WPEG 2007

Tax-Credit Policies for Low Income Families: Impact and Optimality

July 2007

Richard Blundell and Andrew Shephard University College London and Institute for Fiscal Studies

- This research concerns the impact of tax and tax-credit reform on working decisions.
- It looks at the *impact* and the *'optimal' design*
- Two questions:
 - How should we measure the impact of tax and tax-credits on work decisions?
 - How should we assess the optimality of tax and tax-credit proposals?
- Focus on single mothers and the UK reforms

- Does the WTFC represent an optimal transfer for low income families?
- New insights from optimal tax theory show some negative marginal tax rates can be an optimal design
- Labour supply estimation suggest <u>extensive</u> margin is more responsive to incentives than <u>intensive</u> margin
- This turns out to be a key observation for optimal tax design

A simple optimal design framework

- Two 'new' approaches
- solve directly given the microeconometric estimates of discrete choice behaviour and tax-benefit constraints
- take approximations in terms of underlying elasticities and welfare weights on different incomes – Diamond/Saez
- choose transfers and taxes 'T' to maximise welfare
- extend the standard Mirrlees framework to allow for responses at the extensive and intensive margin

A (simple) optimal tax framework

Suppose U is the 'utility' of a single mother $U(c, h; X, \varepsilon)$

from working *h* hours with net income *c*, where *X* are observable characteristics of her and her child and ε represents unobserved characteristics.

Budget constraint:

 $c \equiv wh - T(w,h;X)$

Choose h from a set of discrete alternatives reflecting part-time work, full-time work etc.

A simple optimal tax/tax-credit framework

Social welfare, for single parents of type X $W = \sum_{i} \iint_{w \varepsilon} \Gamma(u(w_{i}h_{i} - T(w_{i}, h_{i}; X), h_{i}^{*}; X, \varepsilon)) dF(\varepsilon) dG(w, X)$ where Γ is the social welfare transformation. The tax structure T(X) is chosen to maximise W, subject to: $\sum_{i} \iint_{w \varepsilon} T(w_{i}, h_{i}; X) dF(\varepsilon) dG(w; X) = \overline{T}(X)(= -R(X))$

Simplified expressions - for intuition

- Suppose we distinguish between earnings groups
 - 'no' earners: group 0
 - 'higher' earners groups i = 1, 2, ...
- Suppose the social welfare weight is higher for group 0, and monotonically decreasing
- Choose taxes (and transfers) T to maximise welfare
- Can derive expressions in terms of elasticities and social welfare weights across the income distribution

Simplified expressions

Optimal design gives:

$$\frac{T_i - T_0}{c_i - c_0} = \frac{1 - g_i}{\zeta_i}$$

where

- ζ_i is the labour supply elasticity
- $-T_i$ is the subsidy given to group *i*
 - c_i is the net of tax income for that group
 - g_i is the social welfare weight for group *i*
 - and $g_0 > 1$, with the weighted sum of g's =1

Simplified expressions

e.g. for two groups:

$$\frac{T_1 - T_0}{c_1 - c_0} = \frac{g_0 - 1}{\zeta_1}$$

which leads to a standard NIT

The intensive and extensive margin

Suppose we now introduce an intensive and extensive margin

$$\frac{T_i - T_{i-1}}{c_i - c_{i-1}} = \frac{1}{\zeta_i} \sum_{j=i}^{I} [1 - \hat{g}_j]$$

where

and

 $\hat{g}_{j} = g_{j} + \eta_{j}k,$ $\zeta_{i} \text{ is the intensive elasticity}$ $\eta_{j} \text{ is the extensive elasticity}$

a 'large' extensive elasticity can 'turn around' the impact of social weights - implying a higher transfer to low wage workers than to those out of work – a tax-credit

Unlike the US EITC the credit is based on net (rather than gross) family income

- interaction with other benefits and taxes matter
 - differing size of the 'treatment' across eligibles
- coincident reforms to Income Support (IS)
 - different direction of these reforms to US

• budget constraint that allows for tax/benefit interactions

- discrete decisions over hours worked
- heterogeneity demographics, ethnicity,., unobs. het.
- fixed costs of work obs. and unobs. het.
- stigma/hassle costs take-up versus eligibility
- childcare costs
- do individuals behave this way?

