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SUMMARY

Probability matching priors are priors for which the posterior probabilities of cer-

tain specified sets are exactly or approximately equal to their coverage probabilities.

These priors arise as solutions of partial differential equations that may be difficult to

solve, either analytically or numerically. Recently Levine & Casella (2003) presented

an algorithm for the implementation of probability matching priors for an interest

parameter in the presence of a single nuisance parameter. In this paper we develop

a local implementation that is very much more easily computed. A local probability

matching prior is a data-dependent approximation to a probability matching prior

and is such that the asymptotic order of approximation of the frequentist coverage

probability is not degraded. We illustrate the theory with a number of examples,

including three discussed in Levine & Casella (2003).

Some key words: Coverage probability bias; Data-dependent prior; Higher-order

asymptotics; Metropolis-Hastings algorithm; Nuisance parameter; Probability match-

ing prior.

1. INTRODUCTION

In this paper we explore the practical implementation of probability matching

priors for an interest parameter. Probability matching priors are prior distributions

for which the posterior probabilities of certain specified sets are exactly or approx-

imately equal to their coverage probabilities. There has been considerable develop-

ment of probability matching priors since the paper of Welch & Peers (1963). In that

paper it was shown that, in the case of n independent and identically distributed

observations from a distribution known up to a single real parameter, Jeffreys’ invari-

ant prior achieves probability matching to Op(n
−1). That is, posterior probabilities
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coincide with coverage probabilities with an asymptotic error of order n−1. In a de-

velopment of this result, Peers (1965) obtained a partial differential equation satisfied

by probability matching priors for a specified interest parameter in the presence of

nuisance parameters. This work was further developed by Stein (1985), Tibshirani

(1989), Datta & J. K. Ghosh (1995) and Datta & M. Ghosh (1995b). These re-

sults can be used to deduce frequentist properties of nonsubjective Bayesian priors,

thereby providing some justification for their use in terms of repeated sampling per-

formance. There is an extensive literature on nonsubjective Bayes methods; see for

example Ghosh & Mukerjee (1992), Sweeting (1995), Kass & Wasserman (1996) and

Bernardo & Ramón (1998). Sweeting (2001) specifically discusses aspects of coverage

probability bias associated with Bayesian priors. From a frequentist point of view,

the use of probability matching priors provides additional noninformative Bayesian

interpretation of confidence intervals and supplies some conditional validity for con-

fidence statements. Alternatively, probability matching priors can be viewed simply

as a technical device for the elimination of nuisance parameters for the construction

of frequentist confidence intervals. Two recent reviews of probability matching priors

are Datta & Mukerjee (2004) and Datta & Sweeting (2004).

The partial differential equation satisfied by probability matching priors can only

be solved in particular cases; some examples are given in Datta & M. Ghosh (1995b).

If the problem is parameterised so that the nuisance parameter is orthogonal to the

interest parameter then the solutions are of a very simple form. However, the con-

struction of an orthogonal parameterisation itself involves the solution of a partial

differential equation. Thus, as pointed out by Levine & Casella (2003), in many real

problems it will be impossible to solve the equations analytically and often extremely

difficult to solve them numerically. As a consequence, Levine & Casella (2003) pro-

posed a general algorithm for the implementation of probability matching priors for

a single interest parameter in the presence of a single real nuisance parameter and

showed how this algorithm works in some examples. A major drawback to their

method of implementation is the substantial amount of computing time required.

In the present article we investigate an implementation of probability matching

priors for interest parameters based on local approximations that avoids the need to

solve the partial differential equation or to obtain an orthogonal parameterisation. A
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local probability matching prior is a data-dependent approximation to a particular

probability matching prior such that the posterior distributions under the two priors

are the same to Op(n
−1). Credible intervals for an interest parameter of posterior

probability α calculated under a local prior will also be confidence intervals with con-

fidence level α to Op(n
−1). This is the same order of approximation as achieved by

using a probability matching prior and therefore to the asymptotic order considered

a local matching prior will serve just as well for the construction of confidence inter-

vals. Finally, the method described here can be implemented in parameter spaces of

dimension greater than two.

