Dalton Transactions

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: M. G. Richmond, Kh. M. Uddin, Md. A. Chowdhury, Md. K. Hossain, S. Ghosh, D. A. Tocher and S. E. Kabir, Dalton Trans., 2017, DOI: 10.1039/C7DT02933K.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the author guidelines.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Alkyne activation and polyhedral reorganization in benzothiazolate-capped osmium clusters on reaction with diethyl acetylenedicarboxylate (DEAD) and ethyl propiolate

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x
www.rsc.org/

Kh. Mahid Uddin, ${ }^{\text {a }}$ Md. Arshad H. Chowdhury, ${ }^{\text {a }}$ Md. Kamal Hossain, ${ }^{\text {a }}$ Shishir Ghosh, ${ }^{\text {a }}$ Derek A. Tocher, ${ }^{\text {b }}$ Michael G. Richmond, ${ }^{\text {c, }}{ }^{\text {t }}$ and Shariff E. Kabir ${ }^{\text {a }}$

The reactivity of the face-capped benzothiazolate clusters $\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\mathrm{C}_{7} \mathrm{H}_{3}(\mathrm{R}) \mathrm{NS}\right]\left(\mathbf{1 a}, \mathrm{R}=\mathrm{H} ; \mathbf{1} \mathbf{b}, \mathrm{R}=\mathbf{2}-\mathrm{CH}_{3}\right)$ with alkynes has been investigated. 1a reacts with DEAD at $67{ }^{\circ} \mathrm{C}$ to furnish the isomeric alkenyl clusters $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)\left(\mu_{3}-\right.$ $\mathrm{EtO}_{2} \mathrm{CCCHCO}_{2} \mathrm{Et}$) ($\mathbf{2 a}$ and $\mathbf{3 a}$). X-ray crystallographic analyses of $\mathbf{2 a}$ and $\mathbf{3 a}$ have confirmed the stereoisomeric relationship of these products and the regiospecific polyhedral expansion that follows the formal transfer of the hydride to the coordinated alkyne ligand in $\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left(\mu-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)\left(\eta^{2}\right.$-DEAD $)$. The significant structural differences between the two isomers, as revealed by the solid-state structures, derives from the regiospecific cleavage of one of the three Os-Os bonds in the intermediate alkenyl cluster $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)\left(\eta^{1}-\mathrm{EtO}_{2} \mathrm{CCCHCO}_{2} \mathrm{Et}\right)$, which follows hydride transfer to the coordinated alkyne ligand in the pi compound $\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left(\mu-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)\left(\eta^{2}\right.$-DEAD). Control experiments confirm the reversibility of the reaction leading to the formation of $\mathbf{2 a}$ and $\mathbf{3 a}$. Whereas heating either isomer in refluxing THF or benzene affords a binary mixture containing $\mathbf{2 a}$ and $\mathbf{3 a}$, thermolysis in refluxing toluene leads to the activation of the alkenyl ligand and formation of the new cluster $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)\left(\mu_{3}-\mathrm{EtO}_{2} \mathrm{CCCH}_{2}\right)(4) .4$ was independently synthesized from 1a and ethyl propiolate at room temperature. The computed mechanisms that account for the formation of $\mathbf{2 a}$ and 3a are presented, along with the mechanism for the reaction of $\mathbf{1 a}$ with ethyl propiolate to give 4.

Introduction

The reactivity of trimetallic clusters towards alkynes has been extensively studied over the past several years in an effort to better understand the available binding modes of unsaturated organic fragments at trimetallic centers. ${ }^{1-30}$ The adopted binding mode and reactivity of the coordinated alkyne ligand are dependent on the nature of the triangular metal cluster and the substituents on the alkyne. ${ }^{2,3}$ Thus, terminal alkynes, $\mathrm{HC} \equiv \mathrm{CR}$, react with the labile trinuclear metal cluster $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ to give the triply bridging alkyne compound $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu_{3}-\eta^{2}-\mathrm{HC} \equiv \mathrm{CR}\right)$. The initial pi complex is reactive, and the alkynyl CH group undergoes hydrogen transfer to the metal, giving $\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mu_{3}-\eta^{2}\right.$-alkyne) via a formal loss of CO and the oxidative addition of the alkyne C-H bond. ${ }^{14,24}$ Use of internal alkynes, $\mathrm{RC} \equiv \mathrm{CR}$, furnishes alkyne-substituted clusters

[^0]containing either a perpendicular $\mu_{3}-\eta^{2}(\perp)$ mode or, more commonly, a parallel $\mu_{3}-\eta^{2}$ (II) mode of alkyne coordination. The perpendicular coordination mode is typically found in 46-electron clusters, while the parallel mode is observed in the vast majority of 48-electron clusters. ${ }^{18,19,31,32}$ The reaction of the unsaturated hydrido-cluster $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ with alkynes has also been the subject of numerous studies, and a wide variety of products are produced, the nature of which depends upon the particular alkyne employed. ${ }^{14,23-30}$ Using acetylene, the μ-vinyl complex $\mathrm{HOs}_{3}(\mathrm{CO})_{10}(\mu$ -$\eta^{2}-\mathrm{CH}=\mathrm{CH}_{2}$) is formed in high yield, ${ }^{9,14}$ while use of the activated alkyne, $\mathrm{CF}_{3} \mathrm{C}_{\mathrm{C}} \mathrm{CCF}_{3}$, affords the zwitterionic complex $\mathrm{HOs}_{3}(\mathrm{CO})_{10}\left(\mu_{3^{-}}\right.$ $\eta^{2}-\mathrm{CF}_{3} \mathrm{C}=\mathrm{CHCF}_{3}$) in essentially quantitative yield and where the hydrocarbyl fragment caps one of the triangular faces of the cluster. ${ }^{30}$

The diverse outcomes observed in the reaction of $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ with different alkynes are tangentially related to our earlier studies dealing with the reactivity of a series of electron-deficient triosmium clusters having the general formula $\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\eta^{2}-\mathrm{L}-\mathrm{H}\right)$ ($\mathrm{L}=$ benzoheterocycle) with diazomethane. Despite the structural similarities of the starting clusters, the nature of the final product was extremely sensitive to the nature of the heterocyclic auxiliary. ${ }^{33}$ For example, the reaction of the 2-methylbenzothiazolatesubstitued cluster $\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}\left(2-\mathrm{CH}_{3}\right) \mathrm{NS}\right]$ with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ yielded $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left[\mu-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}\left(2-\mathrm{CH}_{3}\right) \mathrm{NS}\right]\left(\mu-\mathrm{CH}_{2}\right) \mathrm{CH}_{3}$, a rare example of a heterocyclic-substituted triosmium cluster containing an edge-
bridging methylene group and a σ-bound methyl group. In contrast, a similar reaction of the parent benzothiazolate-capped cluster $\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)$ afforded $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\eta^{2}-\mathrm{CHC}_{7} \mathrm{H}_{4} \mathrm{NS}\right)$, formed by insertion and the subsequent $\mathrm{C}-\mathrm{H}$ oxidative addition of a CH_{2} moiety into the heterocyclic ring $\mathrm{C}(7)$-Os bond. ${ }^{33 \mathrm{~b}}$

In keeping with our interest in fundamental bond formation reactions at metal clusters and the influence that heterocyclic auxiliaries have on metal clusters and their alkyne coordination, we have investigated the reaction of benzothiazolate-substituted cluster $\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)(1 \mathrm{a})$ with the electron poor alkyne dimethyl acetylenedicarboxylate (DMAD). ${ }^{34,35}$ Scheme 1 shows the initial alkyne addition products (5 and 6) that we isolated and structurally characterized from the reaction of 1a and DMAD. 5 and 6 are isomers, and they demonstrate the coordinative flexibility of the alkyne to function as a multisite donor ligand that directly influences the selective opening of the cluster polyhedron.

Scheme 1. Reaction of $\left.\mathrm{HOs}_{3}\left(\mathrm{CO}_{9}\right)_{3} \mu_{3} \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)$ (1a) with dimethyl acetylenedicarboxylate (DMAD).

