
differences would reflect relative sensitivitiesstiad of a categorical difference
between left and right auditory cortex. For examphtethe study by Obleser and
colleagues (2008), the results show relatively bsnbait nevertheless generally
consistent lateralisation preferences for tempamnal spectral resolution (especially in
the case of a rightwards lateralisation of spectablution), in accordance with the
spectrotemporal trade-off theory (Zatoree al, 2002a). However, in Obleser and
colleagues (2008), the right hemisphere seemed s®Emsitive to the spectral and
temporal variations in the stimuli, showing a weaaketivation for high temporal
resolution in particular, while the left hemisphe@®oss participants did not show a

clear preference for temporal resolution.

Here it is hypothesised that relative lateralisajweferences are an emergent
phenomenon of a hierarchical processing scheménichvthe length of analysis time
windows increases as one progresses along theadtigran auditory cortex. Studies
using simple sinusoidal amplitude modulations vdifierent modulation rates (and
thus different temporal windows) support this noticddemonstrating increasing
sensitivity for decreasing modulation rates in #uglitory system as one progresses
from subcortical to higher order auditory corticdftuctures, but no lateralisation
preferences (Giraucet al, 2000; Harms & Melcher, 2002). This view of the
representation of increasing temporal windows ae progresses in the cortical
hierarchy would also be in agreement with recemtceptualisations in visual and
theoretical neuroscience (Hassenal, 2008; Kiebelet al, 2008), and would thus
provide a general, modality-independent framework frocessing temporal

information in cortex.
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7.2 The segregation and representation of auditory obgs are
hierarchically linked in auditory cortex

Study 2 (Chapter 4) of this thesis investigated skgregation and integration of
complex auditory objects and demonstrated a hiki@alty organised network: the
detection of auditory object boundaries based ansitions in higher-order statistical
properties occurred earlier in the auditory higmgr(primary and association auditory
cortex) than the precise representation of auditobyect properties (auditory
association cortex). Importantly, these results esdad generic mechanisms
underlying auditory object analysis, since the wesynthetic stimuli avoided
semantic associations, suggesting that the aud#gstem abstracts statistical rules
governing areas of frequency-time space; this pes/ia generic principle for
auditory object analysis. At the same time, theeeixpental manipulation does not
claim to address perceptual mechanisms for alltaxydiobject classes; rather, it
highlights one general acoustic dimension (spestnpbral coherence) along which

auditory objects can be differentiated and idesifi

Study 2 is the first to address such a differeistmbetween auditory object
segregation and representation. In fact, it caraftgeied that previous studies that
employed sparse imaging designs and contrastedditiom in which the parameter
of interest changed between different instantiatiathin a trial, with a condition in
which that parameter remained fixed, are confourwethis change in the stimulus
(e.g. von Kriegsteiret al, 2006; Warreret al, 2005a; Zatorret al, 2004; pilot study
to Study 2). From first principles, these desigasernl cortical substrates for the
detection of changes in the parameter of intelagtnot a cortical substrate for the
parameter of interest as such. However, this doesxtlude the possibility that these

processes partially overlap, as was the case oly&tfin PT and TPJ).

The hierarchical organisation scheme proposed rasudt of the data is based
on anatomical evidence, given that processing imany auditory cortex precedes
that in auditory association cortex (the underlyiagporal processes are likely below
the resolution of fMRI). The anatomical schemenisagreement with Schénwiesner
and colleagues (2007), who found a similar and eoyent pattern of results to
parametrically increasing sound duration deviamis mismatch paradigm (using both

EEG and fMRI): the initial detection of deviants sveeflected in primary auditory
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cortex, while later stages of processing, e.g. aempoecise spectrotemporal analysis
and attentional resource allocation, engaged ayditssociation cortex and prefrontal
cortex, respectively. Furthermore, there is evidetitat such a processing stream
holds across modalities, as texture boundary deteend scene segmentation in the
visual system reveal a similar hierarchical orgatiig; (Scholteet al, 2008). Both
studies (Scholtet al, 2008; Schénwiesnest al, 2007) report convergent findings
from EEG and fMRI across modalities; similarly, @@ precise understanding of the
temporal hierarchy within the network demonstratestudy presented here will need
to be addressed using methodologies with consitietagher temporal resolution,
such as EEG or MEG.

