
Bauer S et al, Personalized translational epilepsy research – Part II 

1 
 

Personalized translational epilepsy research - novel approaches and future 

perspectives Part II: Experimental and translational approaches. 

A review based on the 1st International Symposium on Personalized Translational Epilepsy 

Research, Frankfurt, Germany September 2016 

Authors: Sebastian Bauer1,2, Natascha van Alphen1, Albert Becker3, Andreas 

Chiocchetti4, Ralf Deichmann5, Thomas Deller6, Thomas Freiman1, Christine M. Freitag4, 

Johannes Gehrig7, Anke M. Hermsen1, Peter Jedlicka6, Christian Kell7, Karl Martin 

Klein1,2, Susanne Knake2, Dimitri M. Kullmann16, Stefan Liebner8, Braxton A. Norwood2, 

Diana Omigie9, Karl-Heinz Plate8, Andreas Reif11, Philipp S. Reif1, Yvonne Reiss8, Jochen 

Roeper12, Michael W. Ronellenfitsch10, Stephanie Schorge16, Gerhard Schratt13, Stephan 

W. Schwarzacher6, Joachim P. Steinbach10, Adam Strzelczyk1,2, Jochen Triesch14, 

Marlies Wagner15, Matthew C. Walker16, Frederic von Wegner1, Felix Rosenow1,2  

Affiliations: 

(1) Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology 

and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany 

(2) Epilepsy Center Marburg, Department of Neurology, Philipps-University Marburg, 35043 

Marburg, Germany 

(3) Institute for Neuropathology, University Bonn, 53105 Bonn, Germany 

(4) Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, 

Goethe University Frankfurt, 60528 Frankfurt, Germany 

(5) Brain Imaging Center (BIC) Frankfurt, Department of Neurology, Center of Neurology and 

Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany 

(6) Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, 

Goethe University Frankfurt, 60590 Frankfurt, Germany 

(7) Emmy-Noether Group Kell, Department of Neurology, Center of Neurology and 

Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany  

(8) Edinger-Institute Frankfurt, Neuroscience Center, Goethe University Frankfurt, 60590 

Frankfurt, Germany 

(9) Max-Planck-Institute for Empirical Aesthetics, 60322 Frankfurt, Germany  

(10) Dr. Senckenberg Institute for Neurooncology, Center of Neurology and Neurosurgery, 

Goethe University Frankfurt, 60528 Frankfurt, Germany 

(11) Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe University 

Frankfurt, 60528 Frankfurt, Germany 

(12) Institute of Neurophysiology, Neuroscience Center, Goethe-University Frankfurt, 

60590 Frankfurt, Germany 

(13) Institute of Physiological Chemistry, Philipps-University Marburg, 35043 Marburg, 

Germany 

(14) Frankfurt Institute for Advanced Studies (FIAS), 60438 Frankfurt, Germany 

(15) Institute of Neuroradiology, Center of Neurology and Neurosurgery, Goethe University 

Frankfurt, 60528 Frankfurt, Germany  

(16) Institute of Neurology, University College London (UCL), London, WC1E 6BT, United 

Kingdom 



Bauer S et al, Personalized translational epilepsy research – Part II 

2 
 

Summary (260 words): Despite the availability of more than 15 new “antiepileptic drugs”, 

the proportion of pharmacoresistant epilepsy patients has remained constant at about 20-

30%. Furthermore, no disease-modifying treatments shown to prevent the development of 

epilepsy following an initial precipitating brain injury or to reverse established epilepsy have 

been identified to date. This is likely in part due to the polyetiologic nature of epilepsy, which 

in turn requires personalized medicine approaches. Recent advances in imaging, pathology, 

genetics and epigenetics have led to new pathophysiological concepts and the identification 

of monogenic causes of epilepsy. In the context of these advances, the First International 

Symposium on Personalized Translational Epilepsy Research (1st ISymPTER) was held in 

Frankfurt on September 8th 2016 to discuss novel approaches and future perspectives for 

personalized translational research. These included new developments and ideas in a range 

of experimental and clinical areas such as deep phenotyping, quantitative brain imaging, 