Specifying a structural labour supply model

• For lone parents say, utility function defined over net income and hours:

$$U(h, y_h) = u(h, y_h) + \varepsilon_h$$

- Where \mathcal{E}_h is a discrete hours choice specific error
- Approximate function by:

$$U(h, y_h) \approx \alpha_{11} y_h^2 + \alpha_{22} h^2 + \alpha_{12} y_h h + \beta_1 y_h + \beta_2 h + \varepsilon_h$$

- Heterogeneity enters model through lpha and eta
- observed and unobserved heterogeneity

Specifying a structural labour supply model

· lone parents choose hrs/wk point

 $h \in \{0, 10, 19, 26, 33, 40\}$

• to maximise utility. With extreme value errors:

$$\Pr[h = h_j] = \exp\left\{U(h_j, y_{h_j})\right\} / \sum_{k \in \Theta} \exp\left\{U(h_k, y_{h_k})\right\}$$

- Model additionally allows for:
 - Unobserved work-related (fixed) costs, WRC
 - Childcare costs, CC
 - Programme participation (hassle or 'stigma') costs, P

Estimation

- Data from 1995-2003 (Family Resources Survey)
 - 1995-1999: pre-reform estimation data (ex-ante)
 - 2002-2003: 'post-reform' validation sample
 - Use complete sample for ex-ante analysis of 2004 and more recent reform proposals

Structural Model Elasticities

(a) Youngest Child Aged 11-18

Earnings	Density	Extensive	Intensive
0	0.3966		
80	0.1240	0.5029	0.5029
140	0.1453	0.7709	0.3944
220	0.1723	0.7137	0.2344
300	0.1618	0.4920	0.0829
Participation elasticity		1.1295	

Structural Model Elasticities

(c) Youngest Child Aged 0-4

Earnings	Density	Extensive	Intensive
0	0.5942		
80	0.1694	0.2615	0.2615
140	0.0984	0.6534	0.1570
220	0.0767	0.5865	0.1078
300	0.0613	0.4984	0.0834
Participation elasticity		0.6352	

• Check the robustness of the structural model by the ability to simulate the impact of the WFTC reform

Structural Evaluation Simulation Results: WFTC Expansion

	All	y-child	y-child	y-child	y-child
		0 to 2	3 to 4	5 to 10	11 to 18
Change in employment rate:	5.95	3.09	7.56	7.54	4.96
	0.74	0.59	0.91	0.85	0.68
Average change in hours:	1.79	0.71	2.09	2.35	1.65
	0.2	0.14	0.23	0.34	0.2

Notes: Simulated on FRS data; Standard errors in italics.

All: 5.12 without change in take-up – key impact effect

	Adult	Child	Awards by	/ Age
		child	child	child
		0 to 10	11 to 15	16 to 18
Mar-99	£58.80	£16.40	£22.60	£28.00
Oct-99	£56.60	£21.50	£22.60	£28.00
Mar-00	£56.60	£22.60	£22.60	£28.00
Jun-01	£61.90	£27.30	£27.30	£28.00
Jun-02	£64.40	£27.30	£27.30	£28.00
Increase	19.70%	66.40%	20.50%	0.00%

	child	child	child
	0 to 10	11 to 15	16 to 18
Mar-99	£21.90	£28.00	£33.50
Oct-99	£27.00	£28.00	£33.50
Mar-00	£28.40	£28.40	£33.80
Mar-01	£33.00	£33.00	£33.80
Oct-01	£34.50	£34.50	£35.40
Mar-02	£34.50	£34.50	£35.40
ncrease	57.50%	23.30%	5.70%

	7.00	y-child	y-child	y-child	y-crilia
		0 to 2	3 to 4	5 to 10	11 to 18
Change in employment rate:	3.68	0.65	4.53	4.83	4.03
	0.84	0.6	0.99	0.94	0.71
Average change in hours:	1.02	0.01	1.15	1.41	1.24
	0.23	0.21	0.28	0.28	0.22
Notes: Simulated	0.23 on FRS (0.21 data; Stan	0.28 dard erro	0.28 rs in itali	0.2 cs.

Single Women	Marginal Effect	Standard Error	Sample Size
Samily Resources Survey	3.57	0.81	74,959
abour Force urvey	3.81	0.33	233,208

Data: Spring 1996 – Spring 2003.

Drop: Summer 1999 – Spring 2000 inclusive; individuals aged over 45.

Outcome: employment. Average impact x 100, employment percentage.

