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Abstract

The classical problem of the buckling of an elastic rod in a magnetic field is investi-

gated using modern techniques from dynamical systems theory. The Kirchhoff equations,

which describe the static equilibrium equations of a geometrically exact rod under end

tension and moment are extended by incorporating the evolution of a fixed external

vector (in the direction of the magnetic field) that interacts with the rod via a Lorentz

force. The static equilibrium equations (in body cordinates) are found to be noncanonical

Hamiltonian equations. The Poisson bracket is generalised and the equilibrium equations

found to sit, as the third member, in a family of rod equations in generalised magnetic

fields. When the rod is linearly elastic, isotropic, inextensible and unshearable the equa-

tions are completely integrable and can be generated by a Lax pair.

The isotropic system is reduced using the Casimirs, via the Euler angles, to a four-

dimensional canonical system with a first integral provided the magnetic field is not

aligned with the force within the rod at any point as the system losses rank. An energy

surface is specified, defining three-dimensional flows. Poincaré sections then show closed

curves.

Through Mel’nikov analysis it is shown that for an extensible rod the presence of a

magnetic field leads to the transverse intersection of the stable and unstable manifolds

and the loss of complete integrability. Consequently, the system admits spatially chaotic

solutions and a multiplicity of multimodal homoclinic solutions exist. Poincaré sections

associated with the loss of integrability are displayed.

Homoclinic solutions are computed and post-buckling paths found using continu-

taion methods. The rods buckle in a Hamiltonian-Hopf bifurcation about a periodic

solution. A codimension-two point, which describes a double Hamiltonian-Hopf bifurca-

tion, determines whether straight rods buckle into localised configurations at either two

critical values of the magnetic field, a single critical value or do not buckle at all. The

codimension-two point is found to be an organising centre for primary and multimodal

solutions.

4



Table of Contents

Abstract 4

Table of Contents 5

List of Figures 8

List of Tables 11

1 Introduction 12

2 Hamiltonian Systems 18

2.1 Hamiltonian Systems with Symmetry . . . . . . . . . . . . . . . . . . . . . 19

2.2 Mel’nikov’s Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Construction of Horseshoe Maps . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 An Example of the Second Order Mel’nikov Method: a Modified

Duffing Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 A Family of Cosserat Elastic Rods 46

3.1 Kinematic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Constitutive Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Equilibrium Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Force-Free Rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Kirchhoff Rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 An Elastic Conducting Rod in a Uniform Magnetic Field . . . . . 55

5



3.3.4 An Elastic Conducting Rod in a Nonuniform Magnetic Field . . . 58

3.4 A Lax Pair Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Reduction of the Kirchhoff Rod 62

4.1 Reduction to a Canonical System . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Superintegrable Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Homoclinic Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Extensibility & Shearability . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Nonintegrable Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 Initial Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Consequences of Spatial Chaos . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Extensibility and Spatial Chaos 87

5.1 Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Reduction to a Canonical System . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 The Isotropic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 Alignment of Force and Field – the Superintegrable Case . . . . . 94

5.3 Application of Mel’nikov’s Theory . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Case (i): Perturbing the Kirchhoff Rod . . . . . . . . . . . . . . . . 97

5.3.2 Case (ii): Perturbing the Extensible Rod . . . . . . . . . . . . . . 105

6 Homoclinic Bifurcation of a Rod in a Magnetic Field 111

6.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.1 Case (iii): Multimodal Configurations of a weakly extensible rod

in a strong magnetic field . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4 Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5 Coalescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6



7 Conclusion 147

A Parameterisation 153

A.1 Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.2 Euler Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B Numerical Analysis 158

B.1 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.2 Shooting for Homoclinic Orbits . . . . . . . . . . . . . . . . . . . . . . . . 161

B.3 Continuation of Homoclinic Orbits . . . . . . . . . . . . . . . . . . . . . . 165

B.3.1 Projection Boundary Conditions . . . . . . . . . . . . . . . . . . . 166

B.3.2 Periodic-to-Periodic Connections . . . . . . . . . . . . . . . . . . . 167

B.3.3 Explicit Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 171

B.4 Numerical Subroutines Implimented . . . . . . . . . . . . . . . . . . . . . 172

B.5 Application to the Kirchhoff rod . . . . . . . . . . . . . . . . . . . . . . . 175

Bibliography 186

7



List of Figures

2.1 Motion on 2-tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Schematic diagram of Mel’nikov’s method . . . . . . . . . . . . . . . . . . 24

2.3 First order Mel’nikov integrals for the modified Duffing oscillator . . . . . 42

2.4 Second order Mel’nikov integral for modified Duffing oscillator . . . . . . 43

2.5 Regular and chaotic Duffing oscillators . . . . . . . . . . . . . . . . . . . . 44

3.1 A Cosserat rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Equivalent oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Euler angles for primary homoclinic orbit . . . . . . . . . . . . . . . . . . 74

4.3 Angular frequencies for homoclinic orbit . . . . . . . . . . . . . . . . . . . 75

4.4 Anisotropic first order Mel’nikov integral . . . . . . . . . . . . . . . . . . . 80
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Chapter 1

Introduction

The problem of the configurations and buckling of elastic conducting wire in a mag-

netic field is a classical one in magnetoelasticity and is of both theoretical and practical

interest. In this thesis the problem is investigated using modern techniques from dynam-

ical systems theory.

It is well-known that a straight current-carrying wire held between pole faces of a

magnet buckles into a coiled configuration at a critical current [110, §10.4.3]. A rigor-

ous bifurcation analysis of this buckling problem (for a uniform magnetic field directed

parallel to the undeformed wire) was developed in a series of papers by Wolfe. Wolfe

first considered a nonlinearly-elastic string model for the wire, i.e., a perfectly flexible

elastic line, and by studying the linearised eigenvalue problem about the trivial straight

solution found that an infinite number of solution branches bifurcate from the trivial

solution [104, 108], much like in the Euler elastica under compressive load. Wolfe con-

structed a potential energy function and derived a set of Euler-Lagrange equations in

the classical manner. It was then shown that the equations can be solved exactly and

that the non-trivial solutions are exact helices. In subsequent work Wolfe then modelled

the wire as a rod [81, 106]. In addition to extension, a rod can undergo flexure, torsion

and shear. For the case of welded boundary conditions it was found that in certain cases

bifurcation occurs, again with an infinity of non-trivial equilibrium states.

Many technical devices such as motors, generators and transformers use elastic struc-

tures in magnetic fields [72] but recently the problem of a conducting rod in a magnetic
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1. Introduction

field has attracted interest as a model for electrodynamic space tethers [93, 100]. Elec-

trodynamic tethers are long slender conducting cables that exploit the Earth’s magnetic

field to generate Lorentz forces through Faraday’s law. The generated drag force could

be used for maneuvering satellites when de-orbiting, eliminating the need for additional

chemical fuel, thus reducing the weight of satellite and hence operational costs. The

reduction in cost has been estimated at a billion dollars over ten years for the interna-

tional space station alone [54]. Tethers are spun about their axis for gyroscopic stability

and therefore must resist bending and twisting. Such tethers need to be described as

an elastic rod rather than the traditional wire. Analysis of electrodynamic tethers has

been performed using techniques from multibody system dynamics [93]. Geometric non-

linearities were found to have a stabilizing effect on the tether configurations. However,

a drawback with the analysis was that elastic displacements in each substructure were

assumed to be small, diminishing the stabilizing effect.

In this thesis a geometrically exact formulation is adopted using Cosserat theory.

The static equilibrium equations of a rod under end force and moment, known as the

Kirchhoff equations [2], are extended by incorporating a fixed external vector in the

direction of the magnetic field that interacts with the rod via a Lorentz force. A geomet-

rically exact formulation is naturally a noncanonical Hamiltonian formulation [83] and

retains the symmetry properties of the physical system. The noncanonical Hamiltonian

formulation allows deep insight into the system and allows a number of powerful meth-

ods to be applied; for example in the study of nonlinear stability [26, 84]; bifurcation

theory [25, 30]; complete integrability [6, 56]; spatially chaotic solutions [33, 52] and

in numerical analysis [24]. A principal advantage is the large body of work relating to

finite-dimensional noncanonical Hamiltonian systems [6, 67].

If the rod is isotropic and without initial curvature, that is if the principal bending

stiffness are equal, the Kirchhoff equations are completely integrable and all possible

solutions can be expressed in closed form. Consequently, the Kirchhoff equations have

been used to model a variety of physical systems. Examples include: the deformation of

biological materials such as DNA [38, 80], climbing plants [44, 68], the visualisation of
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1. Introduction

hair [10], the spin dynamics of the superfluid 3He [75] and an Heisenberg XY parti-

cle [31], the configurations of undersea cables [28], the motion of a body submerged in an

ideal compressible fluid with coincident centres of gravity and bouyancy [50, 62, 63, 87].

The Kirchhoff equations are related to the (integrable) modified Korteweg-de Vries equa-

tion by the Hasimoto transform [47, 59] and through the Kirchhoff kinetic analogy to

the vast canon of literature devoted to the motion of rigid bodies [67, 103].

Despite the Kirchhoff equations being static, mathematically they have the same

structure as many problems in dynamics: arclength along the rod plays a role similar to

that of time in a dynamical system such as the spinning top or a pendulum. The Kirchhoff

kinetic analogy relates the shape of a deformed rod with the motion of a heavy spinning

top [28, 57, 92]. In the same way the motion of the centre of gravity of a top and its spin

prescribes the motion of the entire top so the position of the centreline of the rod and its

rigidly transformed cross-section prescribes the configuration of a rod. For example, an

initially straight rod whose principal moments of inertia are equal can be deformed via

end forces and moments into a helix, corresponding to the periodic orbit of the spinning

top. The analogy is not perfect however, as concepts such as shear, extensibility and

nonlinear constitutive relationships have no physical interpretation in the context of

rigid body dynamics1. More importantly, rod problems are typically boundary value

problems, while problems in rigid body dynamics are initial value problems. However, if

one is concerned with homoclinic solutions for arbitarily long rods then one effectively

is dealing with a rigid body problem.

Homoclinic solutions represent localising buckling modes which are the physically

preferred buckling configurations for long rods [53, 91] and thus are the natural configura-

tions to study. Homoclinic orbits are organising centres for dynamics in their neighbour-

hood and their bifurcation structure, through the homoclinic tangle, leads to spatially

chaotic solutions. In general systems homoclinic solutions to a hyperbolic fixed point are

a codimension-one phenomena, however in Hamiltonian systems homoclinic solutions are

a codimension-zero phenomena and hence are generic under perturbations [32]. While

1In many ways the rod model is more flexible than the rigid body model!
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1. Introduction

the localised buckling of rods under end loading has been investigated [21, 23, 92, 95, 98],

the localised buckling of rods due to magnetic effects has yet to be investigated.

Previous analysis of localised solutions of Cosserat rods under end tension and mo-

ment has shown that neither shear and extensibility [23, 88] nor nonlinear constitutive

relationships [3, 21] has any significant qualitative effect on the rod in terms of phase por-

traits or localised configurations. Indeed, in both cases the isotropic system is integrable.

Other material properties such as anisotropy [70] and initial curvature [64] are shown

through Mel’nikov analysis to lead to the loss of complete integrability and the emer-

gence of spatial chaos and multimodal configurations. The resulting localised multmodal

configurations and their bifurcation structure were investigated in [95] and [23] respec-

tively. Nonlinear normal form analysis was performed on the buckling of anisotropic [98]

and initially curved rods [68]. It was shown that a codimension-two point distinguishes

between weakly anisotropic rods and strongly anisotropic rods. Weakly anisotropic rods

buckle according to a subcritical Hamiltonian-Hopf bifurcation and strongly anisotropic

rods buckle according to the Hamiltonian-pitchfork bifurcation [98].

In this thesis material properties are not the main focus of the investigation, instead

the governing equations are extended to include the effect of the magnetic field. It is

shown that the static equilibrium equations for a rod in a magnetic field sit in a family

of non-canonical Hamiltonian systems. The first member of the family is the force-free

rod (the Euler-Poinsot top), the Kirchhoff equation is the second member (the Lagrange

top) and the third member is the rod in a magnetic field (the abstract ‘Twisted Top’ [90]).

The fourth member of the family is a rod in a linearly varying magnetic field that depends

on the configuration of the rod. A rod in a uniform magnetic field is the first member

whose Poisson bracket is extended in a nontrivial, i.e., non-semidirect, manner.

When the rod is isotropic the system can be reduced to a four-dimensional canonical

system with an additional integral. The reduction holds provided that the magnetic field

is not aligned with the force in the rod at any point as the parameterised system loses

rank [76]. From the reduction a modified version of Mel’nikov’s method for perturbations

which are applied to the Hamiltonian [52] is applied to show that a uniform magnetic
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1. Introduction

field is a perturbation which destroys integrability for extensible rods. The Mel’nikov

analysis shows that the stable and unstable manifolds of the perturbed homoclinic orbit

intersect transversely and there exists Smale horseshoes on the Poincaré sections of the

homoclinic energy level [33, 86]. The loss of integrability is the classical result but it

is the presence of horseshoes which is the more significant result: given the presence of

horsehoes on the stable and unstable manifolds implies the existence of a multiplicity of

multimodal homoclinic orbits [9].

The result is of interest as alone neither the presence of a magnetic field nor exten-

sibility affect the integrability of a rod. However, when extensibility and the magnetic

field are both considered to be perturbations of equal order the interaction of the com-

bined perturbations destroys integrability. In the case where both effects are small higher

order approximations to the Mel’nikov integral are required in order to show the loss

of integrability. Higher order Mel’nikov integrals have been computed before in simple

examples [42, 60, 65, 78] but it is believed that this is the first physical system in which

the coupling between two integrable perturbations leads to the loss of integrability and

spatially chaotic solutions.

Due to the effect of the magnetic field the trivial configuration, a straight twisted

rod, is a periodic solution. Thus standard numerical methods for the computation and

continuation of homoclinic solutions need to be adapted [8, 19]. The coupling between

body and spatial frames has been seen in the context of rods constrained to lie in

a plane [96] or on a cylinder [94, 97]. The underlying periodicity does not affect the

codimension of the problem. Localised solutions are computed and their post-buckling

paths followed using the continuation software auto97 [35].

The thesis is structured as follows, chapter 2 gives the theoretical background and

outlines the analytical tools used in the thesis. Chapter 3 introduces geometrically exact

rod theory. A family of equilibrium equations is formulated and identified with a family of

noncanonical Hamiltonian systems. Crucially, every member of the family is completely

integrable in the sense of Liouville [6] if the rod is linearly elastic, initially straight,

isotropic, unshearable and inextensible. The subfamily can be generalised by a Lax pair.
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1. Introduction

Chapter 4 gives a description of the Kirchhoff rod. In chapter 5 the governing equation

for a rod in a magnetic field is reduced using the Casimirs from a nine-dimensional

non-canonical Hamiltonian system to a six-dimensional canonical system. Mel’nikov’s

method is then applied to an extensible rod in magnetic field, implying the existence

of multimodal solutions. Chapter 6 then investigates the multiplicities of multimodal

homoclinic orbits and their bifurcation structure. A codimension-two point is identified

from the spectrum of the Floquet multipliers in the nondimensional body loading and

end loading parameter plane which determines whether configuration with a single lo-

calisation may bifurcate at either two critical values of the magnetic field, one critical

value, or do not bifurcate at all. The codimension-two point is a double Hamiltonian-

Hopf bifurcation point and acts as an organising centre for the bifurcation set for primary

and multimodal homoclinics. Finally, chapter 7 summarises the main results, discusses

conclusions, limitations and directions for future research. The thesis concludes with two

appendices; the appendix A introduces the Euler angles and the Euler parameters and

appendix B outlines the standard numerical techniques to compute and continue homo-

clinic orbits in reversible dynamical systems to a hyperbolic fixed point and illustrates

the method for the Kirchhoff rod.
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Chapter 2

Hamiltonian Systems

The rigorous study of elasticity truly began in 1744 when Euler solved the problem

of the equilibrium configurations of a thin extensible wire. Euler’s insight was that the

problem of finding the equilibrium configurations was equivalent to minimizing the sum

of the squared curvatures for curves of fixed length [66, §263]. Thus the problem of

the Elastica became a variational problem. Over 250 years afterwards, Novikov [75]

eloquently writes

“It is now scarcely a matter of dispute that dynamical systems describing

real physical processes are, as a rule, Hamiltonian in one sense or another

if the dissipation of energy can be disregarded. . . . However the Hamiltonian

formalism may turn out to be non-classical, that is it may not originate from

a Lagrangian formalism as a result of a Legendre transform.”

For many problems in nonlinear elasticity the static equilibrium equations are noncanon-

ical Hamiltonian equations of the form

f ′ = {f,H}

where f say is a component of the generalised stresses in the rod, i.e. a component of

the force or moment say, H is the Hamiltonian function and {·, ·} is a Poisson bracket.

As mentioned, the formulation allows for a vast array of analytical and numerical tools

to be applied. In this chapter the analytical tools which are applied are introduced but

for a more detailed description, see Arnol’d [6] or Olver [76].
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2.1 Hamiltonian Systems with Symmetry

The geometrically exact rod formulation is naturally a noncanonical Hamiltonian

formulation [83] and retains the symmetry properties of the physical system. The im-

portance of the formulation is that each constituent effect, e.g. applied moment, applied

force or body force is produced by a Poisson bracket. Thus the rod model is extended

through extensions of the original bracket.

Definition 2.1.1. Let M be a smooth m-dimensional manifold, then for any smooth

real-valued functions f , g and h onM, the Poisson bracket {·, ·} defines another smooth

real-valued function on M with the following properties

(i) Bilinearity: {αf + βg, h} = α{f, h}+ β{g, h}, ∀α, β ∈ R.

(ii) Skew-Symmetry: {f, g}+ {g, f} = 0.

(iii) Jacobi’s Identity: {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0.

(iv) Leibniz’s Rule: {f ◦ g, h} = g ◦ {f, h}+ f ◦ {g, h}.

If the manifold has a Poisson bracket then the manifold is called a Poisson manifold.

Although a Poisson manifold is not necessarily a symplectic manifold it is, however,

foliated by collection of submanifolds which are symplectic.

Theorem 2.1.2 (Darboux’s Theorem). Let M be a smooth m-dimensional Poisson

manifold of constant rank 2n ≤ m everywhere. At each x ∈ M there exist canonical

local coordinates (q, p, z) = (q1, . . . , qn, p1, . . . , pn, z1, . . . zk), where 2n+ k = m, in terms

of which the Poisson bracket takes the form

{f, g}(q,p) =
n∑

i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (2.1)

The Poisson bracket (2.1) is called the canonical bracket.

Proof of 2.1.2. See [76, §6.22].

Classically the Hamiltonian function is defined from the Legendre transform of the

Lagrangian and is the total energy of the system. Hamilton’s canonical equations are then
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computed from the (canonical) bracket. In this thesis the static equilibria are derived

and associated with a system of non-canonical Hamiltonian equations. For the precise

forms of the governing equations and their structure see §3.

Definition 2.1.3. LetM be an m-dimensional Poisson manifold and let H be a smooth

function, H (q, p, z) :M 7→ R. The Hamiltonian vector field is the unique, smooth vector

field on M satisfying

df

dt
= f ′ = {f,H}

for every smooth function f (q, p, z) :M 7→ R. H is called the Hamiltonian and the gov-

erning equations are referred to as Hamilton’s equations. When the bracket is the canon-

ical bracket (2.1), the governing equations are referred to as Hamilton’s canonical equa-

tions

q′ =
∂H
∂p

, p′ = −∂H
∂q

and z′ = 0.

Definition 2.1.4. A function, f , is a conserved quantity of a Hamiltonian system if it

is constant for all solutions of the system. This is equivalent to being in involution with

the Hamiltonian, i.e. {f,H} = 0. Functions which are conditionally dependent on the

parameters of the system are called first integrals. Functions which are in involution with

every function in the phase space are called Casimir functions. They too are conserved

quantities since they are in involution with the Hamiltonian.

Casimirs only exist in non-canonical formulations and in finite-dimensional Hamilto-

nian systems Casimirs can be found in systematic way [48]. In a sense first integrals are

analytic, based on the form of the Hamiltonian, while Casimirs are geometric integrals,

based on the structure of the Poisson manifold. In the context of rod theory

First integrals or nontrivial integrals, are conserved quantities which are dependent

on the parameters of the system. In the context of rod theory the first integrals are

dependent on the constitutive relations. The Hamiltonian and the integrals of La-

grange and Kovalevskaya, cf. (3.30) and (3.31) are examples of first integrals in rod

theory. They are rare, often difficult to find and may not have an intuitive physical
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meaning. In some case, such as the Chaplygin-Goryachev integral, cf. (3.32), they

maybe dependent on the values of the Casimirs as well as the parameters of the

system.

Casimirs or distinguished functions are integrals which are independent of the specific

Hamiltonian function but are dependent on the equilibrium equations. Examples

of Casimirs in rod theory are the conservation of the applied moment about the

loading axis (3.29a) or the conservation of the magnitude of force force in the

body (3.29b) for a rod under end force and torque. Casimirs may be expressed as

functions of parameters, see (5.2a), but are not dependent on them.

Knowledge of the conserved quantities allows for the equations to be classified as

integrable or nonintegrable. In the context of finite dimensional Hamiltonian systems

complete integrability is well defined.

Definition 2.1.5. An m-dimensional Hamiltonian system is said to be completely inte-

grable in the sense of Liouville if it possesses k Casimirs and n first integrals where

2n+ k = m. (2.2)

Additionally an m-dimensional system is superintegrable if 2n+ k > m, minimally su-

perintegrable if it possesses 2n+ k = m− 1 integrals and maximally superintegrable if

2n+ k = 2m− 1.

The algebraic and geometric properties of integrability are given by the Arnol’d-

Liouville theorem [6, pg. 272].

Theorem 2.1.6 (Arnol’d-Liouville Integrability). Let an m-dimensional Hamilto-

nian vector field be completely integrable with k Casimirs and n first integrals. Then by

theorem 2.1.2 the Casimirs induce a canonical Hamiltonian bracket on an n-dimensional

reduced phase space with n integrals I = (I1, I2, . . . , In) in involution. Then

(i) The level set of all integrals is a manifold MI which is invariant under the phase

flow with Hamiltonian function H = I1.
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(ii) If the manifold MI is compact and connected then it is diffeomorphic to the n-

dimensional torus T
n = {(ϕ1, ϕ2, . . . , ϕn) mod 2π}.

(iii) The phase flow with Hamiltonian function determines a conditionally periodic mo-

tion on MI , i.e., in angular coordinates ϕ′
i = ωi and ωi = ωi (I).

(iv) The canonical equations can be integrated by quadratures.

Proof of 2.1.6. See [6, §10].

The existence of action-angle variables shows that a system is solvable by quadra-

ture, although for practical purposes it is often an existence theorem only. However,

integrability has dynamical consequences: the action-angle formulation creates a set of

symplectic coordinates (I, ϕ) such that the actions I depend on the integrals and the

angles ϕ are angular coordinates that flow linearly on the n-torus. Thus the Hamiltonian

is a function of the actions only. Hence Hamilton’s equations are

I ′ = −∂H
∂ϕ

and ϕ′ =
∂H
∂I

. (2.3)

It follows that

I ′i = 0 and ϕ′
i = ωi i = 1, . . . , n (2.4)

where ωi are the frequencies of the motion on the torus and

I = I (h, p) such that Ii =
1

2π

∮

γi

pi dqi i = 1, . . . , n

over cycles γi.

As mentioned in §1, if an Kirchhoff rod whose principal bending stiffnesses are equal

then the governing equations are completely integrable. Thus all configurations can be

expressed in closed form. However the independent integrals do not form a compact and

smooth manifold, prohibiting the construction of global action-angle coordinates [29].

The main benefits of action-angle coordinates are that they allow insight into the

bifurcation structure of a system and through perturbation analysis can shed light on

the behaviour of nonintegrable systems nearby.
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(a) (b)

Figure 2.1: All integrable systems can be described by action-angle variables which define
motion on a torus, in this figure two degenerate cases are illustrated. Subfigure 2.1(a) gives a
schematic illustration of closed resonant motion on a 2-torus which does not densely fill the surface
of the torus. In this situation two of the angular frequencies will be in resonance. Subfigure 2.1(b)
shows a pinched-torus which relates to systems which do not have global action-angle variable
formations.

2.2 Mel’nikov’s Theory

It is believed that most naturally occurring systems are nonintegrable [75], however

many can be considered to be perturbations of integrable systems. As shall be demon-

strated, for Cosserat rods some perturbations such as extensibility and a force due to a

magnetic field do not destroy integrability, while others such as anisotropy and initial

curvature do destroy integrability through the loss of a first integral. In this section

a perturbation technique determining integrability called Mel’nikov’s method is intro-

duced and an instructive example presented. In this thesis the Mel’nikov integral needs

to computed to second order so the Mel’nikov integral is derived in detail to first and

second order.

The Mel’nikov integral [52, 69] is used to analyse a perturbation of a homoclinic

orbit in an integrable Hamiltonian system, giving a measure of the distance between

the unstable and stable manifolds of the perturbed homoclinic orbit, as is illustrated

in figure 2.2. If the Mel’nikov integral has simple zeroes then the stable and unstable

perturbed homoclinic manifolds intersect transversely. Devaney’s theorem [33] states that

if the perturbation yields a transverse intersection of the stable and unstable manifolds

then the existence of an associated transverse homoclinic orbit allows, via the Smale-

Birkhoff theorem, horseshoes on the Poincaré sections of the level sets defined by the
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f0 (x0 (0))

f0 (x0 (0))⊥

quε (ϕ0)

qsε (ϕ0)

W s
ε (pϕ0

ε )

W u
ε (pϕ0

ε )

pp
ϕ0
ε

Σϕ0

Figure 2.2: Schematic illustration of Mel’nikov’s method on a Poincaré section Σϕ0 . The
Mel’nikov integralM (ϕ0) measures the distance (red line) between approximations of the stable
W s

ε (cyan) and unstable manifolds W s
ε (blue) of a homoclinic orbit x0 (ϕ) (dotted) at a point

ϕ0. Note that p is a fixed point but pϕ0

ε is a periodic orbit with a fixed point on the Poincaré
map Σϕ0 .

homoclinic energy. In turn, the system is no longer integrable. Given the transversal

intersection of the stable and unstable manifolds, configurations with arbitrarily high

period which are embedded in an invariant Cantor set may then exist, implying the

existence a multiplicity of multimodal homoclinic solutions [9] and [45, §2.4.1].
Let the perturbed system take the form

Hε (q, p, ϕ, I) = H0 (q, p, I) + εH1 (q, p, ϕ, I) +O
(
ε2
)
, (q, p) ∈ R

2. (2.5)

In order for the analysis to hold when the perturbation of the Hamiltonian, two assump-

tions need to be satisfied:

(H1) The unperturbed Hamiltonian system H0 possesses a homoclinic orbit of the form

x0 (s) = (q (s;h) , p (s;h))

to a hyperbolic fixed point

p = x0 (0) = (q (0;h) , p (0;h))
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for each ‘energy’ level h in an interval h ∈ Jh ⊂ R, where the interval Jh is the

set of energy levels which admit homoclinic orbits. The homoclinic depends on the

energy level via the action Ih = I (h) corresponding to the homoclinic orbit.

(H2) For h ∈ Jh and x0 the frequency

ω0 = ω0 (x0, Ih) =
∂H0

∂I
(2.6)

of the unperturbed system satisfies the condition |ω0| ≥ δ > 0 for some arbitrarily

small δ ∈ R
+ and holds ∀s ∈ (−∞,+∞). Thus

ϕ (s) = ϕ0 +

∫ s

ω0 (s̄) ds̄ = ϕ0 + ϕ̄ (s) (2.7)

and

lim
s→±∞

ϕ (s) = ±∞. (2.8)

By the first condition (H1), the unperturbed Hamiltonian may be inverted and solved

for Ih. By the second condition (H2) ϕ can be treated as a ‘time-like’ variable.

The (constant) action Ih can be expanded in powers of the perturbation

Ih = Ih (q, p, ϕ) = I(0) + εI(1) +O
(
ε2
)
. (2.9)

The derivative of the angle coordinate, i.e. the frequency on the torus, can be expanded

for small ε

ϕ′ =
∂Hε
∂I

= ωε

= ω0 + ε
∂H1

∂I
+O

(
ε2
)
. (2.10)

Since

∂H
∂p

=
dq

dϕ

dϕ

dt
and

∂H
∂q

= − dp

dϕ

dϕ

dt
, (2.11)

then from (2.10) and (2.11) the following relationships hold

dq

dϕ
= ω−1

ε

∂Hε
∂p

and
dp

dϕ
= −ω−1

ε

∂Hε
∂q

. (2.12)
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Given h = Hε then implicit differentiation of Hε (q, p, I (q, p, ϕ) , ϕ) with respect to both

canonical coordinates (q, p) at the homoclinic energy level yields

∂Hε
∂q

+ ωε
∂Ih
∂q

= 0 and
∂Hε
∂p

+ ωε
∂Ih
∂p

= 0. (2.13)

It follows from (2.12) and (2.13) that

dq

dϕ
= −∂Ih

∂p
and

dp

dϕ
=
∂Ih
∂q

. (2.14)

The angle coordinate on the torus, ϕ, now plays the role of time in a new Hamiltonian

system, where the Hamiltonian is played by the constant action, Ih. In order to find

the terms in the expansion of Ih in (2.9) the Hamiltonian (2.5) is expanded along the

homoclinic energy level

h = Hε
(
q, p, ϕ, I(0) + εI(1) +O

(
ε2
))

= H0

(
q, p, I(0) + εI(1) +O

(
ε2
))

+ εH1

(
q, p, ϕ, I(0) + εI(1) +O

(
ε2
))

= H0

(
q, p, I(0)

)
+ εI(1)ω0

(
q, p, I(0)

)
+ εH1

(
q, p, ϕ, I(0)

)
+O

(
ε2
)
. (2.15)

Comparing coefficients of ε for the expansions of the Hamiltonian (2.15) with the ac-

tion (2.9) to first order yields

I(0) (q, p) = H−1
0 (q, p) (h) , (2.16a)

I(1) (q, p, ϕ) = −H1

(
q, p, ϕ, I(0)

)

ω0

(
q, p, I(0)

)

= −H1

(
q, p, ϕ,H−1

0 (q, p) (h)
)

ω0

(
q, p,H−1

0 (q, p) (h)
) , (2.16b)

where H−1
0 (q, p) (h) denotes the inversion of H0 with respect to I at h. Hence Hamilton’s

equations are

dq

dϕ
= −∂I

(0)

∂p
− ε∂I

(1)

∂p
−O

(
ε2
)
, (2.17a)

dp

dϕ
=
∂I(0)

∂q
+ ε

∂I(1)

∂q
+O

(
ε2
)
. (2.17b)

Using the expressions for I(n) derived in (2.16), a nth-order approximation to the govern-

ing equations in terms of the unperturbed system can be calculated. The unperturbed
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vector field is in fact a scaled version of the original problem, that is

(
−∂I

(0)

∂p
,
∂I(0)

∂q

)
=

1

ω0

(
∂H0

∂p
,−∂H0

∂q

)
. (2.18)

Thus, if the first condition (H1) is satisfied then the unperturbed vector field (2.17) has

a hyperbolic fixed point.

For simplicity in the notation let x = (q, p) and let

fi = εi (−∂Ii/∂p, ∂Ii/∂q)T .

For u = (u1, u2) and v = (v1, v2) the wedge product is defined as

u ∧ v = u1v2 − v1u2.

Let Df0 (x) denote the Jacobian of f0 evaluated at x and let D2f0 x2 be shorthand for

(D (Df0x)) x. The Mel’nikov integral is now derived to first and second order.

Theorem 2.2.1. Consider the ‘time’ dependent distance function

∆ε (ϕ,ϕ0) = f0 (x0 (ϕ− ϕ0)) ∧ (xuε (ϕ,ϕ0)− xsε (ϕ,ϕ0)) (2.19)

where xuε and xsε are the flows on the stable and unstable perturbed homoclinic manifolds

of the form xuε = x0 + εxu1 +O
(
ε2
)

(see appendix §B.1 for more detail). The Mel’nikov

function is defined as

∆ε (ϕ0) = ∆ε (ϕ0, ϕ0) . (2.20)

The Mel’nikov function can be expanded in powers of the perturbation

∆ε (ϕ0) = εM(1)
h (ϕ0) + ε2M(2)

h (ϕ0) +O
(
ε3
)
. (2.21)

The first order Mel’nikov integral is given by

M(1)
h (ϕ0) =

∫ +∞

−∞
f0 (x0 (ϕ− ϕ0)) ∧ f1 (x0 (ϕ− ϕ0) , ϕ) dϕ (2.22)
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and the second order Mel’nikov integral is given by

M(2)
h (ϕ0) =

1

2

∫ +∞

ϕ0

f0 ∧D2f0 (xs1)
2 dϕ+

1

2

∫ ϕ0

−∞
f0 ∧D2f0 (xu1)2 dϕ

+
1

2

∫ +∞

ϕ0

f0 ∧Df1x
s
1 dϕ+

1

2

∫ ϕ0

−∞
f0 ∧Df1x

u
1 dϕ

+

∫ +∞

−∞
f0 (x0 (ϕ− ϕ0)) ∧ f2 (x0 (ϕ− ϕ0) , ϕ) dϕ. (2.23)

Where x
s,u
1 (ϕ,ϕ0) are the solutions to a variational equation [45]

d

dϕ
x
s,u
1 (ϕ,ϕ0) = Df0 (x0 (ϕ− ϕ0)) x

s,u
1 (ϕ,ϕ0) + f1 (x0 (ϕ− ϕ0) , ϕ) (2.24)

subject to the two conditions that the first order approximations to the perturbed homo-

clinic orbits are bounded (2.25a) and transverse (2.25b) to the flow of the unperturbed

homoclinic orbits

lim
ϕ→±∞

∣∣ 〈xs,u1 (ϕ0, ϕ0) , f0 (x0 (ϕ− ϕ0))〉
∣∣ ≤ K, (2.25a)

〈xs,u1 (ϕ0, ϕ0) , f0 (x0 (ϕ− ϕ0))〉 = 0. (2.25b)

The two conditions provide initial conditions so that the variational equation is well-

posed and unique solutions can be found. If the Mel’nikov function has simple zeroes

then the stable and unstable manifolds intersect transversally for the perturbed system.

Conversely, if the Mel’nikov integral is bounded away from zero then the manifolds do

not intersect and there are no transverse intersections.

The theorem is not new but is extended to include higher order approximations for

the splitting of the stable and unstable manifolds.