EEG/MEG-based analysis of network dysfunction, tissue based translational studies, innate 

immunity mechanisms, mircoRNA as treatment targets, functional characterization of genetic 

variants in human cell models and rodent organotypic slice cultures, personalized treatment 

approaches for monogenic epilepsies, blood-brain-barrier dysfunction, therapeutic focal 

tissue modification, computational modeling for target and biomarker identification, and cost 

analysis in (monogenic) disease and its treatment. This report on the meeting proceedings is 

aimed at stimulating much needed investments of time and resources in personalized 

translational epilepsy research. This Part II includes the experimental and translational 

approaches and a discussion of the future perspectives, while the diagnostic methods, EEG 

network-analysis, biomarkers and personalized treatment approaches were addressed in 

Part I [1] 

Key Words: Treatment targets, Personalized medicine, Precision medicine, Biomarkers, 

New treatment targets 
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Human biopsies and animal models to study mesial temporal lobe epilepsy  

Temporal lobe epilepsy (TLE) is the most common focal seizure disorder in adults. 

Generally, seizures do not start at birth but develop later in life – often after transient insults. 

In many patients, such transient brain insults, including status epilepticus (SE), are followed 

by a latent period of epileptogenesis, preceding the emergence of clinical seizures. 

Mechanisms of epileptogenesis obviously cannot be studied in human brain tissue but 

require the use of animal models (reviewed in [2]). A major component of translational 

epilepsy research addresses the association of pathomechanisms in human epilepsy tissue 

and corresponding animal models. 

In hippocampal biopsies of pharmacoresistant TLE patients, the CA1 pyramidal cell layer 

often shows pronounced neuropathological changes including degeneration and functional 

hyperexcitability. Based on these precedents, we aimed to characterize key 

pathomechanisms that render CA1 pyramidal neurons chronically hyperexcitable after a 

transient brain insult. In a recent study in experimental animals, we demonstrated 

transcriptional upregulation of CaV3.2 T-type Ca2+-channels, resulting in an increased 

propensity for burst discharges of hippocampal CA1 pyramidal neurons, to represent an 

important trigger for epileptogenesis [3]. We further demonstrated that the metal-regulatory 

transcription factor 1 (MTF1) mediates the increase of CaV3.2 mRNA and intrinsic excitability 

consequent to a rise in intracellular Zn2+. Adeno-associated viral (rAAV) transfer of MTF1 into 

murine hippocampi led to increased CaV3.2 mRNA. Conversely, rAAV-mediated expression 

of a dominant-negative MTF1 abolished SE-induced CaV3.2 mRNA upregulation and 

attenuated epileptogenesis. Finally, data from resected human hippocampi surgically treated 

for pharmacoresistant TLE support the Zn2+-MTF1-CaV3.2 cascade to be active also in 

human TLE tissue. As a perspective from ‘bench-to-bedside’, we suggest that 

pharmacological interventions targeting the Zn2+–MTF1–CaV3.2 cascade may provide a 

novel approach for the treatment of pharmacoresistant TLE. 

 

Innate Immunity – Cytokines and Toll-like Receptors in pathophysiology and as 

treatment targets  

Mechanisms of innate immunity play an important role in the development of acquired 

epilepsies. Components of the innate immune system, e.g. cytokines or Toll-like receptors 

(TLRs), can mediate tissue remodelling, leading to network changes that eventually result in 

increased excitation and synchronization, as well as reduced inhibition. In addition, immune 

mediators also have a direct influence on neuronal excitability via post-translational 

modification of ion channels [4,4]. In this respect, interleukin-1 (IL-1) has been studied 

intensely in animal models of epilepsy. Much data from epilepsy models confirmed both pro-

convulsive/pro-epileptogenic actions of IL-1 and protective effects of IL-1 

antagonization/inhibition. Translation of these experimental results to clinical research led to 

the development of a randomized, double-blind phase IIa trial of VX-765, a selective inhibitor 

of IL-1 converting enzyme (ILE) [5]. This study showed a favorable safety profile and a 

reduction of seizure frequency of 8.6% in the treatment group vs. placebo. Surprisingly, a 
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follow-up trial was terminated by the manufacturer. Nevertheless, this trial marked an 

important step towards developing immunomodulatory drugs for epilepsy therapy, potentially 

with disease-modifying activity. 