Control experiments established 5 as the product of kinetic control and subsequent heating verified its conversion to 6 . Refluxing 6 in toluene led to further transformations involving the alkenyl moiety, with clusters $\mathbf{7}$ and $\mathbf{8}$ formed. Scheme 2 shows these clusters where the former product has undergone a cis to trans isomerization of the carbomethoxy groups, suggesting a reversible C-H bond activation involving the alkenyl moiety. The latter product results from a coupling of benzothiazolate and hydrocarbyl ligands. This functionalization of the heterocycle is accompanied by loss of two molecules of CO. The liberated CO derives from the cluster and decarboxylation of one of the carbomethoxy groups of the activated alkyne.

6

Scheme 2. Reactivity of 6 in refluxing toluene

Wishing to explore the generality of the DMAD reaction with cluster 1a with other activated alkynes, coupled with our interest in the possible functionalization of the metalated benzothiazolate ligand in 1a, we have investigated the reaction of the electron poor alkynes diethyl acetylenedicarboxylate (DEAD) and ethyl propiolate with 1a and the related benzothiazolate derivative $\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\right.$ $\left.\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right]$ (1b). The observed reactivity differences are described, and the computed pathways leading to the new clusters $\mathbf{2 a} \mathbf{3 a}$, and 4 are discussed.

Results and discussion

Reactivity of 1a and 1b with DEAD

The reaction of the benzothiazolate-capped cluster $\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\right.$ $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}$) (1a) with excess diethyl acetylenedicarboxylate (DEAD) in refluxing THF furnishes the isomeric alkenyl complexes $\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-$ $\left.\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)\left(\mu_{3}-\mathrm{EtO}_{2} \mathrm{CCCHCO}_{2} \mathrm{Et}\right)$ (2a and 3a) as the major products in the reaction, as depicted in Scheme 3.
 propiolate.

2a and 3a are isomers, and they result from the selective opening of one of the osmium-osmium bonds in 1a, following the formal transfer of the hydride to the coordinated alkyne ligand in the transient pi compound $\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left(\mu-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)\left(\eta^{2}-\mathrm{DEAD}\right)$ (vide infra). The products were isolated by chromatography and characterized in solution by IR and ${ }^{1} \mathrm{H}$ NMR spectroscopies, and the molecular structures of $\mathbf{2 a}$ and 3a were established by X-ray crystallography. 2a exhibits six $v(C O)$ bands from 2088-1962 cm^{-1} while 3a reveals four $v(C O)$ bands from 2086-1986 cm^{-1}, confirming only the presence of terminal carbonyl stretching bands in both products. The ${ }^{1}$ H NMR spectrum recorded for $\mathbf{2 a}$ shows two distinct methyl resonances at $\delta 1.16$ and 1.29 and a 4 H multiplet at $\delta 4.10$ attributed to the methylene hydrogens of the carboethoxy groups. The 1 H singlet at $\delta 2.51$ is assigned to the alkenyl hydrogen. The four aryl hydrogens are readily assigned based on their couplings and chemical shift trends in related metalated clusters characterized by our groups. The lone hydrogen at C-2 on the benzothiazole ring appears as a singlet at $\delta 8.97$, and the assignments for the $A B C$ spin system for the remaining aryl hydrogens are illustrated Scheme 4. The ortho hydrogen adjacent to the metalated carbon is expected to appear downfield relative to the other hydrogens in this spin system ${ }^{36}$ and may be confidently assigned as $\delta 7.79$. The remaining two assignments follow from their first-order couplings and a ${ }^{1} \mathrm{H}$ COSY experiment. The ${ }^{1} \mathrm{H}$ NMR spectrum recorded for 3a, whose selected chemical shift data are summarized in Scheme 4, is not unlike that of $\mathbf{2 a}$.

Scheme 4. ${ }^{1} \mathrm{H}$ NMR assignments for the aryl and alkenyl hydrogens in 2a and 3a.

The isomeric nature of $\mathbf{2 a}$ and $\mathbf{3 a}$ was established by X-ray crystallography. The ORTEP diagram of the molecular structure of compound 2a is shown in Fig. 1, whose caption includes selected bond distances and angles. The molecule contains an expanded triosmium core resulting from the formal cleavage of one of the three Os-Os bonds in 1a. The coordination sphere in 2a consists of nine terminal carbonyls, an edge-bridging benzothiazolate moiety ($\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}$), and a triply bridging $\mathrm{EtO}_{2} \mathrm{CCCHCO}_{2} \mathrm{Et}$ ligand. The carbonyls are equally distributed among three osmium atoms, and the metalated benzothiazolate ligand spans the $\mathrm{Os}(1)-\mathrm{Os}(2)$ edge via the $\mathrm{N}(1)$ and $\mathrm{C}(16)$ atoms. The $\mathrm{EtO}_{2} \mathrm{CCCHCO}_{2} \mathrm{Et}$ ligand, which
effectively serves as a 5 e donor, is covalently bonded to the $\mathrm{Os}(3)$ atom through the alkenyl carbon $\mathrm{C}(21)$, and the $\mathrm{C}(20)$ alkylidene atom serves to bridge the $\mathrm{Os}(1)-\mathrm{Os}(2)$ vector. Coordination of the ester oxygen $\mathrm{O}(10)$ to the $\mathrm{Os}(3)$ center is also verified, and this completes the ligation of the three osmium atoms by the functionalization alkyne ligand. Overall, the molecule contains 50valence electrons and exhibits two formal metal-metal bonds consistent with topological bonding rules of polyhedral clusters. ${ }^{37}$ The Os(1)-Os(2) edge [2.8254(4) \AA] that is simultaneously bridged by the heterocyclic and hydrocarbyl ligands is significantly shorter than the $\operatorname{Os}(2)-\operatorname{Os}(3)$ vector [2.9318(4) \AA]. The $C(20)-C(21)$ bond distance of $1.529(8) \AA$ is typical of an $s p^{3}-s p^{3} \mathrm{C}-\mathrm{C}$ single bond. ${ }^{38}$ The functionalization and multisite coordination of the DEAD ligand contribute to the observed elongation of the alkyne $\mathrm{C} \equiv \mathrm{C}$ functionality and its formal reduction to a C-C single bond. The molecular structure of $\mathbf{2 a}$ is analogous to that of 5 (Scheme 1) obtained from the reaction of 1a with DMAD in refluxing hexane. The $\mathrm{Os}-\mathrm{C}, \mathrm{Os}-\mathrm{N}$ and $\mathrm{Os}-\mathrm{O}$ bond distances found in 2 a are very similar to the corresponding bond distances observed in 5. ${ }^{34}$ Shown alongside 2a in Fig. 1 is the DFT-optimized structure of $\mathbf{2 a}$ (species $\mathbf{G})$. The calculated structure for \mathbf{G} exhibits good agreement with the solid-state structure.

Fig. 1. ORTEP drawing of the molecular structure of $\mathbf{2 a}$ (left) showing 50% probability thermal ellipsoids and DFT-optimized structure of \mathbf{G} (right). Selected interatomic distances ((\AA) and angles (${ }^{\circ}$) for 2a: $\mathrm{Os}(1)-\mathrm{Os}(2) 2.8254(4), \mathrm{Os}(2)-\mathrm{Os}(3) 2.9318(4), \mathrm{Os}(3)-\mathrm{O}(10) 2.161(5), \mathrm{Os}(1)-\mathrm{N}(1) 2.153(5), \mathrm{Os}(2)-\mathrm{C}(16) 2.158(7), \mathrm{Os}(1)-\mathrm{C}(20) 2.113(6), \mathrm{Os}(2)-\mathrm{C}(20) 2.265(6)$, $\mathrm{Os}(3)-\mathrm{C}(21) 2.176(6), \mathrm{C}(20)-\mathrm{C}(21) 1.529(8), \mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3) 106.246(11), \mathrm{C}(20)-\mathrm{Os}(1)-\mathrm{Os}(2) \quad 52.20(16), \mathrm{C}(20)-\mathrm{Os}(2)-\mathrm{Os}(1) 47.49(15), \mathrm{Os}(1)-\mathrm{C}(20)-\mathrm{Os}(2) 80.31(19), \mathrm{C}(21)-$ $\mathrm{Os}(3)-\mathrm{Os}(2) 74.36(16)$.

