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Abstract 

The most effective treatments currently available for haemophilia A and B (factor VIII or 

factor IX deficiency respectively) require lifelong, regular, frequent intravenous infusion of 

highly expensive replacement protein that has a short half-life. Factor levels in blood follow 

a saw tooth pattern which is seldom in the normal range and often falls low enough to 

allow breakthrough bleeding. Most haemophiliacs worldwide do not have access to this 

level of care or in many cases any treatment at all. In contrast, gene therapy offers the 

potential for cure by techniques that result in continuous endogenous expression of factor 

VIII or factor IX following transfer of a functional copy to replace the haemophilic patient’s 

own defective gene. Haemophilia is a strong candidate for gene therapy for several 

reasons; a small increment in blood factor levels (≥2% of normal) significantly improves 

the bleeding tendency; response can be easily and regularly monitored with a validated 

assay; tight regulation of expression is not required. The first trial to provide clear evidence 

of efficiency after gene transfer in patients with haemophilia B was recently reported by an 

Anglo-American grouprefs1,2. A single peripheral vein infusion of adeno-associated virus 

(AAV) vector containing the factor IX (FIX) gene led to dose dependent increase in plasma 

FIX at therapeutic levels with no persistent ill effects. The patients continue to be 

monitored and no late toxicities have been observed thus far, whilst plasma levels of factor 

IX remain stable for up to 6 years with corresponding reduction or elimination of 

replacement factor use and bleeding episodes. In this review we discuss the data from that 

study and results that are emerging from many similar studies in both haemophilia A and 

B. Because no reports from the most recent studies have yet been published in peer 
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reviewed journals, we include information from presentations at meetings and company 

press releases with appropriate caveats as to the need for caution in their interpretation.  
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Introduction 

The commonest severe inherited bleeding disorder in all ethnic groups worldwide is 

haemophilia A, followed by Haemophilia B. These are X-linked recessive disorders which 

result from mutations in the genes for blood clotting factor VIII (FVIII) in haemophilia A or 

factor IX (FIX) in haemophilia B. The incidence of haemophilia A in live male births is 

approximately 1 in 5,000, and of haemophilia B, 1 in 25,000. Bleeding tendency varies but 

correlates best with the residual circulating factor level, which in turn depends on the 

genotype of the mutation that prevents synthesis and/or interferes with function of the 

affected factor. If the residual factor level is 5% of normal or greater, subjects can be 

assigned to the mild category, in which spontaneous bleeding is absent and only occurs 

after significant trauma. In the next lower range, where residual factor level is under 5% 

but above 1%, patients are considered to have moderate haemophilia with a variable 

bleeding tendency; some in this group seldom have any bleeding, while others experience 

frequent bleeding after minor trauma. Up to half of patients with haemophilia A or B have 

factor levels <1% of normal.1 These individuals have a severe bleeding tendency with 

frequent spontaneous musculoskeletal and soft tissue bleeding. A recent careful study of 

the haemophilic patient population at a large Dutch clinic2 confirmed these correlations 

and the basic division into severe, moderate and mild, but added the insight that those 

mildly affected patients whose residual factor level is greater than 13% never experienced 

joint bleeding. Thus attaining a steady state factor level >13% could be considered a target 

for gene therapy. Amongst those patients who do bleed into their joints, the ankles are 

most commonly affected starting in early childhood, with knees and elbows affected later. 
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Repeated episodes of intra-articular bleeding cause severe, progressive, destructive 

arthropathy with deformity leading to loss of joint function and attendant disability.  

In the absence of replacement therapy the life expectancy of a boy with severe 

haemophilia is about 10 years. This still applies in less developed countries. Even in 

developed countries until the 1960s, treatment of haemophilia was limited to infusion of 

fresh frozen plasma or concentrates derived from animal plasma with short lived efficacy 

due to antibody formation. In 1968 the first widely available human plasma derived 

concentrate for haemophilia A –cryoprecipitate, was introduced3. During the 1970s and 

1980s many multi-donor factor concentrates were developed to improve the purity, 

potency, stability and convenience of administration of factor replacement therapy. But 

these developments, depending as they did on ever larger donor pools of often 

commercially sourced plasma, led directly to transmission of HIV. Almost a whole 

generation of haemophiliacs who were given the new products became HIV positive and 

died of AIDS before highly effective antiretroviral therapies were developed. During the 

period 1970 to 1986 every treated patient was also exposed to hepatitis C and up to 25 

years later some are still succumbing to chronic liver failure resulting from continued 

infection.  From 1986 onward heat treatment and then the solvent detergent method 

inactivated both HIV and Hepatitis C virus. Since then there have been no new cases of 

transmission of those lipid enveloped viruses. Transmission by blood products of other 

pathogens resistant to inactivation, such as parvovirus,2 hepatitis A3 and prions (variant 

Creutzfeldt-Jakob disease4) remain a major concern. Recombinant factor concentrates are 

of course free from blood borne infections, but their availability has been limited to the 

most developed countries by very high cost. With the expiry of patents on recombinant 
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factor VIII and IX, biosimilars and other variants with enhanced pharmacokinetic or other 

properties are entering the market, with potential for wider availability than hitherto. 