Translating findings from animal models of epilepsy to the clinic is not a simple process. 

Unpublished data from our group show, for example, opposite regulation of intracellular TLRs 

in two rat models of epilepsy, although both exhibit a very similar phenotype of mesial 

temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS). Such findings highlight the 

need for personalized approaches in both basic research and patient treatment above and 

beyond the current standard, general methods. One helpful tool for personalization is 

cerebral microdialysis. This technique allows repetitive sampling of extracellular molecules at 

consecutive time points within the same individual. Applying a stereotaxic approach, the 

target area can be targeted with extreme precision. We used this technique to establish the 

time course of hippocampal cytokine release in a rat model of mTLE-HS over the course of 

several months (unpublished data). These results will be helpful for precise timing of 

immunomodulatory interventions for epilepsy therapy. In fact, cerebral microdialysis is 

increasingly used as part of multimodal monitoring in humans with severe neurological 

diseases that are often accompanied by status epilepticus. The technique will undoubtedly 

also allow additional insight into the mechanisms responsible for seizures and epilepsy. 

 

MicroRNAs as novel targets in personalized translational epilepsy research  

A fine balance between inhibitory and excitatory synaptic strength is critical for the proper 

functioning of neural networks and therefore a prerequisite for cognition. Defects in the 

inhibitory/excitatory (E/I) balance on the other hand can lead to neurological diseases, such 

as epilepsy. An important mechanism to control excitatory synapse function is homeostatic 

scaling, which regulates synaptic strength in a manner opposite to the stimulus to counteract 

potentially detrimental changes in the E/I balance. Homeostatic downscaling in response to 

chronic overexcitation of networks has been discussed as a pathophysiological mechanism 

in the context of epilepsy, but the underlying gene regulatory programs are little understood.  

One hypothesis is that microRNAs (miRNAs), a large class of small regulatory non-coding 

RNAs, play an important role in the regulation of homeostatic downscaling during epilepsy.  

In previous studies, we have characterized an activity-regulated miRNA, miR-134, that is 

required for the morphological and functional downscaling of excitatory synapses by 

downregulating the RNA-binding protein Pumilio-2 [6]. Intriguingly, inhibition of miR-134 had 

been previously shown to have an anti-epileptogenic function in the kainate epilepsy model 

in mice, suggesting that miRNA-regulated homeostatic plasticity might be a maladaptive 

response during epileptogenesis.  

More recently, we have performed unbiased screening for miRNAs regulated during synaptic 

downscaling in vitro using small RNA sequencing. Thereby, we identified eight miRNAs that 

are upregulated by chronic network activation ([7]. One of these new candidates, miR-129-

5p, was subsequently studied in more detail. Inhibition of miR-129-5p using antisense 
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oligonucleotides interfered with synaptic downscaling in cultured neurons, suggesting that 

miR-129-5p upregulation is necessary for this process. Mir-129-5p expression was 

upregulated in several rodent epilepsy models in vivo and in the hippocampus of human TLE 

patients. Injection of miR-129-5p inhibitors in mice largely abolished kainate-induced epileptic 

seizures, as well as associated increases in neuronal firing rates and hippocampal cell death. 

We further identified two novel miR-129-5p target mRNAs, encoding for the calcium 

extrusion channel Atp2b4 and the microtubule-associated protein Doublecortin (Dcx). 

Overexpression of Atp2b4 and Dcx interfered with synaptic downscaling in cultured neurons, 

suggesting that miR-129-5p mediated downregulation of these proteins is important during 

the scaling response. Moreover, miR-129-5p and Atp2b4 levels were inversely correlated in 

the hippocampus of TLE patients, indicating that the mir-129-5p/Atp2b4 interaction might 

also be relevant in the epileptic brain. Besides regulating Atp2b4 and Dcx, we found that 

miR-129-5p further inhibits expression of synaptic genes by directly targeting the positive 

regulatory RNA-binding protein Rbfox. Therefore, miR-129-5p employs a dual mechanism to 

efficiently inhibit the expression of critical excitatory synaptic proteins during scaling. 