Matching Covariates: age, education, region, ethnicity,...

Evaluation of the ex-ante model

- The *simulated* diff-in-diff parameter from the structural evaluation model is precise and does not differ significantly from the diff-in-diff estimate
- Compare *simulated diff-in-diff moment* with *diff-in-diff* .29 (.73), chi-square p-value .57
- Consider additional moments
 - education: low education: 0.33 (.41)
 - youngest child interaction
 - Youngest child aged < 5: .59 (. 51)
 - Youngest child aged 5-10: .31 (.35)

What of the 'optimal' design?

- Given the structural discrete choice estimates and the implied elasticities at extensive and intensive margin, we can pose the question:
 - what is the optimal tax and transfer schedule?
 - is the WFTC+ 'optimal' for reasonable social welfare weights?

$$\Gamma(U \mid \theta) = \frac{1}{\theta} \{ (\exp U)^{\theta} - 1 \}$$

• When θ is negative, the function favours the equality of utilities; We solve the schedule for a series of values – central estimates us -0.2

Implications?

- Resolved the US-EITC, UK-WFTC puzzle
- WFTC/IS type schedule looks optimal overall **But**
- Age of children matter
 - Only reduce current marginal tax rates on participation for parents with children of school age
- Hours rules can be optimal
 - No hours conditioning for mothers with youngest child less than 5, higher hours condition for mothers with older child.
- Administration and integration

Extensions:

- What of work experience and wages?
- Indeed what is the long-term program impact on gross wages?
- Couples decision making?
 - UK has moved to individual income taxation but in-work tax credits are family income based
 - targeting in collective labour supply models
- What impact on fertility and family formation?

Extensions: More to do....

- The Integrated Family Supplement? – The 'IFS'
- Mirrlees Review...
 - www.ifs.org.uk/mirrleesreview

Some References:

Beaudry, P., and C. Blackorby (2000), "Taxes and Employment Subsidies in Optimal Redistribution Programs", Discussion Paper 22, UBC, October.

Besley, T. and S. Coate (1992), "Workfare versus Welfare: Incentive Arguments for Work Requirement in Poverty Alleviation Programs", *American Economic Review*, 82(1), 249-261.

Blundell, R. (2006), "Earned income tax policies: Impact and Optimality", The 2005 Adam Smith Lecture to the Society of Labor Economics, *Labour Economics*, 13, 423-443.

Blundell, R.W., Duncan, A. and Meghir, C. (1998), "Estimating Labour Supply Responses using Tax Policy Reforms", *Econometrica*, 66, 827-861.

Blundell, R, Duncan, A, McCrae, J and Meghir, C. (2000), "The Labour Market Impact of the Working Families' Tax Credit", *Fiscal Studies*, 21(1).

Blundell, R. and Hoynes, H. (2004), "In-Work Benefit Reform and the Labour Market", in Richard Blundell, David Card and Richard .B. Freeman (eds) *Seeking a Premier League Economy*. Chicago: University of Chicago Press.

Blundell, R. and MaCurdy (1999), "Labour Supply: A Review of Alternative Approaches", in Ashenfelter and Card (eds), *Handbook of Labour Economics*, Elsevier North Holland

Brewer, M. (2003), "The New Tax Credits", IFS Briefing Note No. 25, www.ifs.org.uk

Brewer, M. A. Duncan, A. Shephard, M-J Suárez, (2006), "Did the Working Families Tax Credit Work?", *Labour Economics*, 13(6), 699-720.

Card, David and Philip K. Robins (1998), "Do Financial Incentives Encourage Welfare Recipients To Work?", *Research in Labor Economics*, 17, pp 1-56.

Diamond, P. (1980): "Income Taxation with Fixed Hours of Work," *Journal of Public Economics*, 13, 101-110.

Eissa, Nada and Jeffrey Liebman (1996), "Labor Supply Response to the Earned Income Tax Credit", *Quarterly Journal of Economics*, CXI, 605-637.

Gregg, P. and S. Harkness (2003), "Welfare Reform and Lone Parents in the UK", CMPO Working Paper Series, 03/072.

Immervoll, H. Kleven, H. Kreiner, C, and Saez, E. (2004), 'Welfare Reform in European Countries: A Micro-Simulation Analysis' CEPR DP 4324, forthcoming *Economic Journal*.