In developed countries standard haemophilia care for severely affected patients now 

consists of home administered prophylaxis with safe concentrates intended to maintain 

factor level above 1% of normal. This is a compromise based on cost and practical 

considerations which reduces but does not eliminate bleeding. If started in early childhood 

after the first joint bleed, arthropathy can be largely prevented 6. When continued 

throughout life, prophylaxis leads to near normalisation of life expectancy7. The relatively 

short half-life of FVIII and FIX in the circulation necessitates frequent intravenous 

administration of factor concentrates (at least 2-3 times a week) which is demanding and 

extremely expensive; annualised costs of prophylaxis for an adult equal or exceed 

£120,000. Even with prophylaxis, significant limitations remain as normal plasma clotting 

factor levels are not consistently restored; the short half-life of existing clotting factors 

results in troughs of circulating clotting factor associated with break-through bleeding. The 

saw tooth pattern of factor level mandates careful planning of peak activities such as sport, 

to coincide with peak levels attained only briefly after infusion of factor. New modified 

synthetic formulations of factor VIII and IX that are pegylated or fused to proteins with long 

half-life such as albumin or Fcγ have greatly improved the pharmacokinetic activity profile 

for factor IX but have been less impressive for factor VIII, due to the dominant role of Von 

Willebrand factor (VWF) in determining its half-life. In any case these products do not 

remove the problems of lifelong intravenous administration, break-through bleeding and 

ever mounting cost. The cumulative effect of lifelong administration of pegylated proteins 

are unknown, as is the potential of fusion proteins to induce immune response.5 Two other 



7 

 

entirely novel approaches to normalising thrombin generation in haemophilia are 

undergoing extensive trials at the time of this writing. The first is a factor VIII mimic 

consisting of linked antibodies, one of which binds factor IXa and the other factor X 

(Emicizumabref). Although restoring thrombin generation to a degree comparable to factor 

VIII level of about 15% in patients with or without inhibitory antibody, there is a major 

difference from wild type factor VIII. The mimic is under no control of its activity being 

permanently active throughout the circulation. In contrast native factor VIII has very strictly 

controlled activity in both time and place of action; it circulates as a procofactor tightly 

bound to its carrier VWF; it is activated only at sites of clot propagation; it has a very short 

half-life after activation; it is inactivated by the protein C pathway. The consequences of 

these differences have recently emerged in thrombotic events ref occurring in patients 

treated with Emicizumab and either FEIBA or Factor VIIa used as adjunctive therapy for 

breakthrough bleeding. The second alternative approach is to lower the natural 

antithrombin level with antisense RNA technology ref. Both approaches have shown 

efficacy in reducing the rate of bleeding, but their use may be limited by risk of 

thrombogenicity and both still require lifelong injections without restoring normal 

haemostasis. 

Even set against this scenario of widening therapeutic choice, gene therapy offers a 

strikingly attractive potential for cure by means of the endogenous production of FVIII or 

FIX following transfer of a normal copy of the respective gene. The haemophilias were 

recognised in the 1980s as good candidates for gene therapy because all their clinical 

manifestations are due to lack of a single protein that circulates in minute amounts in the 

blood stream. Years of clinical experience and the natural experiment of moderate 
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haemophilia prove that a small increase to 1-2% in circulating levels of the deficient 

clotting factor significantly modifies the bleeding diathesis; so even a modest response to 

gene therapy can be effective. Regulation of transgene expression is unnecessary since a 

wide range of FIX or FVIII levels is without toxicity and effective at reducing bleeding. 

Animal models such as FVIII- and FIX-knockout mice6,7,8 and dogs with haemophilia A or 

B9,10, have facilitated extensive preclinical evaluation of gene therapy strategies. The 

efficiency of therapy can be assessed easily by measuring plasma levels of FVIII or FIX. 

The cDNA for the gene encoding FIX is small and adaptable to gene transfer in many viral 

systems. In addition its expression pathway is significantly less complex than that of FVIII 

and it is natively expressed at higher levels. Consequently, more gene transfer studies 

have focused on haemophilia B than haemophilia A, but this is rapidly changing as the 

technology evolves. 