Previous findings regarding increased seizure activity in Rbfox knockout mice are consistent 

with an involvement of the miR-129-5p module in epilepsy ([7]. 

Taken together, our studies suggest an important and widespread contribution of miRNA-

dependent regulation of homeostatic synaptic plasticity to epileptogenesis. miRNAs might 

therefore be used as biomarkers for a precise classification of different types of epilepsy and 

to predict therapy outcome. The knowledge about specific miRNA profiles in epilepsy might 

further inform potential therapeutic strategies that target miRNAs or related pathways.       

 

Isogenic cell models to functionally characterize genetic variants in epilepsy  

In epilepsy, the penetrance of identified genetic variants is often incomplete and the 

functional impact uncharacterized. Therefore, these discoveries are of limited translational 

value. Thus, functional characterization using cost and time efficient model systems is of 

great importance. 

Acknowledging that no model is perfect, we need to weigh between feasibility, effectiveness, 

and translatability of observable phenotypes: Animals have the great advantage to allow 

studying phenotypes at all levels of interest, i.e. molecular, cellular and organismal level. 

However, major limitations are: i) generation of genetically engineered animals for each 

identified variant is not feasible, ii) the non-human background may hamper translatability of 

the phenotype, and iii) the genetic background or noise varies across strains and 

generations. Currently, a good alternative at in-vitro level is using human isogenic neuronal 

cell models. These cell systems allow studying the molecular, cellular and neurophysiological 

effect of a mutation and the respective wild-type gene in the same genetic background. In 

addition, new methods are being developed to study complex cellular interactions at an 

organoid level [8].  
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Isogenic neuronal cell lines can be generated by inducing a mutation into human neuronal 

progenitor cells (HNPCs), or by repairing the respective mutation in patient derived induced 

pluripotent stem cells (iPSCs). Both cell types can then be differentiated into mature neurons. 

Currently, CRISPR/Cas9 technology has proven to be the most effective tool to insert genetic 

modifications at sequence level. This technique allows complete gene-knock-out by insertion 

of premature stop codons as well as precise site directed mutagenesis or gene correction 

within 2-3 months (e.g. correction of SCNA1 mutation in iPSCs [9]), making this system cost 

and time-effective.  

HNPCs, in contrast to iPSCs, are more cost effective and can directly be differentiated into 

neuronal subtypes (i.e. glutamatergic and GABA-ergic or dopaminergic) without any 

intermediate steps. Furthermore, only little intra-individual variation has been reported for 

hNPC in contrast to iPSC derived neurons [10]. However, only iPSCs permit the study of the 

genetic effect within the patient’s specific genetic makeup.  

In summary, CRISPR/Cas9 in combination with iPSC or HNPC cell lines is currently the most 

cost-and time effective alternative to animal models, making them a useful tool to screen for 

the pathogenic effect of a potentially disease causing variant.  

 

Organotypic slice cultures of rodent brains as a tool to study epilepsy  

Organotypic slice cultures of rodent brains have been used for over 25 years to study 

fundamental questions of neuroscience [11]. With the advent of mouse genetics, viral 

transduction techniques, time-lapse imaging and multielectrode array recordings, the 

versatility of these culture preparations has been enormously expanded and they have been 

used singly or in complex preparations to address many biological questions. These 

technological advances have also made it possible to use the organotypic culture technique 

more extensively for disease- and therapy-related research. Thus, organotypic slice cultures 

are now used to (1) study general pathological mechanisms, such as brain 

lesion/regeneration, denervation/collateral sprouting, or neuroinflammation, (2) identify 

specific pathogenetic mechanisms of diseases such as Parkinsons´s disease or Alzheimer´s 

disease, (3) investigate the role of disease genetics, and, (4) test pharmacological and non-

pharmacological therapies (e.g. [12]; [13]; [14]. In short, the organotypic slice culture 

technique has come of age and is now one of the methodological pillars of neuroscientific 

research. 