A future complementary approach should investigamemore detail the
functional organisation of this hierarchical netlydior example using DCM (Friston
et al, 2003; Pennyet al, 2004). Such work would investigate the degreeviich
change detection in primary auditory cortex modedahe subsequent representation
of auditory objects in auditory association corfexy. Schonwiesneet al, 2007).
This bottom-up conceptualisation is based on tleetshresponse latencies in primary
cortices reported in studies that had sufficiemhgeral resolution (Scholtet al,
2008; Schonwiesneet al, 2007); however, an alternative conceptualisatiauld
predict top-down modulations of primary cortexwhich higher order areas provide
rapid feedback. Yet another possibility is thaureent feedback loops within primary
cortex exist, similar to lateral or balanced intids for frequency selectivity (Wehr &
Zador, 2003; Wuet al, 2008), which in turn lead to differentiated feasmifard
propagations. This latter network architecture eshpps least likely, given the
complexity of the stimulus at hand and the needntegrate the spectrotemporal
features across a broad frequency range and coaliddime scales. Nevertheless, in
DCM the Bayesian approach allows an explicit decisas to which of these models
best fits the data and is thus a logical next stegelineating the network underlying

auditory object segregation and integration.

A number of studies using electrophysiological rdems have demonstrated
neurons in the lateral belt area of rhesus monk€n & Rauschecker, 2004) and
posterior auditory field in cats (Tian & RauschetkE98) that are sensitive to the

direction of FM ramps, with a slight preference famps increasing in frequency.
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Such a preference was also visible in lateral HGtudy 2. The ‘auditory textures’
stimulus developed in this thesis should contribiatehis line of research in non-
human primates, adding a critical new stimulus thates beyond single FM ramps

to the representation of statistical signal prapsrin a complex integrated whole.

While Study 2 controlled the spectrotemporal stiagsof FM ramps to create
auditory objects, alternative approaches are ceuabk that focus on AM or
combinations of AM and FM (Luet al, 2006) to generalise the present findings to
other object classes. For example, it would berésting to investigate whether a
similar hierarchical network would be involved inetdcting changes in
spectrotemporal correlation as in Study 1, and toatwdegree this would be
influenced by different analysis time windows inatomically distinct regions of
auditory cortex. It is important to note that defom auditory objects by their
spectrotemporal statistics is a generic approaahlémds itself to a whole range of
other objects and object classes, thereby pavirg why for further research

investigating principles of auditory object anadysi

Finally, the experimental design in Study 2 wasical to disambiguating two
fundamental perceptual processes in auditory seeadysis: the representation and
segregation of auditory objects. By combining aapsatric (different levels) and
factorial (change vs. absolute coherence) approacme design, it was possible to
dissociate these two processes. This is an imgomnerovation, since comparing
changing object sequences with fixed object seqegerannot tease apart processes
that signal a change in auditory objects from thibse represent the statistical object

properties as such (see for example the Pilot stu@tudy 2).

7.3 The planum temporale (PT) acts as a ‘computationgiub’

In their review of the function of the planum temgle (PT) of human auditory
association cortex, Griffiths and Warren (2002) pmsed that the PT acts as a
‘computational hub’, which compares incoming acmustformation to pre-existing

templates and subsequently gates its output alemaguditory hierarchy for further
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processing. This model predicts an increased ctatipnal demand within PT as the

information carried in the acoustic signal increase

Studies 3 and 4 explicitly tested and demonstrdbed dependency of PT
activation on signal entropy. The results showed the function of PT is different
from that of preceding (e.g. HG and subcorticauttires IC and MGB) and
subsequent (e.g. IFG, DLPFC) processing stagede wihe neural code of earlier
structures is both more faithful and redundant (@ile et al, 2006), that of
subsequent structures reflects a neural code ghatiependent of the original signal
entropy. This is an intriguing result, as it higjis the computational power achieved
in PT and suggests a division of labour that allswissequent structures to represent

different aspects associated with the acousticasi@ng. retrieving the signal).

