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In everyday situations an individual can encounter a variety of acoustic environments. For an
individual with a hearing aid following speech in different types of background noise can often
present a challenge. For this reason, estimating the signal-to-noise ratio (SNR) is a key factor to
consider in hearing-aid design. The ability to adjust a noise reduction algorithm according to the
SNR could provide the flexibility required to improve speech intelligibility in varying levels of
background noise. However, most of the current high-accuracy SNR estimation methods are rel-
atively complex and may inhibit the performance of hearing aids. This study investigates the ad-
vantages of incorporating a spectral entropy method to estimate SNR for speech enhancement in
hearing aids; in particular a variance of spectral entropy (VSE) measure. The VSE approach
avoids some of the complex computational steps of traditional statistical-model based SNR esti-
mation methods by only measuring the spectral entropy among frequency channels of interest
within the hearing aid. For this study, the SNR was estimated using the spectral entropy method
in different types of noise. The variance of the spectral entropy in a hearing-aid model with 10
peripheral frequency channels was used to measure the SNR. By measuring the variance of the
spectral entropy at input SNR levels between -10 dB to 20 dB, the relationship function between
the SNR and the VSE was estimated. The VSE for the speech-in-noise was measured at temporal
intervals of 1.5s. The VSE method demonstrates a more reliable performance in different types
of background noise, in particular for low-number of speakers babble noise when compared to
the US National Institute of Standards and Technology (NIST) or Waveform Amplitude Distri-
bution Analysis (WADA) methods. The VSE method may also reduce additional computational
steps (reducing system delays) making it more appropriate for implementation in hearing aids
where system delays should be minimized as much as possible.
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1. Introduction

The signal-to-noise ratio (SNR) is one of the most fundamental metrics in noise level estimation;
it is defined as a power ratio of noise and speech. SNR estimation of speech in noisy environments
has been investigated over decades (e.g. [1]–[6]). Robust estimated SNRs could improve the perfor-
mance of speech enhancement algorithms [4], particularly in hearing aids. The SNR estimation not
only influences the performance of noise reduction algorithms [7], [8] but could also be used to iden-
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tify the preferred noise reduction strength for the listener, which in turn may improve listening com-
fort as well as speech intelligibility [9], [10].

In general, SNR estimation methods can be separated into two categories: i) methods measuring
the a-priori SNR according to the a-posteriori SNR focused on a relatively short time frame (approx-
imately 40 ms) [5], [11] and ii) those focused on the average SNR across longer time frames (approx-
imately 1 s). When compared with short-frame SNRs, the value of the average SNR across time
frames has been shown to more accurately quantify the actual level of the non-stationary noise; the
findings were also found to be more correlated with human speech perception [6]. One widely used
method for estimating average SNR across time frames is the US National Institute of Standards and
Technology (NIST) SNR measurement [12], which is based on a sequential Gaussian mixture esti-
mation. NIST estimates the SNR according to the energy distributions of the signal and noise. The
NIST method shows relatively reliable performance in different types of noise, but its SNR estimation
accuracy is relatively low. Another SNR estimation method, the Waveform Amplitude Distribution
Analysis (WADA) [4] assumes that the amplitude of speech and noise follow Gamma and Gaussian
distributions. The WADA method measures the SNR by estimating the shaping parameter of the
Gamma distribution, which is affected by the noise level. The algorithm shows good performance in
stationary noise, but the computation of the parameter is relatively complicated. Recently, a deep
neural network (DNN) based SNR estimation approach has been published by Papadopoulos et al.
[3]. The SNR is estimated by using feature-trained models. Although the DNN approach shows high
SNR estimation accuracy with different types of noise, it cannot be directly applied to hearing aids
due to its high computational complexity. In hearing aids, the signal processing delay should be ide-
ally minimized, since long system delays can reduce speech intelligibility [13]. The computational
steps in most traditional SNR estimation methods (e.g. the NIST method) are complex and may in-
troduce large system delays within the hearing aid.