The X-ray diffraction structure of $\mathbf{3 a}$ is shown in Fig. 2. Two crystallographically independent molecules were found in the unit cell of 3a. No significant structural differences exist, and we show only one of the molecules in the figure. The structure of 3a, which is similar in nature to cluster 6 (Scheme 1), confirms its stereoisomeric nature vis-à-vis $\mathbf{2 a}$. Selected bond distances and angles are reported in the figure caption, and these data closely mirror those bond distance and angles reported for $2 a$ and the DMAD-based clusters 5 and $6 .{ }^{34}$ We have also optimized the structure of 3 a by DFT calculations, and species \mathbf{M} is depicted in Fig. 2. While the coordination
mode displayed by the $\mathrm{EtO}_{2} \mathrm{CCCHCO}_{2} \mathrm{Et}$ ligand in $\mathbf{2 a}$ and $\mathbf{3 a}$ is similar, the regiospecific opening of one of the three Os-Os bond in cluster 1a represents the principal architectural difference between the two products. The DFT calculations reveal a $0.2 \mathrm{kcal} / \mathrm{mol}$ preference for species \mathbf{M} over \mathbf{G}. The ΔG value for the DEAD-based products $\mathbf{2 a}$ and $\mathbf{3 a}$ is admittedly small and lies in the direction reported in our earlier DMAD reaction where the thermodynamic preference for cluster 6 versus 5 was demonstrated.

Fig. 2. The solid-state molecular structure of $\mathbf{3 a}$ (left) showing 50% probability thermal ellipsoids and and DFT-optimized structure of \mathbf{M} (right). Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $3 \mathrm{a}: \mathrm{Os}(1)-\mathrm{Os}(2) 2.8434(6), \mathrm{Os}(2)-\mathrm{Os}(3) 2.9999(6), \mathrm{Os}(3)-\mathrm{O}(10) 2.151(5), \mathrm{Os}(2)-\mathrm{N}(1) 2.179(7), \mathrm{Os}(1)-\mathrm{C}(12) 2.136(8), \mathrm{Os}(3)-\mathrm{C}(24) 2.170(7), \mathrm{Os}(1)-\mathrm{C}(23) 2.107(7)$, $\mathrm{Os}(2)-\mathrm{C}(23) 2.241(7), \mathrm{Os}(1)-\mathrm{C}(12) 2.136(8), \mathrm{C}(23)-\mathrm{C}(24) 1.540(10), \mathrm{C}(24)-\mathrm{Os}(3)-\mathrm{Os}(2) 72.28(17), \mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{Os}(1) 47.14(19), \mathrm{C}(23)-\mathrm{Os}(1)-\mathrm{Os}(2) 51.24(18), \mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{Os}(2)$ 86.7(2), $\mathrm{N}(1)-\mathrm{Os}(2)-\mathrm{Os}(1)$
83.55(17),
$\mathrm{O}(10)-\mathrm{Os}(3)-\mathrm{Os}(2)$
85.13(13).

The effect of a methyl substituent on the heterocyclic auxiliary was next explored by using cluster 1b. Treatment of $\mathbf{1 b}$ with excess DEAD in refluxing THF furnished clusters $\mathbf{2 b}$ and $\mathbf{3 b}$ as the major products isolated upon chromatographic workup. Both 2b and 3b were fully characterized by spectroscopic methods, combustion analyses, and in the case of the latter product by X-ray diffraction analysis. Spectroscopically speaking, the recorded IR and ${ }^{1} \mathrm{H}$ NMR spectra are consistent with the spectra recorded for $\mathbf{2 a}$ and $\mathbf{3 a}$, and these data are summarized in the experimental section. The molecular structure of $\mathbf{3 b}$, which parallels that of $\mathbf{3 a}$, is shown in Fig. 3, with selected bond distances and angles quoted in the figure caption.

Fig. 3. The solid-state molecular structure of 3b showing 50% probability thermal ellipsoids. Selected interatomic distances (\AA) and angles (${ }^{\circ}$): $\operatorname{Os}(1)-\operatorname{Os}(2) 2.8429(3)$, $\mathrm{Os}(2)-\mathrm{Os}(3) \quad 2.9227(4), \quad \mathrm{Os}(3)-\mathrm{O}(10) \quad 2.144(4), \quad \mathrm{Os}(2)-\mathrm{N}(1) \quad 2.220(6), \quad \mathrm{Os}(1)-\mathrm{C}(18)$ 2.136(7), Os(1)-C(13) 2.107(6), Os(2)-C(13) 2.267(6), Os(3)-C(14) 2.172(6), C(13)-C(14) $1.525(8), \mathrm{C}(18)-\mathrm{Os}(1)-\mathrm{Os}(3) 86.74(19), \mathrm{Os}(1)-\mathrm{C}(13)-\mathrm{Os}(2) 81.0(2), \mathrm{N}(1)-\mathrm{Os}(2)-\mathrm{Os}(1)$ 83.28(15), $\quad \mathrm{C}(14)-\mathrm{Os}(3)-\mathrm{Os}(2) \quad 72.33(16), \quad \mathrm{C}(13)-\mathrm{Os}(2)-\mathrm{Os}(3) \quad 60.14(14)$, $\mathrm{C}(13)-\mathrm{Os}(1)-\operatorname{Os}(2) \quad 51.97(16), \quad \mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3) \quad 106.832(11)$.

Journal Name

ARTICLE

Reversible interconversion between $2 a$ and $3 a$ and synthesis of 4

 from thermolysis of $2 a$ and $3 a$The equilibration of the products $\mathbf{2 a}$ and $\mathbf{3 a}$ was next investigated through a series of control experiments. Refluxing pure samples of either 2a or $\mathbf{3 a}$ in THF or benzene afforded binary mixtures of the isomers along with slow decomposition, as evidenced by the amount of material that remained at the origin of the TLC. The latter material appeared proportional to the reflux time The observation that each isomer readily equilibrates on heating confirms the reversible nature of their formation and the accessibility of a dynamic equilibrium between $\mathbf{2 a} \rightleftharpoons \mathbf{3 a}$. These results are consistent with our earlier study with DMAD where the equilibrium between 5 and $\mathbf{6}$ was established. We also examined the thermolysis of 2a and 3a at a higher temperature. Heating either isomer in refluxing toluene gave the new triosmium cluster $\mathrm{Os}_{3}\left(\mathrm{CO}_{9}\right)_{9}(\mu-$ $\left.\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)\left(\mu_{3}-\mathrm{EtO}_{2} \mathrm{CCCH}_{2}\right)$ (4) in low yield (< 12\%) after chromatographic separation and recrystallization. TLC analysis of the final reaction solution confirmed the presence of several other products whose amounts were too small for characterization, in addition to considerable decomposition material that remained at the origin of the TLC plate. The mechanism for the formation of 4 from $\mathbf{2 a}$ and 3 a remains unknown at this time and may proceed with the release of CO_{2} and ethylene from one of the carboethoxy groups present in the starting isomeric clusters. Interestingly, the DMADsubstituted clusters $\mathbf{5}$ and $\mathbf{6}$ do not yield an analogue of $\mathbf{4}$ but rather clusters $\mathbf{7}$ and 8 under identical conditions. The different products observed in these reactions underscore the importance of the nature of the ester moiety in helping to direct the nature of the final thermolysis product. The coordinated alkenyl ligand in 4 may also be envisioned as arising from the reaction of the terminal alkyne ethyl propiolate and cluster 1a. Accordingly, we performed this control experiment and report that the cluster $\mathbf{4}$ is produced slowly at room temperature upon treatment with ethyl propiolate. The reaction between 1a and ethyl propiolate follows a Markovniko path for hydride insertion. The two different reaction paths that furnish 4 are depicted in Scheme 5.