Proof of 2.2.1. The distance function (2.19) is be decomposed into constituent parts, so

to second order

∆ε (ϕ,ϕ0) = ∆−
ε,1 (ϕ,ϕ0)−∆+

ε,1 (ϕ,ϕ0) + ∆−
ε,2 (ϕ,ϕ0)−∆+

ε,2 (ϕ,ϕ0) +O
(
ε3
)

(2.26)

where the stable part of the first order term is given by

∆+
ε,1 (ϕ,ϕ0) = f0 (x0 (ϕ− ϕ0)) ∧ xs1 (ϕ,ϕ0) . (2.27)
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Similarly, the corresponding second order term is given by

∆+
ε,2 (ϕ,ϕ0) = f0 (x0 (ϕ− ϕ0)) ∧ xs2 (ϕ,ϕ0) . (2.28)

The derivative of the first order term is

d

dϕ
∆+
ε,1 (ϕ,ϕ0) = Df0 (x0 (ϕ,ϕ0)) f0 (x0 (ϕ− ϕ0)) ∧ xs1 (ϕ,ϕ0)

+ f0 (x0 (ϕ− ϕ0)) ∧Df0 (x0 (ϕ− ϕ0)) xs1 (ϕ,ϕ0)

+ f0 (x0 (ϕ− ϕ0)) ∧ f1 (x0 (ϕ− ϕ0) , ϕ) ,

which can be expressed in a compact form as

d

dϕ
∆+
ε,1 (ϕ,ϕ0) = trace (Df0) ∆+

ε,1 + f0 (x0 (ϕ− ϕ0)) ∧ f1 (x0 (ϕ− ϕ0) , ϕ) .

By exploiting the fact that f0 is a Hamiltonian vector field

trace (Df0) =
∂2I(0)

∂p∂q
− ∂2I(0)

∂q∂p
= 0.

Hence the trace of the Jacobian is zero, thus

d

dϕ
∆+
ε,1 (ϕ,ϕ0) = f0 (x0 (ϕ− ϕ0)) ∧ f1 (x0 (ϕ− ϕ0) , ϕ) . (2.29)

Integrating from ϕ0 to +∞ yields

∆+
ε,1 (+∞, ϕ0)−∆+

ε,1 (ϕ0, ϕ0) =

∫ +∞

ϕ0

f0 (x0 (ϕ− ϕ0)) ∧ f1 (x0 (ϕ− ϕ0) , ϕ) dϕ

since

∆+
ε,1 (+∞, ϕ0) = lim

ϕ→+∞

[
f0 (p) ∧ f1 (p,+∞)

]
= 0

because

lim
ϕ→+∞

f0 (p) = 0.

Hence

∆+
ε,1 (ϕ0, ϕ0) = −

∫ +∞

ϕ0

f0 (x0 (ϕ− ϕ0)) ∧ f1 (x0 (ϕ− ϕ0) , ϕ) dϕ. (2.30)
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Similarly for the unstable part, integrating from −∞ up to ϕ0

∆−
ε,1 (ϕ0, ϕ0) =

∫ ϕ0

−∞
f0 (x0 (ϕ− ϕ0)) ∧ f1 (x0 (ϕ− ϕ0) , ϕ) dϕ. (2.31)

Thus, the first order approximation is then

∆−
ε,1 (ϕ0, ϕ0)−∆+

ε,1 (ϕ0, ϕ0) =

∫ +∞

−∞
f0 (x0 (ϕ− ϕ0)) ∧ f1 (x0 (ϕ− ϕ0) , ϕ) dϕ.

Now dealing with the second order results in a similar manner, the derivative is given

by

d

dϕ
∆+
ε,2 (ϕ,ϕ0) = Df0 (x0 (ϕ,ϕ0)) f0 (x0 (ϕ− ϕ0)) ∧ xs2 (ϕ,ϕ0)

+ f0 (x0 (ϕ− ϕ0)) ∧Df0 (x0 (ϕ− ϕ0)) xs2 (ϕ,ϕ0)

+
1

2

(
f0 (x0 (ϕ− ϕ0)) ∧D2f0 (x0 (ϕ− ϕ0)) (xs1 (ϕ,ϕ0))

2
)

+
1

2
(f0 (x0 (ϕ− ϕ0)) ∧Df1 (x0 (ϕ− ϕ0) , ϕ) xs1 (ϕ,ϕ0))

+ f0 (x0 (ϕ− ϕ0)) ∧ f2 (x0 (ϕ− ϕ0) , ϕ) .

Once again exploiting the fact that f0 is a Hamiltonian vector field yields

d

dϕ
∆+
ε,2 (ϕ,ϕ0) =

1

2
f0 (x0 (ϕ− ϕ0)) ∧D2f0 (x0 (ϕ− ϕ0)) (xs1 (ϕ,ϕ0))

2

+ f0 (x0 (ϕ− ϕ0)) ∧Df1 (x0 (ϕ− ϕ0) , ϕ) xs1 (ϕ,ϕ0)

+ f0 (x0 (ϕ− ϕ0)) ∧ f2 (x0 (ϕ− ϕ0) , ϕ) . (2.32)

On integrating and combining with the unstable part, to second order the Mel’nikov

integral is given by the integral

M(2)
h (ϕ0) =

1

2

∫ +∞

ϕ0

f0 (x0 (ϕ− ϕ0)) ∧D2f0 (x0 (ϕ− ϕ0)) (xs1 (ϕ,ϕ0))
2 dϕ

+
1

2

∫ ϕ0

−∞
f0 (x0 (ϕ− ϕ0)) ∧D2f0 (x0 (ϕ− ϕ0)) (xu1 (ϕ,ϕ0))

2 dϕ

+
1

2

∫ +∞

ϕ0

f0 (x0 (ϕ− ϕ0)) ∧Df1 (x0 (ϕ− ϕ0) , ϕ) xs1 (ϕ,ϕ0) dϕ

+
1

2

∫ ϕ0

−∞
f0 (x0 (ϕ− ϕ0)) ∧Df1 (x0 (ϕ− ϕ0) , ϕ) xu1 (ϕ,ϕ0) dϕ

+

∫ +∞

−∞
f0 (x0 (ϕ− ϕ0)) ∧ f2 (x0 (ϕ− ϕ0) , ϕ) dϕ (2.33)
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where, it is shown in appendix §B.1 that x
s,u
1 (ϕ,ϕ0) is a unique solution to

d

dϕ
x
s,u
1 (ϕ,ϕ0) = Df0 (x0 (ϕ− ϕ0)) x

s,u
1 (ϕ,ϕ0) + f1 (x0 (ϕ− ϕ0) , ϕ) (2.34)

when subject to the two conditions on transverse intersection of perturbed flows of the

homoclinic with a Poincaré section and boundedness of solutions

〈xs,u1 (ϕ0, ϕ0) , f0 (x0 (ϕ− ϕ0))〉 = 0, (2.35a)

lim
ϕ→±∞

|〈xs,u1 (ϕ0, ϕ0) , f0 (x0 (ϕ− ϕ0))〉| ≤ K (2.35b)

for a constant K > 0.

Corollary 2.2.2. If the Mel’nikov integral has simple zeroes then the perturbed Hamil-

tonian system has no analytic first integrals in the neighbourhood of ε, hence is non-

integrable.

Proof of 2.2.2. See [45, §4.8.2]

For first order approximations of the Mel’nikov integral it is not necessary to compute

the perturbations of the action Ih and integrate with respect to ϕ as a more compact

form can be used.

Lemma 2.2.3. The first order Mel’nikov function can be written as

M(1)
h (ϕ0) =

∫ +∞

−∞

{
H0,
H1

ω0

}

(q,p)

ds. (2.36)

Proof of 2.2.3. Note that

f0 ∧ f1 =
∂I(0)

∂q

∂I(1)

∂p
− ∂I(1)

∂q

∂I(0)

∂p
=
{
I(0), I(1)

}
(q,p)

.

The three relations

∂I(0)

∂q
=
∂I(0)

∂H0

∂H0

∂q
= − 1

ω0

∂H0

∂q
,

∂I(0)

∂p
= − 1

ω0

∂H0

∂p
and I(1) = −H1

ω0
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on substitution yield

{
I(0), I(1)

}
(q,p)

=
∂I(0)

∂q

∂I(1)

∂p
− ∂I(0)

∂p

∂I(1)

∂q

= − 1

ω0

∂H0

∂q

∂

∂p

(H1

ω0

)
+

1

ω0

∂H0

∂p

∂

∂q

(
−H1

ω0

)

=
1

ω0

{
H0,
H1

ω0

}

(q,p)

.

From condition (H2) it follows that ω0 ds = dϕ, hence the lemma is proved.

The second order the Mel’nikov integral can not be expressed in a similarly compact

form. An example of both first and second order Mel’nikov method is given in the next

section.

2.3 The construction of the Horseshoe map for Hamilto-

nian perturbation of a Hamiltonian system

The Smale-Birkhoff homoclinic theorem asserts the existence, near a transversal ho-

moclinic point, of a zero-dimensional Cantor set on which some power of the map PN
ε is

homeomorphic to a Bernoulli shift on m-symbols. However caution should be exercised

when drawing conclusions regarding transverse intersections. The C. Neumann top is

an completely integrable system which has transverse intersections of its stable and un-

stable manifolds. However, despite possessing transverse intersections the system does

not exhibit sensitive dependence on initial conditions or any other of the hallmarks of

spatial chaos [33]. This is because the flow on the invariant set is not minimal and thus

does not have necessary recurrence properties in the sense of [45, def. 5.2.3]. Without the

explicit construction of the horseshoe maps on the Poincaré section of the perturbed firm

conclusions of the dynamics cannot be inferred. To prove that a transverse homoclinic

point can lead to spatial chaos is a long and involves process, for example see [45, §5] for

more details. Here the basic idea is sketched and in each case where Mel’nikov’s method

is applied a horseshoe map will be constructed.

Firstly select an energy level h in the class energy levels Jh which admit homoclinic
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orbits. Next define a Poincaré section as

Pϕ0
ε : Σϕ0 7→ Σϕ0

associated with the periodically perturbed systems (2.5). For shorthand denote the map

by Pε and the global cross section as

Σϕ0 = {(q, p, ϕ) : ϕ = ϕ0 ∈ [0, 2π]} .

When ε = 0 the set Pε is a fixed point. By the two hypotheses (H1) and (H2) when

ε = 0 then the Poincaré map has an invariant manifold filled with a continuous family of

nontransverse homoclinic orbits. The manifold has fixed points which do not intersect,

hence for small ε the Poincaré map Pε is topologically equivalent to P0, since P0 is

structurally stable. Thus the Poincaré map Pε has the structure identical to that of the

unperturbed vector field in that the stable and unstable manifolds of the saddle of the

Poincaré map are the same as the separatices emanating from the saddle for the vector

field.

To construct the horseshoe map one takes a small region R, containing a trans-

verse homoclinic point, partially bounded by pieces of the stable and unstable manifolds

W s,u
ε (pϕ0

ε ). Integers l+ and l− can be choosen so that the forward and backward images

of the Poincaré map of the region r lie in the neighbourhood U of the saddle point pε.

The linearised Poincaré map DPε (pε) can then be used to approximate the motions

in the neighbourhood of the saddle point. Moreover it can be shown that there is an

integer N and two disjoint ‘horizontal’ stripes H1 and H2 ⊂ P l+ (R) whose images under

the N th-iterate of the Poincaré map are disjoint ‘vertical’ stripes V1 and V2. The map

PNε : Hi → Vi for i = 1, 2 is the horseshoe map.

In order to show hyperbolicity of the Cantor set Λ, it is necessary to find ‘sector’

bundles, i.e. collection of vector bundles for every point in the region R which are mapped

onto themselves by the linearised Poincaré map. This implies that the choices of l± are

related to ε since the angle between the tangent vectors of the manifold at a tranverse

homoclinic point is O (ε) [51]. It has been shown that max (l±) ∼ ln (1/ε) [33].
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Theorem 2.3.1 (Smale-Birkhoff Homoclinic Theorem). Let f : R
n 7→ R

n be a

diffeomorphism such that p
ϕ0
ε is a hyperbolic fixed point and there exists a point q at

which there is a transversal intersection of the stable and unstable manifolds of the

hyperbolic fixed point W s,u (pϕ0
ε ) with p 6= q. Then f has a hyperbolic invariant set Λ on

which f is topologically equivalent to a subshift of finite type.

Proof of 2.3.1. See [45, §5.3.5]

Corollary 2.3.2. Since PNε ‖Λ possess a dense orbit of solution curves it follows that

the perturbed system possess no new analytic integrals.

2.3.1 An Example of the Second Order Mel’nikov Method: a Modified

Duffing Oscillator

The celebrated harmonically forced Duffing oscillator was formulated to describe the

hardening spring effect seen in mechanical oscillators and has been used to model a wide

variety of systems. The Duffing oscillator is not the focus of this study and a modified

version is used only as an example of higher order approximations to the Mel’nikov

method. Further examples of when the first order approximation of the Mel’nikov integral

may be zero are outlined in [42].

In [71, 73] the authors considered the buckling of a beam or plate in a magnetic

field with only one mode of vibration, with a cubic damping. The authors state that

experimental evidence suggests that vibrations primarily occur about the first mode. On

performing a Galerkin-type approximation the system was reduced to a second order

nonlinear ordinary differential equation

x′′ = x− x3 + εδx′ + εγ cos (ω (t+ t0)) , (2.38)

where ε is a term of an order of magnitude less than the O (1) parameters δ, γ and

ω. The dissipation due to friction, viscous damping due to air resistance and magnetic

damping was modelled by a linear velocity dependent term of O (ε).
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S N N S

-¾
εγcosω(t+ t0)

¾ -x (t)

As a one-and-a-half-degrees of freedom system (2.38) is

x′ = y, (2.39a)

y′ = x− x3 − εδy − ε2γ cos θ, (2.39b)

θ′ = ω. (2.39c)

In the notation of the previous section for x = (x, y) then x′ = f0 (x) + εf1 (x, t). The

functions are given by

f0 =
(
y, x− x3

)T
and f1 = (0,−δy − γ cos θ)T .

The unperturbed system is Hamiltonian with

H (x, y) =
1

2
y2 − 1

2
x2

(
1− 1

2
x2

)
. (2.40)

The system has a pair of centres at (±1, 0), a hyperbolic saddle at p = (0, 0) and a pair

of homoclinic orbits emananting from the saddle given by

x0 (t) = ±
√

2 sech t and y0 (s) = ∓
√

2 sech t tanh t. (2.41)

Here the homoclinic orbit is taken to be x0 =
√

2sech t and y0 = −
√

2 sech t tanh t.

35



2.3. Construction of Horseshoe Maps 2. Hamiltonian Systems

The first order Mel’nikov integral is given by

M(1)
h (t0) =

∫ +∞

−∞
f0 (x0 (t− t0)) ∧ f1 (x0 (t− t0) , t) dt

=
√

2γ sinωt0

∫ +∞

−∞
sech t tanh t sinωt dt

−
√

2γ cosωt0

∫ +∞

−∞
sech t tanh t cosωt dt

− 2δ

∫ +∞

−∞
sech2 t tanh2 t dt.

The second term in the integral is odd and when integrated over a symmetric range is

zero

−
√

2γ cosωt0

∫ +∞

−∞
sech t tanh t cosωt dt = 0.

The third term can be evaluated as

−2δ

∫ +∞

−∞
sech2 t tanh2 t dt = −4

3
δ.

To evaluate the first integral it is necessary to use Cauchy’s Residue theorem and evaluate

the contour integral of the associated complex function f (z) = eiωz sech z tanh z where

z = u+ iv. The complex function has a singularity at z = iπ/2 at which the residue is

Res [f (z)] = iωeπω/2.

-¾

6

0

rd
+π

+π/2

−R +R

r

r

r

r

a

b

d

c

<

=

A rectangular contour with vertices at a = (−R, 0), b = (−R, π), c = (R, π) and

d = (R, 0) is chosen as a suitable domain for (anticlockwise) integration. In the limit

36



2.3. Construction of Horseshoe Maps 2. Hamiltonian Systems

of R→∞ the integrals of the contours parallel to the imaginary axis tend to zero. The

integrals along the contours parallel to the real axis yield

2πωeπω/2 =

∫ +R

−R

eiωu sinhu

cosh2 u
du+

∫ −R

+R

eiω(u+iπ) sinh (u+ iπ)

cosh2 (u+ iπ)
du

= (1 + eπω)

∫ +R

−R

eiωu sinhu

cosh2 u
du.

Hence

M(1)
h (t0) = −4δ

3
+
√

2γπω sech
(πω

2

)
sinωt0. (2.42)

Thus, in order for simple zeroes to occur

γ

δ
>

4 cosh (πω/2)

3
√

2πω
. (2.43)

When the inequality becomes an equality the system has quadratic zeroes and

(quadratic) homoclinic tangencies. Thus, there is a condition on the parameters in-

dependent of the perturbation necessary for transverse intersections of the stable and

unstable homoclinic manifolds. When ω = 1 and εδ = 0.25 then the analysis predicts

homoclinic tangencies, to first order, occur at εγ = 0.188 and numerical evidence puts

the bifurcation value at about εγ = 0.190 [45].

Now consider the system with two modifications: weak periodic forcing of O
(
ε2
)

and

quadratic damping

x′′ = x− x3 + εδ
(
x′
)2

+ ε2γ cos (ωt+ t0) (2.44)

which as a system of first order equations is given by

x′ = y, (2.45a)

y′ = x− x3 − εδy2 − ε2γ cos θ, (2.45b)

θ′ = ω. (2.45c)

The vector fields now take the form

f0 =
(
y, x− x3

)T
, f1 =

(
0,−δy2

)T
and f2 = (0,−γ cos θ)T . (2.46)
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Denote f̄1 = −δy2 and f̄2 = −γ cos θ. The modification on the damping is somewhat

unphysical, however quadratic damping has appeared as a mechanical analogue in field

theory [55].

The first order Mel’nikov integral is

M(1)
h (t0) =

∫ +∞

−∞
f0 (x0 (t− t0)) ∧ f1 (x0 (t− t0) , t) dt

= −δ
∫ +∞

−∞
y3
0 (t− t0) dt

= −2
√

2δ

∫ +∞

−∞
sech3 (t− t0) tanh3 (t− t0) dt

= 0. (2.47)

Thus it is necessary to compute higher order terms. The first order variational equation

is

d

ds

(
xs,u1

ys,u1

)
=

(
0 1

1− 3x2
0 0

)(
xs,u1

ys,u1

)
+

(
0
−δy2

0

)
.

A coupled pair of first order equations can be expressed as a second order system of the

general form

L [x] = x′′ + P (t)x′ +Q (t)x = f̄1 (t)

where for this example

P (t) = 0, Q (t) = 1− 6 sech2 (t− t0) and f̄1 (t) = δ sech2 (t− t0) tanh2 (t− t0) .

As P (t) = 0 the first order perturbations xs,u1 and ys,u1 can be expressed by the linearly in-

dependent functions u1 and u2 which are derived from the Wronskian of the unperturbed

inhomogeneous linear system L [x] = 0. The unperturbed system can be expressed as

L [x] = x′′ −Df̄0 (x0 (t)) = 0. On differentiating it becomes x′′′0 = Df̄0 (x0 (t))x′0 hence

x′0 is a solution to the variational equation y′′0 = Df̄0 (x0 (t)) y0 which is L [y] = 0. Thus

x′0 = y0 = us,u1 . Thus, the first linearly independent solution is given by

us,u1 (t) = y0 (2.48a)
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and by integrating the Wronskian

us,u2

d

dt
us,u1 − u

s,u
1

d

dt
us,u2 = 1

the second solution is

us,u2 (t) = −us,u1 (t)

∫ t 1

(us,u1 (τ))
2 dτ. (2.48b)

Remark 2.3.3. The problem of computing first order approximations to homoclinics

is in fact equivalent to computing exponential dichotomies forwards and backwards in

time on the intervals (−∞, t0] and [t0,+∞) respectively [77]. For detail on exponential

dichotomies, please refer to §B.3.1. In §5 a robust numerical algorithm is presented to

compute first order approximations to the perturbed stable and unstable manifolds.

Thus, for the modified Duffing oscillator

us,u1 (t) =
√

2 sech t tanh t, (2.49a)

us,u2 (t) = −
√

2 sech t
((

cosh2 t− 3
)
/4 + (3t/4) tanh t

)
. (2.49b)

Note that u1 = us1 = uu1 and u2 = us2 = uu2 as the system is linearised about a homoclinic

solution, rather than a hetroclinic solution. The derivatives of u1 and u2 are given by

d

dt
u1 (t) =

√
2 sech t

(
1− 2 tanh2 t

)
(2.50a)

d

dt
u2 (t) =

√
2

4
sech t

( (
2 tanh2 t− 1

) (
coth t

(
cosh2 t− 3

)
+ 3t

)

+ tanh t
(
coth2 t

(
cosh2 t− 3

)
− 3 cosh2 t

) )
. (2.50b)

Also note that both u2 and its derivative become unbounded as t→ ±∞.

Following [60] the first order perturbations are given by

xs,u1 = u1

(
N s,u

1 +

∫ t

t0

u2 (τ) f̄1 (τ) dτ

)
+ u2

(
M s,u

1 −
∫ t

t0

u1 (τ) f̄1 (τ) dτ

)
,

ys,u1 =
d

dt
u1

(
N s,u

1 +

∫ t

t0

u2 (τ) f̄1 (τ) dτ

)
+

d

dt
u2

(
M s,u

1 −
∫ t

t0

u1 (τ) f̄1 (τ) dτ

)
.

Although u2 can become unbounded, see subfigure 2.3(b), the first term in the expres-

sions for xs,u1 and ys,u1 reach periodic motion as t→ ±∞, see subfigures 2.3(e) and 2.3(f).
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However the second term of the expressions for xs,u1 and ys,u1 must be set to zero through

the constants of integration M s,u.

The first integral in the first order perturbation is

∫ t

t0

u2 (τ) f̄1 (τ) dτ = δ
(

(t0 − t) +
(
e2t − e2t0

)
(3 (t+ t0) + 4) + 3

(
e4t + e4t0

)
(t− t0)

− 4
(
e4t − e4t0

)
− 6

(
e6t − e6t0

)
(t+ t0)− 9e2(t+t0) (t− t0)

+ 9e4(t+t0) (t− t0)− e6(t+t0) (t− t0)

− 9 (t+ t0) e
2(t+t0)

(
e2t − e2t0

)
+ (4 + 3 (t− t0)) e2(t+t0)

(
e4t − e4t0

)

+ (4− 3 (t+ t0)) e
4(t+t0)

(
e2t − e2t0

))
/
((
e2t + 1

)3 (
e2t0 + 1

)3)
.

The second integral is

∫ t

t0

u1 (τ) f̄1 (τ) dτ =
2

3
δ
(
tanh3 t− tanh3 t0

)
.

The constants of integration are

M s
1 (t0) =

∫ +∞

t0

u1 (τ) f̄1 (τ) dτ, Mu
1 (t0) =

∫ −∞

t0

u1 (τ) f̄1 (τ) dτ (2.52a)

and

N s,u
1 (t0) = −M s,u

1 (t0)
u1 (t)u2 (t) +

d

dt
u1 (t)

d

dt
u2 (t)

(u1 (t))2 +

(
d

dt
u1 (t)

)2

∣∣∣∣∣∣∣∣∣
t=t0

. (2.52b)

The constant of integration M s,u
1 ensures that solutions are bounded and N s,u

1 ensures

that solutions are transverse to the unperturbed homoclinic orbit, satisfying (2.35).

Hence, explicitly, the constants of integration are

M s
1 (t0) =

∫ +∞

t0

u2 (τ) f̄1 (τ) dτ =
2

3
δ
(
1− tanh3 t0

)
,

Mu
1 (t0) =

∫ −∞

t0

u2 (τ) f̄1 (τ) dτ =
2

3
δ
(
1 + tanh3 t0

)

and

N s,u
1 (t0) = M s,u

1 (t0)
cosh t0 sinh t0

(
12− 7 cosh2 t0

)
+ s0

(
6 cosh4 t0 − 15 cosh2 t0 + 12

)

4
(
2 cosh4 t0 − 5 cosh2 t0 + 4

) .
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It is important to note that the first order variational equation is always a second or-

der linear inhomogeneous equation linearised about the homoclinic solution and thus is

globally computable [45, pg 186] with exponential dichotomies on the intervals [t0,+∞)

and (−∞, t0].
In figure 2.3 the evolutions of u1, u2 the homoclinic orbit x0, y0 and the first order

perturbations xs,u1 and ys,u1 are displayed. As the inset plots in subfigures 2.3(e) and 2.3(f)

show, at t = t0 the first order approximations to the homoclinic orbits posses exponential

dichotomies over half intervals (−∞, t0] and [t0,+∞) as xuε (t0, t0) 6= xsε (t0, t0).

To second order the Mel’nikov integral is given by

M(2)
h (t0) =

√
2γπω sech

(πω
2

)
sinωt0 +

∫ +∞

t0

y0 (t)
(
2 δ y0 (t) ys1 (t, t0) + 6x0 (t) (xs1 (t, t0))

2
)

dt

−
∫ t0

−∞
y0 (t)

(
2 δ y0 (t) yu1 (t, t0) + 6x0 (t) (xu1 (t, t0))

2
)

dt. (2.54)

Figure 2.4 displays the second order Mel’nikov integrals for a variety of parameter values.

The integrals were computed numerically using the integrator dop853.f. Given that in all

cases examined with 0 < γ, δ < 1 there are simple zeroes in the range, spatially chaotic

solutions exist.

Note that the first term in the Mel’nikov integral is dependent on γ and the sec-

ond and third terms are dependent on δ. Preliminary numerical evidence suggests that

generically the Mel’nikov integral has simple zeroes for all γ, δ ∼ O (1).

Now having shown the existence of transverse homoclinic points in both cases

all that remains to show spatially chaotic behaviour is to construct the Poincaré

map which is conjugate to a Bernoulli shift. This can be achieved by following [73].

First construct the Poincaré section Pε : Σ0 7→ Σ0 where Σ0 is the cross-section

Σ0 =
{
(x, y, θ) ∈ R

2 × S1 : θ = 0, 2π, . . .
}

for solutions x and y of the system (2.39).

As it is shown in [73] that the system (2.39) has a non-periodic strange attractor,

by [15] the effect of sensitivity to initial conditions on the primary homoclinic solutions

can be seen from the time series for the amplitude of the homoclinic orbit will show

intermittent excursions away from zero in the form of a homoclinic solution

|x| = 4δ

3
−
√

2γπωsech2
(πω

2
(t+ t0)

)
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Figure 2.3: Components of the first order perturbations for homoclinic orbits for the modified
Duffing oscillator over a suitable range. In these diagrams δ = 1, ω = 1 and γ = 1. The linearly
independent solutions (2.49) to the inhomogeneous problem are displayed in subfigures 2.3(a)
and 2.3(b). The homoclinic solutions (2.41) are displayed in subfigures 2.3(a) and 2.3(b). In
subfigures 2.3(e) and 2.3(f) the first order approximations are computed for t0 = 0.1 (red), 0.2
(blue), 0.3 (cyan) and 0.4 (magenta).
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Figure 2.4: Second order Mel’nikov integral (2.54) for modified Duffing oscillator, showing the
existence of simple zeroes and hence transverse intersections of the perturbed stable and unstable
manifolds. In subfigure 2.4(a) δ = 1 and γ = 1.5 (red), 1.0 (blue) 0.5 (cyan). In subfigure 2.4(b)
γ = 1 and δ = 1.0 (red), 0.5 (blue) and 0.1 (cyan). In both subfigures ω = 1.
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Figure 2.5: The trajectories and phase diagrams of a regular and irregular Duffing oscillator
illustrating the qualatative difference in solutions once the Mel’nikov threshold has been passed.
Subfigure 2.5(a) shows the motion of a beam which is heavily damped which deforms towards
a magnet, so that the phase portrait in subfigure 2.5(c) shows the trajectory spiralling towards
a stable fixed point. Once the Mel’nikov threshold has been passed, the motion may become
chaotic as subfigures 2.5(b) and 2.5(d) illustrate. In this situation the tip of the beam oscillates
wildly between the two magnets.
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2.3. Construction of Horseshoe Maps 2. Hamiltonian Systems

where t0 is now indistinguishable from a random variable, because of the extreme sensi-

tivity to initial conditions for this motion.

As the perturbation increases, it has been shown that the stable and unstable man-

ifolds intersect giving rise to an infinite number of homoclinic points. An iterate of the

Poincaré map of solutions which emanate from the saddle PN
ε (p) results in the horseshoe

construction and a complicated invariant set of Cantor points Λ which is topologically

conjugate to a Bernoulli shift.

There are two centres and a saddle in the unperturbed problem so that in the per-

turbed problem the beam moves irregularly between two states corresponding to oscil-

lations about the magnets. The figure 2.5 shows the difference between ‘regular’ motion

dominated damping term and irregular motion. Note that global stability of the unper-

turbed problem ensures that there are no orbits escaping to infinity.

45



Chapter 3

A Family of Cosserat Elastic Rods

In this chapter the system of equations which determine the configurations of a

geometrically exact Cosserat rod under a class of (generalised) forces is introduced. The

rod configurations are determined by the strains of the system. The strains are related

to the stresses on the rod by a set of constitutive relations, which when hyperelastic

allow a variational formulation. A family of balance equations, which are noncanonical

Hamiltonian equations describe the stresses on the rod. For a thorough exposition of rod

theory see [2].

3.1 Kinematic Equations

In this section the equations which define a Cosserat rod are introduced. A Cosserat

rod is defined by a one-dimensional curve, called the centreline, along which a right-

handed orthonormal triad, called the directors, are attached. The centreline describes

the position of the rod while the directors describe the orientation of the cross section of

the rod. The rod, r (s), is embedded in the spatial frame as the vector space spanned by

the righthanded orthonormal triad of vectors { e1, e2, e3 }. The body frame, also referred

to as the director frame, is given by a local rod-centred right-handed orthonormal triad

{d1(s),d2(s),d3(s) }. The director d1 lies in the normal cross section of the rod and

under certain conditions, namely inextensibility and unshearability, d2 also lies in the

cross section and d3 is tangent to the centreline as illustrated in figure 3.1. For clarity

vectors in the spatial frame are denoted by the bold type p and components of the vector
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3.1. Kinematic Equations 3. A Family of Cosserat Elastic Rods

Figure 3.1: Schematic diagram of a Cosserat rod r (s) showing the orthonormality of the direc-
tors di (s) along the arclength s.

in the director frame form a 3-tuple denoted by the sans serif p = (p · d1,p · d2,p · d3).

By orthonormality, the directors satisfy

di (s) · dj (s) = δij , i = 1, 2, 3 j = 1, 2, 3 (3.1a)

di (s)× dj (s) = εijkdk (s) (3.1b)

where δij is the Kronecker delta and εijk is the standard Levi-Civita permutation symbol.

The orthogonality of the directors shall be exploited throughout the rod models derived.

Let R be an element of the special orthogonal group, SO (3), i.e. the group of ro-

tations. The rotations can convert quantities from the spatial frame into the director

frame, preserving their length and orientation. Thus

di = Rei for i = 1, 2, 3. (3.2)

The Lie group SO (3) consists of the set of all three-by-three skew-symmetric matrices

with unit determinant. An element of the corresponding Lie algebra so (3) may be related

to an element of R
3 through the “hat map” isomorphism [49] where

a = (a1, a2, a3)
T ∈ R

3 and â =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 ∈ so (3) (3.3)

Equivalently the isomorphism is given by âb = a× b for all a, b ∈ R
3 and â ∈ so (3).

The evolution of the directors along the rod is found by differentiating equation (3.2)
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3.1. Kinematic Equations 3. A Family of Cosserat Elastic Rods

with respect to the parameter s

d′
i = R′ei

= R′R−1di

= ûdi

= u× di (3.4)

for û := R′R−1 = R′RT . Using the dot product and the orthogonality of the directors,

the components of the strain u are expressed as

ui =
1

2
εijkd

′
j · dk. (3.5)

The second set of strains v, associated with shearing and extension are given by

v = r′. (3.6)

The triples u = (u1, u2, u3) and v = (v1, v2, v3) are the generalised strains in the body.

The projections onto the director frame v1 = v · d1 and v2 = v · d2 are associated with

transverse shearing, while v3 = v · d3 is extension if v3 > 1 and compression if v3 < 1.

Likewise, u1 = u · d1 and u2 = u · d2 are associated with bending and u3 = u · d3 is the

twist in the body. Often the strain u3 is referred to as the local twist and is denoted

by τ . Since it is natural to assume that a rod cannot be compressed to zero length it is

assumed

v3 > 0.

If a rod is unshearable then

v1 = v · d1 = 0 and v2 = v · d2 = 0.

If a rod is inextensible

∣∣r′∣∣ = 1.
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3.2. Constitutive Relationships 3. A Family of Cosserat Elastic Rods

Thus, the centreline of an unshearable and inextensible rod is determined by the single

condition

r′ = d3 (3.7)

and the parameter s can now be interpreted as the arc-length of the rod.

3.2 Constitutive Relationships

Having formulated the configurations of a Cosserat rod in terms of the strains u and

v, in this section the relationship between the stresses and the strains are introduced.

If the rod is hyperelastic then there exists a strain density function explicitly depen-

dent on the generalised strains, i.e. W (u− u0, v − v0, s), such that the components of

the force n = (n1, n2, n3) and moment m = (m1,m2,m3) in the body are

mi =
∂W
∂ui

and ni =
∂W
∂vi

, (3.8)

where u0 and v0 are the strains associated with the unstressed rod. If the rod is uniform

then the constitutive relations are the same throughout the rod

W (u− u0, v − v0) =W (u− u0, v − v0, s) . (3.9)

A hyperelastic rod will have a convex strain density function, that is the matrix of partial

derivatives is positive definite

∣∣∣∣
∂m/∂u ∂m/∂v

∂n/∂u ∂n/∂v

∣∣∣∣ > 0. (3.10)

Thus, an increase in the applied bending moment will accompany an increase in the

bending strain. The hyperelastic strain function will also be coercive, that is

W (u− u0, v − v0)√
|u|2 + |v|2

→∞ as |u|2 + |v|2 →∞. (3.11)

This implies that extremal values of the stresses must accompany extremal values of the

strains. Finally, the strain energy density will have a nondegenerate minimum at the
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unstressed configuration

0 =
∂W
∂u

∣∣∣∣
u=u0, v=v0

=
∂W
∂v

∣∣∣∣
u=u0, v=v0

. (3.12)

The convexity of the hyperelastic strain energy density function means that the strains

can be inverted (locally) for the stresses. Hence a uniform hyperelastic function can be

written as W̃ (m, n) = W̃ (ũ (m, n) , ṽ (m, n)). This assumption is crucial in that it allows

the hyperelastic function to be related to the Hamiltonion via the Legendre transform.