2. PROBABILITY MATCHING PRIORS FOR AN INTEREST PARAMETER

We begin by reviewing the partial differential equation satisfied by probability

matching priors for an interest parameter in the presence of nuisance parameters. We

then obtain a general form of solution that can be approximated in a simple way,

leading to a local probability matching prior.

The parametric framework is as follows. Let Y n be a dataset from a distribution

known apart from a parameter θ = (θ1, . . . , θd) ∈ Ω, an open subset of Rd. Suppose

that a prior density π(·) is available for θ. Then the posterior density of θ is

π(θ|Y n) ∝ π(θ)Ln(θ) , (1)

where Ln(θ) is the likelihood function associated with Y n. We will assume sufficient

regularity conditions on the likelihood function and prior density for the validity

of the asymptotic analysis leading to the partial differential equation below. Write

ln(θ) = log Ln(θ). Suppressing the dependence on n, let J(θ) be the negative Hessian

matrix of ln(θ) and I(θ) = Eθ{J(θ)}, Fisher’s information matrix. Suppose that

θ1 is considered to be the parameter of primary interest and that (θ2, . . . , θd) is the

vector of nuisance parameters. Let zα(Y n) be the α quantile of the marginal posterior

distribution of θ1 under π; that is zα(Y n) satisfies prπ{θ1 ≤ zα(Y n)|Y n} = α. The

prior π is said to be probability matching if it is also true that

prθ{θ1 ≤ zα(Y n)} = α + Op(n
−1) (2)

for every α, 0 < α < 1.
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Partition the information matrix as

I(θ) =

(
I11 I12

I21 I22

)
,

where I11 and I22 are the submatrices corresponding to θ1 and (θ2, . . . , θd) respectively,

and define

I11.2 = I11 − I12I
−1
22 I21 .

Let κij(θ) be the (i, j)th element of n−1I(θ). In particular, κ11 = n−1I11. In the

case where Y n consists of n independent and identically distributed observations

Y1, . . . , Yn, Peers (1965) showed that π is a probability matching prior for θ1 if and

only if it is a solution of the partial differential equation

Dj{(κ11)−1/2κ1jπ} = 0 , (3)

where Dj = ∂/∂θj, κij(θ) is the (i, j)th element of n{I(θ)}−1 and we have used the

summation convention. If θ1 and (θ2, . . . , θd) are orthogonal (Cox & Reid, 1987) then

it follows immediately from (3) that

π(θ) ∝ {κ11(θ)}−1/2h(θ2, . . . , θd) ∝ {I11(θ)}1/2h(θ2, . . . , θd) ,

where the function h is arbitrary, as shown by Tibshirani (1989). We will consider

solutions of (3) in the general case where θ1 and (θ2, . . . , θd) are not necessarily or-

thogonal.

Let λ = log{(κ11)1/2π}. Then equation (3) may be re-expressed as

αjDj(λ) + Dj(α
j) = 0 , (4)

where αj = (κ11)−1κ1j. Since α1 = 1, the subsidiary equations of this Lagrange

equation are of the form
dθj

dθ1

= αj

for j = 2, . . . , d. We shall assume that a parameterisation has been chosen that

satisfies

αj = αj(θ1, θj) (5)

for j = 2, . . . , d. Clearly (5) will be true in any parameterisation when d = 2, which

is the case treated in Levine & Casella (2003). When d > 2 there will exist many pa-

rameterisations that achieve (5). In particular, under an orthogonal parameterisation
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we have αj = 0, j = 2, . . . , d. The subsidiary equations have solutions of the form

ψj(θ1, θj) = constant. Define η1 = θ1, ηj = ψj(θ1, θj) for j = 2, . . . , d, with inverse

transformation θ1 = η1, θj = γj(η1, ηj). Then

∂λ

∂η1

=
d∑

j=1

∂λ

∂θj

∂θj

∂η1

= αjDj(λ) = −Dj(α
j)

from equation (4). Write v(η) = Dj(α
j). Since (κ11)−1 = n−1I11.2, it follows that

solutions to (4) are of the form

π(θ) ∝ {I11.2(θ)}1/2e−φ(η) , (6)

where φ(η) =
∫

v(η)dη1 is any indefinite integral of v(η) with respect to η1. Thus an

arbitrary multiplicative function of (η2, . . . , ηd) is implicit in (6).