Keane, M.P. (1995) 'A New Idea for Welfare Reform', Quarterly Review, Federal Reserve Bank of Minneapolis, Spring, pp 2 - 28.

Keane, M.P. and Moffitt, R. (1998), "A Structural Model of Multiple Welfare Program Participation and Labor Supply", *International Economic Review*, 39(3), 553-589.

Laroque, G. (2005), "Income Maintenance and Labour Force Participation", *Econometrica*. 73(2), 341-376.

Liebman, J. (2002), 'The Optimal Design of the Earned Income Tax Credit', in Bruce Meyer and Douglas Holtz-Eakin (eds.), *Making Work Pay: The Earned Income Tax Credit and Its Impact on American Families*, New-York: Russell Sage Foundation.

Mirrlees, J.A. (1971), "The Theory of Optimal Income Taxation", *Review of Economic Studies*, 38, 175-208.

Moffitt, R. (1983), "An Economic Model of Welfare Stigma", *American Economic Review*, 73(5), 1023-1035.

Moffitt, R. (2005), "Welfare Work Requirements with Paternalistic Government Preferences, mimeo, Johns Hopkins University, February.

Phelps, E.S. (1994), "Raising the Employment and Pay for the Working Poor", *American Economic Review*, 84 (2), 54-58.

Saez, E. (2002): "Optimal Income Transfer Programs: Intensive versus Extensive Labor Supply Responses," *Quarterly Journal of Economics*, 117, 1039-1073.

Seade, J.K. (1977), "On the Shape of Optimal Income Tax Schedules" *Journal of Public Economics*, 7, 203-236.

Extra Slides

Tax-Credit Policies for Low Income Families: Impact and Optimality

Г	Table A1: Sample I	Descri	iptives	s for S	ingle	Wom	len	
		1006	1007	1008	1000	2000	2001	2002
No	Work	0 753	0 762	0 769	0 770	0 774	0 767	0 775
child		0.755	0.702	0.703	0.770	0.774	0.707	0.775
unna	Δαρ	26 789	26 906	26 799	26 957	27 104	27 317	27 450
	Non-white	0.073	0 077	0.080	0 084	0 091	0.098	0 102
	Left education before 16	0.078	0.072	0.062	0.057	0.052	0.030	0.043
	Left education at 16 or 17	0.394	0.381	0.375	0.375	0.363	0.353	0.356
	London and South-East	0.341	0.350	0.349	0.347	0.354	0.360	0.352
	Rented accommodation	0.343	0.353	0.358	0.340	0.339	0.350	0.346
	Observations	26243	24463	24410	23987	22558	23517	22846
Child	Work	0.417	0.425	0.444	0.464	0.477	0.487	0.496
	Age	32.330	32.580	32.655	32.863	33.181	33.280	33.288
	Non-white	0.100	0.099	0.091	0.098	0.106	0.112	0.111
	Left education before 16	0.209	0.196	0.189	0.169	0.154	0.161	0.155
	Left education at 16 or 17	0.632	0.627	0.633	0.635	0.646	0.641	0.637
	London and South-East	0.285	0.285	0.285	0.293	0.294	0.303	0.301
	Rented accommodation	0.686	0.704	0.708	0.696	0.697	0.694	0.676
	Number of kids	1.783	1.785	1.791	1.784	1.778	1.776	1.794
	Age of youngest child	6.187	6.249	6.272	6.414	6.592	6.612	6.676
	Observations	14613	14172	14550	14343	13572	14097	13996

Net Income schedule :

Tax $y_{hP} = wh + I - t(wh, I) - C_h + \Psi_0(w, h, I) + P\Psi_1(w, h, I)$ Transfers or $y_{hP} = \tilde{y}_{hP} + P\Psi_1(w, h, I)$ the tax-credit payment function $\Psi_1(w, h, I)$ depends on: hours (through the hours condition of entitlement) other income *I* demographic characteristics *X*