It could be argued that the results reflect a p#uzd (in contrast to sensory)
representation of pitch interval size instead ghal entropy. The use of IRN pitch in
Study 4 explicitly addressed this issue and madensory explanation of the results
unlikely. Nevertheless, it is possible that theréased activation in PT reflects the
processing of interval size (and not entropy afswnce interval size increased with
entropy. Future investigations will need to addrélsis potential confound. For
example, one could use a more limited number ahpi# and base pitch intervals on
specified conditional probability matrices suchttlaage intervals are just as likely as
small intervals and would therefore convey an ecqmbunt of information. The
information theoretic properties would be based specific pitch transition
probabilities, irrespective of their size. Howevene disadvantage of this approach
would be a stimulus that is more deterministic tlastimulus derived from pitch
sequences of specified random-phase power speEtrehermore, such pitch
transition dependencies would first need to bebdéisteed or learned, introducing
additional and possibly confounding factors such irter-subject learning rate

variability.

Studies 3 and 4 controlled the signal entropy byamseof pitch; future
investigations should address whether the encaagieghanism in PT generalises to
other sound features, such as rhythm or timbre.eiample, just as the fractal time
series derived from the IFFT’s of specific poweedpa was used to define pitch

height, it could also be used to control the timerval between pitches (or any type
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of sound), the number of harmonics of a complexndo(i.e. timbre variation) or
spatial position. A further step would then bedsttwhether and in what form these

different manipulations interact (e.g. pitch enyreyith rhythm entropy).

One aspect that requires additional investigataio iwhich degree the effect in
PT is specific to encoding and to what extent sgiset processes (such as retrieval)
are indeed independent of the entropy in the amigsignal. Behavioural results in
Study 4 did not reveal any effect of signal entrapy performance, and this was
reflected in the functional imaging data, since a®a showed an increase in
activation as a function of signal entropy durihg tetrieval and comparison stage. It
was proposed that PT acts as a computational fattbuies neural mechanisms such
as ‘sparse’ (DeWeese & Zador, 2006; Friston, 20@3ahausen & Field, 2004) or
‘predictive’ (Baldeweg, 2006; Friston, 2005; voniégstein & Giraud, 2006) coding
to compress the neural input and filter out reducdss (Chechilet al, 2006); the
output for subsequent processing stages (e.g. @supiptive ‘what’ and ‘where’
pathways) would then be less dependent on sighedmn This hypothesis will need

to be tested further using electrophysiologicabrdmgs and computational models.

7.4 Local and global information in pitch patterns is hierarchically

organised

Study 5 (Chapter 6) tested both the hierarchical Eteralisation accounts for
processing local and global information in pitchtteans in neurologically normal
participants using fMRI. The results supported erdrichy between local and global
processing stages such that the processing of iooktions recruited additional
resources (in right PT and right posterior STS)raaed above those needed for
processing global violations. However, the latsatlon revealed by the results did
not confirm a strict local-left and global-rightdotomy; rather, while the processing
of local violations recruited both left and right § global violations were lateralised
towards left STS. As outlined in the Discussiorstdidy 5, this lateralisation account

is in fact equally well supported by a close exation of the pattern of brain lesions
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and perceptual deficits reported in previous patindies upon which the local-left
and global-right dichotomy was based (Liégeois-@kbet al, 1998; Peretz, 1990).

Importantly, previous designs were only able to enakrect comparisons
between violations of local and global levels. lihey words, these designs only
allowed a description of local processing with exgpto global processing, and,
similarly, a description of global processing witbspect to local processing. In
contrast, the one-back design in Study 5 enableglective investigation of the
processing of local violations as such and glolalations as such, without a direct
comparison between the two. These were reveal&T 8 (bilaterally for processing
local violations, left-lateralised for processiriglal violations). The results suggest a
processing hierarchy, in which individual pitchee @&ncoded in secondary cortex
(Bendor & Wang, 2005; Griffiths, 2005; Griffitret al, 2001; Pattersost al, 2002;
Penagoset al, 2004), before the representation of higher-oqgt®perties such as
pitch interval contour and pitch interval size ishigved in higher order auditory
association cortex. At the same time, the differexperimental design (one-back
design versus individual pair-wise comparisons) hrhigccount for the differences
seen between previous studies and Study 5. One-lasigns require a greater
working memory load than individual pairwise comipans, and it is possible that
this contributed at least in part to the divergeincesults. However, it is important to
note that the pattern of results in Study 5 is #guaell supported by the
neuropsychological data from which the classicaaldeft; global-right dissociation

was derived.