An important property of many rods is isotropy. If a rod is isotropic then there exists

an orthogonal matrix Q of the form

Q =




Q11 Q12 0
Q21 Q22 0
0 0 1




such that

ũ (Qm, Qn, s) = Qũ (m, n, s) and ṽ (Qm, Qn, s) = Qṽ (m, n, s) . (3.13)

It has been shown [4] that for isotropic constitutive relationships the strain density

function takes the form

W̃ = W̃
(
m2

1 +m2
2,m3, n

2
1 + n2

2, n3,m1n1 +m2n2,m1n2 −m2n1

)
. (3.14)

For an inextensible, unshearable rod the strain-density function for an initially

straight and untwisted rod is a function of the strains u only with u0 = (0, 0, 0) and

v = v0 = (0, 0, 1). In fact, for a rod under tension and moment, nonlinear constitutive

laws make little difference either in the underlying structure of the phase space, config-

urations or the effective localised buckling modes [3, 21]. However, in order to separate

nonlinear geometric effects from those caused by material nonlinearity, linear constitu-

tive laws will be taken throughout. For simplicity, quadratic form, linear constitutive

relationships, satisfying Hooke’s law are chosen. The strain density function is given by

W (u, v) =
1

2
B1 (u1 + u0)

2 +
1

2
B2u

2
2 +

1

2
Cu2

3 +
1

2
Hv2

1 +
1

2
Jv2

2 +
1

2
Kv2

3. (3.15)
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3.3. Equilibrium Equations 3. A Family of Cosserat Elastic Rods

The constants B1 = EI1, B2 = EI2 and C = GI3, where I1 and I2 are the principal

moments of inertia about the d1 and d2 axes respectively, I3 is the moment of inertia

about the d3 axis, E is Young’s modulus and

G =
E

2 (1 + ν)

is the shear modulus, where ν is Poisson’s ratio. Thus B1 and B2 are the bending

stiffnesses about the d1 and d2 axes respectively. The constants H and J are transverse

shear stiffnesses and K is the axial stiffness. The constant u0 is the initial curvature. It

follows that m1 and m2 are associated with bending about the principal axes d1 and d2,

m3 with twist about d3, n1 and n2 with shearing forces and n3 with tension if positive,

compression if negative. In the case of isotropy then B1 = B2 and H = J .

3.3 Equilibrium Equations

In this section the static equilibrium balance equations of a family of rod are intro-

duced. It is assumed that all forces and moments are suitable averages over the rod’s

cross section acting at the centreline of the rod. The balance equations are the final set

of equations needed to close the system.

3.3.1 Force-Free Rod

The simplest rod model is that of a force-free rod. In the spatial frame the equilibrium

equation is

m′ = 0. (3.16)

In the director frame the equation can be written as a non-canonical Hamiltonian system

m′ = J (m)∇H (m) , (3.17)

where the skew-symmetric structure matrix J = J (m) is given by

J = −J T =




0 −m3 m2

m3 0 −m1

−m2 m1 0


 (3.18)
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3.3. Equilibrium Equations 3. A Family of Cosserat Elastic Rods

and the Hamiltonian is

H =
1

2
m · u (m) , (3.19)

for a set of strains given by a hyperelastic strain-density function W (u). For any two

functions, f and g of m, the Poisson bracket corresponding to the structure matrix (3.18),

is given by

{f, g}(m) = −m · (∇mf ×∇mg)︸ ︷︷ ︸
twist

. (3.20)

Thus the governing equation (3.17) can be written as

m′ = {m,H}(m) = m× u. (3.21)

The null-space of the structure matrix (3.18) is one-dimensional and is spanned by

the gradient of the Casimir

∇C1 =
1

2
(m1,m2,m3)

T

and hence

C1 = m ·m (3.22)

is a Casimir. The Casimir describes the fact that the magnitude of the total moment

is constant along the rod. Since H is an integral, it follows from the Arnol’d-Liouville

theorem 2.1.5 that (3.21) is completely integrable. In fact, the force-free rod is glob-

ally superintegrable as the system has three degrees of freedom but configurations are

described by two independent variables and hence confined to two-tori [39, 40, 46, 85].

3.3.2 Kirchhoff Rod

The equilibrium equations for a rod under end tension and moment are given by

m′ + r′ × n = 0 and n′ = 0. (3.23)

In the director frame the equations can be written in Hamiltonian form as
(

m

n

)′
= J (m, n)∇H (m, n) , (3.24)

52
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where the structure matrix J = J (m, n) is given by

J = −J T =

(
m̂ n̂

n̂ 0

)
(3.25)

and the Hamiltonian is now

H =
1

2
m · u +

1

2
n · (v − d3) + n · d3. (3.26)

Equivalently, the governing equations are

m′ = {m,H}(m,n) = m× u + n× v, (3.27a)

n′ = {n,H}(m,n) = n× u. (3.27b)

which are the Poisson equations on the Cartesian pairing (m, n) given by the bracket

{f, g}(m,n) = −m · (∇mf ×∇mg)− n · (∇mf ×∇ng +∇nf ×∇mg)︸ ︷︷ ︸
force

. (3.28)

An extra semidirect term [49], corresponding to the effect of the applied force has been

added when compared to the previous Poisson bracket (3.20).

The additional term in the Hamiltonian breaks the full SO (3) symmetry. The equa-

tions (3.27) are those for the motion of a heavy top when the rod is unshearable and

inextensible.

The null-space of the structure matrix is two-dimensional and spanned by

∇C1 =

(
n

m

)
and ∇C2 =

1

2

(
0

n

)
.

Hence the Casimirs are

C1 = n ·m, (3.29a)

C2 = n · n. (3.29b)

The Casimir (3.29a) describes the conservation of the moment about the force vector,

while (3.29b) describes the conservation of the magnitude of force in the rod.

In addition to the Hamiltonian and the two Casimirs, a single first integral is required

if the system is to be completely integrable. There are two cases, both well-documented:
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The Lagrange case has an integral given by

I1 = m · d3 if B = B1 = B2. (3.30)

Thus, if the two bending stiffnesses are equal then the (local) twist m3 is a con-

served quantity. For the Kirchhoff equation if the rod satisfies (3.13) then the

Lagrange integral holds for arbitrary nonlinear constitutive relationships.

The Kovalevskaya case has an integral given by

I1 =
(
B2

1m
2
1 − C2m2

3 + n3

)2
+ (2B1Cm1m3 − n1)

2 if B1 = C = 2B2. (3.31)

Kovalevskaya found this integral by looking for the absence of certain types of

singularities in complex time. Unlike the Lagrange integral the integral does not

seem to have a clear physical interpretation.1

The condition on the bending stiffnesses renders the Kovalevskaya rod somewhat

unphysical since it corresponds to a negative Poisson ratio. However, novel materi-

als with negative effective Poisson ratio are now known. For instance, experimental

measurements of bending and torsional stiffnesses of DNA molecules have led to

the generally accepted range 0.7 < B2/C < 1.5 [80]. It is unknown how nonlin-

ear constitutive relations or properties such as shear and extensibility effect the

Kovalevskaya integral.

There is another case which is not completely integrable on the entire phase space but

is completely integrable on a single symplectic leaf.

The Chaplygin-Goryachev case requires that the initial conditions must satisfy

m · n = 0

then the integral

I1 = B2m2

(
B2

1m
2
1 +B2

2m
2
2

)
− Cm3n2 if B1 = 4B2 = C (3.32)

1Kovalevskaya won the Bordin Prize given by the Paris Academy of Sciences in 1886 and was con-
sidered such an achievement that the prize money was doubled.
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renders the system integrable. Similarly to the Kovalevskaya integral, this case re-

lies on linear stress-strain relationships and it is unknown whether a corresponding

integral exist for nonlinear constitutive relations. The only natural interpretation of

the condition on the Casimir is to not apply end moment and then the Chaplygin-

Goryachev case can be considered an anisotropic case of the elastica.

It is simple to show that all the integrals (3.29), (3.26) and either (3.30), (3.31), or (3.32)

are in involution with respect to the bracket (3.28) and that generically integrable con-

figurations exist on three-tori.

3.3.3 An Elastic Conducting Rod in a Uniform Magnetic Field

Now consider a rod placed in a uniform magnetic field B̄. The rod carries a uniform

current I = Ir′ of strength I along the centreline, assuming the rod to be sufficiently

slender for eddy currents within the cross section to be ignorable. The rod then experi-

ences a Lorentz body force

n′ + F L = 0 where F L = I × B̄ = Ir′ × B̄ = Iv × B̄. (3.33)

Let B = IB̄ and let the magnetic field be aligned along the fixed axis e3 so that the

equilibrium equations take the form

m′ + r′ × n = 0, n′ + r′ ×B = 0 and B′ = 0. (3.34)

It is necessary to assume that the current in the rod is moderate so that the effect of the

magnetic field generated by the current is negligible compared to the external magnetic

field.

In the director frame the governing equation is a non-canonical Hamiltonian system

of the form




m

n

B




′

= J (m, n,B)∇H (m, n) , (3.35)
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where the structure matrix J = J (m, n,B) is given by

J = −J T =




m̂ n̂ B̂

n̂ B̂ 0

B̂ 0 0


 (3.36)

and the Hamiltonian, once again, is

H =
1

2
m · u +

1

2
n · (v − d3) + n · d3.. (3.37)

Note that the Hamiltonian is a function of m and n only, but the gradient is taken with

respect to the three field variables. The Hamiltonian is the same as for the Kirchhoff rod:

the effect of the magnetic field is only present in the structure matrix. The governing

equations can be written as

m′ = {m,H}(m,n,B) = m× u + n× v, (3.38a)

n′ = {n,H}(m,n,B) = n× u + B× v, (3.38b)

B′ = {B,H}(m,n,B) = B× u, (3.38c)

where the Poisson bracket on (m, n,B) given by

{f, g}(m,n,B) = −m · (∇mf ×∇mg)− n · (∇mf ×∇ng +∇nf ×∇mg)

− B · (∇mf ×∇Bg +∇Bf ×∇mg)︸ ︷︷ ︸
evolution of field

−B · (∇nf ×∇ng)︸ ︷︷ ︸
effect of field

, (3.39)

has been extended from the previous bracket by the addition of two more terms. The

first term, a semidirect extension, describes the evolution of the magnetic field in the

director frame and does not affect the force and moment balance since the Hamiltonian

is independent of B. The second term, a cocycle called a Leibniz extension [89], expresses

the Lorentz force. This term makes the bracket extension non-semidirect.

There are three Casimirs, given by

C1 =
1

2
n · n + m · B, (3.40a)

C2 = B · n, (3.40b)

C3 = B · B. (3.40c)
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The magnitude of the magnetic force is conserved, thus (3.40c). The magnitude of force

is no longer conserved, but as a result of rotational symmetry the force component in the

direction of the magnetic field is conserved resulting in (3.40b). Casimir (3.40a) however

does not seem to have a physical interpretation; it states that half the magnitude of the

force squared plus the moment about the direction of the magnetic field is a conserved

quantity.

For linearly elastic, unshearable, inextensible and isotropic constitutive relations,

(that is when J = H = K = 0 and B = B1 = B2), then two independent first integrals

emerge

I1 = m · d3, (3.41a)

I2 = n ·m +BB · d3. (3.41b)

where d3 = (0, 0, 1). As in the Lagrange case the first of these integrals expresses the

conservation of twist in the rod. The second integral, like the Kovalevskaya integral,

does not seem to have a physical interpretation. The Lagrange integrability condition

B1 = B2 and J = H is unaltered by the magnetic field, but now there are additional

requirements on constitutive relations in the form of linear elasticity, inextensibilty and

shearability J = H = K = 0. Numerical evidence presented in [90] in the form of chaotic

orbits suggests that the linearly elastic, inextensible, unshearable the magnetic rod with

B1 = C = 2B2 is not integrable. Of course, a perturbed condition on the stiffnesses may

exist for which the system is integrable.

It is a straightforward task to check that all the integrals (3.37), (3.41a) and (3.41b)

are independent and in involution with respect to the Poisson bracket (3.39). Hence

in the isotropic case the system is completely integrable in the sense of Liouville and

configurations lie on five-tori defined by two Casimirs, two integrals and the Hamiltonian.

57



3.3. Equilibrium Equations 3. A Family of Cosserat Elastic Rods

3.3.4 An Elastic Conducting Rod in a Nonuniform Magnetic Field

By inspection of the structure matrices (3.18), (3.25) and (3.36) it is natural to

consider the system

m′ + r′ × n = 0, n′ + r′ ×B = 0, B′ + r′ ×D = 0 and D′ = 0. (3.42)

The equation for B can be integrated to give Bx = y, By = −x, Bz = 0, where (x, y, z)

and (Bx, By, Bz) are components of r and B relative to the fixed frame {e1, e2, e3}, and

e3 is chosen to be in the direction of D. Thus (3.42) can be thought of as describing a

rod in a linearly-varying magnetic field generated by a uniform ‘hypermagnetic’ field D.

In the director frame the equations take the Hamiltonian form




m

n

B

D




′

= J (m, n,B,D)∇H (m, n) , with H (m, n) =
1

2
m · u +

1

2
n · (v − d3) + n · d3.

and structure matrix

J = −J T =




m̂ n̂ B̂ D̂

n̂ B̂ D̂ 0

B̂ D̂ 0 0

D̂ 0 0 0


 . (3.43)

The governing equations can be expressed by a Poisson bracket

m′ = {m,H}(m,n,B,D) = m× u + n× v, (3.44a)

n′ = {n,H}(m,n,B,D) = n× u + B× v, (3.44b)

B′ = {B,H}(m,n,B,D) = B× u + D× v, (3.44c)

D′ = {D,H}(m,n,B,D) = D× u, (3.44d)

where the Poisson bracket is constructed from (3.39) through the addition of two semidi-
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rect and two Leibniz extensions:

{f, g}(m,n,B,D) = −m · (∇mf ×∇mg)− n · (∇mf ×∇ng +∇nf ×∇mg)

− B · (∇mf ×∇Bg +∇Bf ×∇mg)− B · (∇nf ×∇ng)

− D · (∇mf ×∇Dg +∇Df ×∇mg)︸ ︷︷ ︸
evolution of hyperfield

− D · (∇Bf ×∇ng) + B · (∇Df ×∇ng)︸ ︷︷ ︸
effect of hyperfield

.

This twelve-dimensional system has four independent Casimirs:

C1 = m · D + n · B, (3.45a)

C2 =
1

2
B · B + n · D, (3.45b)

C3 = B · D, (3.45c)

C4 = D · D. (3.45d)

In the linearly elastic, unshearable, inextensible and isotropic case there are now three

independent first integrals besides the Hamiltonian,

I1 = Bm · d3, (3.46a)

I2 = n ·m +BB · d3, (3.46b)

I3 =
1

2
n · n + m · B +BD · d3, (3.46c)

making the system completely integrable. If C4 = 0 then D = 0 and the system reduces

to that of the magnetic rod in the previous section. The system loses rank as the Casimir

C4 = 0 necessarily implies C3 = 0 and the two Casimirs lose their independent meaning.

Interestingly, the integral I3 then becomes a Casimir (cf. (3.40a)), whose preservation

does not rely on isotropy anymore.

By using the four Casimirs (3.45) the twelve-dimensional system can be reduced

to an eight-dimensional canonical system. The reduced system would be parameterised

by a coordinate chart which exists in a higher dimension than real space: generically

configurations would have to be coupled to the evolution of the magnetic field.
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3.4 A Lax Pair Formulation

In the previous sections a succession of rod models based on the form of the structure

matrices was introduced and conditions on the constitutive relations determined whether

a model was integrable or not. In this section a compact Lax pair formulation of the

integrable family of linearly elastic, isotropic, inextensible, unshearable rod problems is

given.

Consider the Lax pair with a spectral parameter µ

d

ds
Γ (µ) =

[
Γ (µ) , d̂3µ+ û

]
, (3.47)

where

Γ (µ) = Bd̂3µ+ Γ0 + Γ1µ
−1 + . . . + Γnµ

−n ∈ so (3) , n ∈ N,

with B = B1 = B2,

d̂3 =




0 −1 0
1 0 0
0 0 0


 and û =




0 −u3 u2

u3 0 −u1

−u2 u1 0




using the hat-map isomorphism (3.3). In (3.47) the bracket is the standard matrix com-

mutator bracket given by

[a, b] = ab− ba, for a, b ∈ R
3×3.

This Lax pair was proposed in [102] to study monodromy present in the generalised

family of symmetric Lagrange tops.

The Lax pair describes our family of rod models if the terms in the expansion of

Γ by µ (a spectral parameter) are associated with our field variables: Γ0 = m̂, Γ1 = n̂,

Γ2 = B̂, Γ3 = D̂, etc. The non-canonical equations for the force-free rod (n = 0), Kirch-

hoff rod (n = 1), rod in uniform magnetic field (n = 2) and rod in nonuniform magnetic

field (n = 3) are obtained by equating like powers of µ in (3.47). The first integrals are

generated by

Ii = −1

4
residueµ=0

(
µi−1trace

[
Γ (µ)2

])
, for i = −1, 0, 1, . . . , n− 1, (3.48)
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the Casimirs are generated by

Ci = −1

4
residueµ=0

(
µi−1trace

[
Γ (µ)2

])
, for i = n, n+ 1, n+ 2, . . . , 2n (3.49)

and the Hamiltonian is given by

H =
I0
B

+
B − C
2BC

(
I−1

B

)2

. (3.50)

61



Chapter 4

Reduction of the Kirchhoff Rod

In this chapter the Casimirs of the Kirchhoff equations are used to reduce the non-

canonical Hamiltonian system to a lower dimensional canonical system, allowing for a

range of analytic tools to be applied. In the integrable Lagrange case planar phase dia-

grams are computed and fixed points and homoclinic solutions found. The reduction al-

lows Mel’nikov’s method to be applied for the nonintegrable perturbations of anisotropy

and initial curvature and Poincaré sections to be computed. The consequences of non-

integrability in these two cases are then outlined.

4.1 Reduction to a Canonical System

In this section the two Casimirs of the Kirchhoff equation (3.29) are used to reduce the

six-dimensional non-canonical Hamiltonian system (3.28) in (m, n) to a four-dimensional

canonical Hamiltonian system using Euler angles (A.1). The canonical coordinates are

q = (θ, φ, ψ) and their conjugate momenta p = (pθ, pφ, pψ). The reduction is possible (at

least locally) provided the structure matrix (3.25) is of constant rank everywhere [76,

§6.2].

Firstly, in order to simplify the analysis the system is nondimensionalised. Let a

torque, M , and tension, T , be applied in the direction of d3 at s = ±∞. By scaling the

arclength by s̄ = (M/B1) s (as homoclinic solutions will be studied there is no natural
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length scale) and scaling the forces and moments by

m̄1 = m1/M, m̄2 = m2/M, m̄3 = m3/M,

n̄1 = n1/T, n̄2 = n2/T and n̄3 = n3/T

the system is nondimensional. For convenience in the notation the overbar is suppressed.

From the general linear constitutive relations (3.15) the nondimensional parameters are

m =
M√
B2T

, ρ =
B2

B1
− 1, ν =

B2

C
− 1,

ε =
T

J
, σ =

J

H
− 1, γ =

K

J
− 1 and κ0 =

B1u0

M
.

(4.1)

Where m is the unified end loading parameter, ρ+ 1 the anisotropy, ν + 1 the ratio of

torsional stiffness to bending stiffness, ε measures the ratio of shear to bending, γ and

σ are the analogues of ρ and ν for shear and extensibility and κ0 the initial curvature.

If ρ = 0 then for circular rods ν is Poisson’s ratio.

Let

R =




cos θ cosφ cosψ − sinφ sinψ cos θ cosφ sinψ + cosψ sinφ − sin θ cosφ
− cos θ sinφ cosψ − cosφ sinψ − cos θ sinφ sinψ + cosφ cosψ sin θ sinφ

sin θ cosψ sin θ sinψ cos θ




(4.2)

be a parameterisation of the rotation matrix (3.2) in terms of Euler angles. Following

the convention used by Love [66], θ is the angle the tangent to the rod makes with the

initially straight rod, ψ is the azimuthal angle about a fixed axis and φ is the twist angle

about the centreline of the rod.

The force equation n′ = 0 is integrated subject to the condition that the force acts

along the e3 axis at s = ±∞, thus n = e3. Hence, in the body frame the force is then

given by

n (q) = (sin θ cosφ,− sin θ sinφ, cos θ)T . (4.3)

Using the Euler angles and expression of the strains (3.5), the strains ui (q, q
′) are
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given by

u1 = θ′ sinφ− ψ′ sin θ cosφ, (4.4a)

u2 = θ′ cosφ+ ψ′ sin θ sinφ, (4.4b)

u3 = φ′ + ψ′ cos θ. (4.4c)

In the initially straight, inextensible, unshearable case, the stored energy-density func-

tional (3.15) is given by

W
(
q, q′

)
=

1

2

(
θ′ sinφ− ψ′ sin θ cosφ

)2
+

1

2
(1 + ρ)

(
θ′ cosφ+ ψ′ sin θ sinφ

)2

+
1

2
(1 + ν)

(
φ′ + ψ′ cos θ

)2
. (4.5)

The Lagrangian L (q, q′) is found by adding the (nondimensionalised) work done against

end tension, which is given by (n3 − 1), to the energy stored in the rod. Thus, dropping

the irrelevant constant term gives

L
(
q, q′

)
=

1

2

(
θ′ sinφ− ψ′ sin θ cosφ

)2
+

1

2
(1 + ρ)

(
θ′ cosφ+ ψ′ sin θ sinφ

)2

+
1

2
(1 + ν)

(
φ′ + ψ′ cos θ

)2 − cos θ

m2
. (4.6)

The conjugate momenta are defined as

p =
∂L
∂q′

.

Hence

pθ =
(
θ′ sinφ− ψ′ sin θ cosφ

)
sinφ+ (1 + ρ)

(
θ′ cosφ+ ψ′ sin θ sinφ

)
cosφ, (4.7a)

pψ = −
(
θ′ sinφ− ψ′ sin θ cosφ

)
sin θ cosφ

+ (1 + ρ)
(
θ′ cosφ+ ψ′ sin θ sinφ

)
sin θ sinφ+ (1 + ν)

(
φ′ + ψ′ cos θ

)
cos θ, (4.7b)

pφ = (1 + ν)
(
φ′ + ψ′ cos θ

)
. (4.7c)

Due to the nondegeneracy conditions on the hyperelastic function (3.9)-(3.11) the equa-
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tions (4.7) can be inverted

θ′ = pθ + ρ sinφ

(
pθ sinφ− cosφ

(
pψ − pφ cos θ

sin θ

))
, (4.8a)

φ′ = (1 + ν) pφ − cos θ

(
pψ − pφ cos θ

sin2 θ

)

+ ρ
cosφ cos θ

sin θ

(
pθ sinφ− cosφ

(
pψ − pφ cos θ

sin θ

))
, (4.8b)

ψ′ =

(
pψ − pφ cos θ

sin2 θ

)
− ρcosφ

sin θ

(
pθ sinφ− cosφ

(
pψ − pφ cos θ

sin θ

))
, (4.8c)

From the strains (3.5), conjugate momenta (4.7) and using the constitutive rela-

tions (3.15), the conjugate momenta can be expressed in the form

p = L−1 (q) m where L−1 (q) =




sinφ cosφ 0
− sin θ cosφ sin θ sinφ cos θ

0 0 1


 . (4.9)

That is,

pθ = m1 sinφ+m2 cosφ, (4.10a)

pψ = −m1 cosφ sin θ +m2 sinφ sin θ +m3 cos θ, (4.10b)

pφ = m3. (4.10c)

The moments can be expressed as

m = L (q) p where L (q) =
1

sin θ




sin θ sinφ − cosφ cos θ cosφ
sin θ cosφ sinφ − cos θ sinφ

0 0 sin θ


 (4.11)

or equivalently as

m1 = pθ sinφ− cosφ

(
pψ − pφ cos θ

sin θ

)
, (4.12a)

m2 = pθ cosφ+ sinφ

(
pψ − pφ cos θ

sin θ

)
, (4.12b)

m3 = pφ. (4.12c)

Note that the polar singularity inherent in the Euler angle formulation manifests itself

in the determinant of the matrix L (q).
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In order for the Poisson bracket (3.28) to be transformed into a canonical bracket it

is necessary to verify that

GJGT = J̄ (4.13)

where J is the noncanonical structure matrix given by (3.25), J̄ is the four-by-four

canonical structure matrix and G is the Jacobian of the transformation given by

G =
∂ (q, p)

∂ (m, n)
·

Using the relationships (4.12) and (4.3), the nontrivial variables (θ, φ) and conjugate

momenta (pθ, pφ) can be expressed in terms of the force and moments

θ = cos−1 n3, φ = tan−1 −n2

n1
, pθ =

m1n2 −m2n1√
1− n2

3

and pφ = m3.

Thus

G =
1

sin θ




0 0 0 0 0 1
0 0 0 sinφ cosφ 0

sinφ sin θ cosφ sin θ 0 g34 g35 cos θ
(
pθ sin2 φ+ pθ cosφ

)

0 0 sin θ 0 0 0


 ,

where

g34 = pθ cosφ+ sinφ

(
pψ − pφ cos θ

sin θ

)
and g35 = pθ sinφ− cosφ

(
pψ − pφ cos θ

sin θ

)
.

It is a straightforward task to check that (4.13) holds and hence the transformation

reduces the noncanonical system to a canonical system. Thus the Hamiltonian is given

by

H =
1

2
p2
θ +

1

2

(
pψ − pφ cos θ

sin θ

)2

+
1

2
(1 + ν) p2

φ +
cos θ

m2

+
1

2
ρ

(
pθ sinφ− cosφ

(
pψ − pφ cos θ

sin θ

))2

. (4.14)

The Casimirs do manifest themselves in the canonical formulation. The Hamiltonian

is invariant under rotations about the e3 axis, so ψ is a cyclic variable and consequently
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pψ is a constant of motion, which corresponds to the Casimir (3.29a). Thus, by (4.12)

and (4.3)

pψ = −m1 cosφ sin θ +m2 sinφ sin θ +m3 cos θ

= m · n

= α. (4.15)

The parameterisation of the force (4.3) means that the Casimir (3.29b) ensures that

the four-dimensional equations are nondegenerate, specifically C2 = n · n 6= 0 if T 6= 0,

as was mentioned in §3.4.

While continuous symmetries correspond to conserved quantities, discrete symme-

tries correspond to multiplicities of solutions. The reduced system (4.14) admits two

discrete symmetries for all constitutive relations. Firstly a rotation symmetry described

by the translation in φ by π

Z1 : φ 7→ φ+ π (4.16)

which corresponds to a π-rotation about the d3 axis in the rod. Secondly, the reflection

symmetry about the e3 axis in the spatial frame

Z2 : (θ, φ, ψ, pθ, pφ, pψ) 7→ (−θ,−φ,−ψ,−pθ,−pφ,−pψ) . (4.17)

The action of this symmetry can be decomposed into two reversibilities, Z2 = R1 ◦R2

R1 : (θ, φ, ψ, pθ, pφ, pψ)→ (−θ,−φ,−ψ, pθ, pφ, pψ) as s→ −s (4.18a)

and

R2 : (θ, φ, ψ, pθ, pφ, pψ)→ (θ, φ, ψ,−pθ,−pφ,−pψ) as s→ −s. (4.18b)

These symmetries imply that primary homoclinic solutions, that is homoclinic orbits with

a single localised mode, have four distinct solutions - a pair of rotationally symmetric

solutions which are reversible under R1 and a pair of solutions reversible under R2.
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If the rod is isotropic (ρ = 0) the Lagrange integral (3.30) corresponds to the rota-

tional invariance of the Hamiltonian about the d3 axis. Then φ is a cyclic variable and

pφ is a first integral corresponding to the conservation of twist in the rod

pφ = m3

= (1 + ν) τ

= β. (4.19)

As a set of rotations, the Euler angles are orientated in such a way as to describe

the symmetries which generate the conserved quantaties (4.15) and (4.19). The two

symmetries commute, as seen by the fact the integrals generated are independent with

respect to the noncanonical Poisson bracket. Thus the integrable Hamiltonian is given

by

H0 (θ, pθ) =
1

2
p2
θ +

1

2

(
α− β cos θ

sin θ

)2

+
1

2
(1 + ν)β2 +

cos θ

m2
. (4.20)

The constant term (1 + ν)β2/2 is the stored energy-density due to twisting. This system

is often described as a mechanical system or as an equivalent oscillator [99] as it can be

expressed in the form

H (θ, pθ) =
1

2
p2
θ + V (θ) where V (θ) =

1

2

(
α− β cos θ

sin θ

)2

+
cos θ

m2
(4.21)

on an (nondimensional) energy level h = H. As a system of first order equations, the

governing equations are given by

θ′ = pθ and p′θ =
sin θ

m2
−
(
β − α cos θ

sin θ

)(
α− β cos θ

sin2 θ

)
. (4.22)

The evolution of the remaining angles are given by

ψ′ =
α− β cos θ

sin2 θ
and φ′ = (1 + ν)β −

(
α− β cos θ

sin2 θ

)
cos θ. (4.23)
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Figure 4.1: Phase portraits of the equivalent oscillator for an isotropic, inextensible rods under
uniform loading when α = β about the Hamiltonian-Hopf bifurcation at mmax = 2. In subfig-
ure 4.1(a) m ≤ mmax and h = 0.5934 (red), 1/m2 = 0.3402 (green), 0.3689 (cyan), 0.3511 (blue),
0.3979 (magenta) and 0.4187 (red). In this case the phase portrait shows that a number of
rod configurations are admissible: helices, localied and helix-on-helix configurations. In subfig-
ure 4.1(b) m ≥ mmax and h = 0.5365 (red), 0.2149 (green), 0.2778 (magneta), 0.2418 (blue),
0.2311 (yellow) and 0.1989 (cyan). In this case all orbits correspond to straight twisted rods.

Remark 4.1.1. When expressed in terms of Euler angles the Kovalevskaya inte-

gral, (3.31), conditional on ρ = −1/2 and ν = −1/2, is given by

I =

(
1

4

(
pθ sinφ− cosφ

(
pψ − pφ cos θ

sin θ

))2

− 1

4
p2
φ +

cos θ

m2

)2

+

(
1

4
pφ

(
pθ sinφ− cosφ

(
pψ − pφ cos θ

sin θ

))
− sin θ cosφ

m2

)2

. (4.24)

The Euler angle formulation gives a single pair of action-angle variables (ψ, pψ) and

a four-dimensional canonical Hamiltonian system in (θ, φ, pθ, pφ) phase space with an

integral. In [37] an algorithmic procedure was developed which associates the integrals

with action integrals.

4.2 Superintegrable Cases

Recently it has been shown that the relative equilibria of the noncanonical sys-

tem (3.27) correspond to either straight rods or helices [26]. After performing the reduc-

tion in the isotropic case it is now shown that the equilibria (of the canonical system)

are indeed either straight rods or helices. Furthermore it is shown that configurations
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exist on tori of lower dimension.

As shown, the integrals α and β correspond to rotational invariances about the axes

e3 in the spatial frame and d3 in the director frame. A straight twisted rod requires

d3 to be aligned with e3. As a focus of this thesis will be on localised buckling from a

straight twisted rod it is necessary to set α = β in order for such solutions to exist. For

simplicity the values of the integrals (4.15) and (4.19) are set to unity

α = β = 1. (4.25)

For homoclinic solutions θ → 0 as s→ ±∞.

The governing equations (4.22) become

θ′ = pθ and p′θ =
sin θ

(1 + cos θ)2
− sin θ

m2
. (4.26)

There are two fixed points of the governing equations (4.26), firstly, the trivial case given

by

pθ = 0 and sin θ = 0. (4.27)

The trivial fixed point corresponds to a straight twisted rod and is a hyperbolic saddle

point p = (0, 0).

The additional conserved quantaties are m1, m2, n1, n2 and n3 of which any two can

be chosen which are independent with respect to the remaining integrals for the Poisson

brackets (3.28). There are five independent integral: two Casimirs, a Hamiltonian, a first

integral and two additional integrals. As a six-dimensional system with five independent

integrals the straight twisted rod is maximally superintegrable and configurations exist

on a one-torus given by

H (pφ) =
1

2
(1 + ν) p2

φ where φ′ = (1 + ν) pφ and p′φ = 0. (4.28)

Secondly, the nontrivial case is given by

pθ = 0 and θ = cos−1 (m− 1) . (4.29)
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The nontrivial fixed point corresponds to a uniform helix. Closed form solutions of the

helix are given by

m1 (s) = ∓ cos

((
ν +

1

m

)
s

)(
2−m

sin (cos−1 (m− 1))

)
, (4.30a)

m2 (s) = ± sin

((
ν +

1

m

)
s

)(
2−m

sin (cos−1 (m− 1))

)
, (4.30b)

m3 (s) = 1, (4.30c)

n1 (s) = ∓ sin
(
cos−1 (m− 1)

)
cos

((
ν +

1

m

)
s

)
, (4.30d)

n2 (s) = ± sin
(
cos−1 (m− 1)

)
sin

((
ν +

1

m

)
s

)
, (4.30e)

n3 (s) = m− 1. (4.30f)

Expressing the nontrivial fixed point solution in the canonical formulation, the forces

and moments can be described by the fixed points rotated by a constant angle

f = ±
(
ν +

1

m

)
.

As a consequence of the reversibilities (4.18), the sign of the angle f determines the

chirality of the helix. The angle f is the angle between the principal directors and the

normal and binormal in the Frenet frame [99].

An additional independent integral, in involution with all other integrals, can be

chosen from either

n3 or m ·m. (4.31)

For the six-dimensional Kirchhoff system the additional integral means that there are

four independent integrals and (3.26), (3.29), (3.30) and (4.31). Hence the helix is

minimally superintegrable, existing on two-tori, rather than the generic three-tori. The

Hamiltonian is now a function of the conjugate momenta only

H (pφ, pψ) =

(
pψ − pφ (m− 1)

)2

m (2−m)
+

1

2
(1 + ν) p2

φ +
m− 1

m2

which are action variables. The angular coordinates move quasi-periodically on the two-

tori with the frequencies given by

ψ′ =
1

m
and φ′ = (1 + ν) +

2−m
m

. (4.32)
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The curvature, κ, and geometric torsion, τs, of the helices are constants given by

κ =
√
u2

1 + u2
2 =

2−m
sin (cos−1 (m− 1))

and τs = τ − f ′ = 1−
(

1

m
+ ν

)
.

Further information on the geometric classification of rod configurations can be found

in [99].