This study focuses on developing an SNR estimation algorithm with high computation efficiency
and relatively good accuracy that could be used in a hearing aid device. The algorithm is designed to
deal with non-stationary noise such as babble noise (the noise generated by multiple speakers). The
spectral entropy SNR estimation method is based on the fact that the spectral entropy of clean speech
and the undesired noise are often very different (e.g. [14], [15]). Thus, the average SNR across time
frames could be evaluated according to the respective changes in spectral entropy. However, unlike
traditional spectral entropy based methods, which calculate spectral entropy either by using a fast
Fourier transform (FFT) applied across short time frames [14] or apply a large number of filtering
channels [15], the proposed method measures spectral entropy across a select number of peripheral
filtering channels within the hearing aid. Most of the key information required to understand speech
is encoded in the spectrum of the speech signal [16]. According to the Shannon information theory
[17], the speech spectrum should have a lower entropy than the noise. Increasing the background
noise level will corrupt the spectrum of the speech embedded in the noise. Thus, the higher the noise
level, the flatter the spectrum of the noisy speech [18]. However, the value of instantaneous spectral
entropy is not a reliable metric to be used for SNR estimation, since the spectral entropy of phonemes
differs from one another and speech phonemes are connected with silence pauses [19]. The variance
of the spectral entropy across time frames depends on the SNRs within frames. Therefore, it is more
reliable to use the variance of the spectral entropy (VSE) among speech frames to represent the SNR
level. If the VSE in any particular length of speech uniquely maps a particular SNR level, the SNR
of an unknown portion of speech could be obtained via the estimated VSE/SNR relationship function;
this could form the basis of a hearing-aid noise-reduction algorithm.

The rest of the paper is organized as follows: Section 2 describes the method of using VSE to
estimate the SNR for a fixed number of frequency channels that could represent the first stage of
processing in a hearing aid. Section 3 presents the results, the computation complexity and accuracy
of the proposed method compared with the NIST and WADA approaches. Discussion and concluding
remarks are presented in Section 4.
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2. Method of SNR estimation

The basic idea of using the spectral entropy method to estimate the SNR is to establish the relation-
ship function between the VSE and the SNR. Therefore, according to the simulated relationship func-
tion, the SNR level can be established using the measured VSE. If this approach is used within a
hearing aid then the hearing aid could be configured to adjust a noise reduction algorithm depending
on the estimated SNR. A flow chart showing how spectral entropy could be used to estimate the SNR
in a given hearing aid is shown in Figure 1. The input speech signal is first processed by the peripheral
filter bank. Then, the variance of the spectral entropy among channels is estimated. According to the
simulated relationship function established for different types of noise, the SNR can be estimated
using the measured VSE. The relationship functions can be stored in the hearing aid as a look-up
table.

Figure 1: Flow chart of SNR estimation in a hearing aid.

2.1 Measuring the variance of spectral entropy

Unlike the method published by Shen et al. [14], which uses FFT to calculate the spectral entropy,
the proposed method estimates the spectral entropy based on the signal of each peripheral filtering
channel in a hearing aid. Since different frequency components of the speech are processed by dif-
ferent channels/filters (filter-bank) of the hearing aid, the signal level in each channel roughly repre-
sents the frequency response of the speech. To calculate the spectral entropy in hearing aids the first
step is to obtain the probability density function (PDF) of each channel, that is:
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where ,ݐ)݌ )݅ is the PDF of the channel ݅at the time ,ݐ ,ݐ)ݔ )݅ is the amplitude of the signal in channel
݅at the time ,ݐ and ݊ is the total number of the channels in the hearing aids. The corresponding en-
tropy of each channel is:
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where ℎ(ݐ, )݅ is the spectral entropy of the channel ݅at the time .ݐ The total spectral entropy at the
time :isݐ
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However, the spectral entropy of a particular time isݐ not robust enough to reflect the SNR change
of the speech in a time varying signal. In order to track the average SNR among frames, the VSE
among frames is calculated:
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where ݒ is the VSE, ܮ is the number of sampled points during the short time interval, ܶ is the length
of the time interval , and isݏ݂ the sampling rate.