Scheme 5. Different reaction pathways that give cluster 4.

4 was characterized by a combination of $I R$ and ${ }^{1} H$ NMR spectroscopies, and the solid-state structure was determined by single-crystal X-ray diffraction analysis. Cluster 4 contains 50 -valence electrons, and the CH_{2} moiety of the $\mathrm{EtO}_{2} \mathrm{CCCH}_{2}$ ligand derives from the formal hydrogen transfer from an ethyl moiety of one of the original $\mathrm{CO}_{2} \mathrm{Et}$ groups in the precursor isomer 2a,3a. The ORTEP diagram of the molecular structure of $\mathbf{4}$ is shown in Fig. 4; the opened triangular core displayed by the three osmium atoms is in agreement with the 50e count present in 4. The two Os-Os bonds exhibit distances of $2.8168(3) \AA[\mathrm{Os}(2)-\mathrm{Os} 3)]$ and $2.9271(4) \AA[\mathrm{Os}(1)-\mathrm{Os}(2)]$ and display a mean distance of $2.8720 \AA$ consistent with their single-bond designation. The benzothiazolate ligand bridges the $\mathrm{Os}(2)-\mathrm{Os}(3)$ vector while the hydrocarbyl ligand $\mathrm{EtO}_{2} \mathrm{CCCH}_{2}$, which effectively serves as a 5 e donor, ligates the three metal centers through the $\mathrm{C}(14), \mathrm{C}(15)$, and $\mathrm{O}(10)$ atoms. The $\mathrm{Os}-\mathrm{C}$, $\mathrm{Os}-\mathrm{N}$ and $\mathrm{Os}-\mathrm{O}$ bond distances in compound 4 are similar to the corresponding bond distances in $\mathbf{2 a}, \mathbf{3 a}, \mathbf{b}$, and the previously reported compounds 5 and 6 . ${ }^{34}$ The geometryoptimized structure of 4 (species \mathbf{S}) was also investigated by DFT, with the computed structure shown in Fig. 4, where excellent agreement with the experimentally determined structure was found.

ARTICLE

Fig. 4. ORTEP drawing of the molecular structure of 4 (left) showing 50% probability thermal ellipsoids and DFT-optimized structure of \mathbf{S} (right). Selected interatomic distances (\AA) and angles (${ }^{\circ}$) for 4 : $\mathrm{Os}(1)-\mathrm{Os}(2) 2.9271(4), \mathrm{Os}(2)-\mathrm{Os}(3) 2.8168(3), \mathrm{Os}(1)-\mathrm{O}(10) 2.167(4), \mathrm{Os}(2)-\mathrm{C}(14) 2.244(5), \mathrm{Os}(3)-\mathrm{C}(14) 2.114(5), \mathrm{Os}(1)-\mathrm{C}(15) 2.171(6), \mathrm{Os}(2)-\mathrm{C}(20) 2.144(5)$, $\mathrm{Os}(3)-\mathrm{N}(1) 2.152(5), \mathrm{O}(10)-\mathrm{Os}(1)-\mathrm{Os}(2) 86.09(10), \mathrm{C}(15)-\mathrm{Os}(1)-\mathrm{Os}(2) 73.33(16), \mathrm{C}(20)-\mathrm{Os}(2)-\mathrm{Os}(3) 87.32(15), \mathrm{C}(14)-\mathrm{Os}(2)-\mathrm{Os}(3) 47.74(14), \mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{Os}(1) 106.101(9), \mathrm{N}(1)-$ $\mathrm{Os}(3)-\mathrm{Os}(2)$ 83.31(12).

The IR spectrum of 4 exhibits six terminal $v(C O)$ bands from 2082-1955 cm^{-1} and the ${ }^{1} \mathrm{H}$ assignments are summarized in Scheme 6. The diastereotopic methylene hydrogens associated with the alkenyl linkage appear as two distinct doublets at δ 3.09 and 3.00 , each of which exhibits a geminal coupling of 7.4 Hz , while the methylene hydrogens in the ethyl group appear as two multiplets centered at $\delta 3.28$ and 2.13 . The spectral properties recorded for 4 are consistent with the solid-state structure.

Computed reaction mechanisms for the formation of 2a, 3a, and 4 from 1a and alkyne

Earlier calculations from our group have addressed ligand addition to related Os_{3} clusters possessing a bridging benzylidene moiety, ${ }^{36,39}$ and these reports have demonstrated that the incoming ligand will add to one of the two originally metalated osmium centers. However, the possibility of a kinetically active cluster that contains an edge-bridging aryl moiety cannot be eliminated from consideration. A structural alteration through a reduction in hapicity of the benzothiazolate ligand from μ_{3} to $\mu-\eta^{1}$ coordination would give such an intermediate. This process is depicted in Scheme 7 using 1a for illustrative purposes. The $\mu_{3} \rightarrow \mu-\eta^{1}$ transformation creates a vacant coordination site at the exposed osmium atom, which in turn may react with the incoming ligand. Examples involving the addition of a 2 e donor to cluster systems containing both face-capped and edgebridged clusters have been computationally investigated by us and others. ${ }^{40}$ The possibility of an opened form of 1a as an entry point for the coordination of alkyne was duly explored.

[^1]
Journal Name

ARTICLE

Scheme 7. Benzothiazolate ligand isomerization in 1a.
The energetics for the $\mu_{3} \rightarrow \mu-\eta^{1}$ opening of the benzothiazolate ligand in 1a were examined by DFT, and here we initially optimized the structure of $1 \mathrm{a}(\mathrm{A})$, which is shown in Fig. 5. A subsequent step-scan calculation on A was next performed, and one of the Os-C bonds in the metalated benzothiazolate ligand was incrementally increased, allowing us to obtain TSAA_alt and A_alt. As the Os-C bond is gradually lengthened during the calculation, the hydride residing below the Os_{3} plane moves upward and adopts a coplanar orientation with the metallic frame. Coupled with the hydride movement is the tripodal rotation of the three CO ligands at the developing unsaturated $\mathrm{Os}(\mathrm{CO})_{3}$ moiety. The optimized structure of this transition state is TSAA_alt, and it lies 18.9 $\mathrm{kcal} / \mathrm{mol}$ above \mathbf{A}. The resulting product is the opened cluster represented by A_alt, and it is $15.6 \mathrm{kcal} / \mathrm{mol}$ less stable than its isomeric counterpart containing a face-capping benzothiazolate ligand. The reaction of A_alt with DEAD (B) and ethyl propiolate (\mathbf{N}) was next investigated by allowing each alkyne to approach the exposed $\mathrm{Os}(\mathrm{CO})_{3}$ site in \mathbf{A}_{-}alt. In all step-scan calculations, the approaching alkyne promoted the collapse of the edge-bridging benzothiazolate ligand and regeneration of species A. Fortunately, a viable transition-state structure was computed for the direct addition of the alkynes \mathbf{B} and \mathbf{N} to \mathbf{A}, as described below.

TSABC

C

TSCD

E

D

TSDE

TSFG

Fig. 6. DFT-optimized structures for C-F and the transition states TSABC, TSCD, TSDE, TSEF, and TSFG. The optimized structure for the alkyne DEAD (species B) is not shown.

Fig. 8. DFT-optimized structures for H-L and the transition states TSDH, TSHI, TSDE, TSIJ, TSJK, TSKL, and TSLM.

Fig. 9. Free energy surface for the conversion of \mathbf{D} to \mathbf{M}. Energy values are $\Delta \mathrm{G}$ in $\mathrm{kcal} / \mathrm{mol}$ with respect to \mathbf{A} and \mathbf{B}.