4.3 Homoclinic Orbits

In this section the Hamiltonian vector field is integrated and homoclinic solutions

calculated. Hamilton’s equation θ′ = pθ may be substituted into the Hamiltonian (4.20),

which can then be rearranged as a first order ordinary differential equation in θ as

dθ

ds
=

1√
2 (h− cos θ/m2) (1− cos2 θ)− (α− β cos θ)2

. (4.33)

From the substitution u = cos θ the integral is

s =

∫ u(s)

u(0)

du√
2 (h− u/m2) (1− u2)− (α− βu)2

− 1 < u < 1, m 6= 0. (4.34)

Applying the torque condition α = β = 1 yields

s =

∫ u(s)

u(0)

du√
(1− u) (2 (h− u/m2) (1 + u)− (1− u))

− 1 < u < 1, m 6= 0. (4.35)

For homoclinic solutions emanating from the saddle at the origin from the Hamilto-

nian (4.21) the nondimensional energy-density is given by h = 1/m2. Thus the integral

becomes

s =
m√
2

∫ u(s)

u0

du

(1− u)√u− u0
, −1 < u0 < u < 1, m 6= 0, (4.36)

where u0 = m2/2− 1. The substitution u = u0 + (1− u0) tanh2 z simplifies the integral

to

s =
m
√

2√
1− u0

∫ z(s)

z0

dz where z0 = 0. (4.37)
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Hence, for homoclinic solutions the Euler angles and their conjugate variables are given

by

θ = cos−1

(
u0 + (1− u0) tanh2

(√
1− u0

m
√

2
s

))
, (4.38a)

ψ =
1

2
s+ tan−1

(√
1− u0

1 + u
√
0

1− e−s/m
√
m(1−u0)

1 + e−s/m
√
m(1−u0)

)
, (4.38b)

φ =

(
1

2
+ ν

)
s+ tan−1

(√
1− u0

1 + u
√
0

1− e−s/m
√
m(1−u0)

1 + e−s/m
√
m(1−u0)

)
, (4.38c)

pθ = θ′, (4.38d)

pψ = 1, (4.38e)

pφ = 1. (4.38f)

Note 4.3.1. As the reversibilities dictate, pθ (s) is an odd function while θ (s) is an even

function of the arc-length s.

The evolution of the angle θ and its conjugate momenta pθ are illustrated in fig-

ure 4.2. The angular frequencies (4.23) are illustrated in figure 4.3. From the expressions

of the homoclinic orbits in (4.38) at the critical value of the unified load parameter

m = mmax = 2 the homoclinic orbits undergo a subcritical Hamiltonian-Hopf bifurca-

tion [98]. The super- and sub-critical phase portraits are illustrated in subfigures 4.1(a)

and 4.1(b) respectively. Thus for decreasing m, a straight twisted rod, whose eigenvalues

are a centre µc = ± (i/2m)
√
m2 − 4 buckles into a localised or helical solution whose

eigenvalues form a saddle µs,u = ± (1/2m)
√

4−m2. For the analogous problem of a

heavy spinning top the bifurcation corresponds to a fast, sleeping top supercritically

bifurcating into a precessing top.

Remark 4.3.2. Note that the homoclinic orbits emanate from the saddle but the fixed

point p = (0, 0) is not a part of the the orbit, since the saddle defines straight twisted rods

which exist on one-tori. Thus, if the homoclinic orbit is denoted as x0 (s) = (θ, pθ) then

it is the union of the homoclinic and the fixed point Γ = {x0 (s) ∀s ∈ R} ∪ {p} which, in

subfigure 4.1(a), forms a closed curved in the two-dimensional phase space whose interior

is filled with periodic orbits.
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Figure 4.2: In subfigure 4.2(a) the evolution of the Euler angle θ (4.38a) is shown and in
subfigure 4.2(b) the evolution of the conjugate variable conjugate pθ (4.38d) is shown with
respect to the normalised arclength s for the homoclinic orbit when m = 1.7 and ν = 1/3.

4.3.1 Extensibility & Shearability

In [88] it was shown by finding explicit solutions, without exploiting the Hamiltonian

structure, that an isotropic rod that is shearable and extensible is integrable. In this

section, by exploiting the Hamiltonian structure, closed form expressions for homoclinic

orbits are derived. These expressions are necessary when proving that extensibility is an

integrability breaking parameter for a rod in a uniform magnetic field.

In the case of isotropic bending (ρ = 0) and shear (σ = 0) the governing equation

can be reduced to a single degree of freedom Hamiltonian system by substituting the
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Figure 4.3: The angular frequencies φ′ (s) and ψ′ (s) are displayed in subfigures 4.3(a) and 4.3(b)
respectively for the isotropic R1-reversible homoclinic orbit with m = 1.7 and ν = 1/3. The
angular frequencies are given by substituting the homoclinic orbit (4.38a) into (4.32).

moments (4.12) and forces (4.3) into the Hamiltonian

H =
1

2
m2

1 +
1

2
m2

2 +
1

2
(1 + ν)m2

1 +
1

2m2
εn2

1 +
1

2m2
εn2

2 +
1

2m2
ε (1 + γ)n2

3 +
n3

m2
(4.39)

which gives

H0 (θ, pθ) =
1

2
p2
θ +

1

2

(
pψ − pφ cos θ

sin θ

)2

+
1

2
(1 + ν) p2

φ +
cos θ (εγ cos θ + 2) + ε

2m2
. (4.40)

The additional constant term ε/2m2 is the (nondimensional) stored energy due to ex-

tensibility. Note that ε ≥ 0 and γ ≥ 0 throughtout the analysis. When α = β = 1,

Hamilton’s equations are given by

θ′ = pθ and p′θ =
sin θ

(1 + cos θ)2
− (εγ cos θ + 1) sin θ

m2
. (4.41)

Solving for fixed point solutions yields the trivial solution, pθ = 0 and sin θ = 0, and the

nontrivial solution given by pθ = 0 and θ is a solution of the cubic

0 = εγ cos3 θ + cos2 θ + εγ cos θ + 1−m2. (4.42)

On linearisation the governing equation is identical to the linearisation of the inexten-

sible case except that 1/m2 is now replaced by 1/ (1 + εγ). Thus, it is inferred that the

nontrivial solutions correspond to helices which exist in the upper and lower limits

0 < m2 < 4 (1 + εγ) . (4.43)
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4.3. Homoclinic Orbits 4. Reduction of the Kirchhoff Rod

As cos θ is an even function, if θ is a real solution then −θ is also a real solution, so

helices still exist in chiral pairs. It should be noted that when εγ is small the equation

has two imaginary roots and a single real root. The condition for a cubic equation to

have three real roots can be derived from Cardano’s method [74]. For the cubic (4.42)

the condition is

(
1− 1

3

1

εγ

)3

/27 +

(
1

εγ

)2
(

2

27

(
1

εγ

)2

+
2

3
−m2

)2

/4 ≥ 0. (4.44)

At some values of εγ large the cubic polynomial (4.42) will have three real roots and so

three possible helices.

Following the procedure from the previous section, nontrivial solutions can be found

from the integral

s =

∫ u(s)

u(0)

du√
2 (h− u (uεγ/2 + 1) /m2) (1− u2)− (α− βu)2

. (4.45)

For homoclinic solutions emanating from the saddle at the origin, from the Hamilto-

nian (4.40) the nondimensional energy-density is given by

h =
1

m2

(
1 +

εγ

2

)

which, along with the torque condition α = β = 1, yields the integral

s =
m√
εγ

∫ u(s)

u(0)

du

(1− u)
√
f (u)

, where f (u) = u2 + 2u

(
1 +

1

εγ

)
+ 1 +

2

εγ
− m2

εγ
.

The quadratic f (u) has roots

u± = −
(

1 +
1

εγ

)
± 1

εγ

√
1 + εγm2,

Substituting (4.43) into the roots of the quadratic gives the bounds

−
(

3 +
1

2εγ

)
< u− < −

(
1 +

2

εγ

)
and − 1 < u+ < 1. (4.46)

Thus the roots are distinct. In the limit of small extensibility, that is εγm2 ¿ 1

u+ =
m2

2
− 1− 1

8

(
εγm2

)2
+

1

16

(
εγm2

)3
+O

(
ε4
)
,

u− = −1− m2

2
− 2

εγ
+

1

8

(
εγm2

)2 − 1

16

(
εγm2

)3
+O

(
ε4
)
.

76



4.4. Nonintegrable Perturbations 4. Reduction of the Kirchhoff Rod

The limits of integration become

s =
m√
εγ

∫ u(s)

u+

du

(1− u)
√

(u+ u−) (u− u+)
.

On the substitution u (s) = −u− + (u− + u+) cosh2 z (s) the integral becomes

s =
2m

(1 + u−)
√
εγ

∫ z(s)

0

dz

1− k cosh2 z
, with k =

u− + u+

1 + u−
. (4.48)

From the bounds on the roots of the quadratic f (u) given in equation (4.46) it is evident

that k > 1 for all parameter values. Thus, the integral is given by

∫
dz

1− k cosh2 z
=

−2√
k2 − 1

tan−1

(√
k + 1

k − 1
tanh

z

2

)
. (4.49)

Hence, homoclinic solutions are given by

cos θ = u− + (u+ + u−) cosh2

(
2 tanh−1

(√
k − 1

k + 1
tan

(
−s (1 + u−)

√
εγ (k2 − 1)

4m

)))
,

(4.50)

pθ = θ′. (4.51)

In the limit of ε→ 0 the Kirchhoff homoclinic solution (4.38) is recovered. The evolutions

of the Euler angles and their conjugates are displayed in figures 4.2 and 4.3 in blue.

4.4 Nonintegrable Perturbations

In this section the perturbations of anisotropy and initial curvature [23, 95] are

shown to destroy integrability through the loss of the Lagrange integral pφ. In both

cases the constitutive relations change but the force and moment balance remain the

same. Thus, the Casimirs (3.29) remain and hence the reduction to a canonical system

holds. Both cases have been studied before but in a different formulation using Deprit

variables [64, 70].

The Hamiltonian system now takes the general form

Hε (θ, φ, pθ, pφ, pψ) = H0 (θ, pθ, pφ, pψ) + εH1 (θ, φ, pθ, pφ, pψ) ,
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4.4. Nonintegrable Perturbations 4. Reduction of the Kirchhoff Rod

where the unperturbed Hamiltonian is given by (4.20), the equilibrium point (4.27) from

which the unperturbed homoclinic orbit (4.38) emanates from is a hyperbolic saddle and

the frequency of the angle φ in the unperturbed case is given by

ω0 =
∂H0

∂pφ
= ν +

2

m2 + (4 +m2) tanh2

(√
4 +m2

2m
s

) .

Thus if ν ≥ 0 then ω0 ≥ δ > 0 for a small, fixed δ. Thus, Mel’nikov’s method, as described

in §2.2, may be applied.

The partial derivatives of the unperturbed Hamiltonian and angular frequency eval-

uated at the (nondimensional) homoclinic energy level when pψ = pφ = 1 are given by

∂H0

∂θ
=

sin θ

(1 + cos θ)2
− sin θ

m2
,

∂H0

∂pθ
= pθ,

∂ω0

∂θ
=

sin θ

(1 + cos θ)2
and

∂ω0

∂pθ
= 0.

4.4.1 Anisotropy

When the rod is linearly elastic, unshearable, inextensible, initially straight and

anisotropic the hyperelastic function is given by

W (u) =
1

2
B1u

2
1 +

1

2
B2u

2
1 +

1

2
Cu2

3. (4.52)

The nondimensional Hamiltonian is given by

Hρ =
1

2
p2
θ +

1

2

(
pψ − pφ cos θ

sin θ

)2

+
1

2
(1 + ν) p2

φ +
cos θ

m2

+
1

2
ρ

(
pθ sinφ− cosφ

(
pψ − pφ cos θ

sin θ

))2

. (4.53)
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Hamilton’s equations are

θ′ = pθ + ρ sinφ

(
pθ sinφ− cosφ

(
pψ − pφ cos θ

sin θ

))
, (4.54a)

φ′ = (1 + ν) pφ − cos θ

(
pψ − pφ cos θ

sin2 θ

)

+ ρ
cosφ cos θ

sin θ

(
pθ sinφ− cosφ

(
pψ − pφ cos θ

sin θ

))
, (4.54b)

ψ′ =

(
pψ − pφ cos θ

sin2 θ

)
− ρcosφ

sin θ

(
pθ sinφ− cosφ

(
pψ − pφ cos θ

sin θ

))
, (4.54c)

p′θ =
sin θ

m2
−
(
pφ − pψ cos θ

sin θ

)(
pψ − pφ cos θ

sin2 θ

)

− ρ cosφ

(
pψ − pφ cos θ

sin2 θ

)(
pθ sinφ− cosφ

(
pφ − pψ cos θ

sin θ

))
, (4.54d)

p′φ = ρ

(
pθ cosφ+ sinφ

(
pφ − pψ cos θ

sin θ

))(
pθ sinφ− cosφ

(
pφ − pψ cos θ

sin θ

))
, (4.54e)

p′ψ = 0. (4.54f)

Expressing φ (s) = φ̄ (s) + φ0, the perturbation to the Hamiltonian is

H1 =
1

2
cos 2φ0

(
cos 2φ̄

(
p2
θ +

1− cos θ

1 + cos θ

)
− pθ sin 2φ̄

(
1− cos θ

sin θ

))

− 1

2
sin 2φ0

(
sin 2φ̄

(
p2
θ +

1− cos θ

1 + cos θ

)
+ pθ cos 2φ̄

(
1− cos θ

sin θ

))

− 1

2
p2
θ +

1

2

(
1− cos θ

1 + cos θ

)
(4.55)

where pψ = pφ = 1. The partial derivatives of the perturbation are given by

∂H1

∂θ
=

1

2
pθ
(
cos 2φ0 cos 2φ̄− sin 2φ0 sin 2φ̄− 1

)

+

(
1− 1

2

(
cos 2φ0 cos 2φ̄− sin 2φ0 sin 2φ̄

))( 1− cos θ

(1 + cos θ) sin θ

)
, (4.56a)

∂H1

∂pθ
=

1

2
pθ
(
cos 2φ0 cos 2φ̄− sin 2φ0 sin 2φ̄− 1

)

− 1

2

(
sin 2φ0 cos 2φ̄− cos 2φ0 sin 2φ̄

)(1− cos θ

sin θ

)
. (4.56b)

Hence the first order Mel’nikov integral is given by

M(1)
h (φ0) = sinφ0

∫ +∞

−∞
A (s) ds+ cosφ0

∫ +∞

−∞
B (s) ds+

∫ +∞

−∞
C (s) ds
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where

A (s) =
1

2

(
1 + cos θ

m2
+

1

1 + cos θ
+ p2

θ

)(
pθ sin θ sin 2φ̄− (1− cos θ) cos 2φ̄

)

+
1

2
p2
θ cos θ

(
cos 2φ̄+ sin 2φ̄

(
1− cos θ

sin θ

))
, (4.57a)

B (s) =
1

2

(
1 + cos θ

m2
+

1

1 + cos θ
+ p2

θ

)(
pθ sin θ cos 2φ̄− (1− cos θ) sin 2φ̄

)

+
1

2
p2
θ cos θ

(
sin 2φ̄− cos 2φ̄

(
1− cos θ

sin θ

))
, (4.57b)

C (s) =
1

2
pθ

(
1− cos θ

sin θ
+

1 + cos θ

m2
+

1

1 + cos θ
+ p2

θ

)
. (4.57c)

Then the condition for simple zeroes is given by

∣∣∣∣
c√

a2 + b2

∣∣∣∣ < 1

where

a =

∫ ∞

−∞
A (s) ds, b =

∫ ∞

−∞
B (s) ds and c =

∫ ∞

−∞
C (s) ds.

In figure 4.4.1 the first order Mel’nikov integral M(1)
h (φ0) is evaluated for a variety of

values for m.
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Figure 4.4: Mel’nikov integral (4.57) for anisotropic rod with ν = 1/3 and m = 1.70 (red), 1.72
(blue), 1.74 (cyan), 1.76 (magenta), 1.78 (yellow), 1.80 (green) at the nondimensional homoclinic
energy level. From the figure it is clear that the Mel’nikov integral has simple zeroes and that via
the construction of a Bernoulli shift map, the system will become sensitive to initial conditions.
In the context of rod theory this means that multimodal rod configurations are possible.
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4.4.2 Initial Curvature

For an initially curved isotropic rod the hyperelastic function takes the form

W (u) =
1

2
B1u

2
1 − u0u1 +

1

2
B1u

2
2 +

1

2
Cu2

3.

In the initially curved case the nondimensionalised Hamiltonian is given by

Hκ0
=

1

2
p2
θ +

1

2

(
pψ − pφ cos θ

sin θ

)2

+
1

2
(1 + ν) p2

φ +
cos θ

m2

+
1

2
κ0

(
pθ sinφ− cosφ

(
pψ − pφ cos θ

sin θ

))
. (4.58)

Remark 4.4.1. It is interesting to observe that the perturbation for initial curvature is

the square root of the perturbation for anisotropy.

The governing equations are

θ′ = pθ + κ0 sinφ, (4.59a)

φ′ = (1 + ν) pφ − cos θ

(
pψ − pφ cos θ

sin2 θ

)
+ κ0

cos θ cosφ

sin θ
, (4.59b)

ψ′ =

(
pψ − pφ cos θ

sin2 θ

)
− κ0

cosφ

sin θ
, (4.59c)

p′θ =
sin θ

m2
−
(
pφ − pψ cos θ

sin θ

)(
pψ − pφ cos θ

sin2 θ

)
− κ0 cosφ

(
pφ − pψ cos θ

sin2 θ

)
, (4.59d)

p′φ = −κ0

(
pθ cosφ+ sinφ

(
pψ − pφ cos θ

sin θ

))
, (4.59e)

p′ψ = 0. (4.59f)

The perturbation to the Hamiltonian is given by

H1 = sinφ0

(
pθ cos φ̄+ sin φ̄

(
1− cos θ

sin θ

))
+ cosφ0

(
pθ sin φ̄− cos φ̄

(
1− cos θ

sin θ

))

when pψ = pφ = 1. The partial derivatives of the perturbation to the Hamiltonian are

given by

∂H1

∂θ
=

sinφ0 sin φ̄− cosφ0 cos φ̄

1 + cos θ
and

∂H1

∂pθ
= sinφ0 cos φ̄+ sin φ̄ cosφ0. (4.60)
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It follows from the reversibilities of the homoclinic solutions that the first order Mel’nikov

function can be simplified over the half range

M(1)
h (φ0) = 2 cosφ0

∫ +∞

0
sin φ̄ sin θ

(
1 + cos θ

m2
+

1

1 + cos θ
+ p2

θ

)
ds

+ 2 sinφ0

∫ +∞

0
pθ cos θ sin φ̄ ds.

In contrast to the anisotropic case, there is no constant term in the Mel’nikov func-

tion, there are no bounds on the existence of transverse intersections of the stable and

unstable manifolds.

In figure 4.4.2 Poincaré sections which show the loss of integrability are presented.

The Poincaré sections were computed by fixing the integrals pψ = 1, H = h = 1/m2 and

placing the initial conditions near the (unperturbed) saddle: pθ (0) = θ (0) = 10−3 with

pφ (0) = 1 and solving H0 (θ, pθ, φ, pφ) = h for φ (0) on the nondimensional homoclinic

energy level when m = 1.7. The section itself was defined by

Σ0 = {cosφ = 0 : θ, pφ, pθ ∈ R} .

4.5 Consequences of Spatial Chaos

The construction of a Poincaré section is a little more involved of that for the Duffing

oscillator and follows the sections constructed by Devaney in [32]. Firstly let Σu,s be

general sections transverse to the flow of the unstable and stable manifolds respectively,

then consider sections on the homoclinic energy level Σu,s
h = Σu,s ∩H−1 (h). Now let

σu,s denote the intersection of the local stable manifold with Σu,s
h . So σu,s are the central

circles of the solid tori Σu,s
0 . For a homoclinic orbit γ let qu,s = γ ∩ σu,s.

Now define the Poincaré map Φ as the composition of two maps Φ0 and Φ1. Let Du,s

be discs in Σu,s
0 centred at the points qu,s. As the discs are on the homoclinic energy

surface and are tranverse to the flow the energy level there exists a Poincaré section

Φ1 : Du 7→ Ds. If Ds is sufficiently small, then a Poincaré map Φ0 : Ds − σs 7→ Σu
0 also
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Figure 4.5: Poincaré sections for initially curved rods on the unperturbed nondimensional ho-
moclinic energy level h = 1/m2 when m = 1.7 for varying levels of κ0 on the hypersection
determined by cosφ = 0. The figures illustrates a consequence of simple zeroes of the Mel’nikov
function as the lose of integrability which occurs for κ0 6= 0 through the typical plots, referred
to as “stochastic layers” in [45, pg. 222], associated with the Poincaré-Birkhoff theorem.
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exists. Let the Poincaré map for orbits γ on the local transverse sections Ds be defined

by Φ : Φ1 ◦ Φ0.

In a manner described in §2.3 and using the Poincaré section Φ then, by the Smale-

Birkhoff theorem there then exists a compact, invariant, hyperbolic set Λ ⊂ Σ on which

the Poincaré map is topologically conjugate to a Bernoulli shift.The physical implications

of the existence of horseshoes on the Poincaré section of the perturbed homoclinic are

that multi-modal configurations, with extreme sensitivity to initial conditions, now exist

when either ρ 6= 0 or κ0 6= 0.

For each reversibility there are two disjoint closed sets in the unperturbed phase

space with a pair of homoclinic orbits acting as a separatrix between right- and left-

handed solutions, see figure 4.1(a) for an illustration of the unperturbed phase space.

The dynamics in the vicinity of the homoclinic tangency however are spatially chaotic.

Now the perturbed solutions may pass through the regions in any prescribed sequence.

The sets can be chosen to lie in the vicinity of the saddle point; in the event of a multi-

modal homoclinic orbit, this implies that the perturbed solution passes through different

members of the set in any order. Thus the Poincaré map on the level set of the perturbed

homoclinic orbit is conjugate to a Bernoulli shift on two symbols. Consequently a mul-

tiplicity of solutions with an arbitrary large number of localised modes now exist. To

first order non-periodic orbits in the neighbourhood of the transverse homoclinic orbit

are quasi-random superpositions of single unperturbed homoclinic orbit.

The computation and continuation of multimodal solutions between two hyperbolic

fixed points is well known, so detail is presented in appendix §B.2 and §B.3 and can be

seen in figures 4.6, 4.7(a) and 4.7(b). Homoclinic orbits of the nonintegrable Kirchhoff rod

have a well defined bifurcation structure determined by accumulation and coalescence

rules [23, 95] which are described in detail in §B.5.
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Figure 4.6: The evolution of the Euler angle θ and its conjugate pθ, with respect to the nor-
malised arclength for the bimodal (red) and quadmodal (blue) homoclinic orbits when m = 1.7,
ν = 1/3 and ρ = 1/4. For comparison the primary (dotted) homoclinic orbit is displayed over
the half range. Note that the evolutions of the both θ and pθ in this case are different from the
integrable primary homoclinic orbit displayed in figure 4.2.
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Figure 4.7: As a consequence of the transverse intersection of the perturbed stable and un-
stable manifolds, anisotropic or initially curved rod will admit a multiplicity of multimodal
localised solutions. Subfigure 4.7(a) displays a R1-reversible bimodal homoclinic orbit, that is
a localised configuration essentially comprised of two primary localisations, labelled (P1, 0, P2),
for an anisotropic rod when ρ = 1/4, ν = 1/3, m = 1.70 and κ0 = 0. The shooting parameters
are given by δ = 3.339928 and T = 70.86311. Subfigure 4.7(b) displays a R2-reversible bimodal
(P1, P1) homoclinic orbit for an initially curved rod when ρ = 0, ν = 1/3, m = 1.70 and κ0 = 0.1.
The shooting parameters are given by δ = 1.27835 and T = 50.3568. For detail on the computa-
tion of such solutions, please see appendix §B.
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Chapter 5

Spatial Chaos in Extensible Rods

in a Uniform Magnetic Field

In this chapter the nine-dimensional noncanonical equilibrium equations for a rod

in a magnetic field are reduced by the three Casimirs to a six-dimensional canonical

system using Euler Angles. In the integrable case the reduction gives a four-dimensional

canonical system with a first integral and a Hamiltonian. By specifying an energy level

to constrain the orbits to a surface in three-dimensions, Poincaré sections yield closed

curves. By Mel’nikov’s method it is shown that for an extensible rod the presence of

the magnetic field destroys complete integrability through the loss of a first integral,

illustrated by Poincaré sections, in contrast to the regular dynamics of the integrable

case.

5.1 Reformulation

For clarity when describing the family of rod models, in §3 the governing equations

for a rod in a uniform magnetic field were presented in terms of the three field variables

(m, n,B). However, in order to apply a suitable perturbation to a canonical Hamiltonian

system it is necessary to express the magnetic field in terms of the unit vector e3 and a

bifurcation parameter relating to the magnitude of the magnetic effects λ = |B|. Thus
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the governing equations (3.36) can be expressed as




m

n

e3




′

=




m̂ n̂ ê3

n̂ λê3 0

ê3 0 0






u

v

0


 . (5.1)

The Casimirs of the system (3.40) are now given by

C1 =
1

2
n · n + λm · e3, (5.2a)

C2 = n · e3, (5.2b)

C3 = e3 · e3. (5.2c)

The integrals (3.41), conditionally dependent on B := B1 = B2 and J = K = H = 0 are

now given by

I1 = m3, (5.3a)

I2 = m · n +Bλe33. (5.3b)

5.2 Reduction to a Canonical System

In this section the three Casimirs (5.2) are used to reduce the nine-dimensional non-

canonical Hamiltonian system (5.1) to a six-dimensional canonical Hamiltonian system

using Euler angles. This is possible (at least locally) provided the structure matrix (3.36)

is of constant rank everywhere [76, §6.2]. The reduction is performed by constructing

a coordinate transformation from the nine coordinates (m, n, e3) to three Euler angles

q = (θ, ψ, φ) and their canonical momenta p = (pθ, pψ, pφ). The reduction follows [90]

but here the system is shown to be canonical. As it happens, the transformation is only

canonical subject to a non-alignment condition. The aligned case is also of interest and

is treated in §5.2.2.
If the magnetic field is directed along the e3 vector of the fixed coordinate system,

in the director frame it can be parameterised as

e3 (q) = R (q) k =



− sin θ cosφ
sin θ sinφ

cos θ


 , (5.4)
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where k = (0, 0, 1)T and R (q) is the rotation matrix (4.2).

On inserting the Euler angles into the strains (3.5) and using the constitutive re-

lations (3.8) and the orthonormality of the directors, the moments are parametrised

by (4.12)

m1 = pθ sinφ− cosφ

(
pψ − pφ cos θ

sin θ

)
,

m2 = pθ cosφ+ sinφ

(
pψ − pφ cos θ

sin θ

)
,

m3 = pφ.

The moments can be expressed in the compact matrix form as m = Lp (see (4.11)). The

force may be written as

n (q, p) = R (q) v (q, p) ,

for some non-constant triple v. Decomposing v into components parallel and perpendic-

ular to the magnetic field yields

v (q, p) = v⊥ (q, p) i⊥ + v‖ (q, p) i‖,

where i‖ and i⊥ are the unit triples parallel and perpendicular to k respectively.

Thus (5.2b) yields

C2 = n · e3 = Rv ·Rk

= v ·
(
RTR

)
k

= v‖. (5.6)

Hence the component of the force in the rod parallel to the magnetic field is constant.

Furthermore, from (5.2c)

C1 =
1

2
n · n + λm · e3 =

1

2
Rv ·Rv + λLp ·Rk

=
1

2
C2

2 +
1

2
v2
⊥ + λp ·

(
LRT

)
k, (5.7)
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which allows expressions for v⊥ as

v⊥ (q, p) =
√

2C1 − C2
2 − 2λp · (LRT ) k

=
√

2C1 − C2
2 − 2λpψ, (5.8)

where, without loss of generality, the positive solution is taken. If the vector perpendic-

ular to k is taken to be i⊥ = (1, 0, 0)T then

n = C2



− sin θ cosφ
sin θ sinφ

cos θ




+
√

2C1 − C2
2 − 2λpψ




cos θ cosφ cosψ − sinφ sinψ
− cos θ sinφ cosψ − cosφ sinψ

sin θ cosψ


 . (5.9)

Note that this transformation is well-defined as

v2
⊥ = 2C1 − C2

2 − 2λpψ ≥ 0. (5.10)

In contrast to the reduction of the Kirchhoff equations, the equations (5.4), (4.12)

and (5.9) give a representation of the three field variables in terms of all of the Euler

angles. In order for the noncanonical bracket (3.39) to be transformed into canonical

form it is necessary to verify that

GJGT = J̄ ,

where J is the structure matrix defined in (3.36) and J̄ is the standard canonical

structure matrix in R
6 and the G is the Jacobian matrix

G =
∂ (q, p)

∂ (m, n, e3)
. (5.11)
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Inverting the non-canonical variables (5.4), (4.12) and (5.9) yields

θ = cos−1 e33,

pθ =
m1e32 −m2e31√

1− e233
,

φ = tan−1 −e32
e31

,

pφ = m3,

ψ = cos−1


 n3 − C2e33√(

1− e233
) (

2C1 − C2
2 − 2λ (m1e31 +m2e32 +m3e33)

)


 ,

pψ = (m1e31 +m2e32 +m3e33) .

Explicitly, the transformation matrix G is given by

G =




0 0 0 0 0 0 0 0 −
√

1
1−e233

0 0 0 0 0 0
e32

e231+e232

−e31
e231+e232

0

g31 g32 g33 g34 g35 g36 g37 g38 g39
e32√
1−e233

−e31√
1−e233

0 0 0 0 −m2√
1−e233

m1√
1−e233

(m1e32−m2e31)e33
(1−e233)

3/2

0 0 1 0 0 0 0 0 0
e31 e32 e33 0 0 0 m1 m2 m3




,

where

g31 = −e31 (n3 − C2e33)

∆
, g32 = −e32 (n3 − C2e33)

∆
, g33 = −e33 (n3 − C2e33)

∆
,

g34 = 0, g35 = 0, g36 = − 1

∆
, g37 = −m1 (n3 − C2e33)

∆
, g38 = −m2 (n3 − C2e33)

∆

and

g39 =
C2

(
2C1 − C2

2 − 2λm · e3

)

∆

− (n3 − C2e33)
(
e33
(
2C1 − C2

2 − 2λm · e3

)
−m3 (1− e33/C2)

)

∆

with the denominator given by

∆ =
(
2C1 − C2

2 − 2λm · e3

)√(
1− e233

) (
2C1 − C2

2 − 2λm · e3

)
− (n3 − C2e33)

2.
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The non-canonical structure matrix is given by

J =




0 −m3 m2 0 −n3 n2 0 −e33 e32
m3 0 −m1 n3 0 −n1 e33 0 −e31
−m2 m1 0 −n2 n1 0 −e32 e31 0

0 −n3 n2 0 −e33 e32 0 0 0
n3 0 −n1 e33 0 −e31 0 0 0
−n2 n1 0 −e32 e31 0 0 0 0
0 −e33 e32 0 0 0 0 0 0
e33 0 −e31 0 0 0 0 0 0
−e32 e31 0 0 0 0 0 0 0




,

while the canonical structure matrix is given by

J̄ =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0



.

The calculation can be verified using a symbolic manipulation program. The transforma-

tion is proper provided that v⊥ > 0, i.e., provided that n and e3 are not aligned. Without

this condition the necessary inverse transformation does not exist as ∆ = 0. Note that

n and e3 are aligned if and only if

2C1 − C2
2 = 2λm · e3. (5.12)

By differentiating the Casimir (5.2a) and using the governing equation (5.1) the following

holds

2λ
d

ds
(m · e3) = − d

ds
(n · n) = 2d3 · (e3 × n), (5.13)

which is zero if n and e3 are aligned. Thus the alignment condition is well defined: if the

force and the magnetic field are aligned anywhere on the rod they are aligned everywhere

along the rod. As remark 4.3.2 states, the alignment condition does not prohibit the

existence of homoclinic orbits.
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5.2.1 The Isotropic Case

In the isotropic case (B := B1 = B2) the Hamiltonian (3.37) reduces to

H =
1

2B
p2
θ +

(
pψ − pφ cos θ

)2

2B sin2 θ
+

1

2C
p2
φ + C2 cos θ

+ sin θ cosψ
√

2C1 − C2
2 − 2λpψ. (5.14)

Since this Hamiltonian does not depend on the angle φ the momentum pφ = m3 is a

constant. The isotropic Hamiltonian still has rotational symmetry about the d3 axis.

Note that the rod is no longer rotationally symmetric about the axis e3. Also note that

the effect of the magnetic field, which previously was encoded in the Casimirs is now in

the Hamiltonian.

The additional integral (3.41b) in canonical variables reads

I = λB cos θ + C2pψ

−
√

2C1 − C2
2 − 2λpψ

(
pθ sinψ − cosψ

(
pφ − pψ cos θ

sin θ

))
, (5.15)

rendering the system completely integrable.

Hamilton’s equations are

θ′ =
pθ
B
, (5.16a)

ψ′ =
(pψ − pφ cos θ)

B sin2 θ
− λ cosψ sin θ√

2C1 − C2
2 − 2λpψ

, (5.16b)

p′θ =

(
pψ cos θ − pφ

)(
pψ − pφ cos θ

)

B sin3 θ
+ C2 sin θ

− cos θ cosψ
√

2C1 − C2
2 − 2λpψ, (5.16c)

p′ψ = sin θ sinψ
√

2C1 − C2
2 − 2λpψ. (5.16d)

Helical solutions about e3 have fixed point solutions θ = θ∗ 6= 0 and ψ′ = ψ∗ 6= 0. On

substituting the conditions in to the governing equations then (5.16d) is separable

p′ψ = − sin θ∗ sin (ψ∗s+ ψ0)
√

2C1 − C2
2 − 2λpψ (5.17)
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and can be integrated so that an expression for pψ can be found

pψ (s) =
2C1 − C2

2

2λ
− 1

2λ

(√
2C1 − C2

2 − 2λpψ (0) +
λ

ψ∗ (1− sin θ∗) cos (ψ∗s+ ψ0)

)2

(5.18)

Inserting the result into (5.16b) yields

ψ∗ =
2C1 − C2

2 − 2λpφ cos θ

2λ sin2 θ∗
−
ψ∗
√

2C1 − C2
2 − 2λpψ (0) + λ (1− sin θ∗) cos (ψ∗s+ ψ0)

2λψ∗ sin2 θ∗

+
λ sin θ∗ cosψ∗s

2

√√
2C1 − C2

2 − 2λpψ (0) +
λ

ψ∗ (1− sin θ∗) cos (ψ∗s+ ψ0)

which does not permit solutions for ψ′ = ψ∗ and θ∗ 6= 0. Thus helices can not be expressed

in this parameterisation.

By fixing the level sets of the integrals I and H, solution of the four-dimensional

Hamiltonian system (5.16) exist in a three-dimensional space. Through Poincaré sections

closed curves can be computed in the plane. Figure 5.1 shows Poincaré sections for

Σα = {cosψ = α : θ, pψ, pθ ∈ R} (5.19)

with α = 0.3, 0.5, 0.7 and 0.9 for a variety of values of H when the integral is fixed as

I = 1.00995. The self intersection is an artifact of the projection onto the (θ, pθ) plane.

Remark 5.2.1. The situation is comparable to the Kovalevskaya case for the Kirchhoff

rod (4.24) in that the Euler angles reduce the system to a four-dimensional canonical

Hamiltonian system with a first integral. Figure 5.1 gives insight into the topology of the

energy surfaces. If a ‘comprehensive Poincaré section’ as in [37, Figure 2] could be created

which distinguishes between configurations, then in the four-dimensional phase space the

integrals (5.14) and (5.15) could be associated with action integrals. Thus energy surfaces

could be constructed in the space of action variables.