 

First clinical studies of gene therapy in haemophilia 

The most efficient way to introduce therapeutic genes into target somatic cells, a process 

referred to as transduction, is to use adapted wild viruses as vectors, using the machinery 

they evolved for transferring their own DNA or RNA into host cells. Targeted cells can 

either be cultured for ex-vivo gene transfer, or within organs for in-vivo delivery of vector. A 

number of gene transfer vehicles have been developed based on viral vectors (see Tables 

1 to 4). Of 9 Phase I clinical trials conducted in subjects with haemophilia using these 

vectors one is currently continuing. Early studies with non-viral, onco-retroviral and 

adenoviral vectors appeared safe but did not result in sustained transgene expression at 

therapeutic levels. 11-13;14 Recombinant adeno-associated viral vectors (AAV) currently 
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show the most promise for gene therapy of haemophilia. These vectors have the best 

safety profile among gene transfer vectors of viral origin, since wild type AAV has never 

been associated with human disease. Safety is further enhanced by the dependence of 

AAV on co-infection with helper virus (usually adenovirus or herpesvirus) for productive 

infection. Additionally, recombinant vectors based on AAV are entirely devoid of wild type 

viral coding sequences, thus reducing the potential for invoking cell-mediated immune 

response to foreign viral proteins. Two clinical gene therapy trials for haemophilia B have 

been performed with AAV vectors based on serotype 2, the first serotype to be isolated 

and fully characterised (Table 4).20;21  The first study was a dose escalation phase I/II 

study entailing multiple intramuscular injections of AAV vector encoding the FIX gene. 

Vector administration was not associated with serious adverse events. However, sustained 

increase in plasma FIX levels of >1% was not observed in any of the seven subjects 

recruited to this study despite immunohistochemical evidence of FIX expression at the site 

of injection for over 10 years.20  

In the second study AAV2 vector containing a liver-specific expression cassette was 

infused into the hepatic artery over 3 different doses ranging from 0.08 to 2 x 1012vg/kg. In 

all patients, vector genomes were transiently detected in the semen though there was no 

evidence of germ line transmission. The low and intermediate vector doses were safe but 

did not result in a detectable increase in plasma FIX levels. The results in the two subjects 

treated at the high dose level (2x1012vg/kg) were mixed. One had higher levels of 

neutralizing anti-AAV-2 antibodies prior to gene transfer which appeared to block 

successful transduction, resulting in lack of any transgenic FIX expression. In contrast, FIX 

levels increased to around 10% of normal levels in the other subject for 4 weeks after 
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vector administration and then unexpectedly declined to baseline values. This decline in 

transgenic protein coincided with a transient 10-fold rise in liver transaminases, which 

spontaneously returned to baseline values over the subsequent weeks, consistent with a 

self-limiting process. Further studies have led to the hypothesis that the decline in FIX 

expression and the liver toxicity were likely due to a capsid-specific cytotoxic T cells 

directed against the transduced hepatocytes following presentation of AAV2 capsid 

peptide in the context of MHC I molecules.21  

Thus, both humoral and cell mediated immune responses have the potential to limit 

persistent expression of FIX following administration of AAV vectors in humans.  

Current and on-going trials of gene therapy for haemophilia A and B 

In what follows continuing clinical trials of gene therapy for haemophilia using AAV based 

vectors are presented and discussed. The pace of advance is now so rapid that data on 

recently opened trials is only available as meeting presentations and/or company news 

releases, not yet as peer reviewed publications. Exceptionally therefore we are using 

those sources of information to bring readers of this review the most current available 

information, with the caveat that further experience may change our expectations of the 

safety and efficacy of gene therapy in haemophilia and of the most favourable combination 

of expression cassette, vector and trial protocol to attain improved or even normal levels of 

factor IX or factor VIII. 

 

The first long term success in a clinical trial of gene transfer in haemophilia  

Building on earlier studies discussed above an approach for gene therapy of haemophilia 

B was developed using a codon optimised version of the human FIX (hFIXco) gene was 



11 

 

synthesised and cloned downstream of a compact synthetic liver-specific promoter (LP1) 

to enable packaging into self-complementary AAV vectors (scAAV), which have a 

packaging capacity of approximately 2.3kb.23 Preclinical studies in mice and non-human 

primates (NHP) showed that scAAV vectors were more potent than comparable single 

stranded AAV (ssAAV) vectors, raising the possibility of achieving therapeutic levels of FIX 

using lower and potentially safer doses of vector.23;24  

Another important aspect of this study was to use a vector pseudotyped with AAV serotype 

8 capsid. This had the advantage over AAV2 vectors, of the remarkable tropism of AAV8 

for efficient transduction of the liver following administration of the vector in the peripheral 

circulation.24;25 Hence a simple non-invasive route of vector administration was used that is 

safer for patients with a bleeding diathesis. Additionally, the lower seroprevalence of AAV8 

in humans (~25% compared with over 70% for AAV226), enabled exclusion of fewer 

subjects with pre-existing humoral immunity to AAV8. 