Journal Name

ARTICLE

The formation of \mathbf{M} traces its origin to \mathbf{D} (vide supra). Figs. 8 and 9 show the optimized structures and the potential energy profile for the structures that give \mathbf{M}. The evolution of \mathbf{D} to \mathbf{M} requires six steps, with the first three ($\mathbf{D} \rightarrow \mathbf{J}$) consisting of torsional rotations within the η^{1} alkenyl group (CH and ester moieties) which position this ligand for its subsequent migration across the Os-Os vector bridged by the metalated heterocycle. The transfer of the alkenyl group in J to the adjacent osmium atom in \mathbf{K} occurs through the transition state TSJK. Of the six steps that follow the rate-limiting step TSCD, TSJK is the highest on this portion of the relatively flat potential energy surface (PES). This transformation is assisted by the concerted terminal-to-bridge migration of the axial CO at the $\mathrm{Os}(\mathrm{CO})_{3}\left[\eta^{1}-\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)\right]$ moiety to the nitrogensubstituted osmium center, whose formation is discernable in TSJK. The ester oxygen atom in K next adds to adjacent the osmium center (the original site of the alkenyl ligand) bound by the edge-bridging benzothiazolate ligand. The coordination of the ester oxygen in TSKL occurs at the expense of an Os-Os bond and promotes the polyhedral expansion observed in \mathbf{L} The final step involves the coordination of the free pi bond in the $\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)$ ligand to the N - and O -bound osmium centers in \mathbf{L} to give \mathbf{M}. The formation of \mathbf{M} from \mathbf{A} and \mathbf{B} is exergonic and releases $25.6 \mathrm{kcal} / \mathrm{mol}$.

The empirically validated equilibration of 2a and 3a may now be rationalized within the framework of the computed energy surfaces that afford \mathbf{G} and \mathbf{M}. Heating either 2a or 3a will furnish a mixture of isomers since the net energy barrier back to \mathbf{D} from either \mathbf{G} or \mathbf{M} is relatively low, and this ensures the facile formation of a binary mixture of products having the formula $\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-$ $\left.\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)\left(\mu_{3}-\mathrm{EtO}_{2} \mathrm{CCCHCO}_{2} \mathrm{Et}\right)$. For the conversion of \mathbf{G} to \mathbf{D}, the
energy barrier is $31.1 \mathrm{kcal} / \mathrm{mol}$ based on the difference in energy between $\mathbf{G} \rightarrow$ TSDE, the latter which is the highest point on the PES en route to the pivotal intermediate \mathbf{D}. The energy barrier for the conversion of \mathbf{M} to \mathbf{D} is $36.6 \mathrm{kcal} / \mathrm{mol}$ based on $\Delta \mathrm{G}$ between $\mathbf{M} \rightarrow$ TSJK. The barrier associated with the latter isomerization is 5.5 $\mathrm{kcal} / \mathrm{mol}$ higher in energy compared to the reaction starting from \mathbf{G}, and the computed energy difference parallels the qualitative observation that $\mathbf{2 a}$ isomerizes more rapidly than $\mathbf{3 a}$ when refluxed in THF. Refluxing both clusters in toluene, while promoting their isomerization, also leads to the decomposition of the clusters $\mathbf{2 a}$ and $\mathbf{3 a}$ along with the formation of cluster 4.

The direct reaction of $\mathbf{1 a}(\mathbf{A})$ with added ethyl propiolate (\mathbf{N}) to give 4 (S) was examined by DFT. The addition of \mathbf{N} to \mathbf{A} is analogous to the reaction using DEAD (\mathbf{B}) as a ligand. The optimized structures and intrinsic reaction coordinate for the ethyl propiolate reaction are shown in Figs. 10 and 11, respectively. The rate-limiting step is TSOP, and it involves the formation of the alkenyl bond in the reductive elimination step. The barrier height of this step is 33.6 $\mathrm{kcal} / \mathrm{mol}$ and the resulting η^{1} product \mathbf{P} is $1.3 \mathrm{kcal} / \mathrm{mol}$ more stable than the starting materials. The $\mathbf{P} \rightarrow \mathbf{Q}$ interconversion involves a torsional rotation about the $\mathrm{Os}-\mathrm{C}($ alkenyl) vector that orients the alkenyl CH_{2} moiety syn to the coordination nitrogen atom. This step places the CH_{2} moiety in a suitable environment for its final destination below the metallic plane that is ligated by the edgebridging benzothiazolate ligand in S, following the migration of the alkenyl ligand to the nitrogen-substituted osmium center in \mathbf{R}. The conversion of $\mathbf{R} \rightarrow \mathbf{S}$ occurs via TSRS and here the 1e alkenyl moiety is transformed into a 5e donor ligand through coordination of both the alkenyl pi and ester oxygen groups. Concomitant with the coordination of these two donors is the $\mu_{3} \rightarrow \mu-\eta^{1}$ opening of the benzothiazolate ligand to give \mathbf{S}, whose formation is favorable and lies 19.4 kcal/mol below \mathbf{A} and \mathbf{N}.

ARTICLE

Fig. 10. DFT-optimized structures for $\mathbf{O - R}$ and the transition states TSANO, TSOP, TSPQ, TSQR, and TSRS. The optimized structure for ethyl propiolate (species \mathbf{N}) is not shown.

Fig. 11. Free energy surface for the conversion of \mathbf{A} and \mathbf{N} to \mathbf{S}. Energy values are $\Delta \mathrm{G}$ in kcal/mol with respect to \mathbf{A} and \mathbf{N}.

Journal Name

ARTICLE

Conclusions

The reactions described in this study are summarized in Scheme 3. Coordination of the activated alkynes DEAD and ethyl propiolate by the benzothiazolate-capped clusters $\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\mathrm{C}_{7} \mathrm{H}_{3}(\mathrm{R}) \mathrm{NS}\right](1 \mathrm{a}, \mathrm{R}$ $=\mathbf{H} ; \mathbf{1 b}, \mathrm{R}=\mathbf{2}-\mathrm{CH}_{3}$) gives a pair of isomers $\mathbf{2 a}, \mathbf{b}$ and $\mathbf{3 a}, \mathbf{b}$ that differ primarily by selective polyhedral expansion of one of three metalmetal bonds. The isomeric clusters 2a and 3a may be equilibrated in refluxing THF or benzene, and this supports the coordinatively flexible nature of the triply bridged $\mathrm{EtO}_{2} \mathrm{CCCHCO}_{2} \mathrm{Et}$ ligand. Through the use of DFT calculations, we have identified pertinent reaction intermediates and show that functionalization of the coordinated alkyne via reductive elimination with the ancillary hydride represents the rate-limiting step for the formation of $\mathbf{2 a}, \mathbf{3 a}$, and 4 starting from 1a and alkyne. Future studies will center on the transfer of the alkenyl ligand to the heterocyclic auxiliary and the electronic influence the heterocycle has, if any, on controlling the reversible polyhedral expansion observed in our reactions.

Experimental

General and instrumentation

All the reactions were carried out under a nitrogen atmosphere using standard Schlenk techniques unless otherwise stated. Reagent grade solvents were dried by the standard methods and freshly distilled prior to use. Diethyl acetylenedicarboxylate and ethyl propiolate were purchased from Acros Organics Chemicals Inc. and were used as received. Product separations were performed by TLC in the air on 0.5 mm silica gel $60 \AA \mathrm{~F}_{254}$ glass plates. Infrared spectra were recorded on a Shimadzu IR Prestige-21 spectrophotometer and ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker DPX 400 spectrometer. All NMR chemical shifts are reported in δ units and are referenced to the residual protons of the deuterated solvents. Elemental analyses were performed by the Microanalytical Laboratory of Wazed Miah Research Centre at Jahangirnagar University.