5.2.2 Alignment of Force and Field – the Superintegrable Case

It has already been shown that if force and field are aligned anywhere then they are

aligned everywhere. From (3.34) it follows that d3 × e3 = 0 = d3 × n, i.e., n is aligned
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Figure 5.1: Poincaré plots for (5.16) with various sections. In each diagram orbits are dis-
played for energy levels H = 1.90 (red), 1.50 (blue) and 1.37 (cyan), while I = 1.00995, λ = 0.1,
C1 = 1.02, C2 = C3 = pφ = 1 and C/B = 3/4.

with d3. If this is the case it then follows from the governing equation (5.1) that m is

constant also. This means that solutions are twisted straight rods. Hence the aligned case

is maximally superintegrable with solutions lying on one-tori. The corresponding result

holds for the rod in a non-uniform magnetic field (3.44). In this case if the magnetic

field and the curvature of the field are aligned anywhere on the rod they are aligned

everywhere along the rod and hence aligned along d3. Note that this conclusion holds

irrespective of whether the rod is isotropic or not.

5.3 The Application of Mel’nikov’s Theory

It has been shown in §4.3.1 and §3.3.3 that both an isotropic, extensible Kirchhoff

rod and an isotropic, inextensible rod in a magnetic field are completely integrable. A

95



5.3. Application of Mel’nikov’s Theory 5. Extensibility and Spatial Chaos

condition on both the Lax pair (3.47) and the integral (3.41b) is that the rod must be

inextensible. In this section, by decomposing the possible perturbations applied to the

Hamiltonian of an extensible rod in a magnetic field, it will be shown that it is the

interaction between extensibility and the magnetic field which destroys integrability as

alone neither effect alters the integrability of the unperturbed system.

When the field variables (m, n, e3) are parametrised by (4.12), (5.4) and (5.9) the

Hamiltonian function for an extensible rod in a magnetic field is given by

H (θ, ψ, pθ, pψ, pφ) =
1

2B
p2
θ +

1

2B

(
pψ − pφ cos θ

sin θ

)2

+ C2 cos θ

(
C2 cos θ

(
1

K
− 1

J

)
+ 1

)

+

(
C2 cos θ

(
1

K
− 1

J

)
+ 1

)
sin θ cosψ

√
2C1 − C2

2 − 2λpψ

+

(
1

K
− 1

J

)
sin2 θ cos2 ψ

(
2C1 − C2

2 − 2λpψ
)
. (5.20)

The Hamiltonian is constant on the energy-density level with E = H (θ, ψ, pθ, pψ, pφ).

It can be shown, as was performed in the previous section, that the transformation is

canonical.

From the Hamiltonian (5.20) there are three possible cases to be considered:

-

6

ε

λ

O (δ)

O (δ)

(i)

(ii)

(iii)

(i) Firstly to consider the unperturbed system to be the Kirchhoff system and let both

extensibility and the magnetic field be rescaled as perturbation of equal order.

(ii) Secondly to consider the unperturbed system to be the extensible Kirchhoff rod

and let the effect of the magnetic field be the perturbation parameter.
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(iii) Finally to consider the unperturbed system to be an inextensible rod in a uniform

magnetic field and let the effect of extensibility be the perturbation parameter.

As proved in lemma 2.2.3, the first order approximation of the Mel’nikov integral

can be computed from a canonical Poisson bracket. From the bilinearity of the Poisson

bracket when both extensibility and the magnetic field are of equal order and sufficiently

small, as in case (i), the first order terms are the sum of the two integrable perturbations.

To first order the Mel’nikov integral is zero. However, the second order terms in the

Melnikov integral are from the product of the two integrable perturbations. It will be

shown that the interaction between the two integrable perturbations results in simple

zeroes of the Mel’nikov function and the loss of integrability.

If extensibility is an order of magnitude greater than the magnetic field, as in case (ii),

then the interaction between the two integrable perturbations will appear at first order in

the Mel’nikov integral since there will be coupling through the unperturbed homoclinic

orbit (which is dependent on extensibility) and the first order perturbation (which is

dependent on the magnetic field). Thus, for cases (ii) and (iii) it is sufficient to perform

Mel’nikov analysis to first order to find simple zeroes. However, for case (iii) the un-

perturbed system has yet to be expressed as a single degree of freedom system. Instead

case (iii) and the parameter regime where both extensibility and the magnetic field are

O (1) will be investigated numerically in §6.2.1.

5.3.1 Case (i): Perturbing the Kirchhoff Rod

For the reduced canonical system (5.20), on setting

2C1 − C2
2 = 0, λ = 0 and C2

2

(
1

J
− 1

K

)
= 0 (5.21)

the unperturbed inextensible system (4.20) is recovered. In order to apply a suitable

perturbation to the Hamiltonian it is necessary to scale the system as

2C1 − C2
2 = aδ2, λ = bδ2 and C2

2

(
1

J
− 1

K

)
= cδ (5.22)
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for a, b, c ∈ R where a, b, c ∼ O (1) such that a > 2bpψ and δ is a small perturbation.

Thus, the δ-perturbed Hamiltonian takes the form

Hδ (θ, pθ, ψ, pψ) = H0 (θ, pθ, pψ) + δ
(
Hλ1 (θ, ψ, pψ) +Hε1 (θ)

)

+ δ2Hελ2 (θ, ψ, pψ) + δ3Hελ2

3 (θ, ψ, pψ) +O
(
δ4
)

(5.23)

where

H0 =
1

2B
p2
θ +

1

2B

(
pψ − pφ cos θ

sin θ

)2

+ C2 cos θ, (5.24a)

Hλ1 =
√
a− 2bpψ sin θ cosψ, (5.24b)

Hε1 = c cos2 θ, (5.24c)

Hελ2 = c
√
a− 2bpψ cos θ sin θ cosψ, (5.24d)

Hελ2

3 = c (a− 2bpψ) sin2 θ cos2 ψ (5.24e)

In (5.23) the subscripts of the perturbations are the orders of magnitude of the pertur-

bation and the superscripts describe the composition of the perturbation.

When δ = 0 the trivial equilibrium (4.26) is a hyperbolic saddle and from (4.38)

so ω0 (s) > 0 ∀s. Thus the two conditions (H1) and (H2) specified in §2.2 are satisfied.

Hence Mel’nikov’s method can be performed. From lemma 2.2.3 the first order Mel’nikov

integral can be expressed through a canonical Poisson bracket formulation. The bilin-

earity of the bracket allows the perturbartions to be decomposed into their constituent

parts.

M(1)
h (ψ0) =

∫ +∞

−∞

{
H0,
Hε1 +Hλ1

ω0

}

(θ,pθ)

ds =

∫ +∞

−∞

{
H0,
Hε1
ω0

}

(θ,pθ)

+

{
H0,
Hλ1
ω0

}

(θ,pθ)

ds.

where the frequency ω0 (s) is given by

ω0 (s) =
∂H0

∂pψ
=
pψ − pφ cos θ

sin2 θ

=
1

1 + cos θ
(5.25)

with pψ = pφ = 1 for homoclinic solutions (4.38).
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The partial derivatives are given by

∂H0

∂θ
= sin θ

(
1

B (1 + cos θ)2
− C2

)
, (5.26a)

∂H0

∂pθ
=
pθ
B
, (5.26b)

∂ω0

∂θ
=

sin θ

B (1 + cos θ)2
, (5.26c)

∂ω0

∂pθ
= 0, (5.26d)

∂Hλ1
∂θ

= −2c sin θ cos θ, (5.26e)

∂Hλ1
∂pθ

= 0, (5.26f)

∂Hλ1
∂θ

=
√
a− 2bpψ sin θ cosψ, (5.26g)

∂Hλ1
∂pθ

= 0. (5.26h)

As the perturbation (2.9) is independent of ψ so following [45, Eq. (4.5.15)] and using

Green’s theorem, the natural result appears
∫ +∞

−∞

{
H0,
Hε1
ω0

}

(θ,pθ)

ds =

∫ +∞

−∞
f0 ∧ f1 dψ

=

∫ +∞

−∞

(
∂I(0)

∂θ

∂I(1)

∂pθ
− ∂I(0)

∂pθ

∂I(1)

∂θ

)
dψ

=

∫ +∞

−∞

(
∂I(1)

∂pθ
p′θ −

∂I(1)

∂θ
θ′
)

dψ

=

∮

∂Γ

(
∂I(1)

∂pθ
dpθ −

∂I(1)

∂θ
dθ

)

=

∫∫

Γ

(
∂2I(1)

∂pθ∂θ
− ∂2I(1)

∂θ∂pθ

)
dθ dpθ = 0. (5.27a)

By recalling that θ (s) is an even function of arc-length and pθ (s) an odd function, it

follows that
∫ +∞

−∞

{
H0,
Hλ1
ω0

}

(θ,pθ)

ds = −
√
a− 2bpψ

∫ +∞

−∞
pθ cos θ (1 + cos θ) ds = 0. (5.27b)

Hence, the first order Mel’nikov integral, comprised of the combined first order effects

is trivially zero, i.e. M(1)
h (ψ0) = 0. Thus, as described in §2.2 higher order terms must
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be computed. The analysis must now be performed in a nonautonomous system (2.17)

where the action integral pψ plays the role of the Hamiltonian and ψ acts as the new time

variable. For this case the first order approximations to the homoclinic orbit θs,u1 (ψ,ψ0),

ps,uθ1 (ψ,ψ0) must be computed.

On inverting the Hamiltonian, the unperturbed action integral is given by

I(0) (θ, pθ) = pφ cos θ ± sin θ
√

2EB − 2C2B cos θ − p2
θ. (5.28)

For consistency the positive square root is taken at all times. The frequency ω0 (ψ) is

given by

ω0 (ψ) =

√
2EB − 2C2B cos θ − p2

θ

sin θ
. (5.29)

The unperturbed nonautonomous integrable system is

d

dψ
θ =

pθ sin θ√
2EB − 2C2B cos θ − p2

θ

, (5.30a)

d

dψ
pθ = −pφ sin θ + cos θ

√
2EB − 2C2B cos θ − p2

θ

+
C2B sin2 θ√

2EB − 2C2B cos θ − p2
θ

. (5.30b)

The unperturbed vector field is denoted by f0 =
(
∂I(0)/∂pθ,−∂I(0)/∂θ

)T
. This nonlin-

ear coupled system is integrable and admits a homoclinic orbit. However, closed form

expressions for the homoclinic orbit are difficult to find. For example, it is not possible to

solve the system as was done in §4.3. Nor is it possible to use (4.38) to invert ψ = ψ (s)

for s so that an expression for s = s (ψ) can be substituted into the homoclinic orbit

θ = θ (s) to give θ = θ (ψ). Instead the orbit is evaluated numerically by noting that the

system is still reversible, so that pθ (0) = 0 and thus from the homoclinic energy level

θ (0) = 2π/3. From this point the homoclinic orbit can be found by integrating forwards

and backwards in ψ from ψ = 0.

The derivative of ω0 with respect to pψ is required in order to find the second order
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Figure 5.2: Homoclinics of the transformed unperturbed system integrated forwards and back-
wards from ψ0 = 0.

terms from the expansion of the Hamiltonian (2.16). Hence

∂2H0

∂I(0)
=
∂ω0

∂pψ
=

1

sin2 θ
. (5.31)

Thus, from (2.16) the first order nonautonomous perturbation is then given by

I(1) (θ, pθ, ψ) =

sin θ


cos2 θ + sin θ cosψ

√

a− 2b

√
pφ cos θ + sin θ

√
2EB − 2C2B cos θ − p2

θ




√
2EB − 2C2B cos θ − p2

θ

.

(5.32)

Thus f1 can be found and hence its Jacobian Df1. Their closed form expressions are

long and complex and thus are omitted.

The second order perturbation is given by

I(2) = Bb sin4 cos2 ψ +
Bbc cos2 θ sin3 θ cosψ√

a− b
√
pφ cos θ ± sin θ

√
2EB − 2C2B cos θ − p2

θ

+Bc sin3 θ cos θ cosψ

√

a− b
√
pφ cos θ ± sin θ

√
2EB − 2C2B cos θ − p2

θ. (5.33)

Hence f2 can be found. Again, the closed form expressions are extremely long and are

omitted.

From f1 and Df0 the first order approximations to the tangential flow can be found
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from the first order variational equation (2.34) linearised about the homoclinic solu-

tions (5.30)

(
θs,u1

ps,uθ1

)′
=

(
−∂2I(0)/∂θ∂pθ −∂2I(0)/∂θ2

∂2I(0)/∂p2
θ ∂2I(0)/∂pθ∂θ

)(
θs,u1

ps,uθ1

)
+

(
−∂I(1)/∂pθ
∂I(1)/∂θ

)
.

As the equation is linearised about a homoclinic solution which cannot be found ana-

lytically, the equation must be solved numerically. The solutions to the equation (2.34)

must be bounded and transverse to the flow of the unperturbed homoclinic orbit (2.35).

This condition essentially requires the initial conditions θs,u1 (ψ0, ψ0), p
s,u
θ1

(ψ0, ψ0) to be

those such that the solutions have exponential dichotomies (see §B.3.1 for further de-

tails). In [77, Corollary 4.3] it is shown that as the linearised vector field Df0 (x0) has

an exponential dichotomy, then if
(
−∂I(1)/∂pθ, ∂I

(1)/∂θ
)T

is bounded and its partial

derivatives continuous then the variational equation linearised about the homoclinic so-

lution has a unique solution with an exponential dichotomy. Figure 5.3 shows that the

necessary conditions are satisfied.

An algorithm to compute the second order Mel’nikov integral (2.33) is outlined as

follows:

(i) Fix a value of ψ0.

(ii) Compute the homoclinic orbit (θ, pθ), the first and second order perturbations

f1 and f2 and their partial derivatives over the ranges [−T , ψ0] and [ψ0,+T ] by

integrating forwards and backwards from ψ0. The length T should be chosen so

that the homoclinic orbit is less than a prescribed tolerance close to the saddle

point.

(iii) The integral
∫ +T
−T f0 (x0 (ψ − ψ0)) ∧ f2 (x0 (ψ − ψ0) , ψ) dψ can be computed di-

rectly from the homoclinic orbit.

In order to compute θs,u1 (ψ,ψ0) and ps,uθ1 (ψ,ψ0) as solutions to the first order variational

equation (2.34), from (2.35) the solutions must be bounded and transverse to the un-

perturbed homoclinic orbits. Thus, the two pairs of initial conditions for the stable and

unstable first order approximations θs,u1 (ψ0, ψ0) and ps,uθ1 (ψ0, ψ0) must be chosen so that

they satisfy these two conditions. This is done as follows
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Figure 5.3: In subfigure 5.3(a) the first components of the forces are in red, the second compo-
nents in blue. In subfigure 5.3(b) the total derivatives are displayed while in subfigure 5.3(c) the
partial derivatives ∂f01/∂θ (red), ∂f01/∂pθ (blue), ∂f02/∂θ (cyan) and ∂f02/∂pθ (magenta) are
displayed. Note that ∂f01/∂θ = −∂f02/∂pθ as the system is Hamiltonian, hence trace (Df0) = 0.
In the subfigures a = 5, b = 1 and c = 1. B = 1, C1 = 1.665, C2 = 1 and E = C2.

(iv) Specify the transversality condition using the initial conditions

θs,u1 (ψ0, ψ0) = −
ps,uθ1 (ψ0, ψ0)

∂I0
∂θ

∂I0
∂pθ

(v) Determine an interval by upper and lower bounds which diverge to −∞ and +∞
respectively and use a bisection method to trap the initial condition ps,uθ1 (ψ0, ψ0)

which determines bounded and transverse solutions of θs,u1 (ψ,ψ0) and ps,uθ1 (ψ,ψ0).

(vi) For the correct initial conditions compute the first order approximation to the

stable and unstable manifolds and then compute the appropriate integrals via a

quadrature subroutine cubint.f.
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(vii) Incrementally change ψ0 by a sufficiently small amount and repeat the algorithm

from step (ii) until simple zeroes are detected.

The tolerances for the convergence of the bisection method were set as 10−10 and the

tolerances for the truncated homoclinic set as 10−12. The error returned by the subroutine

cubint.f was of order 10−6. For step (i) the initial phase condition was ψ0 = 0 and a

suitable truncation length was T = 5.

The bisection method was chosen as it was found to behave in a more robust manner

than other solvers such as the Newton-Raphson method. However, the algorithm requires

the correct solution to be within a specified interval. In order for the root to be trapped

for successive iterations the interval was large, this along with the linear convergence

of the method meant the algorithm converges very slowly. As both stable and unstable

approximations need to be computed the search for the correct initial conditions was a

rather time consuming process.

The algorithm is not shown to be well posed, but was successfully tested on the

rotator pendulum system [78] and the modified Duffing oscillator. Indeed, after finding

that many examples of second order Mel’nikov integrals were from the rotator-pendulum

system, the modified Duffing oscillator was formulated to provide an alternative model

which allowed the algorithm to be tested against a known solution.

Figure 5.4 illustrates that the second order Mel’nikov integral has a simple zero.

Performing Mel’nikov analysis numerically does not prove that generically the stable and

unstable manifolds intersect transversely as there is no closed form analytical expression

of the splitting of the manifolds. The numerical results only shows that at a certain set

of values the stable and unstable manifolds intersect transversely.

The contributions to the second order Mel’nikov integral from the first order approx-

imations θs,u1 (ψ,ψ0) and ps,uθ1 (ψ,ψ0) dominated in contrast to the far smaller sinusoidal

term provided by
∫ +T
−T f0 ∧ f2 dψ. This behaviour was also observed for the modified

Duffing oscillator as illustrated in figure 2.4.
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Figure 5.4: Second order Mel’nikov integral showing the existence of a simple zero.

5.3.2 Case (ii): Perturbing the Extensible Rod

For the reduced canonical system (5.20), on setting

2C1 − C2
2 = 0 and λ = 0 (5.34)

the unperturbed extensible system (4.40) is recovered. The trivial equilibrium is a hy-

perbolic saddle and ω0 (s) > 0 ∀s. Thus, having satisfied the two conditions specified

in §2.2 Mel’nikov’s method can be performed on the unperturbed inextensible Hamilto-

nian. However, in order to express the Hamiltonian in the appropriate form (2.5) it is

necessary to introduce a parameter δ such that

2C1 − C2
2 = aδ and λ = bδ2. (5.35)

for a, b ∈ R, where a, b ∼ O (1) such that a > 2bpψ and δ is a small parameter. Hence

when an extensible conducting rod is perturbed by the effect of a uniform magnetic field

the perturbation of the Hamiltonian takes the form

Hδ (θ, ψ, pθ, pψ, pφ) = H0 (θ, pθ, pψ, pφ) + δH1 (θ, ψ, pθ, pψ, pφ) +O
(
δ2
)
,

where the unperturbed system is given by

H0 =
1

2B
p2
θ +

1

2B

(
pψ − pφ cos θ

)2

sin2 θ
+

1

2C
p2
φ + C2 cos θ + C2

2

(
1

K
− 1

J

)
cos2 θ (5.36)
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and the first order term is given by

H1 (θ, ψ, pψ) =
√
a− 2bpψ

(
C2

(
1

K
− 1

J

)
cos θ + 1

)
sin θ cosψ.

Thus Mel’nikov’s method can be applied to give an approximation to the splitting of the

stable and unstable manifolds.

The frequency of the angle ψ in the unperturbed case when pψ = pφ = B is given by

ω0 =
∂H0

∂pψ
=

1

1 + cos θ
(5.37)

where the closed form expressions for the angle θ (s) and its conjugate pθ (s) are known

and given from (4.50). Hence ψ (s) can be found directly. Let ψ (s) = ψ̄ (s) + ψ0 so that

the first order perturbation to the Hamiltonian is

H1 =
√
a− 2bpψ

(
C2

(
1

K
− 1

J

)
cos θ + 1

)
sin θ

(
cos ψ̄ cosψ0 − sin ψ̄ sinψ0

)
.

From the first order Mel’nikov integral (2.36), the canonical Poisson bracket can be

expanded as

M(1)
h (ψ0) =

∫ +∞

−∞

{
H, H1

ω0

}

(θ,pθ)

ds

=

∫ +∞

−∞

1

ω0

{H0,H1}(θ,pθ) +
H1

ω2
0

{H0, ω0}(θ,pθ) ds. (5.38)

The partial derivatives are given by

∂H0

∂θ
= sin θ

(
1

(1 + cos θ)2
− C2

(
1 +

(
1

K
− 1

J

)
cos θ

))
,

∂H0

∂pθ
=
pθ
B
,

∂ω0

∂θ
=

sin θ

(1 + cos θ)2
,

∂ω0

∂pθ
= 0,

∂H1

∂θ
=
√
a− 2bpψ

(
cos θ + C2

(
1

K
− 1

J

)
cos 2θ

)(
cosψ0 cos ψ̄ − sinψ0 sin ψ̄

)
,

∂H1

∂pθ
= 0.
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Hence, the brackets may be evaluated as

1

ω0
{H0,H1}(θ,pθ) =

1

B

√
a− 2bpψ (1 + cos θ) pθ

(
cos θ + C2

(
1

K
− 1

J

)
cos 2θ

)
cos ψ̄ cosψ0

− 1

B

√
a− 2bpψ (1 + cos θ) pθ

(
cos θ + C2

(
1

K
− 1

J

)
cos 2θ

)
sin ψ̄ sinψ0

and

H1

ω2
0

{H0, ω0}(θ,pθ) =
1

B

√
a− 2bpψpθ

(
C2

(
1

K
− 1

J

)
cos θ + 1

)
sin θ

(
cos ψ̄ cosψ0 − sin ψ̄ sinψ0

)
.

Thus, in contrast to the previous analysis, a closed form expression for the Mel’nikov

integral can be found as

M(1)
h (ψ0) =

1

B

√
a− 2bpψ cosψ0

∫ +∞

−∞
pθ cos ψ̄

(
(1 + cos θ)

(
cos θ + C2

(
1

K
− 1

J

)
cos 2θ

)

+ sin θ

(
1 + C2

(
1

K
− 1

J

)))
ds

− 1

B

√
a− 2bpψ sinψ0

∫ +∞

−∞
pθ sin ψ̄

(
(1 + cos θ)

(
cos θ + C2

(
1

K
− 1

J

)
cos 2θ

)

+ sin θ

(
1 + C2

(
1

K
− 1

J

)))
ds. (5.40)

As pθ (s) is an odd function and θ (s) an even function of the arclength s, the first

and fourth parts of the Mel’nikov integral (5.40) are odd functions and are zero when

integrated over a symmetric range. Thus

M(1)
h (ψ0) =

2

B

√
a− 2bpψ cosψ0

∫ +∞

0
pθ cos ψ̄ sin θ

(
1 + C2

(
1

K
− 1

J

)
cos θ

)
ds

− 2

B

√
a− 2bpψ sinψ0

∫ +∞

0
pθ sin ψ̄ (1 + cos θ)

(
cos θ + C2

(
1

K
− 1

J

)
cos 2θ

)
ds.

Generically the Mel’nikov integral will have simple zeroes when a− 2bpψ > 0. Indeed,

the restriction is a natural facet of the scaling since

a− 2bpψ = 0⇐⇒ 2C1 − C2 − 2λpψ = 0

which is in fact the alignment condition (5.10). There may be isolated points, depen-

dent on the constitutive relations and the values of the Casimirs, where the Mel’nikov

integral is zero but these will form a codimension-one set since the Mel’nikov integral is
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analytic [52]. In figure 5.5 the Mel’nikov integral is displayed showing that the integral

possesses simple zeroes.

Hence by Mel’nikov’s theorem 2.2.1 the transversal intersection of the unstable and

unstable manifolds lead to Smale horseshoes on the Poincaré section of the homoclinic

energy level which are conjugate to a Bernoulli shift in exacly the same manner as

illustrated in the previous chapter §4.5 as both systems have qualatatively the same

unperturbed phase space. In the next chapter the bifurcation structure of the multimodal

solutions are investigated.

By the corollary 2.2.2 the system is no longer completely integrable. This phenomena

is illustrated in figure 5.6 which clearly show the breakup of integrability into the typical

plots, referred to as “stochastic layers” in [45, pg. 222], associated with the Poincaré-

Birkhoff theorem. The Poincaré sections were computed by fixing the integrals pφ = 1,

H = E = C2 (1 + C2 (1/K − 1/J)) and placing the initial conditions near the (unper-

turbed) saddle: pθ (0) = θ (0) = 10−3 with pφ (0) = 1 and solving H0 (θ, pθ, φ, pφ) = E

for ψ (0) on the nondimensional homoclinic energy level. The two-dimensional section

was defined by

Σ−0.95 = {cosφ = −0.95 : θ, pψ, pθ ∈ R} .
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Figure 5.5: Mel’nikov integrals evaluate at homoclinic energy density level
E = C2 (1 + C2 (1/K − 1/J)) where B = 1, M = 1.70, T = 1. Subfigure 5.5(a) displays a
functions at differing degrees of extensibility (1/K − 1/J) = 0.1 (red), 0.12 (blue), 0.14 (cyan),
0.16 (magenta), 0.18 (yellow) and 0.2 (green) when C2 = 1. In subfigure 5.5(a) extensibility is
fixed (1/K − 1/J) = 1 and C2 = 1 (red), 1.2 (blue), 1.4 (cyan), 1.6 (magenta), 1.8 (yellow) and
2 (green).
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Figure 5.6: Poincaré sections on the homoclinic energy level h = 1.109756 for varying levels of
λ at the section determined by cosψ = −0.95. The Casimirs are C1 = C2 = C3 = 1, the bend-
ing stiffness B = 1, the torsional stiffness C = 4/3, the applied moment is M = 1.70 and the
compressive stiffnesses are J = 1, K = 50/41.
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Chapter 6

Homoclinic Bifurcation of a Rod

in a Magnetic Field

Having proved the existence of spatially chaotic solutions for an extensible rods in

a magnetic field in §5.3, in this chapter homoclinic solutions are computed and their

bifurcation structure investigated for both primary and multimodal solutions.

The computation and continuation of homoclinic solutions requires that the arc-

length be truncated from the infinite domain to a finite interval. The computation of

homoclinic orbits then becomes a boundary value problem where the lefthand bound-

ary conditions are placed in the unstable mainfold of the trivial equilibrium and, for

reversible systems the righthand boundary conditions in the symmetric section of a re-

versibility (6.21). The boundary value problem is then solved by a shooting method

using the Newton-Raphson method to solve a variational equation with respect to a set

of shooting parameters. Configurations are then followed using continuation software

by exploiting the exponential trichotomies of the system. Due to the magnetic effects

the trivial solution is a periodic orbit, so specific details of the computation and con-

tinuation of homoclinic orbits are explained in this chapter. However, for details on the

computation and continuation of homoclinic solutions, see appendix §B.
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6.1 Problem Setting

In order to increase computational efficiency the Euler parameters q = (q1, q2, q3, q4)

are used to reduce the dimension of the full system by parameterising the directors. The

rotation matrix (3.2) is then given by

R =




q21 − q22 − q23 + q24 2 (q1q2 − q3q4) 2 (q1q3 + q2q4)
2 (q1q2 + q3q4) q22 + q24 − q21 − q23 2 (q2q3 − q1q4)
2 (q1q3 − q2q4) 2 (q1q4 + q2q3) q23 + q24 − q21 − q22


 . (6.1)

The four Euler parameters give a double covering of the set of rotations subject to the

constraint

Q = q · q = q21 + q22 + q23 + q24 = 1. (6.2)

The Euler parameters are robust in that unlike the Euler angles there is no polar singu-

larity. For more details on the Euler parameters and their relation to the Euler angles

see appendix §A.

From (3.5) the strains can be written as

ui =
2Ai q · q′
q · q for i = 1, 2, 3 (6.3)

where the Ai are four-by-four skew-symmetric matrices satisfying the relationships

A1q = (q4, q3,−q2,−q1) ,

A2q = (−q3, q4, q1,−q2) ,

A3q = (q2,−q1, q4,−q3) .

The four vectors {q,A1q,A2q,A3q} form an orthonormal basis in R
4. Thus (6.3) subject

to (6.2) can be inverted and solved for the derivatives of the Euler parameters as

q′1 = (u1q4 − u2q3 + u3q2) /2, (6.4a)

q′2 = (u1q3 + u2q4 − u3q1) /2, (6.4b)

q′3 = (−u1q2 + u2q1 + u3q4) /2, (6.4c)

q′4 = (−u1q1 − u2q2 − u3q3) /2. (6.4d)
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From (6.1) the triple e3 can be expressed as a function of the Euler parameters.

e3 (q) =




2 (q1q3 + q2q4)
2 (q2q3 − q1q4)
q23 + q24 − q21 − q22


 . (6.5)

The constitutive relations take the form

u1 = m1/B1, u2 = m2/B2, u3 = m3/C and v3 = 1 + n3/J (6.6)

where B = B1 = B2 so that the rod is isotropic. It is assumed that a moment, M , and

tension, T , are applied axially at s = ±∞. The system is then nondimensionalised by

s̄ = (M/B) s, x1 = n1/T, x2 = n2/T, x3 = (n3 − T ) /T,
x4 = m1/M, x5 = m2/M, x6 = (m3 −M) /M,
x7 = q1, x8 = q2, x9 = q3 and x10 = q4.

(6.7)

The nondimensional parameters for an extensible rod are then given by

m =
M√
BT

, λ̄ =
λB

M
, ν =

B

C
− 1 and ε =

T

J
. (6.8)

The nondimensional parameters are the same as those in (4.1) with the additional pa-

rameter λ̄ as the (magnetic) body force parameter. The bar notation is suppressed from

this point onwards. Thus, explicitly the governing equations are

x′1 = (1 + ν)x2x6 − x3x5 + 2λ (1 + εx3) (x7x10 + x8x9) , (6.9a)

x′2 = x3x4 − (1 + ν)x1x6 − 2λ (1 + εx3) (x7x9 − x8x10) , (6.9b)

x′3 = x1x5 − x2x4, (6.9c)

x′4 = νx5x6 + x2 (1 + εx3) /m
2, (6.9d)

x′5 = −νx4x6 − x1 (1 + εx3) /m
2, (6.9e)

x′6 = 0, (6.9f)

x′7 = (x4x10 − x5x9 + (1 + ν)x6x8) /2, (6.9g)

x′8 = (x4x9 + x5x10 − (1 + ν)x6x7) /2, (6.9h)

x′9 = (−x4x8 + x5x7 + (1 + ν)x6x10) /2, (6.9i)

x′10 = (−x4x7 − x5x8 − (1 + ν)x6x9) /2. (6.9j)
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It is a straightforward exercise to check that the Casimirs (3.40),

C1 =
1

2
x2

1 +
1

2
x2

2 +
1

2
x2

3 + 2λx4 (x7x9 + x8x10) + 2λx5 (x8x9 − x7x10)

+ λx6

(
x2

10 + x2
9 − x2

8 − x2
7

)
, (6.10a)

C2 = x1 (x7x9 + x8x10) + x2 (x8x9 − x7x10) + x3

(
x2

10 + x2
9 − x2

8 − x2
7

)
, (6.10b)

C3 = (x7x9 + x8x10)
2 + (x8x9 − x7x10)

2 +
(
x2

10 + x2
9 − x2

8 − x2
7

)2
, (6.10c)

first integrals (3.41)

I1 = x6, (6.11a)

I2 = x1x4 + x2x5 + x3x6 + λ
(
x2

10 + x2
9 − x2

8 − x2
7

)
(6.11b)

and constraint (6.2)

Q = x2
7 + x2

8 + x2
9 + x2

10 (6.12)

are all conserved quantities.

Incorporating the evolution of a fixed vector in the spatial frame into the governing

equations (in the director frame) results in the trivial configuration, a straight twisted

rod, being a periodic orbit. The periodic orbit γ (s) with period τ = 4π/ (1 + ν) which

satisfies the constraint and the correct orientation of the director frame is given by

γ (s) = (0, 0, 0, 0, 0, 0, 0, 0, sin (s (1 + ν) /2) , cos (s (1 + ν) /2)) . (6.13)

Under the τ -mapping γ (nτ) = p the periodic orbit is the fixed point

p = γ0 (τ) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) . (6.14)

The straight twisted rod does not intersect the lines of flux of the magnetic field, so

the trivial solution does not feature any dependence on the magnetic field.

Evaluating the conserved quantities about the trivial solution (6.13) yields

C1 = 0, C2 = 0, C3 = 1, I1 = 0, I2 = λ and Q = 1. (6.15)

Note that the body force is incorporated into the boundary conditions through the values

of the conserved quantities and not through the scaling of the field variables (m, n, e3).
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The formulation of the governing equations based on the force and moment balance

equations (3.38a), (3.38b) with the evolution of the Euler parameters (6.4) and body

force (6.5), subject to the constraint (6.2) is a dynamical system of the form

x′ = f (x,µ) , x ∈ R
10 and µ ∈ R

p with s ∈ (−∞,+∞) (6.16)

where p is the number of independent nondimensional parameters under consideration.

Computation of homoclinic orbits requires local knowledge of the solutions near

equilibria, specifically the trajectories by which homoclinic orbits leave the unstable

manifold and approach the stable manifold. The monodromy matrix gives insight into

the local dynamics of the system as a linear approximation of the flow at the fixed point

of the map [82]. Consider the linearised equation about the periodic solution (6.13)

Ψ′ =
∂f (γ,µ)

∂x
Ψ = A (γ,µ) Ψ with Ψ (0) = I10 (6.17)

Then the monodromy matrix is defined as M := Ψ (τ) and determined by the solution

to the system of ordinary differential equations (6.17) evaluated at s = τ .

In this thesis the monodromy matrix is computed column-wise, that is for the ith-

column of M a system of linear differential equations z′ = Az is integrated up to s = τ

with the ith-column of the identity matrix I10 as initial conditions [82, §7.5.1].

On linearising the system (6.9) about the periodic solution (6.13) then the linearised

differential equation takes the form

z′ = A (s) z for z = (x1, x2, x4, x5, x7, x8, x3, x6, x9, x10)
T

On reordering the variables the periodic matrix A decouples into two periodic matrices

A =

(
A1 0
0T A2

)
with 0 ∈ R

4×6, A1 ∈ R
6×6 and A2 ∈ R

4×4.
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A1 is a six-by-six matrix containing the nontrivial dynamics A1 =



0 (1 + ν) 0 −1 2λ(1 + ε) cos (τs/2π) 2λ(1 + ε) sin (τs/2π)
−(1 + ν) 0 1 0 2λ(1 + ε) sin (τs/2π) 2λ(1 + ε) cos (τs/2π)

0
(1 + ε)

m2
0 ν 0 0

−(1 + ε)

m2
0 −ν 0 0 0

0 0
cos (τs/2π)

2
−sin (τs/2π)

2
0

(1 + ν)

2

0 0
sin (τs/2π)

2
−cos (τs/2π)

2
−(1 + ν)

2
0




and A2 is a four-by-four matrix containing the trivial dynamics.