Take-up

Utility 'cost' of receiving in-work support

$$\eta = X_{\eta}\beta_{\eta} + u_{\eta}$$

claim Ψ_1 in FC/WFTC at hours h_j if:

$$U_P(h_j, \widetilde{y}_{h_j} + \Psi_1 - C, P = 1) > U(h_j, \widetilde{y}_{h_j} - C).$$

where C is the fixed cost of work. The utility cost among those who are eligible for WFTC at hours h_j and choose to claim WFTC must not exceed the utility gain from receipt of WFTC transfer income relative to non-receipt:

$$\eta < U(h_j, \widetilde{y}_{h_j} + \Psi_1 - C) - U(h_j, \widetilde{y}_{h_j} - C)$$
$$u_\eta < \Omega_U \quad \text{where} \quad \Omega_U = U(h_j, \widetilde{y}_{h_j} + \Psi_1 - C) - U(h_j, \widetilde{y}_{h_j} - C) - X_\eta \beta_\eta$$

Preferences and Take-Up

Preferences:

$$U_{P}(h, y_{hP}, P; C) = \alpha_{11}(\widetilde{y}_{h} + P \cdot \Psi_{1} - C)^{2} + \alpha_{22}h^{2} + \alpha_{12}(\widetilde{y}_{h} + P \cdot \Psi_{1} - C) \cdot h$$
$$+ \beta_{1}(\widetilde{y}_{h} + P \cdot \Psi_{1} - C) + \beta_{2}h + \varepsilon_{hP} - (P \cdot E_{h}) \cdot \eta$$
$$= U(h, \widetilde{y}_{h} + P \cdot \Psi_{1} - C) - (P \cdot E_{h}) \cdot \eta,$$

where $E_h = 1(\Psi_1 > 0)$ is an indicator of eligibility at hours *h*,

C represents the 'fixed cost' of work

and $\eta = X_{\eta}\beta_{\eta} + u_{\eta}$ is 'cost' of receiving in-work support.

The introduction of these additional terms is important in evaluation of a reform which increases generosity

Stochastic specification	
Stochastic Preferences	
$\beta_1 = X_1 \beta_{1x} + u_y$	
$\beta_2 = X_2 \beta_{2x} + u_h$	
$\alpha_{11} = X_{11}\alpha_{11x}$	
$\alpha_{22} = X_{22}\alpha_{22x}$	
$\alpha_{12} = X_{12}\alpha_{12x}$	
Fixed costs of work	
$WRC_1 = X_{f1}\beta_{f1} + u_f$	
$WRC_2 = X_{f2}\beta_{f2}$	

Childcare Costs

$$h_{cc} = G(h|X_{cc})$$

At price p_c for an hour of childcare per child

$$C(h; X_f, X_{cc}, p_c, u_f) = WRC_1 \cdot I_{h1} + WRC_2 \cdot I_{h2} + p_c \cdot h_{cc}$$

= $(X_{f1}\beta_{f1} + u_f) \cdot I_{h1} + (X_{f2}\beta_{f2}) \cdot I_{h2} + p_c \cdot G(h|X_{cc})$

To estimate the childcare price per child p_c , we compute the empirical distribution of hourly child-care costs for various groups of working mothers defined by their family status and number and age of children X_{cc} .

Likelihood specification

These preferences, fixed costs, childcare costs and stigma cost expressions provide the choice probabilities:

$$\Pr(h = h_i, P = p \mid X, u)$$

From which we construct the sample log likelihood:

where

$$\mathbf{u}_{-u_{\eta}} = (u_w, u_y, u_h, u_f, u_{cc})$$

	Parameter	Estimate	Standard Error	z	P> z
α ₁₁ :	Constant	-0.321	0.044	-7.290	0.000
	Youngest Child 0-2	0.210	0.074	2.844	0.004
	Youngest Child 3-4	0.212	0.065	3.244	0.001
	Youngest Child 5-10	-0.059	0.061	-0.969	0.332
α ₂₂ :	Constant	0.308	0.027	11.317	0.000
	Youngest Child 0-2	0.024	0.062	0.385	0.700
	Youngest Child 3-4	-0.152	-0.031	-2.401	0.016
	Youngest Child 5-10	-0.031	0.037	-0.833	0.405
α12:	Constant	0.010	0.004	2.693	0.007
	Youngest Child 0-2	-0.019	0.005	-3.541	0.000
	Youngest Child 3-4	-0.015	0.006	-2.427	0.015
	Youngest Child 5-10	0.005	0.005	1.099	0.272