Reaction of $\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)$ (1a) with DEAD

To a THF solution (25 mL) containing 1a ($0.10 \mathrm{~g}, 0.11 \mathrm{mmol}$) was added diethyl acetylenedicarboxylate ($90 \mathrm{mg}, 0.53 \mathrm{mmol}$) under nitrogen flush. The reaction mixture was heated at $67{ }^{\circ} \mathrm{C}$ for 12 h during which time the solution color changed from green to yellow. The solvent was removed under reduced pressure and the residue subjected to TLC on silica gel. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1, \mathrm{v} / \mathrm{v})$ developed three bands. The first band was unreacted 1a (trace)
while the second and third bands afforded $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)\left(\mu_{3}-\right.$ $\mathrm{EtO}_{2} \mathrm{CCCHCO}_{2} \mathrm{Et}$) (2a) (35 mg, 25\%) and $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)\left(\mu_{3}-\right.$ $\mathrm{EtO}_{2} \mathrm{CCHCO}_{2} \mathrm{Et}$) (3a) ($25 \mathrm{mg}, 21 \%$) as yellow crystals after recrystallization from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $4{ }^{\circ} \mathrm{C}$. Data for 2a: Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{NO}_{13} \mathrm{Os}_{3} \mathrm{~S}: \mathrm{C}, 25.55 ; \mathrm{H}, 1.34 ; \mathrm{N}, 1.24$. Found: C, 25.69; H, 1.43; N, 1.39. IR ($v \mathrm{CO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$): $2088 \mathrm{w}, 2067 \mathrm{~s}, 2028 \mathrm{~s}, 1994 \mathrm{~s}, 1983$ $\mathrm{m}, 1962 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J} 6.4,1 \mathrm{H})$, $7.32(\mathrm{~d}, \mathrm{~J} 6.4,1 \mathrm{H}), 6.95(\mathrm{t}, \mathrm{J} 6.4,1 \mathrm{H}), 4.10(\mathrm{~m}, 4 \mathrm{H}), 2.51(\mathrm{~s}, 1 \mathrm{H}), 1.29$ (t, J 6.8, 3H), 1.16 (t, J 6.8, 3H). Data for 3a: Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{NO}_{13} \mathrm{Os}_{3} \mathrm{~S}: \mathrm{C}, 25.55 ; \mathrm{H}, 1.34 ; \mathrm{N}, 1.24$. Found: C, 25.72; $\mathrm{H}, 1.52$; $\mathrm{N}, 1.45$. IR ($\left.v(\mathrm{CO}), \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2086 \mathrm{~m}, 2065 \mathrm{~s}, 2031 \mathrm{~s}, 1989 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J} 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J} 7.6 \mathrm{~Hz}$, 1H), 7.09 (t, J $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 4 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J} 7.2$, $3 \mathrm{H}), 1.13(\mathrm{t}, \mathrm{J} 7.2,3 \mathrm{H})$.

Thermal equilibation of 2a and 3a

2a ($15 \mathrm{mg}, 0.013 \mathrm{mmol}$) in 15 mL of THF was heated to reflux for 8 h , after which time the solution was allowed to cool. The solvent with concentrated under vaccum and the residue purified by chromatography, as described as above, to gave 3a ($7.5 \mathrm{mg}, 50 \%$) and unreacted 2 a ($3.0 \mathrm{mg}, 20 \%$). Refluxing 3a under analgous conditions gave 2a and $\mathbf{3 a}$ in isolated yields of ($1.8 \mathrm{mg}, 12 \%$) and ($7.9 \mathrm{mg}, 53 \%$), respectively.

Thermolysis of 3a

A toluene solution (20 mL) of $3 \mathrm{a}(20 \mathrm{mg}, 0.018 \mathrm{mmol}$) was heated to reflux for 5 h . The solvent was removed under reduced pressure upon cooling, and the residue subjected to TLC on silica gel. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1, \mathrm{v} / \mathrm{v})$ developed four bands. The second band yielded $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)\left(\mu_{3}-\mathrm{EtO}_{2} \mathrm{CCCH}_{2}\right)(4)(3 \mathrm{mg}, 12 \%)$ as yellow crystals after recrystallization from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $4{ }^{\circ} \mathrm{C}$. The contents of the other three bands were too small for complete characterization. Data for 4: Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{11} \mathrm{NO}_{11} \mathrm{Os}_{3} \mathrm{~S}$: C, 23.88; H, 1.05; N, 1.33. Found: C, 24.12; H, 1.11; N, 1.40\%. IR (v(CO), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $2082 \mathrm{~m}, 2060$ vs, $2027 \mathrm{~s}, 1995 \mathrm{~s} 1973 \mathrm{~s}, 1955 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, \mathrm{~J} 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J} 7.2 \mathrm{~Hz}$, 1H), 6.99 (t, J $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.09 (d, J $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ (m, 1H), 3.0 (d, J $7.4,1 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 0.57(\mathrm{t}, \mathrm{J} 7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Reaction of 1a with ethyl propiolate

To 1a ($0.10 \mathrm{~g}, 0.11 \mathrm{mmol}$) in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added ethyl propiolate ($90 \mathrm{mg}, 0.53 \mathrm{mmol}$). The reaction was stirred at room temperature for 4 h during which time the color changed from green to yellow. After removal of the volatiles under reduced pressure the residue was purified by TLC. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1, \mathrm{v} / \mathrm{v})$ developed five bands. The first band was unreacted 1a (trace) and the third band afforded $\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu$ $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}$) $\left(\mu_{3}-\mathrm{EtO}_{2} \mathrm{CCCCH}_{2}\right)$ (4) ($24 \mathrm{mg}, 21 \%$). The contents of the other three bands were too small for complete characterization.

Table 1 Crystallographic data and structure refinement details for compounds 2a, 3a, 3b and 4

	2a	3a	3b	4
CCDC entry no	1509600	1509601	1509603	1509602
Cryst system	triclinic	triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1	P-1
a, \AA	10.2449(3)	10.047(2)	9.841(3)	10.2041(8)
b, Å	11.0705(4)	16.538(3)	9.9715(3)	10.8173(8)
c, Å	13.4872(4)	17.657(3)	17.3201(5)	11.4433(9)
α, deg	78.130(3)	75.769(2)	75.059(3)	76.534(1)
β, deg	74.717(3)	84.515(2)	80.399(2)	80.930(1)
γ, deg	81.572(3)	84.498(2)	63.273(3)	81.651(1)
V, \AA^{3}	1437.09(8)	2823.1(8)	1464.30(8)	1205.3(2)
Mol formula	$\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{NO}_{13} \mathrm{Os}_{3} \mathrm{~S}$	$\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{NO}_{13} \mathrm{OS}_{3} \mathrm{~S}$	$\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{NO}_{13} \mathrm{OS}_{3} \mathrm{~S}$	$\mathrm{C}_{21} \mathrm{H}_{11} \mathrm{NO}_{13} \mathrm{Os}_{3} \mathrm{~S}$
fw	1128.03	1128.03	1142.06	1055.97
Formula units per cell (Z)	2	4	2	2
$\mathrm{D}_{\text {calcd }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	2.607	2.654	2.590	2.910
$\lambda(\mathrm{MoK} \alpha), \mathrm{A}$	0.71073	0.71073	0.71073	0.71073
$\mu\left(\mathrm{mm}^{-1}\right)$	13.369	13.610	13.122	15.923
F(000)	1028	2056	1044	952
Total reflections	21344	24202	23960	9301
Independent reflections	5630	10939	5737	4660
Data/res/parameters	5603/0/382	10939/0/758	5737/0/391	4660/0/334
GOF on F^{2}	1.049	1.040	1.054	1.113
$R 1^{\text {a }}[1 \geq 2 \sigma(1)]$	0.0348	0.0403	0.0354	0.0260
$w R 2^{\text {b }}$ (all data)	0.0862	0.1067	0.0808	0.0593
$\underset{\left(\mathrm{e} / \AA^{3}\right)}{\Delta \rho(\max),} \quad \Delta \rho(\min)$	3.04, -2.62	2.79, -1.89	2.18, -2.41	1.47, -1.56

${ }^{\mathrm{a}} \mathrm{R} 1=\Sigma\left\|\mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}} \| / \Sigma\right| \mathrm{F}_{\mathrm{o}}\right| ;{ }^{\mathrm{b}} w R 2=\left\{\Sigma\left[w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}\right.$

Journal Name

ARTICLE

Reaction of $\mathrm{HOS}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\mathrm{C}_{7} \mathrm{H}_{3}\left(2-\mathrm{CH}_{3}\right) \mathrm{NS}\right]$ (1b) with DEAD