A2 =




0 0 0 0
0 0 0 0

0
(1 + ν)

2
cos (τs/2π) 0 0

0
(1 + ν)

2
sin (τs/2π) 0 0



.

Thus monodromy matrix decouples into two submatrices, M1 comprising of solutions

to the linear system for A1 and M2 comprising of solutions to the linear system for A2.

The submatrix M1 contains the dynamics of the system and the submatrix M2 contains

the trivial dynamics.

The submatrix M2 yields a trivial Floquet multiplier µt = 1 with algebraic and geo-

metric multiplicity equal to four. The matrix of the trivial dynamics is spanned by the

gradients of the three Casimirs (6.10) and constraint (6.12) when evaluated at the fixed

point of the stroboscopic map p. When the spectrum of Floquet multipliers are not all

on the unit circle, the nontrivial monodromy matrix M1 has a pair of complex conju-

gate unstable Floquet multipliers, |µu| > 1, a pair of complex conjugate stable Floquet

multipliers, |µs| <1, and a pair of complex conjugates on the unit circle, |µc| = 1. The

local stable, centre and unstable manifolds are all two dimensional.

For general linear systems with periodic coefficients the monodromy matrix will have

a unit Floquet multiplier µt = +1 but in reversible or Hamiltonian formulations the roots

of the associated characteristic polynomial occur in conjugate pairs (cf. lemma B.1.2).

Hence the monodromy matrix will have a double Floquet multiplier at µt = +1. For

more detail on monodromy matrices, see [82, §7].
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Generically homoclinic orbits are at least a codimension-one phenomena but if the

system is Hamiltonian homoclinic orbits may be a codimension-zero phenomena [33].

The explanation is as follows: for non-Hamiltonian systems the sum of the dimensions of

the stable and unstable manifolds is equal to the dimension of the ambient manifold, so

the two manifolds can never intersect transversely so homoclinic orbits will be at least

a codimension-one phenomenom. For Hamiltonian systems the intersection of the stable

and unstable manifolds occurs along a constant ‘energy’ level defined by the Hamiltonian

function and is thus of codimension-zero.

In the system (6.9) the centre-stable and centre-unstable manifolds are three-

dimensional and their intersection occurs along an energy level, hence homoclinic so-

lutions are codimension-zero.

The Floquet multipliers can only be computed numerically, so were computed us-

ing the highly accurate integrator dop853.f and the eigenvalue/eigenvector subroutine

f02agf.f. The spectrum of Floquet multipliers was computed for a variety of (load-

ing) parameters (λ,m) and is displayed in figure 6.1. In figure 6.1 the coloured regions

correspond to elliptic regimes where all Floquet multipliers are on the unit circle and

homoclinic solutions cannot exist. The colours correspond to various degrees of exten-

sibility where ε = 0 (blue), ε = 0.05 (cyan) and ε = 0.1 (magenta). The corresponding

dotted lines are where all of the pairs of Floquet multipliers are stationary with respect

to the principal continuation parameter, that is

∂µc

∂λ
=
∂µs

∂λ
=
∂µu

∂λ
= 0. (6.18)

On these curves the Floquet multipliers reverse direction. At the cusp points, (where

the dashed lines meets the coloured regions) there are codimension-two points (λc,mc)

at which the pairs of Floquet multipliers satisfy

∂µc

∂λ
=
∂µs

∂λ
=
∂µu

∂λ
= 0 and µc = µs = µu. (6.19)

Thus, at the codimension-two point all Floquet multipliers lie on the same point on the

unit circle and have zero derivative, hence the stable and unstable Floquet multipliers
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Figure 6.1: Spectrum of the monodromy matrix of the governing equation (6.9) about the trivial
periodic solution (6.13) when ν = 1/3. The coloured regions correspond elliptic periodic orbits,
the dashed lines is the codimension-one curve at which the Floquet multipliers are stationary and
reverse direction and the cusp points are co-dimension two points. Here ε = 0 (blue), ε = 0.05
(cyan) and ε = 0.1 (magenta). In the unshaded region the spectrum of Floquet multipliers show
the stable Floquet multipliers µs within the unit circle, centre Floquet multipliers µc on the
unit circle and unstable Floquet multipliers µu outside the unit circle. In this region localised
solutions are computed.
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Table 6.1: Codimension-two points when ν = 1/3 for a variety of rods with different degrees
of extensibility. The codimension-two points were computed from the monodromy matrix of the
governing equations about the periodic solution. The codimension-two points were identified
as the cusp points of the spectrum of Floquet multipliers. The codimension-two points are of
significance as the Hamiltonian-Hopf-Hopf bifurcation occurs at this point for primary homoclinic
solutions and the codimension two points act as organising centres for the multimodal solutions.

ε mc λc
0.00 1.7398 0.10897200
0.01 1.7451 0.10897395
0.02 1.7537 0.10790956
0.03 1.7622 0.10687853
0.04 1.7708 0.10583647
0.05 1.7793 0.10482703
0.06 1.7877 0.10384922
0.07 1.7961 0.10288132
0.08 1.8045 0.10192327
0.09 1.8129 0.10089494
0.10 1.8211 0.10007644

graze the unit circle (cf. figure 6.11(b)). Codimension-two points have been computed

for a variety of degrees of extensibility and are displayed in table 6.1. It will be shown

that the codimension-two points plays a significant role in the bifurcation structure of

the rod in a magnetic field and the dashed line plays a role in the rod configurations

near the codimension-two point.

6.2 Computation of Homoclinic orbits

The computation of solutions over an infinite domain is impossible. Thus it is neces-

sary to truncate the domain to a finite interval. In this section the reversibilities of the

system are exploited to formulate a well-posed boundary value problem over the half

range. The boundary value problem is then solved with a shooting method by form-

ing a variation problem with respect to the shooting parameters so that the righthand

boundary conditions ensure that solutions are reversible.

The range of the dynamical system (6.16) is truncated and scaled over the unit

119



6.2. Computation 6. Homoclinic Bifurcation of a Rod in a Magnetic Field

interval

x′ = T f (x,µ) , x ∈ R
2n and µ ∈ R

p with s ∈ [0, 1] (6.20)

where T is the (as yet unknown) truncated length of half a homoclinic orbit.

The reflection symmetry Z is given by

Z : (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) 7→ (−x1,−x2, x3,−x4,−x5, x6,−x7,−x8,−x9,−x10) .

The discrete symmetry can be decomposed into two reversing involutions Z = R1 ◦R2

where R2
i = I10. The reversibilities are given by

R1 : (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) 7→ (−x1, x2, x3,−x4, x5, x6, x7,−x8,−x9, x10) ,

R2 : (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) 7→ (x1,−x2, x3, x4,−x5, x6, x7,−x8,−x9, x10)

as s 7→ −s so that the trivial solution is also reversible and the fixed point p is invariant

under both reversing involutions. The symmetric section S1, the fixed point set of a

τ -periodic solution γ (s) for the reversing involution R1, is given by

S1 = Fix (R1) for γ (nτ) = p where f (p) = 0 with p ∈ S1 (6.21a)

so that

S1 =
{
x ∈ R

10 : x1 (1) = x4 (1) = x10 (1)− 1 = 0
}
. (6.21b)

The righthand boundary conditions are determined by the symmetric section Si, hence

the three righthand boundary conditions for a R1-reversible solution are

x1 (1) = x4 (1) = x10 (1)− 1 = 0. (6.22a)

Similarly for a R2-reversible solution the righthand boundary conditions are

x2 (1) = x5 (1) = x10 (1)− 1 = 0. (6.22b)

Recalling that the system, reduced by the Casimirs and constraint yields a canonical

six-dimension system and that the monodromy matrix decouples into a trivial four-

dimensional matrix and non-trivial six-dimensional matrix, as the symmetric section is

three-dimensional the reversibilities are reversibilities in the classical sense.
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As the reversibilities define a three-dimensional symmetric section (6.22), so three

shooting parameters are required in order to satisfy the righthand boundary condi-

tions (6.22). Letting the three shooting parameters be (δ1, δ2, T ), where δ1 ∼ O (1),

δ2 ∈ (0, 2π) and T À δ1 then the lefthand boundary conditions are

x (0) = p + ε δ1 (v1 sin δ2 + v2 cos δ2) . (6.23)

The fixed point of the return map (6.14) is denoted by p, ε = 10−5 is a small per-

turbation, the shooting parameter δ1 is a measure of the perturbation away from the

equilibrium solution, δ2 ensures that the perturbation remains transverse to the flow,

and v1 and v2 are the real and imaginary parts of the eigenvectors that span the unstable

(generalised) eigenspace of the monodromy matrix M1. For ν = 1/3, m = 1.90, λ = 0.1

and ε = 0.1 the eigenvectors v1 ± v2i corresponding to the unstable Floquet multipliers

µu = −1.2861± 2.5236i are

v1 = (0.5307, 0, 0, 0.2024,−0.02854, 0, 0.1367,−0.3974, 0, 0) ,

v2 = (0, 0.5307, 0, 0.02854, 0.2024, 0, 0.3974, 0.1367, 0, 0) .

Note that the eigenspace is a subspace of R
10 but, due to the zeroes in the Floquet mul-

tipliers from the decomposition of the monodromy matrix, is homomorphic to R
6, the

dimension of the reduced phase space. This is because on linearisation the trivial dynam-

ics decouple from the nontrivial dynamics so the four zeroes in the vectors correspond

to the eigenspace spanned by eigenvectors of the trivial multiplier µt.

Effectively the shooting parameters δ1 and δ2 parametrise a solution along the (local)

unstable manifold about a fixed point p of the stroboscopic map and T parametrises

‘time’ along one such trajectory. Since the initial conditions place a solution O (ε) away

from the fixed point when δ1 ∼ O (1), decreasing the distance from the fixed point leads

to an increase in the truncation length T and vice versa.

If T is sufficiently large and ε sufficiently small, then equation (6.16) subject to the

boundary conditions (6.23) and (6.22a) forms a well-posed boundary value problem for

the computation of a reversible homoclinic about to the trivial solution (6.13).

121



6.2. Computation 6. Homoclinic Bifurcation of a Rod in a Magnetic Field

Table 6.2: Data showing quadratic convergence of the shooting method from an suitable initial
guess for the trimodal orbit in table 6.5. Due to restrictions of space shooting parameters for
iterations n = 3, 4 and 5 all appear the same to six significant figures. The residue of the
truncation length is defined as

∣∣T (i−1) − T (i)
∣∣ and similarly for δ1 and δ2. After 5 iterations the

Newton-Raphson method has found the shooting parameters to within the specified tolerance of
10−12.

n δ1 δ2 T residue δ1 residual δ2 residual T
0 4.00000 1.00000 111.000 – – –
1 3.03854 0.873004 112.611 0.961458E+00 0.126996E+00 0.161133E+01
2 3.14319 0.882138 112.390 0.104651E+00 0.913415E-02 0.220915E+00
3 3.14253 0.882213 112.392 0.665358E-03 0.758128E-04 0.146157E-02
4 3.14253 0.882213 112.392 0.510191E-09 0.385818E-08 0.190802E-08
5 3.14253 0.882213 112.392 0.799361E-14 0.461853E-13 0.426326E-13

Having formulated the boundary value problem as a three-parameter shooting prob-

lem, a forty-dimensional equation is constructed from the ten-dimensional system (6.9)

coupled to a thirty dimensional variation equation of the partial derivatives of the phase

variables with respect to the three shooting parameters (δ1, δ2, T ). The variational equa-

tion is then solved using the Newton-Raphson method. Each iteration is not computa-

tionally expensive but choosing three good initial guesses is often quite delicate. When

a suitable initial guess is found the shooting method converges quadratically in accor-

dance with the Newton-Raphson scheme, so shown in table 6.2. Homoclinic solutions are

found for all parameter values which are not purely elliptic for isolated continua of the

shooting parameters. Consistent with the Hamiltonian formulation, homoclinic orbits

are a codimension-zero phenomena. For more details on how the variational equation

was formulated and the shooting method was solved, see appendix §B.2.

There is a relationship between the shooting parameters δ2 and T which is illustrated

in figure 6.2. The truncation length T can be shifted by the phase τ/2 = 2π/ (1 + ν)

and δ2 then scaled by a factor
√

ln |µu|. This gives a greater value for the truncation

length and places the initial condition nearer the fixed point of the map, giving a better

approximation to the homoclinic orbit. There does not appear to be any pattern to the

behaviour of the shooting parameter δ1 under this phase shift.
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Reversible pairs of solutions can be found in one of two ways; either by adding π to

δ1 or by taking −δ2 rather than δ2.

p p qSq
δ1

εδ2

-¾
2π

(1 + ν)

¾ -
T

Figure 6.2: Schematic diagram of the shooting method into the symmetric section Si for a
bimodal homoclinic illustrating the failure to locate families of bimodal solutions as had been
done for the Kirchhoff rod [95]. The diagram shows the interpretation of the shooting parameters
and shows the choice of starting position is arbitrary up to a phase 2π/ (1 + ν).

Given the two involutions R1 and R2, four distinct primary homoclinic orbits are

expected to exist; two for each of the reversibilities. Primary homoclinic orbits are ho-

moclinic orbits with a single localisation and are labelled as Pi for i = 1, 2, 3, 4 where

P1,2 are reversible under R1 and P3,4 are reversible under R2. Multimodal homoclinic

solutions are characterised by a number of distinct primary localisations separated by a

number of smaller oscillations.

Table 6.3 gives shooting parameters for a set of primary homoclinic orbits within

the non-elliptic region. Shooting parameters for a selection of bimodal and trimodal

homoclinic orbits are given in tables 6.4 and 6.5 respectively. Sample configurations of a

primary homoclinic orbit are displayed in figure 6.3. Components of the body force due

to the magnetic effects, that is F L in (3.33), are displayed in figure 6.4. Components of

multimodal homoclinic orbits from the tables 6.4 and 6.5 are displayed in figure 6.5.

For the Kirchhoff rod the shooting method can be used to detect a multiplicity of

multimodal configurations according to a well-defined set of accumulation rules (for more

detail see §B.5). As shall be demonstrated in §6.5 using continuation, while families of

multimodal solutions do exist in this system, the shooting method is unable to find
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Table 6.3: Shooting data for the reversible primary homoclinic orbits when ν = 1/3, m = 1.90,
ε = 0.1 and λ = 0.1. Note that as the homoclinics are reversible that T is the distance to the
symmetric section and is half the length of the full homoclinic.

δ1 δ2 T
R1 P1 1.058975 1.374092 60.61385

P2 4.200569 1.374092 60.61385
R2 P3 0.2069183 1.082621 58.26191

P4 3.348511 1.082621 58.26191

Table 6.4: Shooting data for some reversible bimodal homoclinic orbits when ν = 1/3, m = 1.90,
ε = 0.1 and λ = 0.1. Once again, note that as the homoclinics are reversible that T is the distance
to the symmetric section and is half the length of the full homoclinic.

δ1 δ2 T
R1 (P1, P1) 3.900605 2.809424 82.48046

(P2, P1) 0.7590124 2.809424 82.48046
R2 (P3, P3) 0.8877950 1.797026 81.18148

(P4, P3) 4.029388 1.797026 81.18148

members in a systematic way, in constrast to the Kirchhoff rod. Instead of finding a

bimodal solution with an extra quarter turn often the shooting method would find a

bimodal solution with the truncation length shifted by one period τ .

Multimodal solutions are found in the anisotropic system when B1 6= B2, as shown

in figure 6.6, providing numerical evidence that, as in the Kirchhoff rod, anisotropy is an

integrability breaking parameter for the linearly elastic, inextensible, unshearable rod in

Table 6.5: Shooting data for some reversible trimodal homoclinic orbits when ν = 1/3,m = 1.90,
ε = 0.1 and λ = 0.1. Once again, note that as the homoclinics are reversible that T is the distance
to the symmetric section and is half the length of the full homoclinic.

δ1 δ2 T
R1 (P2, P2, P2) 3.142530 0.8822137 112.3920

(P3, P1, P4) 6.284123 0.8822137 112.3920
R2 (P1, P4, P1) 0.5914260 6.264897 99.38831

(P2, P3, P2) 3.7330187 6.264897 99.38831
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Figure 6.3: Configuration of primary homoclinic P1 orbits in table 6.3. The reversible configu-
ration was computed using the shooting method over the half length and then reflected.
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Figure 6.4: External forces due to magnetic effects for the P1 orbits in table 6.3. The com-
ponent in d1 is given by f1 = 2 (1 + εx3) (x7x10 + x8x9) and the component in d2 is given by
f2 = 2 (1 + εx3) (x7x9 − x8x10). Note that the external forces are reversible: the configuration
was computed using the shooting method over the half length and then reflected.
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Figure 6.5: Force components x1 and x2 over the half range of the bimodal orbit (P1, P2) from
table 6.4 and for the trimodal orbit (P2, P2, P2) in table 6.5.
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Figure 6.6: An anisotropic quadmodal homoclinic with parameters are ν = 1/3, λ = 0.01,
m = 1.70 and ρ = 0.1. The shooting parameters are given by δ1 = 5.2433, δ2 = 2.1968 and
T = 85.509. The multimodal configuration provides strong numerical evidence that anisotropy
is an integrability breaking parameter which leads to transverse intersections of the stable and
unstable manifolds and spatially chaotic solutions, as has been seen in the Kirchhoff case.

a uniform magnetic field.

6.2.1 Case (iii): Multimodal Configurations of a weakly extensible rod

in a strong magnetic field

A mulitplicity of multimodal homoclinic solutions for rods with small ε, large λ were

found by the shooting method. Figure 6.7 gives data for a selection of R2-reversible mul-

timodal orbits with m = 1.70, ν = 1/3 λ = 1/5 and ε = 0.0001 in region (iii) from §5.3
which are then displayed in figure 6.7. Numerical evidence strongly suggests that exten-

sibility destroys the non-transverse intersection of the stable and unstable manifolds for

a rod in a magnetic field [16]. It is difficult to label the multimodal solutions with many

modes, such as the five- and six-modal in terms of the primary orbits of which they are

composed.
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Figure 6.7: A selection of multimodal solutions in the regime of parameter space where λ >> ε.
The parameters are with m = 1.70, ν = 1/3 λ = 1/5 and ε = 0.0001. Shooting data for each
configuration is displayed in table 6.6. Note that the solutions were computed by the shooting
method and reflected about the symmetric section.
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Table 6.6: Shooting data for R2-reversible homoclinic orbits when ν = 1/3,m = 1.70, ε = 0.0001
and λ = 1/5.

δ1 δ2 T
primary 3.947947 1.653330 45.66977
bimodal 2.653258 2.527768 73.78479
trimodal 4.847755 0.01053711 102.0591

quadmodal 2.734204 1.122803 141.5829
five-modal 2.297042 1.611518 171.7983
six-modal 1.902365 2.581330 201.9815

6.3 Continuation

In this section the continuation of homoclinic orbits is performed using projection

boundary conditions [12, 13] exploiting the exponential trichotomies the system pos-

sesses [58]. The method places solutions in the linear subspace which approximates the

flow near the fixed point of the map. The approximation error caused by the trunca-

tion has been shown to decay exponentially [12]. For more information on projection

boundary conditions see §B.3.1.

In this system the continuation of periodic-to-periodic homoclinic orbits is simpli-

fied [8, 19, 34] by knowing the underlying periodic orbit (6.13). The stable, centre and

unstable projection matrices Ls, Lc and Lu respectively, are formed by the normalised

stable, centre and unstable eigenvectors of the transpose of the monodromy matrix.

Projecting back onto the two-dimensional centre and unstable (generalised) eigenspaces

about the phase condition (6.14) yields the four lefthand boundary conditions

Ls (µ) (x (0)− p) = 0, Ls (µ) ∈ R
2×10, (6.25a)

Lc (µ) (x (0)− p) = 0 and Lc (µ) ∈ R
2×10. (6.25b)

Applying the symmetric section boundary conditions, for R1 as in (6.22a), yields three

righthand boundary conditions

x1 (1) = x4 (1) = x10 (1) = 0. (6.26)
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Finally, specifying the three Casimir (6.10) and the constraint fixing conditions (6.12)

at s = 0 gives four lefthand boundary conditions

x3 (0) = x6 (0) = x9 (0) = x10 (0)− 1 = 0. (6.27)

The system (6.9) with boundary conditions (6.25), (6.26) and (6.27) is over-determined

as there are eleven boundary conditions for a ten-dimensional system (6.9). Specifically,

the projection boundary conditions (6.25) provide an extra condition, as there are four

boundary conditions determining a flow which can be uniquely characterised by three

(shooting) parameters. Thus, in order to make the problem well-posed the truncation

length, T , is allowed to vary along with the principal continuation parameter λ.

Continuation is performed using auto97 [35]. The continuation software uses Gaus-

sian collocation, which is equivalent to a symplectic Runge-Kutta scheme. Symplectic

Runge-Kutta methods exactly conserve the value of any integrals of the system that are

quadratic functions of the phase variables [24]. Thus, as all of the conserved quantities

are quadratic functions of the phase variables, they will be preserved by the numeri-

cal scheme. Indeed, the Lax pair formulation presented in §3.4, shows all the conserved

quantities of the integrable subfamily are quadratic and hence will be preserved by the

numerical scheme.

It should be noted that while there is no restriction on the sign of λ, that when

performing continuation an increase in λ acts in the direction of the end load parameterm

and decreasing λ acts against the end load parameter. Although λ is both increased and

decreased, in all continuation runs λ will be positive. When continuation was performed

with λ negative no bifurcation was found.

In order to visualise the rod configurations the centreline r (s) = (x, y, z), which

evolves according to (3.6), is computed from the initial condition

r (0) = 0. (6.28)

Hence the end-rotation and (dimensionless) end-displacement can be calculated while

continuing along solution branches of homoclinic orbits for the two parameters λ and T .
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End-rotation and end-displacement are solution measures, called load-deflections, which

represent the contributions due to the effect of loading on configurations by removing the

trivial contributions from a unbuckled straight rod. The end-displacement, D̃, is simply

the length of the localised configuration subtracted from the length of the straight twisted

rod. The relative end-rotation is the additional twisting due to loading and is calculated

by subtracting the end rotation of the straight twisted rod from the end rotation of a

localised rod configuration. The end-displacement, D̃ and relative end-rotation R̃ are

given by

D̃ = (1 + ε) T − z (1) , (6.29a)

R̃ =
R− (1 + ν) T

2π
. (6.29b)

For the end rotation R of a straight twisted rod the directors evolve according to

d′′
1,2 = − (1 + ν) d1,2, so that for a rod of length T the angle turned by the end point is

(1 + ν) T . Thus

cosR = 〈d1 (1) ,d1 (0)〉 = 〈d1 (1) , (1, 0, 0)〉 and sinR = 〈d1 (1) , (0, 1, 0)〉 .

As all configurations computed are reversible, found shooting over the half range

into a symmetric section, load-deflection curves are computed by simply doubling the

values the from half-length solutions. Varying T has no effect on the values of the load

deflections since the contributions from varying the truncation length produce trivial

contributions, i.e. almost straight twisted rod segments, which do not effect the load

deflections. The method is validated through continuation in m and T in the isotropic,

inextensible case, which recovers the classical buckling value m = mmax = 2 and post-

buckling path.

6.4 Bifurcation

In this section the bifurcation behaviour of primary homoclinic orbits is investigated

numerically. It is found that the rod buckles in a twice generalised Hopf bifurcation:

firstly by being Hamiltonian and secondly by being a bifurcation of a periodic orbit.
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From the analysis of the Floquet multipliers in figure 6.1, the codimension-two point

distinguishes between primary homoclinic configurations which can buckle at two values

λ = λ+, λ = λ−, one value, λ = λc or which do not buckle. Load-deflection diagrams

presented in figure 6.8 illustrates all three possible situations. From subfigure 6.8(a) it can

be seen that localised configurations can either buckle from the right at λ+ = 0.076370

or from the left at λ− = 0.087626. (The buckling values predicted through the Floquet

multipliers are λ+ = 0.076482 and λ− = 0.087562). As can be seen from subfigure 6.8(b)

if m = mc = 1.8211 the load deflection curves are discontinuous at λ = λc = 0.10007644

as the curves merge from the left and right. Thus at the codimension-two point a double

Hamiltonian-Hopf bifurcation occurs. Subfigure 6.8(c) shows that the load-deflection

diagrams are smooth for all λ if m < mc. Note that the mimina of the load-deflection

curves are accurately predicted by the stationary point of the Floquet multipliers which

is illustrated by the dotted line in figure 6.1. Thus, just below the critical value mc there

is a linear approximation to the point at which the configurations cease to delocalise and

begin to localise.

As illustrated in subfigure 6.9(a), configurations which exist when λ > λ+ and

m > mc are highly localised and buckle in a more pronounced way than those con-

figurations which exist for λ < λ− and m > mc. However, the rod configurations are

qualitatively similar whether the bifurcation values are approached from either the left

or the right. It is interesting to note that straight twisted rods will actually buckle with

λ either decreasing or increasing. Also note that the post-buckling paths of a rod due

to a magnetic field, in figures 6.9 and 6.8, are not dissimilar to the post-buckling paths

due to end force and moment, in figure 6.12.

Figures 6.8 and 6.9 illustrate that the effect of the magnetic field on the configura-

tions produces two distinct scenarios depending on the value of end loading m in relation

to the critical value mc. If m < mc then localising-buckling occurs, as illustrated in sub-

figure 6.9(a) but if m > mc then due to the residual effect of the codimension-two point

localising-delocalising-localising behaviour occurs, as illustrated by subfigure 6.9(b).

For values of m far below the critical value mc the load-deflection diagrams are
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Figure 6.8: Load-deflection diagrams of a primary reversible homoclinic solution for λ, when m
is above, equal and below the codimension-two point mc. When m > mc two Hamiltonian-hopf
bifurcations occur at λ±. When m = mc the two bifurcations occur similtaneously and there is
a Hamiltonian-Hopf-Hopf bifurcation at λc When m < mc then no bifurcation occurs.
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Figure 6.9: Subfigure 6.9(a) shows buckling for both λ+ = 0.07637 and λ− = 0.087626 above
the codimension-two point whenm = 1.90. Subfigure 6.9(b) shows the localisation-delocalisation-
localisation behaviour below the codimension-two point at m = 1.81. Again, in both subfigures
ν = 1/3 and ε = 0.1. The marks × on the bifurcation curves correspond to the configurations
they appear besides.
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qualitatively different from those load deflection diagrams where the values of m are near

or greater than mc. As can be seen from figure 6.10 for m = 1.7398 initially as λ increases

so R̃ decreases while D̃ increases, in contrast to the behaviour in subfigure 6.8(c). For

values of m just below the critical value mc the minima of the load-deflection curves are

accurately predicted by the stationary values of the Floquet multipliers, but far below

the critical value mc the minimum and point of inflection are not accurately predicted

by the behaviour of the Floquet multipliers. Quantitatively in this regime localisation

dominates over the diminishing effect of the codimension-two point.
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Figure 6.10: Load-deflection diagrams for λ far below the codimension two point at
m = 1.7398¿ mc. The critical value of λ is given by λ = 0.1128947 although there seems to
be little quantitative difference between solutions near this value. Note that the scale on the
y-axes are different from figure 6.8. This diagrams illustrates that far below the codimension-two
point the localisation-delocalation-localisation effect is neglible.

Schematic diagrams in figure 6.11 illustrate the observed bifurcation in terms of the

spectrum of the six nontrivial Floquet multipliers. Subfigure 6.11(a) illustrates the case

when m > mc. Starting from λ = 0, while the centre Floquet multipliers move from (1, 0)

around the unit circle, the stable and unstable Floquet multipliers collide on the unit

circle when λ = λ−. At the bifurcation the pair of Floquet multipliers split and move

around the unit circle in opposite directions before one pair collides with the centre

multipliers when λ = λ+. The multipliers then split again to become pairs of stable and

unstable multipliers. As can be inferred from figure 6.9 the process can be described in

reverse as λ decreases from a large value.
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As subfigure 6.11(b) illustrates, when m = mc the centre Floquet multipliers now

move around the unit centre with sufficient speed so that at λ = λc all the Floquet

multipliers collide on the unit circle. At this point there is a triple resonance between

the Floquet multipliers. After the collision one pair remain on, one pair within and one

pair outside of the unit circle.

When m < mc the stable and unstable Floquet multipliers approach the unit circle

but slow down, stop then reverse direction heading away from the unit circle.

It is clear that six is the minimal dimension at which two distinct Hamiltonian-

Hopf bifurcations can occur similtaneously. It is unfortunate that due to the underlying

periodicity of the trivial solution no analytical expressions for the codimension-two point

can be found. One can understand that the two loading parameters λ and m ‘unfold’ the

dynamics in the sense that there exists a parameter η1 = η1 (λ,m) which determines the

two Hamiltonian-Hopf bifurcations and a parameter η2 = η2 (λ,m) which determines

the distance between the bifurcations such that at the critical values η1
c = η1

c (λc,mc)

and η2
c = η2

c (λc,mc) the two bifurcations occur simultaneously. As will be seen later,

the codimension-two point is an organising centre for the bifurcation set of primary and

multimodal homoclinics.

For comparison the effect of a constant magnetic field when λ < λc on the buckling

of a rod due to end loading m is illustrated in figure 6.12 . It is observed that the

presence of the magnetic field decreases the critical buckling loads. This bifurcation is

also a Hamiltonian-Hopf bifurcation of a periodic orbit.

Similarly, the effect of the magnetic field on the buckling of the rod due to anisotropy

is illustrated in figure 6.13. Once again the presence of the magnetic field leads to a

decrease in the buckling value and the overall post-buckling paths.

6.5 Coalescence of Multimodal Homoclinic Orbits

From the analysis presented in §5.3 it is shown that multimodal solutions cannot

exist in the integrable limit as either λ or ε approaches zero. Instead pairs of reversible

multimodal solutions coalesce at limit points. As has been seen in figure 6.8, for primary
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Figure 6.11: Schematic diagrams of the motion of the Floquet multipliers for the twice gener-
alised Hopf bifurcation at m > mc at which two Hamiltonian-Hopf bifurcations occur at λ± and
at m = mc at which the two bifurcations occur similtaneously at λc. There is no diagram for the
region m < mc as the is no bifurcation. In this regime the stable and untable Floquet multipliers
approach the unit circle and reverse direction. The centre multipliers reverse direction also.
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Figure 6.12: Load-deflection diagrams for primary homoclinics when ν = 1/3, ε = 0.1. When
λ = 0.01 (blue) then the rod buckles at m = 2.074667 and if λ = 0.05 (red) the rod buckles at
m = 1.975754. Qualitatively the bifurcation diagram is the same as the Kirchhoff case but the
effect of the magnetic field lowers the buckling value.
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Figure 6.13: Load-deflection diagrams for homoclinics when ν = 1/3, ε = 0.1 and m = 1.90.
The blue line corresponds to λ = 0.01 and buckles at ρ = 0.3451724 and the red line corresponds
to λ = 0.05 and this buckles at ρ = 0.1736441. Qualitatively the bifurcation diagram is the same
as the Kirchhoff case but the effect of the magnetic field lowers the buckling value.

homoclinic orbits the codimension-two point separates regimes which have two, one or

zero bifurcation values; in this section the effect of the codimension-two point on the

persistence of multimodal solutions and bifurcation structure of multimodal solutions

is investigated numerically. The bifurcation structure of the Kirchhoff rod is presented

in §B.5.

Figure 6.14 shows the continuation of a bimodal solution in m when λ = 0.20.

There are three branches, labelled b1 (blue), b2 (cyan) and b3 (red) connected by two

limit points at lp1 = (0.2, 1.791139) and lp2 = (0.2, 2.033325). As can be seen in the

inset diagrams the limit point lp1 connects branches b1 and b2 and the limit point lp2

connects branches b2 and b3. Branch b1 can be continued further with m increasing and

branch b3 be continued further with m decreasing.

Figure 6.15 shows the configurations on the three branches b1 (blue), b2 (cyan) and b3

(red) at fixed values of m = 1.80 > lp1 and m = 2.00 < lp2. Note that the configurations

displayed in subfigures 6.15(a) and 6.15(c) and those in subfigures 6.15(d) and 6.15(f) are

qualitatively similar as the selected values of m are near the limit points at which they

coalesce. Subfigures 6.15(a), 6.15(b) and 6.15(c) show that for branch b2 when m = 1.80

configurations have the same number of quarter turns as configurations on branch b1.

Subfigures 6.15(d), 6.15(e) and 6.15(f) show that when m = 2.00 configurations have
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Figure 6.14: Three connected branches of bimodal orbits b1 (blue), b2 (cyan) and b3 (red) at
λ = 0.20 with ν = 1/3 and ε = 0.1. From continuation in m the branches b1 and b2 coalesce at
m = 1.791139, while the b2 and b3 curves coalesce at m = 2.033325. The dashed line marks the
point at which b2 switches from connecting b1 to connecting b3.

the same number of quarter turns as configurations on branch b1. Thus at the limit

points lp1 configurations on the branch b2 gain a quarter turn and at the limit point lp2

configurations on the branch b2 loss a quarter turn.

Figure 6.16 shows that when continuation is performed in λ decreasing near the limit

point lp1 a succession of branches passing through b1 and b2 coalesce. A corresponding

result holds near the limit point lp2 where a succession of branches which pass through

b3 and b2 coalesce.

When continuation is performed in λ for lp1 < m < 1.837 the branch b2 coalesces

with b1 whereas for 1.837 < m < lp2 the branch b2 switches to coalesce with branch b3.

Figure 6.17 shows two branches of solutions which pass through b2 (cyan), one of which,

with m = 1.8369, connects with a branch which passes through b1 (blue) the other, with

m = 1.8373, is connected to a branch of solutions which passes though b3 (red).

When continued in λ decreasing with m sufficiently smaller than mc the branch b3

passes beyond λc and merges with another branch. Thus, in order to merge with other
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Figure 6.15: Nondimensionalised force components x1 of bimodal configurations found by con-
tinuation along the branches b1 (blue), b2 (cyan) and b3 (red) in figure 6.14. The parameters are
ν = 1/3, ε = 1/10, λ = 2/10.
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Figure 6.16: Continuation in m and λ showing a succession of coalescence curves (magenta)
connecting the branches b1 (blue) and b2 (cyan) when ε = 0.1 and ν = 1/3. Branches on the
curve b3 (red) are able to be continued further and merge with branches as in figure 6.18.

branches beyond the codimension-two point branches b1 and b2 must be continued in

either m or λ onto branch b3.