Six subjects with severe haemophilia B were enrolled to the initial phase of this study with 

two subjects recruited sequentially at one of three vector doses (low [2x1011 vg/kg], 

intermediate [6x1011 vg/kg], or high dose [2x1012 vg/kg]) of scAAV2/8-LP1-hFIXco. Factor 

IX expression at 1-6% of normal was established in all six subjects with an initial follow-up 

of between 6-14 months following gene transfer. Asymptomatic, transient elevation of 

serum liver enzymes, probably a result of a cellular immune response to the AAV8 capsid, 

was observed in both subjects recruited to the high dose level between 7-10 weeks after 

gene transfer. Treatment of each with a short course of prednisolone led to rapid 

normalisation of liver enzymes and maintenance of FIX levels in the 2-4% range. Four of 

the 6 subjects, have been able to discontinue routine prophylaxis without suffering 
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spontaneous haemorrhage, even when they undertook activities that previously had 

provoked bleeds. The other two have increased the interval between FIX prophylaxes. 

This is consistent with the natural bleeding history in mild haemophilia patients (FIX levels 

of between 5-40%) where bleeding episodes generally only occur after trauma or surgery 

with very few or no spontaneous bleeds.27  

Longer follow-up of these individuals shows that AAV mediated FIX expression remained 

relatively stable over a period of at least 6 years.28. One of the four subjects who 

discontinued prophylaxis has subsequently been commenced on a once a week 

prophylaxis regimen to avert trauma-related bleeding incurred in the course of his work as 

a geologist. The others remain off prophylaxis and free of spontaneous haemorrhage. The 

overall reduction in FIX usage in these 6 subjects over the duration of the study is 

estimated to be approximately 2.2 million units so far and the resulting financial savings 

that exceed £1.5M. Subsequently a further four subjects were recruited for treatment at the 

higher dose. Two of these subjects had no evidence of immune mediated liver 

inflammation and achieved a level of stable factor IX expression between 5 and 8%. Both 

have stopped prophylaxis and report no bleeding. One subject had a mild episode of 

immune hepatitis that responded promptly to steroids. His factor IX level has been 

maintained at 5% and he has no need for prophylaxis and does not experience 

spontaneous bleeding since gene transfer. The remaining subject experienced a more 

marked elevation of transaminase which despite responding to a course of oral steroid 

was accompanied by a fall in steady state factor IX to 2%. He has less bleeding than prior 

to gene transfer, is not using prophylaxis but has occasional trauma related bleeding 

episodes requiring substitution therapy ref. In an on-going extension of the trial, the vector 
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preparation has been further purified to remove empty capsids and the optimum dose is 

being explored in dose escalation to determine if the immune hepatitis can be abrogated 

whilst attaining a therapeutically favourable factor IX level (A. Davidoff pers. comm.). 

Recent trials of gene transfer in haemophilia B 

5 studies of similar vectors for transferring either wild type factor IX or the gain of function 

mutation known as Padua (L349R) have been initiated since the first reports of successful 

long term expression noted above were published. The results of these trials as presented 

in meetings and/or released in communications from commercial sponsors are 

summarised in table 5. Of note the two studies using the Padua mutant are consistent with 

expression of a similar amount of protein as in the earlier St Jude/UCL trials but with 5 to 8 

fold enhanced activity. Thus levels ranging from 20% to 40% have been recorded in 6 

subjects. Of further note 2 out 6 subjects so treated in the study carried out by Spark 

therapeutics have had immune mediated elevation of liver enzymes and were treated with 

a course of oral steroid.  

AAV vectors and gene therapy for Haemophilia A 

The limited packaging capacity of AAV vectors (4680 kb) and the poor expression profile 

of FVIII have hindered the use of these vectors for gene therapy of haemophilia A. 