To a THF solution (25 mL) containing 1b ($0.10 \mathrm{~g}, 0.11 \mathrm{mmol}$) was added diethyl acetylenedicarboxylate ($90 \mathrm{mg}, 0.53 \mathrm{mmol}$), after which time the reaction was heated at $67{ }^{\circ} \mathrm{C}$ for 24 h . After removal of the volatiles under reduced pressure the residue was subjected to TLC on silica gel. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1, \mathrm{v} / \mathrm{v})$ developed three bands. The first band contained unreacted $\mathbf{1 b}$ (trace), while the second and third bands afforded $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left[\mu-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\left(\mathrm{CH}_{3}\right)\right]\left(\mu_{3}\right.$ $\left.\mathrm{EtO}_{2} \mathrm{CCCHCO}_{2} \mathrm{Et}\right)(3 \mathrm{~b})(35 \mathrm{mg}, 40 \%)$ and $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left[\mu-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\left(\mathrm{CH}_{3}\right)\right]\left(\mu_{3}-\right.$ $\mathrm{EtO}_{2} \mathrm{CCCHCO}_{2} \mathrm{Et}$) (2b) ($35 \mathrm{mg}, 40 \%$), respectively, as yellow crystals after recrystallization from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $4{ }^{\circ} \mathrm{C}$. Data for $\mathbf{2 b}$: Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{NO}_{13} \mathrm{Os}_{3} \mathrm{~S}: \mathrm{C}, 26.29 ; \mathrm{H}, 1.50 ; \mathrm{N}, 1.23$. Found: C , 26.74; H, 1.63; N, 1.51\%. IR ($v(\mathrm{CO}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$): $2088 \mathrm{w}, 2067 \mathrm{~s}, 2028 \mathrm{~s}$, $1994 \mathrm{~s}, 1983 \mathrm{~m}, 1962 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl3): $\delta 7.76$ (d, 1H, J 7.5 Hz), 7.01 (t, 1H, J $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 (d, 1H, J 7.5 Hz), 4.18 (m, 4H), $2.86(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, 3 \mathrm{H}, \mathrm{J} 5.0 \mathrm{~Hz}), 0.88(\mathrm{t}, \mathrm{J} 5.0 \mathrm{~Hz}, 3 \mathrm{H})$. Data for 3b: Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{NO}_{13} \mathrm{Os}_{3} \mathrm{~S}: \mathrm{C}, 26.29 ; \mathrm{H}, 1.50 ; \mathrm{N}, 1.23$. Found: C, 26.44; H, 1.63; N, 1.51\%. IR (v(CO), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $2085 \mathrm{w}, 2063 \mathrm{vs}, 2029 \mathrm{~s}$, $1987 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J} 7.5 \mathrm{~Hz}), 7.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $7.5 \mathrm{~Hz}), 7.03(\mathrm{t}, 1 \mathrm{H}, \mathrm{J} 7.5 \mathrm{~Hz}), 4.18(\mathrm{~m}, 4 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J} 5.0$ Hz, 3H), 1.19 (t, J 5.0 Hz, 3H).

X-ray crystallography

Crystals of 3a and 4a were mounted on a glass fiber and diffraction data collected on a Bruker SMART APEX diffractometer at 293 K (3a) and 150 K (4a) using Mo-K α radiation ($\lambda=0.71073$ Á). Data collection, indexing, and cell refinements were done with SMART software, and data reduction and absorption correction used SAINT and SADAB, ${ }^{41}$ respectively. Crystals of $\mathbf{2 a}$ and $\mathbf{3 b}$ were mounted on a nylon loop and diffraction data collected on an Agilent SuperNova Dual diffractometer at 150 K using Mo-K α radiation ($\lambda=0.71073$ Á). Data collection, indexing, data reduction and absorption corrections were applied using CrysalisPro V171. ${ }^{42}$ Structure solutions and refinements were carried out with SHELXS and SHELXL, ${ }^{43}$ respectively. Non-hydrogen atoms were refined anisotropically and hydrogen atoms included with a riding model. Compound 3b contains a disordered OEt group that was modeled over two sites. The details of the data collection and structure refinement are given in Table 1.

Computational methodology and modeling details

All DFT calculations were performed with the Gaussian 09 package of programs ${ }^{44}$ using the B3LYP hybrid functional. This functional is comprised of Becke's three-parameter hybrid exchange functional $(B 3)^{45}$ and the correlation functional of Lee, Yang, and Parr (LYP). ${ }^{46}$ Each osmium atom was described with the Stuttgart-Dresden effective core potential and SDD basis set, ${ }^{47}$ and the $6-31 \mathrm{G}\left(\mathrm{d}^{\prime}\right)$ basis set ${ }^{48}$ was employed for all remaining atoms.

All reported geometries were fully optimized, and analytical second derivatives were evaluated at each stationary point to determine whether the geometry was an energy minimum (no negative eigenvalues) or a transition structure (one negative eigenvalue). Unscaled vibrational frequencies were used to make zero-point and thermal corrections to the electronic energies, and the resulting free energies are reported in $\mathrm{kcal} / \mathrm{mol}$ relative to the specified standard. Intrinsic reaction coordinate (IRC) calculations were performed on all transition-state structures in order to establish the reactant and product species associated with each transition-state structure. The geometry-optimized structures have been drawn with the JIMP2 molecular visualization and manipulation program. ${ }^{49}$

Acknowledgments

SEK thanks the Ministry of Education, the Government of the Peoples' Republic of Bangladesh, and the University Grants Commission of Bangladesh for sponorship and financial support of this work. MGR thanks The Robert A. Welch Foundation through Grant B-1093 for research support. We also wish to acknowledge the computational resources at UNT that are housed in the HighPerformance Computing Services (HPCS) and CASCaM facilities; NSF support (CHE-1531468) of the latter center is acknowledged. We also thank Prof. Michael B. Hall (TAMU) for providing us a copy of his JIMP2 program.

Notes and references

1 R.D. Adams, J.P. Selegue in Comprehensive Organometallic Chemistry, Vol. 4 (Ed.: G. Wilkinson), Pergamon Press, Oxford, 1982, p. 1033.
2 D. Osella, P.R. Raithby in Stereochemistry of Organometallic and Inorganic Compounds, Vol. 3 (Ed.: I. Bernal), Elsevier, Amsterdam, 1988.
3 E. Sappa, A. Tiripicchio, P. Braunstein, Chem. Rev. 1983, 83, 203.

4 S.E. Kabir, G. Hogarth, Coord. Chem. Rev. 2009, 253, 1285.
5 T. Takemori, A. Inagaki, H. Suzuki, J. Am. Chem. Soc. 2001, 123, 1762.

6 A.D. Clucas, J.R. Shapley, S.R. Wilson, J. Am. Chem. Soc. 1981, 1037387.

7 J.F. Blount, L.F. Dahl, C. Hoogzand, W. Hiibel, J. Am. Chem. Soc. 1966, 88, 292.
8 V. Busetti, G. Granozzi, S. Aime, R. Gobetto, D. Osella, Organometallics 1985, 3, 1510.

9 M. Tachikawa, J.R. Shapley, C.G. Pierpont, J. Am. Chem. Soc. 1975, 97, 7172.
10 S. Rivomanera, G. Lavigne, N. Lugan, J.-J. Bonnet, Organometallics 1991, 10, 2285.
11 S. Aime, R. Gobetto, L. Milone, D. Osella, L. Violano, A.J. Arce, Y.D. Sanctis, Organometallics 1991, 10, 2854.

12 A.J. Arce, Y.D. Sanctis, A.J. Deeming, Polyhedron 1988, 7, 979.
13 M.I. Bruce, P.A. Humphrey, H. Miyamae, A.H. White, J. Organomet. Chem. 1991, 417, 431.
14 A.J. Deeming, S. Hasso, M. Underhill, J. Chem. Soc., Dalton Trans. 1975, 1614.
15 A.J.P. Domingos, B.F.G. Johnson, J. Lewis, J. Organomet. Chem. 1972, 36, C43.
16 D. Boccardo, M. Botta, R. Gobetto, D. Osella, A. Tiripicchio, M.T. Camellini, J. Chem. Soc., Dalton Trans. 1988, 1249.