Study 5 did not properly control for potentiallyrdounding effects of absolute
pitch, since the stimuli did not transpose conseeutitch patterns (this was also the
case in Liégeois-Chauvel al, 1998; Peretz, 1990, who used melody pairs). Hee u
of transposed pitch patterns is considered to blesa confounded test of the
representation of global and local structural Isvelowever, the representation of the
local level in particular is significantly diminied without absolute pitch information

(Dowling et al, 1987), introducing a potential task difficultyrdound.

Study 5 was the first to probe the precise anatamietwork participating in
local and global pitch pattern analyses in the rritnctioning brain (as opposed to

patients with focal brain lesions), but there iseaident need for further studies.
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These will need to further investigate the presumaaispheric lateralisation scheme
for processing local and global structural levelsitch patterns and its conceptual
usefulness. Similar to Study 1, it is conceivalblat tiateralisation preferences are at
best relative or secondary effects of another hibreal processing scheme.
Similarly, it seems unlikely that the brain wouldve developed an absolute division
of labour with respect to left and right auditomyriices. In this respect, the current
experimental approach, which allowed a separateestiyation of the cortical
substrates processing local or global violationging importance, as direct
comparisons between local and global processinchasige their (potentially small)

differences over their (potentially substantialjntoonalities.

7.5 Key future problems and implications for auditory neuroscience

The experimental work of this thesis investigateavthigher-level statistical signal
properties are represented in the auditory coriéile there is considerable
knowledge of relatively simple, deterministic souedtures, this thesis focussed on
complex, non-deterministic sound features thatroavertheless be controlled within
probabilistic constraints. The generic nature ef skinthetic stimuli, combined with a
parametric approach to control various instantieiof statistical signal properties,
ensured that the mechanisms addressed allow icfesesbout a variety of acoustic

signals and are not dependent on semantic assodati

Critically, the acoustic stimuli employed in thigesis required mechanisms that
evaluate the probabilistic properties of complerciptemporal signals. Within a
Bayesian framework of probabilistic brain functi¢ffriston, 2003a, 2005), sensory
cortex evaluates the statistical properties ofsijaal so as to optimise its coding and
make inferences based on previous experience orspiThe studies of this thesis
support this view in the auditory domain, demonsiga neural mechanisms that
encode, and in the case of PT compress, the infmmaontent of a variety of
acoustic signals so as to facilitate subsequentegsing stages. Furthermore, the

results support the view of a hierarchical orgaresaof auditory perception that

165



CHAPTER7Y

allows dynamic processing including top-down modates or the application of

priors as in empirical Bayes (Friston, 2003a, 2005)

Despite the various types of acoustic stimuli ugeaach study, all studies
revealed involvement of PT as part of a network masng distinct parts of auditory
cortex. This is in accord with the hypothesis tRatforms a generic ‘computational
hub’ that is not selective to a specific acoustatéire, but instead encodes and
evaluates complex statistical properties based xpereence-dependent templates
(Griffiths & Warren, 2002). Such a process thenlitates further computations in
subsequent structures along the auditory hierarshgh as STS and anterior STG,
whose increased temporal analysis windows lend $béms to complex integrative
processes. Finally, task and attention relatedgsses in frontal cortex likely provide

top-down modulatory input.