Compared to other proteins of similar size, expression of FVIII is highly inefficient.29 

Bioengineering of the FVIII molecule has resulted in improvement of FVIII expression. For 

instance, deletion of the FVIII B-domain, which is not required for co-factor activity, 

resulted in a 17-fold increase in mRNA levels over full-length wild-type FVIII and a 30% 

increase in secreted protein.30;31 This has led to the development of BDD-FVIII protein 

concentrate, which is now widely used clinically (Refacto; Pfizer). Pipe and colleagues 
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have shown that the inclusion of the proximal 226 amino-acid portion of the B-domain 

(FVIII-N6) that is rich in asparagine-linked oligosaccharides significantly increases 

expression over that achieved with BDD-FVIII.32 This may be due to improved secretion of 

FVIII facilitated by the interaction of six N-linked glycosylation triplets within this region with 

the mannose-binding lectin, LMAN1, or a reduced tendency to evoke an unfolded protein 

response.33 These six N-linked glycosylation consensus sequences (Asn-X-Thr/Ser) are 

highly conserved in B domains from different species suggesting that they play an 

important biological role.34 

Another obstacle to AAV mediated gene transfer for haemophilia A gene therapy is the 

size of the FVIII coding sequence, which at 7.0 kb far exceeds the normal packaging 

capacity of AAV vectors. Packaging of large expression cassettes into AAV vectors has 

been reported but this is a highly inconsistent process resulting in low yields of vector 

particles with reduced infectivity.35;36 AAV vectors encoding the canine BDD-FVIII variant 

that is around 4.4kb have yielded promising results but further evaluation of this approach 

using human BDD-FVIII is required. Other approaches include the co-administration of two 

AAV vectors separately encoding the FVIII heavy- and light-chains whose intracellular 

association in-vivo leads to the formation of a functional molecule. 37 An alternative two 

AAV vector approach exploits the tendency of these vectors to form head to tail 

concantamers. Therefore, by splitting the FVIII expression cassette such that one AAV 

vector contains a promoter and part of the coding sequence, as well as a splice donor site, 

whereas the other AAV vector contains the splice acceptor site and the remaining coding 

sequence. Following in-vivo head to tail concatemerisation a functional transcript is 

created that is capable of expressing full length FVIII protein. 38-42 These two AAV vector 
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approaches are however inefficient, cumbersome, expensive and not easily transferred to 

the clinic. 

We have developed an AAV-based gene transfer approach that addresses both the size 

constrains and inefficient FVIII expression. Expression of human FVIII was improved 10-

fold by re-organisation of the wild type cDNA of human FVIII according to the codon usage 

of highly expressed human genes.23;43-45 Expression from B domain deleted codon 

optimised FVIII molecule was further enhanced by the inclusion of a 17 amino-acid peptide 

that contains the six N-linked glycosylation signals from the B domain required for efficient 

cellular processing. These changes have resulted in a novel 5.2kb AAV expression 

cassette (AAV-HLP-codop-hFVIII-V3) that is efficiently packaged into recombinant AAV 

vectors and is capable of mediating supraphysiological levels of FVIII expression in animal 

models over the same dose range of AAV8 that proved to be efficacious in subjects with 

haemophilia B.  

Juxtaposition of novel amino acid sequences as has been done in our AAV-HLP-codop-

hFVIII-V3 could lead to neo-antigenicity, thereby increasing the risk of provoking a 

neutralizing antibody response to the transgenic protein. This was also a concern when 

recombinant BDD-FVIII (ReFacto) was first introduced for use in man. ReFacto contains 

the “SQ” link of 14 amino acids (SFSQNPPVLKRHQR) between the A2 and A3 domains, 

generated by fusion of Ser743 in the N-terminus with Gln1638 in the C-terminus of the B-

domain, creating a neo-antigenic site. However, despite extensive clinical use of ReFacto, 

an increase in frequency of neutralizing hFVIII antibodies in patients treated with this 

product has not been observed.46-48 Additionally, antibodies to epitopes in the B-domain 

that are occasionally seen in patients with severe HA treated with hFVIII protein 
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concentrates are devoid of inhibitory activity because they bind to nonfunctional FVIII 

epitopes.49 

Using a AAV5 containing the SQ linker codon optimised factor VIII expression cassette 

described above, in a study sponsored by Biomarin 9 subjects with severe haemophilia A 

have been treated at doses ranging from xxx to xxx vg/kg. Of seven treated at the highest 

dose 6 subjects now have factor VIII level ranging from 50% to 250% (table 6). All were 

treated with prophylactic steroid after elevated transaminases were noted in the first of the 

seven subjects treated, whose factor level is now 20%. Highly encouraged by this result a 

new cohort of patients has been recruited to be treated at an intermediate lower dose level 

of xxx vg/kg in order to find a dose that does not cause response above the normal upper 

limit of 150% as seen in two subjects treated at the high dose level. 