17 S. Rivomanana, G. Lavigne, N. Lugan, J.-J. Bonnet, Inorg. Chem. 1991, 30, 4110.
18 M.P. Brown, P.A. Dolby, M.M. Harding, A.J. Mathews, A.K. Smith, D. Osella, M. Arbrun, R. Gobetto, P.R. Raithby, P. Zanello, J. Chem. Soc, Dalton Trans. 1993, 827.
19 J.A. Clucas, P.A. Dolby, M.M. Harding, A.K. Smith, J. Chem. Soc, Chem. Commun. 1987, 1829.
20 M.R. Burke, J. Takats, J. Organomet. Chem. 1986, 302, C25.
21 A.J. Deeming, A.M. Senior, J. Organomet. Chem. 1992, 439, 177.

22 D. Osella, L. Pospisil, J. Fiedler, Organometallics 1993, 12, 3140.

23 W.G. Jackson, B.F.G. Johnson, J.W. Kelland, J. Lewis, K.T. Schorp, J. Organomet. Chem. 1975, 88, C17.
24 A.J. Deeming, Adv. Organomet. Chem. 1986, 26, 1.
25 E. Rosenberg, E. Anslyn, L. Milone, S. Aime, R. Gobetto, D. Osella, Gazz. Chim. Ital. 1988, 118, 299.
26 R.D. Adams, G. Chen, J.T. Tanner, Organometallics 1990, 9, 1530.

27 E. Sappa, A. Tirripicchio, A.M. Manotti Lanfredi, J. Organomet. Chem. 1983, 249, 391.
28 J.R. Shapley, Inorg. Chem. 1982, 21, 3295.
29 R. Gobetto, L. Milone, F. Reineri, L. Salassa, A. Viale, E. Rosenberg, Organometallics 2002, 21, 1919.
30 Z. Dawoodi, M.J. Mays, J. Chem. Soc., Dalton Trans. 1984, 1931
31 a) D. Osella, R. Gobetto, P. Montenegro, P. Zanello, A. Cinquantini, Organometallics 1985, 5, 1247; b) B.E.R. Schilling, R. Hoffmann, J. Am. Chem. Soc. 1979, 101, 3456; c) G. Granozzi, E. Tondello, M. Casarin, S. Aime, D. Osella, Organometallics 1983, 2, 430; d) S. Aime, R. Bertoncello, V. Busetti, R. Gobetto, G. Granozzi, D. Osella, Inorg. Chem. 1986, 25, 4004; e) C. Moreno, M.-L. Marcos, M.-J. Macazaga, J. Gomez-Gonzalez, R. Gracia, F. Benito-Lopez, E. MartínezGimeno, A. Arnanz, Organometallics 2011, 30, 1838.
32 C. Moreno, M.-L. Marcos, M.-J. Macazaga, J. Gomez-Gonzalez, R. Gracia, F. Benito-Lopez, E. Martínez-Gimeno, A. Arnanz, Organometallics 2011, 30, 1838.
a) M.J. Abedin, B. Bergman, R. Holmquist, R. Smith, E. Rosenberg, J. Ciurash, K.I. Hardcastle, J. Roe, V. Vazquez, C. Roe, S.E. Kabir, B. Roy, S. Alam, K.A. Azam, Coord. Chem. Rev. 1999, 190-192, 975; b) S.E. Kabir, K.M.A. Malik, H.S. Mandal, Md.A. Mottalib, Md.J. Abedin, E. Rosenberg, Organometallics 2002, 21, 2593; c) Md.A. Mottalib, N. Begum, S.M.T. Abedin, T. Akter, S.E. Kabir, Md.A. Miah, D. Rokhsana, E. Rosenberg, G.M.G. Hossain, K.I. Hardcastle, Organometallics 2005, 24, 4747.
K.M. Uddin, S. Ghosh, A.K. Raha, G. Hogarth, E. Rosenberg, A. Sharmin, K.I. Hardcastle, S.E. Kabir, J. Organomet. Chem. 2010, 695, 1435.
35 For a report that contains structurally related clusters based on the addition of DMAD to a pyrone-ligated triomsmium cluster, see: Q. Lin, W.K. Leong, J. Organomet. Chem. 2005, 690, 322.
a) S.-H. Huang, J.M. Keith, M.B. Hall, M.G. Richmond, Organometallics 2010, 29, 4041; b) J.C. Sarker, A.K. Raha, S. Ghosh, G. Hogarth, S.E. Kabir, M.G. Richmond, J. Organomet. Chem. 2014, 750, 49.
a) S.E. Kabir, E. Rosenberg, L. Milone, R. Gobetto, D. Osella, M. Ravera, T. McPhillps, M.W. Day, D. Carlot, S. Hajela, E. Wolf, K. Hardcastle, Organometallics 1997, 16, 2674; b) T. NowrooziIsfahani, D.G. Musaev, K. Morokuma, E. Rosenberg, Inorg. Chem. 2006, 45, 4963; c) J.A. Cabeza, I. del Río, J.M. Fernández-Colinas, S. García-Granda, L. Martínez-Méndez, E. Pérez-Carreno, Chem. Eur. J. 2004, 10, 6265; d) J.A. Cabeza, I. del Río, S. García-Granda, L. Martínez-Méndez, E. PérezCarreno, Chem. Eur. J. 2005, 11, 6040; e) J.A. Cabeza, I. del Río, L. Martínez-Méndez, E. Pérez-Carreno, Chem. Eur. J. 2006, 12, 7694; f) Md.A.H. Chowdhury, Mohd.R. Haque, S. Ghosh, S.M. Mobin, D. A. Tocher, G. Hogarth, M.G. Richmond, S.E. Kabir, H.W. Roesky, J. Organomet. Chem. 2017, 836-837, $68 .$.

44 M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S.
lyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
45 A.D. Becke, J. Chem. Phys. 1993, 98, 5648.
46 C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 1988, 37, 785.
47 a) M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866; b) S.P. Watch, C.W. Bauschlicher, J. Chem. Phys. 1983, 78, 4597.
48 a) G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley, J. Mantzaris, J. Chem. Phys. 1988, 89, 2193; b) G.A. Petersson, M.A. Al-Laham, J. Chem. Phys., 1991, 94, 6081.

49 a) JIMP2, version 0.091, a free program for the visualization and manipulation of molecules: M.B. Hall, R. F. Fenske, Inorg. Chem. 1972, 11, 768; b) J. Manson, C.E. Webster, M.B. Hall, Texas A \& M University, College Station, TX, 2006: http://www.chem.tamu.edu/jimp2/index.html.

The reaction of the internal alkyne DEAD with $\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left[\mu_{3}-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right]$ (1a) yields the isomeric alkenyl complexes $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}\right)\left(\mu_{3}-\mathrm{EtO}_{2} \mathrm{CCCHCO}_{2} \mathrm{Et}\right)(2 \mathrm{a}$ and $\mathbf{3 a})$.

[^0]: a. Department of Chemistry, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh.
 b. Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK.
 ${ }^{\text {c. }}$ Department of Chemistry, University of North Texas, Denton, TX 76209, USA.
 ${ }^{+}$Corresponding author: cobalt@unt.edu; 940-565-3515.
 Electronic Supplementary Information (ESI) available: CCDC 1509600, 1509601, 1509603, and 1509602 contain the supplementary crystallographic data for compounds $\mathbf{2 a}, \mathbf{3 a}, \mathbf{3 b}$, and $\mathbf{4 a}$, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/data request/cif. Atomic coordinates of all DFToptimized stationary points and spectroscopic data. See DOI:xxxxxxxxxxxxxx..

[^1]: Scheme 6. ${ }^{1} \mathrm{H}$ NMR assignments for the hydrogens in 4