The use of organotypic slice cultures in the context of epilepsy research is versatile and well-

documented (e.g., [15]). Epilepsy models have been transferred to the in vitro situation using 

organotypic cultures of rat or mouse brain. Seizure-like events can be induced in entorhino-

hippocampal slice cultures using different approaches, e.g., pilocarpin-treatment, changes in 

ion concentrations, or potassium channel blockers. The pattern of damage seen in these 

preparations is similar to the pattern of damage seen in the intact animal. This similarity with 

the in vivo situation opens up many possibilities: Using the modern tools now available to 

study hyperactivity-induced changes directly, e.g. time-lapse imaging, patch-clamp 
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recordings or multielectrode recordings (e.g., [16]; [12]), the role of genetic modifiers and risk 

factors for the course of the disease as well as for its therapy can be elucidated. 

Furthermore, it has been pointed out that these cultures may be particularly effective for 

studying pharmacoresistant seizures and could be used for the identification of new 

antiseizure compounds [17]. Computational approaches complement the battery of 

experimental tools and generate predictions and hypotheses that can in turn be tested in the 

dish. Eventually, however, data obtained using organotypic slice cultures will require in vivo 

verification. Epilepsy is a systems disease and the state of the system as well as its 

functional input and/or output may have major modifying effects in intact animals. Such a 

combined use of in vitro, in vivo (e.g., [18]) and in silico epilepsy models may be used to 

understand the role of modifier genes carried by affected individuals in the context of 

epileptogenesis and may thus contribute to novel personalized therapeutics. 

 

Blood-brain barrier regulation by the Wnt/β-catenin pathway in epilepsy - closing the 

barrier as a potential approach to treat epilepsy  

Endothelial Wnt/β-catenin signalling is necessary for developmental angiogenesis of the 

central nervous system (CNS) and differentiation of the BBB. In the adult Wnt/β-catenin 

maintains BBB characteristics of endothelial cells (ECs) at the neuro-vascular unit (NVU), 

formed by ECs, pericytes, astrocytes, neurons and perivascular microglia. 

Under pathological conditions such as traumatic brain injury, stroke, brain tumor as well as 

Alzheimer’s dementia, the functional homeostasis of the NVU is disturbed, leading to 

increased vascular permeability.  

In the last few years, we and others have shown that Wnt/β-catenin is a master regulator of 

vascular barrier function in the CNS and moreover, we have shown that in glioma, ECs of the 

CNS partially lose their barrier phenotype, indicated by destabilized intercellular junctions 

and down regulated metabolic genes such as ABC transporters and cytochrome P450 

enzymes. The stabilization of β-catenin in glioma ECs resulted in a more quiescent and 

normalized vessel phenotype with reduced permeability, stabilized junctions and increased 

mural cell investment. Preliminary data show that systemic, pharmacological activation of the 

Wnt/β -catenin pathway with an FDA-approved drug can mimic the vascular normalization 

observed in the transgenic mouse models for glioma, suggesting that the Wnt/β-catenin 

pathway might be a promising target for re-sealing the BBB. 

The loss of BBB properties of ECs is also well documented in epilepsy in patients and in 

rodent models. However, if a hampered BBB is the cause or the consequence of SE is 

largely unknown. Interestingly, it has recently been shown that a rare, monogenetic form of 

seizures known as incontinentia pigmenti (Bloch-Sulzberger Syndrome) is primarily caused 

by endothelial apoptosis and barrier dysfunction due to a mutation in IKK/Nemo of the NF-B 

pathway [19]. 
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Although the interaction of the NF-κB and the Wnt/β-catenin pathway has been documented, 

its relevance in ECs and specifically for the etiology and progression of epilepsy is currently 

not known. Additional strong evidence for the involvement of the Wnt/β-catenin pathway and 

the BBB in the occurrence of seizures comes from the recently published adult deletion of β -

catenin specifically in ECs (iCKOEC) of transgenic mice. Induced deletion of β -catenin 

resulted in severe seizures, neuronal injury, haemorrhages and postictal death [20]. 

Based on these striking findings, we hypothesize that endothelial Wnt/β-catenin signaling is 

hampered in SE and that therapeutic activation of the Wnt pathway may counteract the BBB 

loss and hence the initiation and/or progression of the disease. Consequently, we are 

currently investigating the BBB status of SE patients as well as of SE mouse models. 

Furthermore, we will explore the potential benefit of sealing the BBB in epileptic mice via 

Wnt/β-catenin pathway activation in an inducible, conditional -catenin gain-of-function mouse 

model.  

