UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Characterizing shock waves in hydrogel using high speed imaging and a fiber-optic probe hydrophone

Anderson, PA; Betney, MR; Doyle, HW; Tully, B; Ventikos, Y; Hawker, NA; Roy, RA; (2017) Characterizing shock waves in hydrogel using high speed imaging and a fiber-optic probe hydrophone. Physics of Fluids , 29 (5) , Article 057101. 10.1063/1.4982062. Green open access

[thumbnail of 1%2E4982062.pdf]
Preview
Text
1%2E4982062.pdf - Published Version

Download (2MB) | Preview

Abstract

The impact of a stainless steel disk-shaped projectile launched by a single-stage light gas gun is used to generate planar shock waves with amplitudes on the order of 102 MPa in a hydrogel target material. These shock waves are characterized using ultra-high-speed imaging as well as a fiber-optic probe hydrophone. Although the hydrogel equation of state (EOS) is unknown, the combination of these measurements with conservation of mass and momentum allows us to calculate pressure. It is also shown that although the hydrogel behaves similarly to water, the use of a water EOS underpredicts pressure amplitudes in the hydrogel by ∼10% at the shock front. Further, the water EOS predicts pressures approximately 2% higher than those determined by conservation laws for a given value of the shock velocity. Shot to shot repeatability is controlled to within 10%, with the shock speed and pressure increasing as a function of the velocity of the projectile at impact. Thus the projectile velocity may be used as an adequate predictor of shock conditions in future work with a restricted suite of diagnostics.

Type: Article
Title: Characterizing shock waves in hydrogel using high speed imaging and a fiber-optic probe hydrophone
Open access status: An open access version is available from UCL Discovery
DOI: 10.1063/1.4982062
Publisher version: http://doi.org/10.1063/1.4982062
Language: English
Additional information: This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Science & Technology, Technology, Physical Sciences, Mechanics, Physics, Fluids & Plasmas, Physics, LIQUID-DROP IMPACT, CAVITIES, COMPRESSION, COLLAPSE, SURFACE, WATER
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/1575434
Downloads since deposit
104Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item