Figure 6.18 shows that under continuation in λ the primary (red), bimodal (blue)

and trimodal (cyan) solutions exist in isolated regions which only merge if m is less than

a critical value. Note that the primary solutions are single branches but the multimodal

solutions are pairs of solution branches connected by limit points, which unfortunately

due to solution measures chosen give the impression of being a single branch. As subfig-

ure 6.18(a) illustrates, at m = 1.9 the primary, bimodal and trimodal homoclinic orbits

all exist on distinct branches, separated by intervals which contain λc. Subfigure 6.18(b)

shows that soon after the critical value of mc is passed at m = 1.81, the branches of

primary homoclinic orbits have merged while the branches of bimodal and trimodal or-

bits remain as distinct branches. As subfigure 6.18(c) then illustrates, by m = 1.7750

the pairs of bimodal branches have merged while the pairs of trimodal branches remain

separated. Finally, as subfigure 6.18(d) illustrates by m = 1.7398 the trimodal branches
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Figure 6.17: The figure shows two branches of solutions which pass through b2 (cyan), one of
which, with m = 1.8369, connects with a branch which passes through b1 (blue) the other, with
m = 1.8373, is connected to a branch of solutions which passes though b3 (red).

have merged.

The numerical investigations were performed in figure 6.18 on multimodal solutions

with a minimal number of small oscillations between localised modes so that a fair

comparison of merging behaviour could be observed.

For each n-modal solution found there exists a critical value of the end loading

parameter m
(n)
c for which the branch of n-modal orbits can merge when continued in

λ from the left and the right. Let the critical value of λ at which branches of n-modal

solutions merge be denoted by λ
(n)
c . Numerical evidence presented in figure 6.18 strongly

suggests that there appears to be a sequential merging of limit points for each pair of

branches of n-modal solutions

mc = m(1)
c < m(2)

c < . . . < m(n−1)
c < m(n)

c < m(n+1)
c < . . . .

Branches of homoclinic orbits merge in the neighbourhood of the codimension-two point

defining a double Hamiltonian-Hopf bifurcation. It should be emphasised that while the

first member of the sequence of coalescence points can be predicted through Floquet the-

ory, as the double Hamiltonian-Hopf bifurcation point
(
λ

(1)
c ,m

(1)
c

)
, all subsequent values

are double limit points and as such must be computed numerically using continuation

software.

Near the codimension-two point the effect of λ on the multimodal homoclinic orbits
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Figure 6.18: Load-deflection diagrams for a number of primary (red), bimodal (blue) and tri-
modal (cyan) homoclinic orbits for ν = 1/3, ε = 0.1 under a variety of end loads illustrating the
sequential merging of distinct solution branches of multimodal solutions near the codimension-
two point. In subfigures 6.18(a) and 6.18(c) some multimodal orbits were unable to be adequately
continued and so were not displayed.
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delocalises configurations so that the individual localisations become indistinct. The

numerical evidence suggests that, in a sense, the primary orbits can sustain a greater

degree of delocalisation than bimodal orbits, which can sustain a greater degree of delo-

calisation than trimodal orbits. Away from the codimension-two point the delocalisation-

localisation phenomenon is less pronounced, cf. figure 6.10, and the multimodal orbits

exist throughout continuation, as seen in figure 6.18(d).

A rich bifurcation structure clearly exists, for example, through continuation

in λ decreasing just beyond lp2 the branch b1 coalesces with another branch at

(λ,m) = (0.2, 1.975411) which is not connected with the branches b1, b2 or b3 through

continuation in m. Figure 6.19 shows that a number of coalescence scenarios occur for

bimodal orbits for continuation with λ increasing, i.e. away from the buckling line.

The (λ,m) parameter space was explored and collection of limit points computed for

a number of bimodal orbits. The results are presented in figure 6.20. Again, note that the

figure does not give an global picture of the bifurcation structure of the bimodal orbits

as continuation was performed from a single solution on the branch b2, which connects

many others.
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Figure 6.19: A variety of load-deflection diagrams for bimodal solutions in λ showing different
classes of bifurcation diagram for a variety of values of m. The limit points are denoted by the
diamond (¦). In subfigure 6.19(c) the cross (×) denotes the point at which the continuation
software fails to converge.
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Figure 6.20: A succession of limit points for a set of bimodals against the spectrum of Floquet
multipliers when ε = 0.1 and ν = 1/3 in the (λ,m) parameter plane. As in figure 6.1 the shaded
area is the elliptic regime and the dotted line the codimension-one curve (6.18). The various
colours relate to different branches of bimodals, for example the limit point lp1 is cyan, the
limit point lp2 in magenta. Note that the two curves meet close to the codimension-two point at
(0.1006, 1.837).
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Chapter 7

Conclusion

The objective of this thesis was to investigate the behaviour of an elastic conducting

rod in a uniform magnetic field. Three main results are presented, firstly, the identifi-

cation of the static equilibrium equations with a noncanonical Hamiltonian system, in

contrast to previous work [81, 104–109], which for a class of constitutive relations is

completely integrable in the sense of Liouville. The governing equations gave a physical

realisation to the abstract ‘twisted top’ [90]. Secondly, through detailed perturbation

analysis it was shown that if an extensible conducting rod is placed in a magnetic field

the governing equations will no longer be integrable. Furthermore it was shown that

it is the interaction between the magnetic effects and extensibility which leads to spa-

tial chaos and multiplicity of localised multimodal solutions. Thirdly, for critical values

of the nondimensional end and body loading parameters (λ,m) the rod undergoes a

codimension-two double Hamiltonian-Hopf bifurcation. The codimension-two point has

been shown to act as an organising centre for the nearby dynamics. The three main

contributions of integrability, localisation and bifurcation are stated in the title of this

thesis

Perhaps the most important step in the investigation was recognising that the static

equilibrium equations were a noncanonical system as the Hamiltonian structure is ex-

ploited throughout the thesis. For example, the Hamiltonian structure is necessary in

order to prove complete integrability in the unperturbed system, in the Mel’nikov anal-

ysis and, by exploiting the codimension of homoclinic solutions in Hamiltonian systems,
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7. Conclusion

to produce load-deflection diagrams.

The equilibrium equations were shown to be, like the Kirchhoff equations, Lie-Poisson

equations. The new Lie-Poisson bracket was produced via Leibniz and semidirect exten-

sions to the Kirchhoff bracket. Interestingly, the Hamiltonian remains unchanged as the

effect of the magnetic field results from the bracket extensions. The Poisson bracket was

generalised and the equilibrium equations found to sit, as the third member, in a family

of rod equations in generalised hyper-magnetic fields. As the Hamiltonian remains un-

changed the contributions of each new generalised force on the rod are provided by the

bracket extensions.

An integrable subfamily of equations was found which are described by a Lax pair.

The Lax pair assumed a number of conditions on the constitutive relations in order

for all the members of the family of rod equations to be completely integrable which

for some members are not necessary conditions. For example, the first member of the

integrable subfamily, the force-free rod is (super)integrable regardless of anisotropy or

extensibility, in contrast to the the second member, (the Kirchhoff rod) which requires

isotropy in order to be integrable. A rod in a magnetic field requires the additional

condition of inextensibility to be integrable, in contrast to the two previous members.

It is interesting to note that in the Lax pair formulation some Casimirs are ‘promoted’

to first integrals (and thus become conditional on the constitutive relations) as a new

field is added in going to the next ‘generation’ of the family. For instance, at the second

level of the family n is added as a uniform field and hence 1
2n · n is a Casimir. In

the next perturbation, by the field B, the Casimir is perturbed to 1
2n · n + m · B. After

one more perturbation, by the field D, this Casimir is turned into the first integral

1
2n · n + m · B +BD · d3. By contrast, the Casimir n ·m at the second level is perturbed

directly into the integral n ·m +BB · d3 at the next level and remains the same one level

up.

For the integrable subfamily, configurations can be classified by their motion on Li-

ouville tori. Generically, a rod in a uniform magnetic field exists on a five-torus. Through

analysis of previous members of the integrable subfamily superintegrable configurations
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can be classified. For example, configurations on one-tori are either straight twisted rods

or untwisted rings, on two-tori configurations are helices and on three-tori configurations

are (generically) quasi-periodic helices. However, the form of minimally superintegrable

configurations (on a four-torus) remains unknown.

It remains an open question as to whether two Kovalevskaya-type integrals exist for

the rod in a magnetic field so that the system would be integrable. If this were the

case an integral would exist that as λ → 0 recovered the Kovalevskaya integral. There

is numerical evidence, in the form of non-zero Lyapunov exponents, which suggests

that at the original condition on the bending stiffnesses no such integral exists [90] but

the condition itself may be different. The form of a prospective second integral remains

unknown. A Lax pair does exist for a generalised Kovalevskaya top [14] but unfortunately

in the context of rod theory the model generalises a class of body moments rather

than body forces. One possible approach to finding a new integrable case would be to

replicate Kovalevskaya’s original analysis. This approach would give a condition on the

nondimensional parameters such that the system was integrable, but would not reveal

the form of the two integrals.

The noncanonical equilibrium equations of a rod in a uniform magnetic field were

reduced using the three Casimirs to a six-dimensional canonical Hamiltonian system

with an integral. It was shown as a rank degeneracy condition that if the force in the

rod is aligned anywhere with the magnetic field it is aligned everywhere with the field.

In this case the rod is simply a straight twisted rod.

Mel’nikov’s method was then used to show that for an extensible rod the presence

of the magnetic field leads to the transverse intersections of the stable and unstable

manifolds of the homoclinic orbit, Smale horsehoes and the existence of spatially chaotic

solutions. As a corollary complete integrability is destroyed through the loss of the in-

tegral. Through detailed scaling arguments and using a basic algorithm to compute a

first order approximation to the homoclinic orbit, it was shown that it is the interac-

tion between extensibility (a ‘material’ nonlinearity) and magnetic effects (a ‘geometric’

nonlinearity) which destroys integrability as neither perturbation alone alters either the

149
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integrability or the transversality of the system. Specifically, to first order (the sum of

the two perturbations) the Mel’nikov function is zero but to second order (the product

of the two perturbations) the Mel’nikov function has simple zeroes. This implies the

existence of a multiplicity of localised configurations exist.

It is conjectured that a rod with nonlinear constitutive relations or a shearable rod

in a magnetic field will have spatially chaotic solutions as both linear elasticity and

shearability, like inextensibility, are necessary conditions on the integral (3.41b).

Having proved the existence of multimodal solutions for an extensible rod in a mag-

netic field, localised solutions were then computed. Due to the coupling between the

spatial and director frames by the magnetic field, standard numerical procedures for

the computation and continuation of homoclinic solutions needed to be adapted to deal

with the periodicity of the trivial solution. The spectrum of Floquet multipliers in the

nondimensional load parameter plane (λ,m) was investigated. Localised solutions were

computed using a three parameter shooting method by exploiting the reversibilities of

the system. Solutions were then continued with pseudo-arclength continuation software

using projection boundary conditions which utilised the exponential trichotomies of the

system. The post-buckling path of a rod in a magnetic field λ was found to be quali-

tatively similar to the post-buckling path of a rod under end force and moment m. It

was shown that the presence of the magnetic field decreased the value at which the rod

buckled due to end loading, although care must be taken to avoid general statements

when dealing with buckling due to dimensionless parameters.

A codimension-two point (λc,mc) was identified at which a double Hamiltonian-Hopf

bifurcation occurred. The codimension-two point determined whether a primary homo-

clinic solution could bifurcate at one of either two critical values of the field strength

λ = λ+ or λ = λ−, one critical value λ = λc or did not bifurcate. It is believed that

this is the first example of a double Hamiltonian-Hopf bifurcation found. The bifurca-

tion structure of multimodal configurations was then investigated. The codimension-two

point was found to be an organising centre for the bifurcation set of both primary and

multimodal homoclinic solutions. Double coalescence points were observed as two pairs
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of branches of bimodal and trimodal homoclinic solutions merged at critical values of

the load parameters.

If the rod was not subject to an end moment, i.e. M = 0, the trivial configuration

would be a straight and untwisted rod and the trivial solution would be a fixed point.

Preliminary numerical evidence on the spectrum of the eigenvalues suggests that a codi-

mension two point (λc,mc) exists, so an analytical condition could be formulated. Non-

linear normal form analysis about the fixed point solution could be performed through

a reduction of the nine-dimensional governing equations by the three Casimirs, then by

a Lyapunov-Schmidt reduction [101].

The Mel’nikov analysis, which implied the existence of multimodal solutions, only

applied for a small δ-perturbation, while multimodal solutions could be computed for all

non-zero values of λ when the Floquet multipliers where not on the unit circle. This is

because the Mel’nikov analysis provides an approximation to the splitting of the stable

and unstable manifolds for the perturbation based on inverting the Hamiltonian and

solving for an expansion of an action integral by the implicit function theorem. However,

Devaney’s theorem, which states that a Hamiltonian system with a transverse point will

have a multiplicity of multimodal homoclinic orbits, only requires that the intersection

of the stable and unstable manifolds be transverse, which is a global phenomenon for

hyperbolic homoclinic orbits in Hamiltonian systems since the intersections will occur

along an ‘energy’ level [21].

An important question which has not been discussed in this thesis is the question

of the stability of localised configurations. Stability is likely to be the exception rather

than the rule as it has been shown, for the related problem of a beam on an elastic

foundation [79], that all multimodal configurations are unstable regardless of how the

loading is applied. It is reasonable to conjecture that similar instability occurs.

It has been shown [5] that neglecting the effect of the magnetic field and seeking

travelling wave solutions for η = s− ct of the dynamic system derived in [83] yields an

Hamiltonian system which can be shown to be integrable. This is a suprising result as

numerical evidence showing solition interaction [27] strongly suggests that the full dy-
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namic system is not integrable. Note that by seeking travelling wave solutions of the full

equations, there are far more admissible solutions such as hetroclinic and discontinuous

solutions. If the Lorentz force on the rod is included and it is assumed, as in [105], that

the velocity of the rod is small then the stationary solutions of the governing equation

will have an equivalent form to (3.38). However any restriction on the motion of the

rod is at odds with the geometrically exact formulation as it is assumed the rod can

undergo arbitarily large deformations then it is natural to assume the rod can move in

an arbitary fashion. The motion of the rod will induced an electro-motive force which

opposes the motion rod. The magnitude of this force is proportional to the rate of change

of the enclosed magnetic flux [110]. Thus, without restriction on the seeking stationary

solutions of an exact partial differential will not yield an equivalent system to the static

equilibrium formulation investigated in this thesis.

Preliminary numerical investigations of the spectrum of Floquet multipliers in the

(λ, ρ) parameter plane indicates that a rich bifurcation structure is present. Once again

the monodromy matrix decouples into a four-dimensional trivial matrix, containing

the Casimirs and the constraint, and a six-dimensional non-trivial matrix containing

the dynamics of the system. A codimension-two point determined by critical values

(λc, ρc) = (0.01, 1.10533) given m = 1.4247, ε = 0 and ν = 1/3 was found which distin-

guishes between strongly and weakly anisotropic buckling due to the magnetic field.

Weakly anisotropic rods have a pair of unstable, centre and stable Floquet multipliers

and the strongly anisotropic system have two pairs of centre multipliers and a stable

and an unstable Floquet multiplier on the real line. Following from [98], the buckling

mechanism for a weakly anisotropic rod is a Hamiltonian-Hopf bifurcation of a periodic

solution, while in the strongly anisotropic case the rods buckle in a Hamiltonian-Pitchfork

bifurcation of a periodic solution.

Whether a Poisson bracket formulation can model another family of generalised body

forces on a rod or if the model presented here is unique, is another open question.
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Appendix A

Parameterisation

In order to convert any quantities in the spatial frame into the director frame a form

of parameterisation is needed that perserves length and orientation. There are two forms

of parameterisation used in this thesis: the Euler angles and the Euler parameters. In

this appendix both forms of parameterisation are outlined.

The Euler angles are easily expressed in closed form and have a distinct physical

interpretation, making them amenable to analytical methods, yet have an inherent polar

singularity which, along with the appearance of trigonometric functions, makes them less

suitable for computation. The Euler parameters are a set of unit quarternions and have

little physical meaning. Indeed, with the exception of [57] there is little analytical work

in this formulation relating to rods. The Euler parameters have the property of ‘double

covering’ which removes the polar singularity and are numerically straightforward to

implement1.

There are other forms of parameterisation, most notably the Deprit-Andoyer vari-

ables [70]. However, they are well chosen choices for the co-terminal rotations and say

no more than the Euler Angles.

1Goldstein, writing without knowledge of today’s computation power in an earlier edition of his text
on classical mechanics alludes to the supposed redundancy of quaternions by dismissively referring to
them as “musty mathematics” but this quote has been removed from the latter editions [43].
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Figure A.1: Representation of the three consecutive rotations R1, R2 and R3 by the corre-
sponding angles φ, θ and ψ which produces the Euler angles.

A.1 Euler Angles

The Euler angles are defined by three consecutive rotations which convert quantities

in the spatial frame into the director frame preserving the length and orientation. Let
(
x(0), y(0), z(0)

)
denote components of a vector in the spatial frame {e1, e2, e3} and let

(
x(3), y(3), z(3)

)
denote components of a 3-tuple written in the director frame {d1,d2,d3}.

Components of 3-tuples in intermediate bases will be denoted with intermediate super-

scripts accordingly. There is no standard notation for Euler angle formulations2 but

following [99] and adopting the conventions of the so-called British school of Love,

Whittaker and Pars et al., the transformation can be defined by the following three

consecutive rotations:

(i) A rotation R1 (φ) about z0 by φ mapping x(0) and y(0) onto x(1) and y(1).

(ii) A rotation R2 (θ) about x1 by θ mapping y(1) and z(1) onto and y(2) and z(2).

(iii) A rotation R3 (ψ) about z(2) by ψ mapping x(2) and y(2) onto x(3) and y(3).

Explicitly, the rotation R1 acts by




x(1)

y(1)

z(1)


 =




sinφ cosφ 0
cosφ − sinφ 0

0 0 1






x(0)

y(0)

z(0)


 ,

2There are twelve distinct sequences of rotations.
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the second rotation R2 is given by




x(2)

y(2)

z(2)


 =




1 0 0
0 cos θ − sin θ
0 sin θ cos θ






x(1)

y(1)

z(1)




and the final rotation R3 is given by




x(3)

y(3)

z(3)


 =



− sinψ cosψ 0
cosψ sinψ 0

0 0 1






x(2)

y(2)

z(2)


 .

Thus, evaluating the rotations consecutively gives the matrix

R (θ, ψ, φ) = R1 (φ)R2 (θ)R3 (ψ) ,

which, by direct calculation is

R =




cos θ cosφ cosψ − sinφ sinψ cos θ cosφ sinψ + cosψ sinφ − sin θ cosφ
− cos θ sinφ cosψ − cosφ sinψ − cos θ sinφ sinψ + cosφ cosψ sin θ sinφ

sin θ cosψ sin θ sinψ cos θ


 .

The set of rotations are displayed in figure A.1.

The parameterisation of the directors is given explicitly by

d1 (θ, φ, ψ) =




cosψ cos θ cosφ− sinψ sinφ
cosψ cos θ sinφ+ sinψ cosφ

− cosψ sin θ


 , (A.1a)

d2 (θ, φ, ψ) =



− sinψ cos θ cosφ+ sinψ cosφ
− sinψ cos θ sinφ+ cosψ cosφ

sinψ sin θ


 , (A.1b)

d3 (θ, φ) =




sin θ cosφ
sin θ sinφ

cos θ


 . (A.1c)

Here θ measures the displacement from an initially straight rod, ψ is the azimuthal

angle about a fixed axis and φ is the twist angle about the centreline of the rod. In the

terminology of rigid body mechanics θ is the nutation angle, ψ is the precession angle

and φ is the spin angle. It is evident from the construction of R that when there is no

nutation that spin and precession are no longer independent.
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A.2 Euler Parameters

If a unit vector in the spatial frame, k = k1e1 + k2e2 + k3e3, is rotated by an angle

Φ, then the Euler parameters may be defined as

qj = k · ej sin (Φ/2) , j = 1, 2, 3.
q4 = cos (Φ/2) ,

(A.2)

subject to the normalisation condition

q21 + q22 + q23 + q24 = 1. (A.3)

This is equivalent to making the substitutions

q1 = cos
ψ + φ

2
cos

θ

2
, q2 = cos

ψ − φ
2

sin
θ

2
, q3 = sin

ψ − φ
2

sin
θ

2

and

q4 = sin
ψ + φ

2
cos

θ

2

into the matrix (A.1). Thus the rotation matrix R is given by

R =




q21 − q22 − q23 + q24 2 (q1q2 − q3q4) 2 (q1q3 + q2q4)
2 (q1q2 + q3q4) q22 + q24 − q21 − q23 2 (q2q3 − q1q4)
2 (q1q3 − q2q4) 2 (q1q4 + q2q3) q23 + q24 − q21 − q22


 . (A.4)

The determinant of this matrix, due to the normalisation condition (A.3), is unity.

In terms of Euler parameters the directors are given by

d1 =




q21 − q22 − q23 + q24
2 (q1q2 + q3q4)
2 (q1q3 − q2q4)


 , (A.5a)

d2 =




2 (q1q2 − q3q4)
q22 + q24 − q21 − q23
2 (q1q4 + q2q3)


 , (A.5b)

d3 =




2 (q1q3 + q2q4)
2 (q2q3 − q1q4)
q23 + q24 − q21 − q22


 . (A.5c)

If the set of quaternions q corresponds to the rotation of k by Φ then −q corresponds

to the co-terminal rotation of k by Φ + 2π. Hence q and −q describe the same rotation

and thus there is a homomorphic two-to-one relationship between representations by
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the Euler parameters and rotations, referred to as the double covering of the Euler

parameters. This is because the Euler parameters provide a representation of the group

SU (2) as well as SO (3).

The evolution of the Euler parameters can be derived by substituting the equa-

tions (A.5) into (3.4) to give




q1
q2
q3
q4




′

=
1

2




q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3







u1

u2

u3


 . (A.6)

In one respect the normalisation condition (A.3) can be interpreted as a Casimir as it is

independent of any parameters. However, the normalisation condition can not be recov-

ered from the equation (A.6) as the matrix is not square [48]. Instead the normalisation

condition can be (correctly) interpreted as a geometric constraint. The Euler parame-

ters are constrained to lie on the surface of a four-dimensional unit hyper-sphere [36].

The constraint is holonomic, i.e., it does not depend on the derivatives of the Euler

parameters so does not affect the integrability of the parameterised system [1, pg. 624].
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Appendix B

Numerical Analysis

This appendix gives an overview of the numerical procedures outlined in §4.5 and §6
as well as many of the programs, routines and procedures used. The numerical analysis

is consists of two parts: the construction and the continuation of homoclinic solutions.

Throughout this thesis, homoclinic solutions are constructed by using an approximation

to the flow about the equilibrium and by exploiting the reversibilities of the system [20].

From a given solution there are two principal methods of computing solutions using

continuation software: projection boundary conditions [11–13, 61] and explicit bound-

ary conditions [41]. The explicit and projection boundary conditions are mathematically

equivalent in that both procedures require a knowledge of the invariant subspace struc-

ture near the equilibrium by stipulating that the solutions be in the linear subspaces

which approximate the stable and unstable manifolds.

In order to construct homoclinic orbits some preliminary results are necessary. Fur-

ther detail can be found in any relevant textbook, for example [45].

B.1 Preliminary Results

Let an even-dimension dynamical system take the form

x′ = f0 (x,µ) , x ∈ R
2n, µ ∈ R

p with s ∈ (−∞,+∞) (B.1)

Definition B.1.1. A dynamical system is doubly reversible if there exists a pair of linear
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involutions R1 and R2 such that ,

Ri ◦ f0 (x) = −f0 (Ri ◦ x) , R2
i = I

2n and Si = fix (Ri)
∼= R

n for i = 1, 2

where the linear subspace Si is defined as the symmetric section of the reversibility Ri.

Lemma B.1.2. Let p be a fixed point so that f0 (p) = 0 and without loss of generality

assume p = 0. Then if f0 (x) is reversible then the spectrum of the eigenvalues of the

linearised vector field Df0 (0) will also be reversible, i.e., have reflection symmetry about

the imaginary axis.

Proof. By the reversibility

Df0 (0) ◦Ri = −Ri ◦Df0 (0) ,

thus, forming a characteristic polynomial in µ

|Df0 (0)− µI| = |−Ri ◦ (Df0 (0) ◦Ri)− µI| = |Df0 (0) + µI| .

Hence all roots of the characteristic polynomial, the eigenvalues, will occur in reversible

(conjugate) pairs.

The stable manifold theorem gives an insight into the structure of the invariant

subspaces. For a dynamical system with a fixed point at the origin the following subspaces

may be constructed

Definition B.1.3. The stable, centre and unstable subspaces of a linearised dynamical

system are given by

(i) E(s)(0) = span {v1,v2, . . . ,vk} where <µ1, . . . ,<µk ≤ 0.

(ii) E (c)(0) = span {vk+1,vk+2, . . . ,vk+l} where <µk+1, . . . ,<µk+l = 0.

(iii) E (u)(0) = span {vk+l+1,vk+l+2, . . . ,vk+l+m} where <µk+l+1, . . . ,<µk+l+m ≥ 0.

Where dim E (s) = k, dim E (c) = l and dim E (u) = m. Hence 2n = k + l +m and

R
2n = E(s)(0)⊕ E (c)(0)⊕ E (u)(0).
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If the system is reversible then k = m and l is even. If the system is also strictly

hyperbolic then l = 0 and k = m = n. The linear subspaces can be related to the flow of

the corresponding nonlinear system near an equilibrium solution by the centre manifold

theorem

Theorem B.1.4 (The Centre Manifold). For a nonlinear dynamical system with a

fixed point at the origin,

(i) There exists local stable, centre and unstable manifolds W s
loc, W

c
loc and W u

loc of

dimension k, l and m respectively.

(ii) The local stable, centre and unstable manifolds are tangent to the stable, centre and

unstable subspaces of the linearised system at the fixed point.

(iii) The stable and unstable manifolds are uniquely defined but the centre manifold need

not be.

Proof of B.1.4. See [45, §3.2] and the references therein.

Now, consider a perturbation to the vector field (B.1) of the form

x′ = f0 (x) + εf1 (x, s) +O
(
ε2
)

(B.2)

with a solution to the unperturbed system x0. By the centre manifold theorem, the

flow of the perturbed vector field can be approximated near the stable and unstable

manifolds. Thus for the unstable part, about the equilibrium the solution x0 can be

approximated by

xuε (s0, s0) = x0 (0) + εv1 +O
(
ε2
)

(B.3)

which in general is [45, Lemma 4.5.2]

xuε (s, s0) = x0 (s− s0) + εxu1 (s, s0) +O
(
ε2
)
, for s ∈ (−∞, s0] (B.4)

where

xu1 (s0, s0) = v1. (B.5)
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The vector v1 is in the set of normalised orthogonal real eigenvectors spanning the un-

stable eigenspace of the linearised vector field and s0 determines the phase of a solution.

The terms of the expansion (B.4) can be determined through a succession of varia-

tional equations. The variational equations can be constructed by differentiating (B.2)

and (B.4) and then equating coefficients of ε of the Taylor expansion

d

ds
xuε = f0 (xuε ) + εf1 (xuε , s) +O

(
ε2
)

= f0

(
x0 (s− s0) + εxu1 (s, s0) +O

(
ε2
))

+ εf1

(
x0 (s− s0) + εxu1 (s, s0) +O

(
ε2
))

+O
(
ε2
)

= f0 (x (s− s0)) + εDf0 (x0 (s− s0)) xu1 (s, s0) + εf1 (x0 (s− s0) , s) +O
(
ε2
)
.

Therefore, the first order approximation xu1 (s, s0) can be found through

d

ds
xu1 (s, s0) = Df0 (x0 (s− s0)) xu1 (s, s0) + f1 (x0 (s− s0) , s) . (B.6)

A similar expression for the unstable part over s ∈ [s0,∞) can be found in exactly the

same way. Thus, through the centre manifold theorem there are ways of approximating

the flow of nonlinear systems near fixed points. Knowledge of the area about an equi-

librium can be exploited to give a global description of the dynamics when the system

admits homoclinic orbits.

B.2 Shooting for Homoclinic Orbits

The computation of a homoclinic orbit over an infinite domain is impossible. Hence, it

is necessary to truncate the arc-length parameter to s ∈ [0, T ] for a finite but arbitrarily

large T in order to form a good approximation of a homoclinic orbit. Consequently, the

truncation requires the system to be treated as a boundary-value problem. For reversible

dynamical systems, the discrete reversing symmetry can be exploited to simplify the

calculations. The left-hand side conditions are placed in the unstable mainfold of the

trivial equilibrium and the right-hand side conditions are placed in the symmetric section.

The resulting boundary-value problem is then solved using a shooting method where the

Newton-Raphson method solves a variational equation with respect to a set of shooting

161



B.2. Shooting for Homoclinic Orbits B. Numerical Analysis

parameters which satisfy a reversibility. The method can easily be adapted to non-

reversible systems and periodic systems [7].

For simplicity a reversible, hyperbolic system is considered. Let {v1,v2, . . .vn} be

normalised orthogonal real eigenvectors spanning the unstable (generalised) eigenspace

of the linearised vector field (B.1). A solution to the governing equation can be approx-

imated by the linearised flow by the centre manifold theorem as

x (s) = εv +O
(
ε2
)

with s ∈ (0, s∗)

for s∗ and ε sufficiently small and where v ∈ span {v1,v2, . . .vn}. Now consider the

truncated system as a boundary-value problem over the unit interval

x′ = T f0 (x,µ) , x ∈ R
2n, µ ∈ R

p with s ∈ [0, 1] , (B.7)

subject to the boundary conditions

x (0) = ε (a1v1 + a2v2 + . . .+ anvn) , v ∈ R
2n, (B.8a)

x (1) ∈ S, (B.8b)

where T is the truncated arclength and S ∈ R
n is given in definition (B.1.1). The ai are

weighted functions of the shooting parameters δi. They are subject to the normalisation

constraint

n∑

i=1

a2
i = 1. (B.9)

In order to construct a well-posed shooting problem there must be n independent shoot-

ing parameters δi, as the righthand boundary condition is a subspace of R
n. However,

the system (B.7) with boundary conditions (B.8) subject to the normalisation condi-

tion (B.9) is ill-posed: there are more boundary conditions than independent shooting

parameters. This is because the shooting parameters need to satisfy n righthand bound-

ary conditions and are formulated in terms of the initial conditions via n functions ai but

due to the normalisation condition (B.9) only n− 1 of the functions are independent.
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Thus, the truncationed length is treated as an additional variable which satisfies the

equation

T ′ = 0. (B.10)

Hence the boundary value problem for the governing equation (B.7) satisfying boundary

conditions (B.8), subject to the normalisation condition (B.9) and with a constant but

undetermined truncation length (B.10) is now well-posed. Since the vectors vi form

a basis for the unstable subspace, the perturbation (B.8a) is tangential to the flow

about the fixed point and hence is a good approximation for the initial trajectory of a

homoclinic orbit if T is sufficiently large and ε is sufficiently small.

Having constructed a well-posed boundary-value problem it is now necessary to find

the shooting parameters which satisfy the boundary conditions. Let the n independent

shooting parameters be denoted by y, where

y = (δ, T ) with δ = (δ1, δ2, . . . , δn−1) . (B.11)

Hence the left-hand boundary condition (B.8a) can be expressed as a function of the

shooting parameters

x (0) = ε (a1 (δ) v1 + a2 (δ) v2 + . . .+ an (δ) vn) .

The weighted functions ai are explicitly dependent on the shooting parameters δ whereas

T is implicitly dependent on the constant ε. A solution x (s) of the boundary-value prob-

lem will satisfy the righthand boundary condition (B.8b), which may be reformulated as

the function b where

b : R
2n 7→ R

n so that b (x(1)) = 0. (B.12)

Suppose that w (s; y) is a solution to the initial-value problem

w′ (s; y) = T f0 (w,µ) for w ∈ R
2n, µ ∈ R

p, y ∈ R
n, (B.13a)

w (0) = ε (a1v1 + a2v2 + . . .+ anvn) . (B.13b)
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Now define the function

G (y) = b (w (s; y))|s=1 .

Given a good initial guess y(0), in order to solve the boundary-value problem it is nec-

essary to generate a sequence of improved guesses
{
y(0),y(1),y(2), . . .

}
such that

lim
n→∞

G
(
y(n)

)
= 0

so that the righthand boundary condition (B.8b) will be satisfied by solutions of

the initial-value problem. To generate the sequence of successive guesses the Newton-

Raphson method is used

y(n+1) = y(n) − G
(
y(n)

)

DG
(
y(n)

) , (B.14)

where DG is the Jacobian of the function G with respect to the shooting parameters.

The Jacobian is given by

DG
(
y(n)

)
i,j

=
∂bi (w(s; y))

∂yj

∣∣∣∣
s=1,y=y(n)

=

2n∑

k=1

∂bi (wi(s; y))

∂wk(s; y)
· ∂wk(s; y)

∂yj

∣∣∣∣
s=1,y=y(n)

. (B.15)

In order to solve the Newton-Raphson equation for an initial guess y(0) a variational

equation of w (s,y) with respect to the shooting parameters is formed. Let the partial

derivatives of w with respect to the shooting parameters y be denoted by

zk,j (s; y) =
∂wk(s; y)

∂yj
. (B.16)

The Jacobian may now be written as

DG
(
y(n)

)
i,j

=
2n∑

k=1

∂bi (wi(s; y))

∂wk(s; y)
zk,j (s; y)

∣∣∣∣
s=1,y=y(n)

, (B.17)

where zk,j (s,y) satisfies the auxiliary variational equations

z′k,j (s; y) = T
2n∑

l=1

∂f0k(w(s; y))

∂wl(s; y)
zl,j (s; y) j = 1, 2, . . . n− 1 and k = 1, 2, . . . 2n,

(B.18a)

z′k,n (s; y) = T
2n∑

l=1

∂f0k(w(s; y))

∂wl(s; y)
zl,n (s; y) + f0k(w(s; y)) k = 1, 2, . . . 2n. (B.18b)
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The auxiliary equations (B.18) are found by differentiating (B.16) with respect to arc-

length implicitly and using equation (B.13a). Similarly the auxiliary boundary conditions

can be found by differentiating the boundary conditions (B.8a) with respect to the

shooting parameters

zk,j(0; y) = ε
2n∑

l=1

∂al(δ)

∂δj
vlk j = 1, 2, . . . , n− 1 and k = 1, 2, . . . , 2n, (B.19a)

zk,n(0; y) = 0 k = 1, 2, . . . , 2n. (B.19b)

The coupled equations (B.13a) and (B.18) with initial conditions (B.13b) and (B.19)

constitute a well-posed initial-value problem. From the pth-iterate the initial-value prob-

lem w (s; yp) can be integrated up to s = 1 to find values of zk,j(1; y
(p)) which can then

be substituted into the Newton-Raphson equation (B.14) in order to compute the next

iterate for the shooting parameters y(p+1), in turn creating a new initial-value problem

for w
(
s; y(p+1)

)
. From a good initial guess the successive solutions will then produce the

correct shooting parameters for the associated boundary-value problem (B.7), (B.8).