In conclusion, sustained and reinforced Wnt/β-catenin signaling promotes vessel 

stabilization, which might prove to be a valuable therapeutic target for anti-epileptic therapy. 

Nevertheless, further investigation is required to better understand the regulation of the 

Wnt/β-catenin pathway in epilepsy.  

 

Focal tissue modification in personalized translational epilepsy treatment  

Presently, the main strategy for focal modification of brain tissue to treat epilepsy is surgical 

ablation. Although this can be effective (epilepsy surgery can render 70% seizure free), the 

destruction of tissue severely limits this approach, as it is important to avoid eloquent cortex. 

An alternative approach is to modify neuronal excitability, whilst preserving function. In recent 

years, there have been considerable developments in the tools that can help us achieve this. 

In particular, advances in viral vector technology have led to potentially safe and efficacious 

ways of transfecting specific populations of neurons in a focus [21].  

Such gene therapies are an attractive approach to the treatment of neurological disease, as 

they avoid the widespread destruction of epilepsy surgery, but permit specific focal tissue 

modification. We developed and characterized a model of focal motor seizures, which mimics 

epilepsia partialis continua in humans, in order to test the efficacy and safety of our gene 

therapies [22]. This model has a well-defined epileptogenic region in eloquent cortex where 

there are frequent bursts of epileptiform activity that are associated with a focal motor 

phenotype. We took advantage of lentiviral and adeno associated viral vectors which are 

being used in treatment studies of other human disease to transfect excitatory pyramidal 

cells.  

Using a lentivirus vector we overexpressed the potassium channel Kv1.1 in pyramidal cells in 

the focus [22]. This approach reduced the excitability of pyramidal cells without affecting 

motor function. Nevertheless, overexpressing Kv1.1 progressively reduced the epileptiform 

discharges over a period of 20 days as the transgene was expressed [22]. Although the 
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results are very promising, the route to translation is somewhat confounded by gene dose. 

There is a danger that too much Kv1.1 could interfere with function and too little would be 

ineffective.  

We therefore turned to two alternative approaches in which it is possible to titrate the effect 

once the transgene is expressed. First, we used optogenetics, expressing halorhodopsin in 

pyramidal cells [22]. This is a chloride pump that on exposure to yellow/green light pumps 

chloride into the neuron, so hyperpolarizing and decreasing the excitability of the neuron. By 

using different strengths and durations of light, it is possible to regulate the excitability of 

groups of neurons. We transfected pyramidal cells in the focus and placed a fibre optic in the 

focus to deliver light. With this method, we could use the light to decrease the excitability of 

the focus and so decrease seizure activity without interfering with function [22]. Such an 

approach has now been used by others in closed loop devices in which the detection of 

seizure activity activates the light. Although effective, this approach is complicated by having 

not only to target the viral vector to the focus but also to get light into the focus. Moreover, 

halorhodopsin is a foreign protein, raising the concern that it could generate an immune 

reaction, even though the brain is relatively immune privileged.  

Lastly we used a technology termed designer receptors exclusively activated by designer 

drugs (DREADDs). In pyramidal cells in the focus, we expressed a modified “inhibitory” 

muscarinic receptor hM4Di, which is no longer sensitive to acetylcholine, but instead is 

activated by a selective, normally inactive drug clozapine-N-oxide (CNO) [23]. Systemic 

administration of CNO was able to suppress focal seizures evoked by chemoconvulsants 

and also had a robust anti-seizure effect in our model of focal neocortical epilepsy [23]. This 

technology has the advantage of being able to adjust the effect of the gene therapy by 

titrating the dose of drug that specifically activates the receptor. CNO has no other effect 

than on the neurons in which the receptor is expressed, so avoiding systemic and CNS side-

effects. The receptor expressed is a modification of an endogenous receptor, so reducing the 

potential for immunogenicity. DREADDs seem to have many of the characteristics that would 

enable translation into a therapy for human focal epilepsy. 