Let η̂ and θ̂ be the maximum likelihood estimators of η and θ respectively, let

θ10 be the true value of θ1 and write φi = ∂φ/∂ηi. Then, for η within O(n−1/2)

neighbourhoods of η̂, by Taylor expansion we have

φ(η) = φ(η̂) + (η1 − η̂1)v(η̂) +
d∑

j=2

(ηj − η̂j)φj(η̂) + Op(n
−1)

= φ(η̂) + (θ1 − θ̂1)v(η̂) +
d∑

j=2

(ηj − η̂j)φj(θ10, η̂2, . . . , η̂d) + Op(n
−1)

since θ̂1 − θ10 = Op(n
−1/2). Now write u(θ) = v(η) = Dj(α

j). Since v(η̂) = u(θ̂) it

follows that

φ(η) = φ(η̂) + (θ1 − θ̂1)u(θ̂) + φ(θ10, η2, . . . , ηd)− φ(θ10, η̂2, . . . , η̂d) + Op(n
−1) . (7)

We now define the data-dependent prior

πl(θ) ∝ {I11.2(θ)}1/2e−θ1u(θ̂) . (8)

Since
∫ θ1
θ10

v(η)dη1 = φ(θ1, η2, . . . , ηd) − φ(θ10, η2, . . . , ηd) = (θ1 − θ10)u(θ̂) + Op(n
−1)

from (7), it follows that (8) is an Op(n
−1) local approximation to the prior

π0(θ) ∝ {I11.2(θ)}1/2e
−

∫ θ1
θ10

v(η)dη1
.

Despite the dependence on the unknown true value θ10, the prior π0 is one version of

the probability matching prior (6), so that (2) holds for this prior and hence for its

local approximation (8). We refer to (8) as a local probability matching prior.
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Although the probability matching prior (6) was derived by choosing a particu-

lar orthogonal parameterisation η2, . . . , ηd, the local probability matching prior (8) is

expressed in terms of the original parameterisation θ, making it tractable for prac-

tical implementation. The local prior (8) is not invariant to reparameterisation of

θ1. However, alternative versions will all be equivalent to Op(n
−1). Furthermore,

choosing alternative parameterisations for (θ2, . . . , θd) that satisfy (5) will lead to

local approximations to other probability matching priors. Finally, although Peers

(1965) obtained the partial differential equation (3) for the case of independent and

identically distributed observations, (3) will hold more generally when Y n is a dataset

indexed by some parameter n under suitable regularity conditions on the likelihood

function.

3. COMPUTATIONAL ASPECTS

In applications it may be straightforward to obtain the partial derivatives of αj,

and hence the function u, directly. Alternatively, these may be more conveniently

obtained from the partial derivatives of the elements of the information matrix. In

more complex applications the information matrix will not be available analytically.

However, it turns out that we can usually obtain an Op(n
−1) equivalent local proba-

bility matching prior to (8) by expressing the required derivatives in terms of observed

quantities.

We begin by noting the identities

Dj{(κ11)−1} = (κ11)−2κ1rκ1sDj(κrs)

Dj(κ
1j) = −κ1rκjsDj(κrs) .

Using the product rule and substituting these identities gives

u = Dj(α
j) = (κ11)−2κ1r(κ1jκ1s − κ11κjs)Dj(κrs)

= αr(κ11αjαs − κjs)Dj(κrs) . (9)

We will use this formula in the example discussed in §5.2.