 

Obstacles to wider use of AAV vector technology  

A.  Safety considerations 

Thus far, the risk of liver toxicity accompanied by loss or reduction of transgene expression 

appear to be the most worrying toxicity associated with liver targeted delivery of AAV, as 

described before. However, this phenomenon can be readily controlled with a short course 

of prednisolone and appears to be self-limiting with no evidence of persistent 

hepatocellular damage. The precise pathophysiological basis for the hepatocellular toxicity 

observed in this study remains unclear, in part because it has not been possible to 

recapitulate this toxicity in animal models. Longer follow-up of some of the high dose 

subjects in our study shows that cessation of prednisolone is not followed by a late rise in 

liver enzymes or reduction in transgene expression, presumably because capsid antigen 
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has  been degraded and cleared from the remaining transduced hepatocytes by this point. 

The vector preparation used in this study contained a large excess (~80%) of empty 

capsids which are fully assembled capsids that lack a functional vector genome.50 These 

empty particles cannot mediate FIX expression but can serve as antigenic targets for 

capsid-specific cytotoxic T cells following transduction of hepatocytes.51 It is therefore 

logical to assume that removal of these contaminating empty particles, may allow 

administration of the high vector dose without provoking hepatocellular toxicity or 

compromising the level of gene transfer. As noted above this hypothesis is being tested 

further with a clinical lot of scAAV2/8-LP1-hFIXco from which empty particles have been 

removed by CsCl density centrifugation. The other strategy for reducing vector dose and, 

therefore, vector-related toxicity currently being investigated in the clinic entails the use of 

a self-complementary AAV vectors encoding FIX Padua potentially allowing correction of 

the severe bleeding phenotype HB  with a lower vector dose. 52 53  

As expected, all subjects in these trials develop long lasting AAV capsid-specific humoral 

immunity. Whilst the rise in anti-AAV IgG does not have direct clinical consequences, its 

persistence at high titres precludes subsequent successful gene transfer with vector of the 

same serotype, in the event that transgene expression should fall below therapeutic levels. 

However, it has been established that it is possible to achieve successful transduction in 

animals including nonhuman primates with pre-existing anti-AAV8 antibodies following 

administration of AAV vector pseudotyped with an alternate serotype.24 Based on follow up 

data in subjects with HB it is likely that retreatment may not be required for periods that 

extend beyond 6 years. 
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Another potential problem of systemic administration of AAV is spread of vector particles 

to non-hepatic tissues including the gonads. Vector genomes were transiently detectable 

in the semen of all subjects recruited to the AAV2 and AAV8 haemophilia B clinical 

trials.27;54;55 The lack of persistence of the vector genome in semen of haemophilia B 

patients is consistent with animal data that suggested that AAV can transduce adventitial 

cells present in semen but not germ cells.  

The risk of insertional mutagenesis following AAV mediated gene transfer has been judged 

to be low because proviral DNA is maintained predominantly in an episomal form. This is 

consistent with the fact that wild type AAV infection in humans, though common, is not 

associated with oncogenesis. However, deep sequencing studies show that integration of 

the AAV genome can occur in the liver.56;57 Additionally, an increased incidence of 

hepatocellular carcinoma (HCC) has been reported in the mucopolysaccharidoses type VII 

(MPSVII) mouse model following perinatal gene transfer of AAV potentially through 

integration and disruption of an imprinted region rich in miRNAs and snoRNAs on mouse 

chromosome 12.58  Subsequent studies in other murine models have failed to recapitulate 

this finding and collectively the available data in mice as well as larger animal models 

suggest that AAV has a relatively low risk of tumourigenesis.59   

 

B. Scale-up of vector production 

Continued progression toward flexible, scalable production and purification methodologies 

is a required to support the commercialisation AAV bio-therapeutics. The most widely used 

method for the generation of AAV entails the transient transfection of adherent HEK 293 

cells with plasmids encoding the necessary vector, helper and packaging genes. The 
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appeal of this method is the flexibility and speed, which are important assets during the 

initial stages of development. Not surprisingly, therefore, almost all AAV vector 

preparations administered to humans in the last 10 years have been prepared by transient 

transfection of adherent HEK 293 cells.  However, this method is cumbersome and not 

suited for production of large quantities of clinical-grade vector required for Phase 

III/market authorisation trials of haemophilia gene therapy. Attention has recently shifted to 

transfection of suspension culture-adapted 293 cells because they are more amenable to 

scale-up than using adherent cells.60 Another scalable method for production of AAV that 

has received a lot of attention is one based on baculovirus.61  This method has recently 

been used to support market authorisation of gene therapy for lipoprotein lipase 

deficiency. Impurities commonly found in AAV vector preparations include host cell 

proteins, mammalian DNA and empty capsids which as described above can affect safety. 