Structural Evaluation Model: Parameter Estimates

31:	Constant	0.327	0.023	14.538	0.000
	Age	-0.027	0.047	-0.579	0.563
	Age Squared	0.003	0.006	0.546	0.585
	Education 16	-0.015	0.009	-1.677	0.093
	Youngest Child 0-2	-0.085	0.037	-2.270	0.023
	Youngest Child 3-4	-0.046	0.035	-1.320	0.187
	Youngest Child 5-10	0.012	0.030	0.399	0.690
	Number of Children	0.012	0.007	1.889	0.059
	Non-white	-0.068	0.017	-3.966	0.000
	Random Term (SD)	0.004	0.009	0.400	0.689
β_2 :	Constant	-0.213	0.015	-13.993	0.000
	Age	0.106	0.012	8.708	0.000
	Age Squared	-0.012	0.002	-7.334	0.000
	Education 16	0.034	0.003	13.188	0.000
	Youngest Child 0-2	0.017	0.027	0.614	0.539
	Youngest Child 3-4	0.062	0.028	2.197	0.028
	Youngest Child 5-10	-0.011	0.020	-0.553	0.581
	Number of Children	-0.012	0.003	-3.565	0.000
	Non-white	0.016	0.009	1.878	0.060
	Random Term (SD)	0.000	0.002	0.000	1.000

· Constant	-0.252	0.061	-4.120	0.000
October 1999	0.024	0.113	0.213	0.832
April 2000	-0.210	0.116	-1.809	0.071
Age	-0.349	0.386	-0.905	0.365
Age Squared	0.119	0.054	2.214	0.027
Education 16	0.767	0.085	9.060	0.000
Non-white	0.399	0.148	2.699	0.007
Random Term (SD)	0.215	0.103	2.085	0.037
$C_1: Constant$	8.955	6.978	1.283	0.199
Youngest Child 0-2	42.298	14.532	2.911	0.004
Youngest Child 3-4	32.760	12.810	2.557	0.011
Youngest Child 5-10	5.542	8.984	0.617	0.537
Number of Children	3.015	2.836	1.063	0.288
Non-white	38.256	13.018	2.939	0.003
London	48.089	4.593	10.469	0.000
Random Term (SD)	5.304	3.140	1.689	0.091
C_2 : Constant	13.963	5.576	2.504	0.012
Youngest Child 0-2	21.091	14.245	1.481	0.139
Youngest Child 3-4	-4.638	11.045	-0.420	0.675
Youngest Child 5-10	13.364	7.747	1.725	0.085
Number of Children	4.558	3.476	1.311	0.190
Non-white	-33.931	12.492	-2.716	0.007
London	-13.858	5.952	-2.328	0.020
Maximised Log Likelik	nood		-	15564.720
Observations				11594

Apr-99	Oct-99	Jun-00	Jun-02
			0011-02
(FC)	(WFTC)	(WFTC)	(WFTC)
49.8	52.3	53.15	62.5
5.15	19.85	25.6	26.45
0.9	20.9	25.6	26.45
5.95	25.95	26.35	27.2
1.05	11.05	11.25	11.65
0.65	90	91.45	94.5
0% of earnings after income tax and NI	55% of earnings after income tax and NI	55% of earnings after income tax and NI	55% of earnings after income tax and NI
Childcare expenses up to £60 (£100) for 1 (more than 1) child under 12 disregarded when calc income	Award increased by 70% of childcare expenses up to £100 (£150) for 1 (more than 1) child under 15	Award increased by 70% of childcare expenses up to £100 (£150) for 1 (more than 1) child under 15	Award increased by 70% of childcare expenses up to £135 (£200) for 1 (more than 1) child under 15
	5.15 0.9 5.95 1.05 0.65 0% of earnings after income tax and NI hildcare expenses up to £60 (£100) for 1 (more than 1) child under 12 disregarded when calc income	5.1519.850.920.95.9525.951.0511.050.65900% of earnings after income tax and NI55% of earnings after income tax and NIhildcare expenses up to £60 (£100) for 1 child under 12 disregarded when calc incomeAward increased by 70% of childcare expenses up to £100 (£150) for 1 (more than 1) child under 15	5.1519.8525.60.920.925.65.9525.9526.351.0511.0511.250.659091.450% of earnings after income tax and NI55% of earnings after income tax and NI55% of earnings after income tax and NIhildcare expenses up to £60 (£100) for 1 child under 12 disregarded when calc incomeAward increased by 70% of childcare expenses up to £100 (£150) for 1 (more than 1) child under 15Award increased by 70% of childcare expenses up to £100 (£150) for 1 (more than 1) child under 15