B.3 Continuation of Homoclinic Orbits

Having computed a homoclinic solution on specifying the correct boundary condi-

tions, numerical continuation software can follow solutions under small changes in the

parameters. Continuation software discretises the solution and then under a slight change

of a parameter uses the mesh points of the decretised solution as suitable initial guesses

for a Newton-Raphson type method to find a new set of mesh points. The new solution

is then reconstructed using a collocation algorithm [82].

As previously mentioned at the start of the chapter there are two types of boundary

condition commonly employed to follow homoclinic solutions using continuation soft-

ware, the explicit [41] and the projection boundary conditions [11–13, 61]. The explicit

boundary conditions require a smooth basis of the stable and unstable manifolds, while

the projection boundary conditions require a smooth projection onto the stable and un-

stable manifolds. The explicit boundary conditions require additional free parameters
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which increase the dimension of the problem but can accommodate a wider variety of

connecting orbits.

B.3.1 Projection Boundary Conditions

The stable, centre and unstable projection matrices onto the respective eigenspaces

of the equilibrium p are composed of the stable, centre and unstable eigenvectors of the

transpose of the matrix of the vector field linearised about the equilibrium. For a vector

field such as that described in definition B.1.3, the projections onto the k-dimensional

stable, l-dimensional centre and m-dimensional unstable manifolds are given by the three

matrices Ls (µ), Lc (µ) and Lu (µ), where

Ls (µ) (x (0)− p) = 0, Ls (µ) ∈ R
k×2n,

Lc (µ) (x (0)− p) = Lc (µ) (x (1)− p) = 0, Lc (µ) ∈ R
l×2n,

Lu (µ) (x (1)− p) = 0 and Lu (µ) ∈ R
m×2n.

Projection matrices have the property of exponential trichotomies [58]. Hence there exist

trichotomy constants αs < −αc < 0 < αc < αu and K > 0 such that all the projection

matrices satisfy

|Φ (s, s0)Ls (µ) | ≤ Ke+αs(s−s0), |Φ (s, s0)Lc (µ) | ≤ Ke+αc(s−s0) for s ≥ s0

and

|Φ (s, s0)Lc (µ) | ≤ Ke−αc(s−s0), |Φ (s, s0)Lu (µ) | ≤ Ke+αu(s−s0) for s0 ≥ s

where Φ (s, s0) is a solution to the linearised system x′ = Df0 x with a phase s0.

The existence of the exponential trichotomy means that solutions that start in the

image of the stable projection matrix decay exponentially with a rate of at least e−αs

as s→ +∞. Solutions in the projection of the centre-space will not decay faster than

e−αcs and will not increase faster than eαcs as s→ +∞. Solutions in the image of the

unstable projection decay exponentially with a rate of at least e+αu as s→ −∞.

An important property of exponential trichotomies is that under small perturbations

the resulting system also has exponential trichotomies. Thus,
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Lemma B.3.1. If the variational equation of a vector field (B.1) about an orbit x0 has

an exponential trichotomy on R
+, then

image [Ls (µ)] = Tx0(s)W
s and image [Ls (µ) + Lc (µ)] = Tx0(s)W

cs,

where Tx0(s)W
s is the tangent space of the stable manifold associated with the orbit x0 (s)

and W cs is the centre-stable manifold and ‘can be seen as the union of stable manifolds

of the orbits lying in the centre manifold’ [58].

Proof. See [58, Lemma 2.1].

The lemma states that the projection conditions are stable under small perturbations

and are suitable for continuation of homoclinic solutions. An analogous statement holds

for projections on R
− with the same centre projection rates αc. If the centre, stable and

unstable projections on R
− are the same as those on R

+ the exponential trichotomy is

said to be a total exponential trichotomy.

The Kirchhoff equations in §4 were continued using the exponential dichotomies of

the system. Exponential dichotomies are properties of systems which posses stable and

unstable projection matrices Ls,u (µ) on R
+ for which |Φ (s, s0)Ls (µ) | ≤ Ke+αs(s−s0)

for s ≥ s0 and |Φ (s, s0)Lu (µ) | ≤ Ke+αu(s−s0) for s0 ≥ s. An analogous statement holds

for projections on R
−.

B.3.2 Computation & Continuation of Periodic-to-Homoclinic Solu-

tions

There is a great deal of literature on the computation and continuation of connect-

ing orbits between hyperbolic equilibria, whereas periodic-to-homoclinic solutions (often

called periodic-to-periodic connections) have yet to be investigated as extensively. How-

ever, much of the theoretical framework from the fixed point case can be extended to

include a periodic orbit.

In this section only homoclinic periodic-to-periodic connections shall be considered.

Only systems with a hyperbolic periodic orbit [34] (also refered to as a periodic orbit

of saddle-type [19]) are considered. These are systems with a single conjugate pair of
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Floquet multipliers on the unit circle. In this thesis both connecting orbits between

hyperbolic equilibria and periodic-to-periodic connections are computed. However, the

periodic-to-periodic connection is highly degenerate: firstly the system is Hamiltonian,

secondly the system is reversible and thirdly the periodic orbit is known. In this section

a general method shall be described before showing how each degeneracy of the system

reduces the overall complexity of the system.

In [19] the authors investigated the computation shallow water waves in the presence

of gravity and surface tension, a problem which has a similar two parameter bifurcation

plane (in Bond and Froude numbers) to anisotropic Kirchhoff rods [98] (in m and ρ, see

figure B.4). Curiously, solitary waves which are assympotic to non-decaying ripples at

infinity were found to exist generically, whereas solitary waves which are assymptotic

to a fixed point, i.e. ripples which decay to zero were found to be a codimension-one

phenomena. The authors constructed a general boundary-value method for the continu-

ation of homoclinic orbits to periodic orbits in Hamiltonian and reversible systems. The

method was then extended in [34] for more general systems.

General Case

In the most general case, a periodic-to-periodic homoclinic connection is a

codimension-zero phenomena, that is such connections persist under perturbation. A

general method for their computation essentailly involves solving a pair of coupled sys-

tems: one system for the periodic orbit and one system for the homoclinic connection.

The τ -periodic solution γ (s) is the solution to the boundary value problem

v′ = τf (v (s) ,µ) s ∈ [0, 1] , µ ∈ R
p, (B.21a)

subject to the periodic boundary condition

v (0) = v (1) (B.21b)

and a scalar equation which determines the phase

Ψ (v (s) , τ,µ) = p̄. (B.21c)

168



B.3. Continuation of Homoclinic Orbits B. Numerical Analysis

The homoclinic connection is given by the solution to the boundary value problem

w′ = T f (w (s) ,µ) s ∈ [0, 1] , µ ∈ R
p, (B.22a)

subject to the projection boundary conditions

Ls (µ) (w (0)− v (0)) = 0, Ls (µ) ∈ R
2n×(n−1), (B.22b)

Lc (µ) (w (0)− v (0)) = 0 or Lc (µ) (w (1)− v (1)) = 0, Lc (µ) ∈ R
2n×2, (B.22c)

Lu (µ) (w (1)− v (1)) = 0 Lu (µ) ∈ R
2n×(n−1). (B.22d)

The coupling between the two systems is through the projection boundary conditions.

In order for the system to be well-posed two artifical parameters are introduced into

the system: the period τ and the truncated length of the homoclinic connection T .

Homoclinic solutions can be continued under changes in the parameter µ ∈ µ.

Hamiltonian Case

If the system is Hamiltonian the periodic orbit satisfies

v′ = τ (J∇H (v (s) ,µ) + λ1∇H (v (s) ,µ)) s ∈ [0, 1] (B.23a)

subject to the periodic boundary condition

v (0) = v (1) (B.23b)

and along with a condition which fixes the ‘energy’ of the Hamiltoninan

H (v (s) ,µ) = h (B.23c)

and a phase condition

Ψ (γ,µ) = p. (B.24)

The homoclinic connection is satisfies the boundary value problem

w′ = T (J∇H (w, λ) + λ2∇H (w, λ)) s ∈ [0, 1] (B.25a)
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subject to the projection boundary conditions

Ls (µ) (w (0)− v (0)) = 0, Ls ∈ R
2n×(n−1), (B.25b)

Lc (µ) (w (0)− v (0)) = 0 or Lc (µ) (w (1)− v (1)) = 0, Lc ∈ R
2n×2) (B.25c)

Lu (µ) (w (1)− v (1)) = 0 Lu ∈ R
2n×(n−1) (B.25d)

where λ2 is a Hamiltonian breaking parameter.

There are now four artifical parameters introduced in order for the system to be

well-posed: the period τ , the trunacation length T and the two Hamiltonain breaking

parameters λ1 and λ2. There are now two free parameters which can be continued either

µ ∈ µ or h. If h is the free parameter then the periodic orbit will be change. If µ is the

free parameter then continuation will follow connections between a single periodic orbit.

Hamiltonian & Symmetric Case

Considering the special case where the system is reversible, the construction of the

periodic orbit is given by

v′ = τ (J∇H (v (s) , λ) + λ1∇H (v (s) , λ)) s ∈ [0, 1] (B.26a)

subject to the periodic boundary condition

v (0) = v (1) (B.26b)

and along with a condition which fixes the ‘energy’ of the Hamiltoninan

H (v (s) ,µ) = h. (B.26c)

Solutions which are reversible must satisfy the n-dimensional constraint

w (1) ∈ S

thus for symmetric orbits the Hamiltonian breaking parameter λ2 can be removed, so

that the second set of coupled equations is given by

w′ = T ∇H (w (s) ,µ) s ∈ [0, 1] (B.27a)
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subject to the boundary conditions

Ls (µ) (w (0)− v (0)) = 0, Ls ∈ R
2n×(n−1) (B.27b)

Lc (µ) (w (0)− v (0)) = 0 or Lc (µ) (w (1)− v (1)) = 0, Lc ∈ R
2n×2. (B.27c)

There are three artifical free parameters introduced in order for the system to be well-

posed: τ , T and λ1.

Hamiltonian, Symmetric with a Given Periodic Orbit

If the periodic orbit can be constructed then the parameter τ is known and as γ is

an exact solution so λ1 = 0. Thus, the governing equation can be simplified further as

the system can be discarded. Now there is only one free parameter T .

w′ = T f (w (s) ,µ) s ∈ [0, 1] (B.28a)

subject to the boundary conditions

Ls (µ) (w (0)− v (0)) = 0, Ls ∈ R
2n×(n−1) (B.28b)

Lc (µ) (w (0)− v (0)) = 0 or Lc (µ) (w (1)− v (1)) = 0, Lc ∈ R
2n×2 (B.28c)

This is the method implimented in chapter §6.

B.3.3 Explicit Boundary Conditions

The explicit boundary conditions [41] allow for an ‘adaptive’ shooting procedure to be

performed with continuation software by placing the lefthand and righthand boundary

conditions of a truncated homoclinic orbit in the unstable and stable tangent spaces of

an equilibrium. The tangent spaces are spanned by the set of vectors of the linearised

vector field about an equilibrium. The key assumption is that the problem is generic in

the sense that the boundary conditions perturb the homoclinic orbit transversally.

As the only systems which are investigated in this thesis are reversible, the boundary

conditions only need to place lefthand boundary conditions in the tangent space of
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the unstable manifold as the righthand boundary conditions can be placed in the n-

dimensional symmetric section. Once again the tangent space of the unstable manifold

is approximated as

x (0) = ε (a1v1 + a2v2 + . . .+ anvn) ,

x (1) ∈ S.

As in §B.2 the n normalised functions ai are parameterised by n− 1 free parameters δ

and vi ∈ R
2n are vectors in the linearised subspace Eu (0). As there are 3n boundary

conditions (n conditions for x (0), n conditions on the functions ai and n conditions on

the symmetric section) for a 2n-dimensional problem with n− 1 free parameters δ, once

again it is necessary to allow T to be a free parameter in order for the boundary value

problem to be well-posed.

Introducing the functions ai and increasing the number of continuation parameters

(δ, T ) of the problem is computationally expensive in comparison with the projection

boundary conditions. Another drawback is that when approaching critical values λ = λ±

the shooting parameters δ1 and δ2 vary dramatically, decreasing computational speed.

Numerically as critical buckling values are approached the problem becomes similar

to the existence of a boundary layer in singular perturbation problems [95]. However,

the explicit boundary conditions seem to provide a better approximation of the linear

subspaces than projection boundary conditions as they can be continued closer to the

critical values.

B.4 Numerical Subroutines Implimented

A variety of numerical subroutines were implimented in this thesis. In this section

they are described, along with their advantages and disadvantes.

Quadrature

The quadrature subroutine cubint.f was used in the computation of the second-

order Mel’nikov integral. This package was used primarily because takes the unequally
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spaced output from the adaptive integrator and approximates an integral using cubic

polynomial interpolation of data. The choice of cubic polynomial is the natural one since

linear interpolation is inaccurate and higher order polynomials are seldom reliable for

unevenly spaced data. The returned absolute and relative errors were always low, i.e.

10−12.

Eigenvalue & Eigenvector computation

Initially the Eispack routine rg.f was used to calculate eigenvalues of the monodromy

matrix and the unstable vectors v1 and v2 which were used in the computation and

continuation of the homoclinic orbits. However, for continuity with the continuation

software used the nag subroutine f02agf.f was used instead.

The subroutine takes a matrix M which is first balanced and then reduced to upper

Hessenberg form using real stabilised elementary similarity transformations. The eigen-

values and eigenvectors of the Hessenberg matrix are calculated using the QR-algorithm.

The eigenvectors of the Hessenberg matrix are back-transformed to give the eigenvectors

of the original matrix M .

It should be noted that this subroutine has been discontinued and has been replaced

with f02ebf.f.

Numerical solution of systems of first order equations

Throughout the majority of this thesis systems of first order differential equations

were solved with the subroutine dop853.f. This is an explicit, highly accurate, adaptive

Runge-Kutta method of order 8 for first order non-stiff systems due to Dormand and

Prince. The local error estimation and step-size control are based on embedded formulas

of orders 5 and 3 respectively. The method provides dense output of order 7.

At first a basic explicit, non-adaptive, fourth-order Runge-Kutta routine was impli-

mented but in comparison with the higher-order method was slow. For example when

shooting to find homoclinic orbits each step of the Newton-Raphson iteration requires

the integration of an initial value problem and this method became slow when the large
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solutions were computed.

It should be noted that the solver is not a symplectic or geometric integrator, that

is it does not exploit the Hamiltonian structure of the system to conserve the phase

space. However the solver does conserve the integrals to a great degree of accuracy. For

example when computing solutions from the shooting algorithm with the relative and

absolute tolerances set to 10−14, all of the integrals are conserved to at least 10−10. When

computing Poincaré sections, such as figures 4.4.2 and 5.6 over exceptionally long time

periods the Hamiltonian remained bounded and had an error of order 10−7. To overcome

this a symplectic integrator was used.

Due to the symmetry in the system the Hamiltonian is not separable in terms of

kinetic plus potential energy, so explicit rather than implicit runge-kutta type algorithms

must be applied. Thus, in practice, one has to solve the implicit algebraic equations for

the intermediate stage values using some iterative approximation method. In general,

with an approximation based on a finite number of iterations, the resulting integration

scheme is no longer symplectic. Error analysis on the structural conservation, like the

analysis on the numerical accuracy, provides insight into a numerical method and helps

in making judicious choices of integration schemes - but still these methods are “almost

symplectic”.

Solutions from the eighth order explicit integrator were contrasted against the sym-

plectic implicit S-stage Gauss-Legendre method of order 2S when S = 1, 2, 3. Note that

when S = 1 the S-stage Gauss-Legendre method corresponds to the midpoint rule. The

Poincaré sections were similar in appearance illustrating stochastic layers. The implicit

S-stage Gauss-Legendre methods took far greater time and memory than the implicit

Runge-Kutta method but conserved the Hamiltonian to with 10−12 and so was used to

compute the Poincaré sections in figures 4.4.2 and 5.6.

Continuation Software

The program auto97 is the standard continuation software and was used throughout

the thesis. The program discretizes ordinary differential equation boundary value prob-
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lems by the method of orthogonal collocation using piecewise polynomials and continues

the solutions using psuedo arc-length continuation. The mesh automatically adapts to

the solution to equi-distribute the local discretization error. It is a psuedo-arclength con-

tinuation package which uses a combined Newton and Chord iteration to compute paths

of solutions.

The maximum number of Newton-Raphson iterations was NWTN = 3 and the maxi-

mum number of combined Newton-Raphson/Chord iterations was ITNW = 5. The cri-

teria for convergence of solution components and equation parameters was set to

EPSL = 10−8, EPSU = 10−8. The criteria for the detection of special solutions, such as

limit points, was EPSS = 10−6. If the combined Newton-Raphson and Chord methods

failed to converge then the stepsize, initially given as DS = 10−5, was halved until a mini-

mum stepsize is reached, DSMIN = 10−12. The maximum stepsize was given as DS = 10−2.

In all computations the number of mesh intervals was NTST = 100 and the number of

collocation points per interval was NCOL = 4.

B.5 Application to the Kirchhoff rod

From the Mel’nikov analysis presented in §4.4, if a rod is anisotropic or initially curved

then a multiplicity of multimodal configurations exists with a well-defined bifurcation

structure determined by a set of accumulation and coalescence rules [23, 95]. Following

from the rather general description of the computation and continuation of homoclinic

orbits to hyperbolic fixed points in the previous section, as an illustrative example the

computation and continuation of homoclinic orbits of the Kirchhoff rod is presented in

this section.

In the spatial frame the static equilibrium equations are given by (3.23) and in the

director frame by (3.27). The governing equations in the director frame a six-dimensional

noncanonical Hamiltonian system with two Casimirs given by (3.29). Let the constitutive

relations be given by (4.52) and let a torque, M , and tension, T , be applied in the

direction of d3 at s = ±∞. As homoclinic solutions shall be studied there is no natural

length scale, thus the arclength is nondimensionalised by s̄ = (M/B1) s. Scaling the
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forces and moments by

x1 = m1/M, x2 = m2/M, x3 = (m3 −M) /M,

x4 = n1/T, x5 = n2/T and x6 = (n3 − T ) /T

the equilibrium equations x′ = f (x) become

x′1 = (1 + ν)x2(1 + x6)− (x3 + 1)x5,
x′2 = (1 + ρ)(x3 + 1)x4 − (1 + ν)x1(1 + x6),
x′3 = x1x5 − (1 + ρ)x2x4,
x′4 = νx5(1 + x6) + x2/m

2,
x′5 = (ρ− ν)x4(1 + x6)− x1/m

2,
x′6 = −ρx4x5,

(B.30)

subject to x→ 0 as s̄→ ±∞. The nondimensional parameters are described in (4.1).

The bar notation shall be suppressed from thsi point onwards.

The linearised governing equation is given by

x′ = Ax where A =




0 (1 + ν) 0 0 −1 0
−(1 + ν) 0 0 (1 + ρ) 0 0

0 0 0 0 0 0
0 1/m2 0 0 ν 0

−1/m2 0 0 (ρ− ν) 0 0
0 0 0 0 0 0



. (B.31)

The matrix has a two-dimensional kernel so the nontrivial linearised dynamics take place

in a four-dimensional phase space. In accordance with the centre manifold theorem, the

dimensions of the linearised subspaces correspond to the dimensions of the stable, centre

and unstable manifolds of the reduced system (4.54).

In order to compute the homoclinic solutions over a truncated range the governing

equations are scaled as x′ = T f (x) over the unit interval [0, 1]. The computation of

homoclinic orbits will exploit the reversibilities of the system and compute solutions

over half the range. As shown in (4.18) the canonical system is invariant under the

action of Z2. For the noncanonical system the action of Z is given by

Z2 : (x1, x2, x3, x4, x5, x6) 7→ (−x1,−x2, x3,−x4,−x5, x6) .

The reversibilities are given by

R1 : (x1, x2, x3, x4, x5, x6) 7→ (−x1, x2, x3,−x4, x5, x6) as s 7→ −s
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and

R2 : (x1, x2, x3, x4, x5, x6) 7→ (x1,−x2, x3, x4,−x5, x6) as s 7→ −s.

For the R1-reversibility the fixed point set of the reversibilities, referred to as the sym-

metric section, is given by

S1 =
{
x ∈ R

6 : x1 (1) = x4 (1) = 0
}
. (B.33a)

Similarly for the R2-reversibility the symmetric section is given by

S2 =
{
x ∈ R

6 : x2 (1) = x5 (1) = 0
}
. (B.33b)

When the fixed point is a saddle-node with stable and unstable eigenvalues

µs,u = ±η ± iω (with η, ω > 0) of the linearised system A, a suitable lefthand boundary

condition is given by

x (0) = ε (v1 sin δ1 + v2 cos δ1) (B.34)

where the v1 ± iv2 is the eigenvector corresponding to the unstable eigenvalue µu,

ε = 10−5 is a small perturbation away from the saddle and δ1 is a shooting param-

eter which ensures the perturbation is transversal to the flow about the equilibrium.

When m = 1.7, ν = 1/3 and ρ = 1/4 then

v1 = (0.646691, 0.0414290, 0, 0.339329,−0.117096, 0) ,

v2 = (0, 0.587457, 0, 0.150579, 0.288856, 0) .

The shooting parameter T , corresponding to the ‘time’ spent outside the local unsta-

ble manifold, is in the rescaled equations, whereas δ features in the lefthand boundary

condition.

The righthand boundary conditions are determined by the symmetric section of a

reversibility (B.33).

Thus for the six-dimensional system (B.30) an eighteen-dimensional equation is con-

structed, as in equation (B.16), to solve for the shooting parameters δ and T which
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determine solutions which satisfy the symmetric section boundary conditions (B.33).

The eighteen-dimensional was comprised of the six-dimensional initial value problem

w coupled to a twelve-dimensional variational equation zi = ∂wi/∂δ, i = 1, . . . , 6 and

zi = ∂wi/∂T , i = 7, . . . , 12. The equation is

w′
1 = T ((1 + ν)w2 (1 + w6)− (w3 + 1)w5) ,

w′
2 = T ((1 + ρ) (w3 + 1)w4 − (1 + ν)w1 (1 + w6)) ,

w′
3 = T (w1w5 − (1 + ρ)w2w4) ,

w′
4 = T

(
νw5 (1 + w6) + w2/m

2
)
,

w′
5 = T

(
(ρ− ν)w4 (1 + w6)− w1/m

2
)
,

w′
6 = −T ρw4w5,

and

z′1 = T ((1 + ν) (z2 (1 + w6) + w2z6)− (z5 (w3 + 1) + w5z3)) ,

z′2 = T ((1 + ρ) (z4 (w3 + 1) + w4z3)− (1 + ν) (z1 (1 + w6) + w1z6)) ,

z′3 = T (z1w5 + w1z5 − (1 + ρ) (z2w4 + w2z4)) ,

z′4 = T
(
ν (z5 (1 + w6) + w5z6) + z2/m

2
)
,

z′5 = T
(
(ρ− ν) (z4 (1 + w6) + w4z6)− z1/m2

)
,

z′6 = −T ρ (z4w5 + w4z5) ,

z′7 = T ((1 + ν) (z8 (1 + w6) + w2z12)− (z11 (w3 + 1) + w5z9))

+ (1 + ν)w2 (1 + w6)− (w3 + 1)w5,

z′8 = T ((1 + ρ) (z10 (w3 + 1) + w4z9)− (1 + ν) (z7 (1 + w6) + w1z12))

+ (1 + ρ) (w3 + 1)w4 − (1 + ν)w1 (1 + w6) ,

z′9 = T (z7w5 + w1z11 − (1 + ρ) (z8w4 + w2z10)) + w1w5 − (1 + ρ)w2w4,

z′10 = T
(
(ν(z11 (1 + w6) + w5z12) + z8/m

2
)

+ νw5 (1 + w6) + w2/m
2,

z′11 = T
(
(ρ− ν) (z10 (1 + w6) + w4z12)− z7/m2

)
+ (ρ− ν)w4 (1 + w6)− w1/m

2,

z′12 = −T ρ (z10w5 + w4z11)− ρw4w5,
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subject to the initial conditions

w (0) = ε(v1 cos δ + v2 sin δ)

and

zi (0) = ε(v2i cos δ − v1i sin δ) i = 1, . . . , 6 and zk (0) = 0 k = 7, . . . , 12.

The shooting parameters δ, T need to be found so that they minimize a function

which corresponds to the symmetric section boundary condition. For the R1-reversibility

for the function (B.12) was given as

b (x (1)) = (x1 (1) , x4 (1))T (B.35)

so that when solving the variational equation for the initial value problem the function

G was given by

G (δ, T ) = (w1 (1; δ, T ) , w4 (1; δ, T ))T (B.36)

so that a solution to the variational equation will lie in the symmetric section of a

reversibility. For the R2-reversibility the corresponding function to be minimized was

given by

G (δ, T ) = (w2 (1; δ, T ) , w5 (1; δ, T )) . (B.37)

When ε is sufficiently small and T is sufficiently large, for a good initial guess
(
δ(0), T (0)

)

the successive values of the shooting parameter converged quadratically to minimize G

and hence solve the boundary value problem for truncated homoclinic orbits.

The computed homoclinic solutions were then continued with auto97 using projec-

tion boundary conditions. From the transpose of the linearised systemAT , the normalised

eigenvectors v̄1 ± iv̄2 of the stable eigenvalue µs = +η ± iω define the stable projection

matrix as

Ls (m, ρ, ν) = (v̄1, v̄2)
T ∈ R

2×6. (B.38)
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The lefthand boundary conditions were given by projecting back onto the stable

eigenspace of the equilibrium

Ls (m, ρ, ν)x (0) = 0 (B.39)

along with

x3 (0) = 0 and x6 (0) = 0 (B.40)

which fixed the values of the Casimirs (3.29). From the reversibilities of the solution, the

appropriate righthand boundary conditions placed the solution in the symmetric section

of a reversibility (B.33). Thus for the R1-reversibility

x1 (1) = 0 and x4 (1) = 0 (B.41a)

and for the R2-reversibility

x1 (2) = 0 and x5 (1) = 0. (B.41b)

From the discrete symmetries of the Kirchhoff rod, there are four distinct primary

homoclinic orbits, labelled Pi where i = 1, . . . , 4. Shooting parameters for the primary

orbits are given in table B.1, a configuration is displayed in figure B.1 and components

of the force x1 and x2 displayed in figure B.2.

Table B.1: Shooting values for primary homoclinic orbits computed by the method outlined
in §B.2 when m = 1.7, ν = 1/3 and ρ = 1/4. All values shall be given to seven significant figures.
Note that as the homoclinics are reversible that T is the distance to the symmetric section and
is half the length of the full homoclinic.

δ T
R1 P1 3.338506 46.99226

P2 0.1969133 46.99226
R2 P3 1.707908 46.92438

P4 4.8495001 46.92438

Multimodal solutions are then characterised by a number of distinct primary locali-

sations separated by a number of smaller oscillations. Each oscillation is a quarter turn
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Figure B.1: Configuration of the P4 primary homoclinic orbit when m = 1.7, ν = 1/3 and
ρ = 1/4. The shooting parameters, over the half range are given in table B.1 as δ = 4.8495001
and T = 46.92438. In order to visualise the entire configuration the half range solution is reflected
by the R2 involution (4.18b).
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Figure B.2: Components of force x1 and x2 for a anisotropic primary homoclinic orbit for
primary homoclinic orbit P4 when m = 1.7, ν = 1/3 and ρ = 1/4.
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the rod makes between localised modes. Bimodals orbits are denoted by (Pi, n, Pj) where

n denotes the number of small oscillations separating the primary localisations. When n

is small then the correspondence between a primary homoclinic orbit and a mode of a bi-

modal orbit is not immediately evident but when n is large the correspondence becomes

clear as the two modes accumulate onto the respective primary homoclinic orbits.

Table B.2 presents shooting parameters for a succession of bimodal homoclinic orbits

of the form (P1, n, P1). From the table B.2 it can be seen that as n increases so the

shooting parameter δn approaches the value of the shooting parameter δ for the primary

orbit which is the first mode of a bimodal orbit. It can be seen that as n increases so the

difference between successive truncation lengths |Tn − Tn−1| tends to π/2ω where ω is

the positive imaginary part of the eigenvalue µu. The additional ‘time’ taken is due to the

fact that the dynamics occurs near the equilibria where, by the centre manifold theorem,

the governing equations are “governed, very nearly, by the linear equations” [22].

Table B.2: Shooting values for R1-reversible bimodal homoclinic orbits (P1, n, P1) when
m = 1.7, ν = 1/3 and ρ = 1/4 and corresponding limit points under continuation in m.

n δn Tn Tn − Tn−1 limit point m(n)

0 2.766753 59.85963 – 1.700431
1 3.446896 62.78099 2.921359 1.739740
2 3.299746 64.64873 1.867743 1.741342
3 3.351155 66.76810 2.119364 1.765862
4 3.334243 68.80146 2.033367 1.766433
5 3.339928 70.86311 2.061650 1.783191
10 3.338500 81.13418 2.054381 1.804975
15 3.338506 91.40702 2.054572 1.822971

δ T π/2ω bifurcation point m

P1 3.338506 46.99226 2.054567 1.861290

Since the minimum number of turns found is rather arbitrary, the only reliable way

to label a multimodal homoclinic orbit correctly is by increasing the number of turns

from the accumulation rules and to assign the label according to which configuration

emerges. Thus, families of solutions rather than individual orbits are labelled.
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Figure B.3: Nondimensionalised force component x1 of a bimodal homoclinic orbit with ρ = 1/4,
ν = 1/3 and m = 1.70 as given in table B.2 over a normalised arclength. Subfigure B.3(a) shows
force components of bimodal orbits with n = 2 (red) and n = 4 (blue), illustrating how the
bimodal orbits change as the number of quarter turns between localisations increases. Subfig-
ure B.3(b) then shows the bimodal orbit n = 15 (red) against a primary bimodal (blue), illus-
trating that as n increases so each localisation of a bimodal becomes more like the corresponding
primary localisation.

Multimodal solutions cannot exist in the integrable limit as either ρ or κ0 approaches

zero. In this limit pairs of reversible solutions coalesce at limit points and pairs of non-

reversible solutions bifurcate in a Hamiltonian-Hopf bifurcation, (cf. figure 6.18). Pairs

of multimodal solutions also coalesce as they approach a critical value of end loading for

the buckling of primary solutions mmax. For reversible multimodal solutions the limit

points are not a change of stability but an exchange of stability through the switching

of an unstable branch to a branch which is less unstable [17, 79] as all branches are

unstable. The following coalescence rules were found for R1-reversible bimodal orbits

under continuation of ρ, m, and κ0

(P1, 2n+ 1, P1)←→ (P3, 2n+ 1, P4) ,

(P1, 2n+ 2, P1)←→ (P4, 2n+ 2, P3) ,

(P2, 2n+ 1, P2)←→ (P4, 2n+ 1, P3) ,

(P2, 2n+ 2, P2)←→ (P3, 2n+ 2, P4)
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and for R2-reversible bimodal orbits the coalesce rules are

(P1, 2n+ 1, P2)←→ (P3, 2n+ 1, P3) ,

(P1, 2n+ 2, P2)←→ (P4, 2n+ 2, P4) ,

(P2, 2n+ 1, P1)←→ (P4, 2n+ 1, P4) ,

(P2, 2n+ 2, P1)←→ (P3, 2n+ 2, P3) .

The exchange of stability which occurs at the limit points is due to a nontransverse inter-

section of the stable and unstable manifolds rather than a local bifurcation. Coalescence

only affects multimodal solutions since for reversible Hamiltonian systems the stable and

unstable manifolds of a primary homoclinic orbit continue to intersect the symmetric

section transversely [18]. As yet no accumulation or coalescence rules for trimodals or

higher modes have been formulated.

In table B.2 it is clear that as n increases the modes of the bimodal orbits becomes

more like the primary orbits, so the limit points m(n) approach the bifurcation value for

the primary orbits.

From the accumulation and coalescence rules a coherent picture of the bifurcation

structure emerges. Using limit point continuation in the pseudo arclength continuation

software auto97, a codimension-one curve of coalescence values for reversible bimodal,

trimodal and sixmodal orbits in the nondimensional (ρ,m) parameter plane is presented

in figure B.4(a). Note that all the curves approach the codimension-two point (with

four-fold zero eigenvalues) at (ρc,mc) = (1.1064, 1.4295). The codimension-two point

separates weakly anisotropic rods, which buckle in Hamiltonian-Hopf bifurcations, and

strongly anisotropic rods, which buckle in Hamiltonian-pitchfork bifurcations [98].

The limit points for the bimodal orbits calculated in table B.2 when ρ = 1/4 can be

seen in figure B.4(b), showing the differences in the bifurcation characteristics within

a family of bimodal solutions. Although the limit point curves for bimodal orbits with

small n are further from the buckling line than those orbits with large n, the curves can

be continued closer to the codimension-two point.
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Figure B.4: Subfigure B.4(a) shows the limit point curves for anisotropic multimodal solutions in
the (ρ,m) parameter plane the multimodal solutions are computed are bimodal (blue), trimodal
(red), quadmodal (cyan) and six modal (magenta) orbits. . The coloured region is the elliptic
region in which localised solutions cannot exist. The subfigure illustrates that higher order mul-
timodal solutions tend to bifurcation before lower order multimodal solutions. Subfigure B.4(b)
shows the limit point curves of the bimodal family in table B.2. As the limit point curves essen-
tially occur in pairs, so n = 0 (magenta), n = 1, 2 (cyan), n = 3, 4 (red), n = 5 (blue), n = 10
(yellow), n = 15 (green) . The subfigure illustrates that as those bimodals which have a large
number of quarter-turns are better approximations to the corresponding primary orbits, they
bifurcate closer to the bifurcation values of the primary orbits.
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top, Geométrié Symplectique et Méchanique (Berlin) (C. Albert, ed.), Lecture Notes in
Mathematics, no. 1416, Springer-Verlag, 1990, pp. 26–38.

[31] R. Dandoloff and G. Grahovski, The Kirchhoff rod as a XY spin chain model, Unpublished,
available as an eprint from http://www.arXiv:nlin/0512069, 2005.

[32] R. L. Devaney, Homoclinic orbits in Hamiltonian systems, J. Differential Equations 21
(1976), 431–438.

[33] , Transversal homoclinic orbits in an integrable system, Amer. J. Math. 100 (1978),
631–642.

[34] L. Dieci and J. Rebaza, Point-to-Periodic and Periodic-to-Periodic Connections, BIT Nu-
merical Mathematics 44 (2004), 41–62.

[35] E. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede, and
X. Wang, AUTO97: Software for continuation and bifurcation problems in ordinary differ-
ential equations (with HomCont), California Institute of Technology, Pasadena, CA, 1998.

[36] H. R. Dullin, Inflation of Hamiltonian system: the spinning top in projective space, Un-
published, available as an eprint from http://www.arXiv:chao-dyn/9604015, 1996.

[37] H. R. Dullin, M. Juhnke, and P. H. Ritcher, Action integrals and energy surfaces of the
Kovalevskaya top, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 4 (1994), 1535–1562.

[38] M. S. El Naschie and T. Kapitaniak, Soliton chaos models for mechanical and biological
elastic chains, Phys. Lett. A 147 (1990), 275–281.
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