Therefore, attention need to be paid to the downstream purification process which typically 

consists of column chromatography so that the purity of clinical grade AAV preparation can 

be improved without compromising scalability.  

 

Affordability of gene therapy  

The World Federation of Hemophilia estimates that 80% of haemophilia patients receive 

no or only sporadic treatment and are condemned to shortened lives of pain and disability. 

This is in large part because the cost of prophylactic treatment with factor concentrates is 

high and in excess of £120,000 for an adult per year. This is unaffordable by the majority 

of the World’s hemophiliacs.62 It is likely that gene therapy will command a high price, at 

least initially, in order to recoup the development cost. However, successful gene therapy 
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offers the advantage of continuous endogenous expression of clotting factor which will 

eliminate breakthrough bleeding and micro-haemorrhages thereby reducing comorbidities 

and the need for frequent medical interventions whilst improving quality of life, thus 

yielding significant savings for the health care system and society in general. Therefore, if 

appropriately managed gene therapy has the potential to be affordable when all such 

factors are considered.  

 

Conclusion 

The availability of convincing evidence of long-term expression of transgenic FIX at 

therapeutic levels resulting in amelioration of the bleeding diathesis following AAV 

mediated gene transfer is an important step to the eventual licensure of gene therapy for 

haemophilia. Whilst, several obstacles still remain, the current rate of progress in this field 

suggests that a licenced gene therapy product will be commercially available within the 

next decade. This will like change the treatment paradigm for patients with severe 

haemophilia and, in addition, facilitate the development of gene therapy for other disorders 

affecting the liver where the treatment options are limited or non-existent.  

 

 

 

Table I: AAV Properties applicable to all current clinical trials in haemophilia A and B  

Packaging 
capacity 

Ease of 
production 

Integration 
into host 
genome 

Duration of 
expression 

Transduction 
of post-
mitotic cells 

Pre-
existing 
host 
immunity 

Safety 
concerns 

Germ-line 
transmission 

 

4.6 kb Cumbersome Infrequent 
Long-term in 
post-mitotic 

cells 
Efficient ++ 

Immune 
response to 
capsid 

Not observed 
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 Table 2. Summary of Phase I-II studies in haemophilia B  

Sponsor Transgene Vector Inclusion 
criteria 

Method of 
vector 
delivery 

Safety  Expression 
(% of 
normal) 

Current 
status 

References 

Children’s 
Hospital of 
Philadelphia 

hFIX AAV-2  Adults with severe 
HB 

IM No significant 
side effects 

Transient < 
1.6%  

Closed  

Avigen, 
Alameda, CA 

hFIX AAV-2  Adults with severe 
HB  

Bolus infusion into 
hepatic artery  

Transient 
transaminitis 
at 3 weeks 
after gene 
transfer  

Transient hFIX 
at 10% in 1 pt 
given 2 
x1012vg/kg 

Closed  

St Jude Self 
complementary 
AAV 
Codon optimised 
FIX 

AAV-8 Adults with severe 
HB 

Bolus peripheral 
vein infusion 

Transient 
transaminitis 
at 7-10 weeks 
after gene 
transfer 

Persistent (>4 
years) dose 
dependent 
expression of 
FIX at between 
1-6% of normal 
level in all  
subjects 
recruited 

Open  

CHOP Single stranded 
AAV 
Codon optimised 
FIX 

AAV-8 Adults with severe 
HB 

Bolus peripheral 
vein infusion 

 Two subjects 
recruited at 
1x1012vg/kg. 
Persistent  FIX 
at ~8% of 
normal level in 
one  

Closed  

Baxalta Self 
complementary 
AAV 
Codon optimised 
FIX containing the 
Padua mutation 

AAV8 Adults with severe 
HB 

Bolus peripheral 
vein infusion 

Variable 
response with 
loss of activity 
with or 
without 
transaminitis 

Expression up to 
50% but not 
maintained. 

Closed  

Spark Single strand AAV 
Codon optimised 
FIX containing 
Padua mutation 

Spk 100 Adults with sever 
HB 

Bolus peripheral 
vein infusion 

Transaminitis 
in 2 out of 6 
patients 

Expression 
range 20% to 
40% 

Open  

Uniqure         
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Table 6:  Biomarin Haemophilia A study. Vector AAV8 containing FVIIIsq codon 
optimised sequence.Ref 20 

 
Factor VIII Levels (%) in High Dose Patients* by Visit (N=7) 

*All patients had severe hemophilia A Factor VIII equal to or less than 1% of blood clotting factor. 