2.2 Experiments setup

Four types of noise were used: pink noise, white noise, low-number of speakers babble noise (4-
speaker babble noise) and high-number of speakers babble noise (24-speaker babble noise) were
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evaluated in this study. The babble noise with fewer speakers is less stationary than with higher num-
bers of speakers [20]. 900 utterances spoken by 56 male and 56 female speakers from the AURORA
resource database [21] were used in the present study. In all experiments, the root mean square level
of speech was fixed at 60 dB to simulate the general speech level in real environments, while the
noise level was increased from 40 dB to 70 dB with a step size of 1 dB to obtain the noisy speech
(noise mixed with speech) at SNRs ranging between -10 dB and 20 dB. The time interval of both
noise and speech utterances were fixed at 1.5 s. The sample rate was 44100 Hz. For testing, a com-
putational model of the peripheral auditory filter bank (channels) for a hearing aid system was built
using 2nd-order Butterworth bandpass filters. The channel number was set to 10 which is a number of
frequency channels often used in hearing aids (hearing aids can have frequency channels numbering
from 4-16) [22]). The characteristic frequency of each filter ranged from 250 Hz to 8000 Hz. This is
the frequency range used in some hearing aids and covers the speech frequencies [23].

This study first evaluated the relationship function between VSE and SNR of an example utterance
“2841”, spoken by an adult male speaker. Then, the VSE/SNR relationship functions among 900
utterances were estimated in all four types of noise detailed above. Finally, the estimation accuracy
of the spectral entropy-based SNR method was evaluated by measuring the mean absolute SNR esti-
mation errors (MAEE). The testing results of estimation accuracy of all tested utterances were com-
pared with the NIST and WADA methods.

3. Results

3.1 Relationship function (VSE vs. SNR) for the spoken utterance “2841”

Figure 2 (panels 2A, 2B, 2C) shows the spectral entropy of the example spoken utterance “2841”
in 24-speaker babble noise at SNRs of -10 dB, 5 dB, and 20 dB, respectively. It can be seen that the
spectral entropy values are very stable at an SNR of -10 dB (Figure 2A), but show large increased
variation in spectral entropy at SNR levels of 5 dB and 20 dB (Figure 2C). Figure 2D shows the
relationship function between VSE and the SNR. It can be seen that above about -5 dB, the VSE
increases as the SNR increases.

A B

C D
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Figure 2: Spectral entropy of the utterance “2841” at SNRs of A: -10 dB; B: 5 dB; and C: 20 dB. D: Rela-
tionship function between VSE and the SNRs of utterance “2841” for SNRs ranging between -10 dB and 20

dB with a step size of 1 dB.

3.2 Simulating the relationship function among utterances

Figure 3 shows the relationship functions (variance vs. SNR) for 900 utterances in pink noise, white
noise, 4-speaker babble noise, and 24-speaker babble noise. The average VSE among all utterances
is always shown by the solid lines. Dashed lines represent the range of variation of the relationship
function, which is obtained by using the mean value plus or minus the standard deviation of the VSE.
It can be seen that at high SNR levels, the relationship function shows a large variation. In pink noise,
white noise, and 24-speaker babble noise, the overall relationship function variation is less than for
4-speaker babble noise; the relationship function shows less stability across utterances in 4-speaker
babble noise.

Figure 3: The mean value (solid line) and the standard deviation (dashed line) of the VSE-SNR relationship
function in A: pink noise; B: white noise; C: 4-speaker babble noise; and D: 24-speaker babble noise for 900

speech utterances.

3.3 Computational complexity

For real-time signal processing, the spectral entropy needs to be computed sample by sample. In
each channel of a hearing aid, the computation within channels could be processed in parallel. The
VSE method needs two additive operations, one division, two multiplications, and one logarithm
operation as shown in equations (1)-(3). The WADA based method needs a large group of sample
points to make sure the amplitude of speech waveform follows the Gamma distribution. The DNN
based method needs an additional memory unit to store the trained model and the size of the memory

A: pink

D: 24-speaker babbleC: 4-speaker babble

B: white
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should be relatively large to store all trained models. Therefore, when compared with other ap-
proaches, the computational cost of the VSE method would be lower. The VSE method may also
result in reduced system delays when implemented in hearing aids compared to other methods. The
spectral entropy method and estimation of the SNR from the VSE requires fewer computational steps.