 

Computational neuroscience to identify treatment targets  

There is a growing interest in how brain circuits are changing during epileptogenesis. Cell 

loss, altered connectivity, and inflammatory responses have all been implicated in 

epileptogenesis, but it’s often unclear which changes are primary causes and which are just 

consequences of other changes. Unraveling these cause and effect relationships is of central 

importance when searching for new treatment methods. The development of computational 

models can be a great tool for understanding such cause and effect relationships, because a 

computational model facilitates a “dissection” of the system and so enables the study of the 

specific role of each component or mechanism for the overall system. Not surprisingly, 

therefore, a number of computational models have investigated how specific structural 

changes to a circuit can make it more prone to exhibit seizure-like activity patterns. This is an 

important first step, but it stops short of answering the harder question of what causes the 
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changes to the structure of these circuits in the first place. We argue that in order to fully 

understand these mechanisms of pathologic circuit changes, it is important to understand 

how these circuits are normally constructed and maintained under basal conditions. 

Remarkably, the structure of cortical and hippocampal circuits is highly dynamic, with new 

synapses constantly being formed and others being removed. Recent computational 

modeling work suggests that the formation and maintenance of brain circuits in the presence 

of this constant turnover of synaptic connectivity can be viewed as a process of self-

organization fuelled by the interaction of a number of plasticity mechanisms, some of which 

are homeostatic [24]. Such models have successfully explained how the distribution and 

fluctuation patterns of synaptic connection strengths are rooted in fundamental plasticity 

mechanisms [25]. The challenge lying ahead is now to investigate what mechanisms could 

be primary causes of the observed circuit changes. The list of candidates is long and none of 

them are mutually exclusive. Aberrant neuronal properties, dysregulated plasticity 

mechanisms, an exhaustion of homeostatic mechanisms, or vicious cycles of neuro-immune 

interactions [26] could all be involved in the process of epileptogenesis. A combination of 

highly detailed, biologically realistic computer modeling [27] and simplified, mathematically 

tractable computational modeling [24,26] is needed to help identify how these mechanisms 

may contribute to epileptogenesis. 

 

Future directions  

Given the fact that the term “epilepsy” refers to a variety of different entities, a high demand 

of personalization in epileptology is obvious. Ultimate goals of personalized translational 

epileptology are 

 to determine the individually contributing patterns of genetic factors and various disease 

mechanisms (e.g. dysregulation of miRNAs, inflammation, blood-brain barrier 

dysfunction) in each single patient, and 

 to tailor specific etiology-related therapies which take account of particular disease 

characteristics in the respective individual (e.g. pharmacogenetics in drug treatment, 

functional anatomy of epileptogenic networks in invasive therapies). 

Tight translational cooperation between basic and clinical researchers is necessary to 

achieve these goals. Hence, future emphasis will be directed to diagnostic methods that can 

be used likewise in both preclinical and clinical research, e.g. new MRI-based techniques or 

cerebral microdialysis. Development and validation of preclinical disease models should be 

addressed more intensely, because selection of valid models for distinct disease entities will 

avoid limitations of research impact on the respective human condition and, therefore, will 

save time, labor and costs. 

Information flow between bench and bedside is bidirectional. Clinical diagnostics and 

resective therapy in epilepsy patients provide the respective electrophysiological data or 

tissue that is required to investigate dysfunction (and, partially, function) of the human brain. 
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Tissue banks are currently established and will become one foundation of interdisciplinary 

multi-method research on disease mechanisms. Thorough phenotyping using advanced 

techniques such as quantitative MRI is a prerequisite for interpreting the results. Analysis of 

EEG data from intracranial recordings will massively profit from the ever-increasing 

computational power and from cooperation between neuroscientists and mathematicians. 

Personalized therapies using new techniques like DREADDs and optogenetics are currently 

still at the preclinical stage. In contrast to resective surgery, these methods offer reversible 

functional inhibition of specific neurons in the epileptogenic zone rather than irreversible 

destruction of brain tissue, and may therefore contribute to a future increase in treatment 

safety. 

Preclinical testing of new therapies is labor-intensive and bears a high risk of failure. For this 

reason, the preclinical development is called “the valley of death” by pharmaceutical 

companies [28]. Concepts and methods of personalized translational research, as described 

above, have the potential to substantially shorten the walk through this unedifying area. 
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