 

**Weeks were windowed by +/- 2 weeks 

 

***For week 32, one patient had no Factor VIII reading, for week 40, one patient had not reached 

week 40 and for week 44, only 2 patients reached a week 44 reading 

 

****Bolded numbers are in normal range of Factor VIII as defined by the World Federation of 

Hemophilia,  http://www.wfh.org/en/page.aspx?pid=643 (link current as of Jan. 8, 2017). Factor 

VIII levels are determined by one-stage assay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Week** 20 24 28 32 36 40 4
4 n*** 7 7 7 6 7 6 2 

Median 

Factor VIII Level**** (%) 

97 101 122 99 99 115 11
9 

Mean 

Factor VIII Level**** (%) 

118 130 124 122 115 127 11
9 

Range 

(high, low) 

(12, 

254) 

(16, 

227) 

(15, 

257) 

(26, 

316) 

(31, 

273) 

(17, 

264) 

(105, 

133) 

http://www.wfh.org/en/page.aspx?pid=643
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Table 7:  Summary of Factor VIII Level (%) of High Dose Patients at Most Recent Evaluation 

(N=7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High- dose  

Subject # 

FVIII level (%)  

at last update in July 2016 

Most recent week 

of observation  

FVIII level (%) 

at most recent observation 

1 89 50 121 

2 219 42 133 

3 271 40 222 

4 12 41 16 

    5 133 40 175 

6 69 38 77 

7 79 34 62 
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Table 8:  Summary of Annualized Bleeding Rate (ABR) and FVIII Infusions of High Dose 

Patients Previously on Prophylaxis (N=6) 

 

 Before BMN 270 

Infusion** 

After BMN 270 

Infusion*** 

 

Mean (median, SD) 

Mean (median, SD) 

Annualized Bleeding Rate* (bleeding episodes per subject 

per year) 

 

16.3 (16.5, 15.7) 

 

1.5 (0, 3.8) 

Annualized FVIII Infusions* (infusions per subject per 

year) 

 

136.7 (138.5, 22.4) 

 

2.9 (0, 7.0) 

 

* Rates were based on data from week 3 after BMN270 infusion through last follow-up visit 

 

**Obtained from medical records. 

 

***5 of 6 patients had 0 bleeds requiring Factor VIII infusions and 0 Factor VIII infusions from 

Week 

3 after BMN 270 infusion. 
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Table 9:  Summary of ALT Levels in High Dose Patients at Most Recent Evaluation (N=7) 

 

 ALT (U/L); (ULN = 43 (U/L)) 

High-dose 

Subject# 

Peak ALT  level ALT Level at Most Recent 

Observations 

ALT Level Status 

1 60 15 Normal 

2 95 16 Normal 

3 82 42 Normal 

4 87 33 Normal 

5 43 38 Normal 

6 81 45 <1.1 ULN 

7 66 27 Normal 

All patients currently off steroids. 

 

 

Table 10  Commercial  gene therapy products in clinical development for hemophilia 
 

  
Company 

 
Product 

 
Vector 

 
Therapeutic gene 

 
Manufacturing platform 

Year in which first patients dosed in 

phase 1/2 trial 

Hemophilia  B Shire BAX 335 AAV8 Padua  mutant factor IX HEK293  cells 2013 

 Spark 

Therapeutics/ 

Pfizer 

SPK-9001 Engineered AAV Padua  mutant factor IX HEK293  cells 2015 

 uniQure AMT-060 AAV5 Wild-type factor IX Baculovirus 2015 

 Dimension 

Therapeutics 

DTX101 AAVrh10 Wild-type factor IX HEK293  cells 2016 

 Sangamo 

Biosciences 

SB-FIX AAV6 Zinc-finger-nuclease-mediated 

integration of wild-type factor IX 

into the albumin  locus in hepa- 

tocytes 

Baculovirus Expected  2016 

 Freeline 

Therapeutics 

FLT-180 Engineered AAV Undisclosed HEK293  cells Expected  2017 

 Bioverativ Undisclosed Lentivirus Padua  mutant factor IX HEK293  cells Expected  2018 

Hemophilia  A BioMarin BMN 270 AAV5 B-domain deleted factor VIII Baculovirus 2015 

 Spark 

Therapeutics 

SPK-8011 Engineered AAV B-domain deleted factor VIII HEK293  cells Expected  2016 

 Dimension 

Therapeutics/ 

Bayer 

DTX-201 Undisclosed B-domain deleted factor VIII HeLa cells Expected  2017 

 Shire BAX-888 AAV8 B-domain deleted factor VIII HEK293  cells Expected  2017 

 Sangamo 

Biosciences 

SB-525 AAV6 B-domain deleted factor VIII Baculovirus Expected  2017 
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