Figure 4 shows the estimated SNRs using the VSE method plotted against the real (actual) SNR.
Panels 4A, 4B, 4C and 4D show the results for pink noise, white noise, 4-speaker babble noise and
24-speaker babble noise. 200 randomly selected utterances from the all tested utterances are plotted.
The highest estimation accuracy is observed for pink noise, white noise and 24-speaker babble noise.
The lowest estimation accuracy can be seen for 4-speaker babble noise.

Figure 4: Estimated SNR along with the true SNR estimation line (in red) in A: pink noise; B: white noise;
C: 4-speaker babble noise; and D: 24-speaker babble noise.

Table 1 shows the mean absolute SNR estimation errors (MAEE) for VSE, WADA and NIST
methods when tested with different noises. The MAEE is the mean value of the absolute difference
between the estimated SNR and the real SNR of testing utterances in all SNRs. The MAEE of the
spectral entropy method is compared with that of published studies using the WADA and NIST meth-
ods [4], [3]. It can be seen that the VSE based method has higher accuracy than the NIST method in
all types of tested noise. The reason for this may be that the NIST method relies on the energy of the
noisy speech, but the energy change at the lower SNRs is very small and difficult to characterise.
When compared with WADA, the VSE based method shows higher accuracy in low-number of
speakers babble noise and pink noise. The amplitude of the babble noise may not follow a Gaussian
distribution, but the measure of spectral entropy between speech and babble noise may still be very
different. The WADA method shows slightly higher estimation accuracy than the VSE method in
white noise and higher-number of speakers babble noise, but the slightly higher accuracy may be
gained at the expense of computational efficiency. Also the precise number of speakers in the babble
noise used in their study [3] is unknown so a direct comparison cannot be made. Overall, it appears

A B

C D
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that spectral entropy using the VSE measure shows the potential to provide a more reliable perfor-
mance in different types of background noise compared to the WADA and NIST methods.

Table 1: Mean absolute SNR estimation errors (MAEEs) with different noises

Type of noise VSE WADA NIST

low-number of speakers
babble noise

5.53 dB
(4-speaker babble)

10.12 dB ○

(1-speaker)
15.34 dB ○

(1-speaker)
High-numbers of speakers

babble noise
3.19 dB

(24-speaker babble)
2.45 dB ◊ 5.56 dB ◊ 

Pink noise 2.45 dB  2.77 dB ◊  5.31 dB ◊ 

White noise 4.00 dB 2.47 dB ◊ 5.3 dB ◊ 
○: Data obtained from Figure 4a in paper [4].
◊: Data obtained from Figure 2 in paper [3]. 

4. Discussion and conclusion

In this paper a more computationally efficient method of estimating the SNR of noisy speech using
a spectral entropy measure was introduced; the variance of spectral entropy (VSE). Since the spectral
entropy of speech and noise are often very different, this method estimates the average SNR among
frames by measuring the variance of the spectral entropy of the speech-noise mixture. The relation-
ship functions of the variance vs. SNR in different noise types were estimated. The VSE method
shows higher SNR estimation accuracy than the NIST method in all four types of noise (white noise,
pink noise, low-number of speakers babble and high-number of speakers babble) and higher estima-
tion accuracy than the WADA method in pink noise and low-number of speakers babble.

Any SNR estimation method implemented for use in hearing aids should focus particularly on
performance robustness (in terms of SNR estimation) in different types of noise environments and
also have low computation delays. The spectral entropy method using the VSE measure appears to
provide an improved estimate of SNR in a variety of background noises when compared to the NIST
or WADA methods. In addition, the VSE method has fewer computational steps (thereby reducing
system delays) than the NIST and WADA methods, and may be more appropriate for implementation
in hearing aids where system delays should be reduced as much as possible.
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