Constructing a more precise description of how Effieves these computations
remains a key challenge for research in auditoryrosxience. Up to now, the
‘computational hub’ model (Griffiths & Warren, 200%has been primarily a
descriptive hypothesis without explicit quantitativpredictions amenable to
computational models that consider neuronal dynsnaind connectivity. Future
collaborations between auditory and computationalroscience may build a
computational model of how PT achieves the compesef the neural code to
facilitate subsequent processing. Such a modeldvbelvery useful to guide future
research in auditory neuroscience at the levetioiutus complexity employed in this

thesis.

One challenge to a computational model of PT famctis its precise
cytoarchitectonic, and consequently functionalcplation. The PT occupies a large
area posterior to the first transverse gyrus ofcHe@HG), and there are indications
that it might divide into at least two subareass omore rostral and one more caudal
(or even additional gyri, Sweet al, 2005), of which the caudal part extends into the
TPJ and is especially expanded compared to non4muypnianates (Galaburda &
Sanides, 1980). Furthermore, the inter-individuatiability is considerable (for
example, in Westbungt al, 1999, no individual voxel in PT was labelled wah

probability of more than 65%), complicating any gealisations.
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In functional imaging studies, this inter-individugariability is sometimes
addressed by using fixed-effects statistics (sexi@®e2.6.3); indeed, random-effects
statistics are relatively conservative and therétgrease the chance of falsely
accepting the null hypothesis in a randomly setbaa@mple of participants. Some
studies (e.g. Pattersa al, 2002) have made the case that fixed-effectssttatiare
more appropriate for auditory association corteypanticular, which shows a more
pronounced inter-individual variability than priryaaind secondary auditory cortices.
However, this is controversial since it increades ltkelihood of false positives and
one must show that the fixed-effects group resarsnot driven by a few outliers in
the group. The novelty of the complex probabiligionuli employed in this thesis

called for the more conservative approach (i.edoameffects statistics).

In order to achieve a more explicit model of PT diimn, a necessary
complement to neuroimaging techniques (such as fNHEIG, MEG) are invasive
electrophysiological recordings, which can probeaty and with high temporal and
spatial precision the degree to which PT compretis®sncoming information, for
example via ‘sparse’ (DeWeese & Zador, 2006; Fnis003a; Olshausen & Field,
2004) or ‘predictive’ (Baldeweg, 2006; Friston, B00von Kriegstein & Giraud,
2006) coding. However, in humans these are restrichainly to pre-operative
patients (Bruggeet al, 2003; 2008; Howaraet al, 1996; Liégeois-Chauvedt al,
2001; 2004; 1994; 1991). Unfortunately, the siguifice of electrophysiological
recordings from non-human primates, while undoubtéti respect to primary and
secondary auditory cortices, is limited with reggecauditory association cortex, as it
is not clear whether PT has a homologue in non-mupnenates (Hackett, 2007). At
the same time, the complex acoustic ecology of manan primates is comparable to
the sounds employed in this thesis, suggesting d@bditory cortex of non-human
primates might achieve similar computations, alpegsibly at a different stage in the
auditory hierarchy (indeed, the generic approacthigfthesis is readily applicable to
non-human primates, enabling important direct campas between species with
identical stimuli). Since the precise intra-corticannectivity (e.g. between HG ant
PT through the injection of immunohistochemicalcé®s) cannot be determined
experimentally in humans (with the possible exeaptiof novel non-invasive
techniques such as DTI, Upadhyetyal, 2007, 2008), and because of the uncertainty

whether PT has a homologue in non-human primatesirgutationally sophisticated

167



CHAPTER7Y

model of PT function that takes into account itaclional architecture with other

cortical regions remains challenging.

The studies in this thesis aimed to further ouransthnding of how statistical
signal properties are represented in the auditagex of humans. The results
demonstrated distinct hierarchical mechanisms foditary object analysis and
segregation. Nevertheless, many guestions remaah just how these mechanisms
are realised at the neuronal level remains a kejlerige for future research using a
variety of methodologies, models and species (iBrifet al, 2004). Thus, regardless
of whether one’s philosophy inclines one to vieve tmultitude of outstanding
guestions in auditory neuroscience as a glassfifiali or half empty, this thesis
hopes to have contributed a few drops towardsndllithe glass (without
simultaneously extending the volume of the glasslfitor instead merely causing

waves).
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