If the information matrix is not available analytically, or if we simply wish to avoid

calculating I(θ) and its derivatives, it will usually be possible to estimate the required
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quantities from the data. Write wj(θ) = 1
2
Dj(log κ11). Performing a Taylor expan-

sion of log{I11.2(θ)} about θ = θ̂, we obtain an Op(n
−1) equivalent local probability

matching prior to (8),

πl(θ) ∝ exp{−θ1u(θ̂)−
d∑

j=1

θjwj(θ̂)} . (10)

Now note that

Dj(log κ11) = −κ11αrαsDj(κrs) . (11)

It follows from (10), (9) and (11) that it will be enough to use Op(n
−1/2) estimators

of κrs(θ) and Dj{κrs(θ)}, all evaluated at θ = θ̂. For nκrs(θ̂) we can simply use the

(r, s)th element of the observed information matrix J = J(θ̂), while for Dj{κrs(θ)}
note that

Dj(κrs) = n−1Eθ(ljrls + ljslr + ljlrls) . (12)

If the data consist of n independent and identically distributed observations then, to

Op(n
−1/2), each of the three terms on the right-hand side of (12) may be estimated by

using the averages of the corresponding observed quantities evaluated at θ̂. Otherwise

we may be able to estimate these terms using suitable averages from the data, as we

illustrate in §5.2. We emphasise that the above modifications still give rise to a valid

local probability matching prior.

Once we have obtained a suitable local probability matching prior, any of the usual

Bayesian computational strategies can be adopted to obtain the posterior distribution

of θ1. In simple cases analytical solutions may be available. Otherwise a Markov chain

Monte Carlo scheme may be applied in the usual way, as illustrated in the examples

in §5. Since probability matching is only to Op(n
−1), an alternative strategy would

be to use an Op(n
−1) Laplace approximation to the posterior distribution of θ1; see

for example Tierney & Kadane (1986) or Sweeting (1996). One version of this takes

the form

πl{θ1|Y n} ∝ πl{θ1, θ̂2(θ1)}Ln{θ1, θ̂2(θ1)}|J22{θ1, θ̂2(θ1)}|−1/2 (13)

uniformly to Op(n
−1), where θ̂2(θ1) is the conditional maximum likelihood estimator

of θ2 for fixed θ1 and the matrix J(θ) is partitioned in exactly the same way as the

information matrix I(θ). Alternatively, and to the same order of approximation, we
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can approximate θ̂2(θ1) by θ̄2(θ1) = θ̂2− (θ1− θ̂1)J
−1
22 J21, which may be computation-

ally more convenient. The above Laplace approximation under the local probability

matching prior (10) then takes the form

πl(θ1|Y n) ∝ exp[−θ1{u(θ̂) + w1(θ̂)− w(θ̂)J−1
22 J21}]Ln{θ1, θ̄2(θ1)}|J22{θ1, θ̄2(θ1)}|−1/2 ,

(14)

where w(θ) = (w2(θ), . . . , wd(θ)). Approximate posterior quantiles of θ1, and hence

approximate confidence intervals for θ1, can now be obtained from (13) or (14) using

one-dimensional numerical integration, a Monte Carlo scheme or further asymptotic

analysis. The latter case is discussed in Sweeting (1996), where a standardised signed-

root log likelihood ratio statistic R̃1 associated with θ1 is defined. The α posterior

quantile of θ1 is computed as R̃−1
1 (zα) to Op(n

−1), where zα is the α quantile of the

standard normal distribution. This scheme is implemented in §5.2.

Finally in this section we note that the use of any n1/2-consistent estimator of

θ in place of the maximum likelihood estimator θ̂ will not change the order of ap-

proximation in (2). Alternatively, any consistent estimator of θ would produce (2)

with Op(n
−1) replaced by op(n

−1/2). It might be advantageous to use such alternative

estimators if the likelihood function is not easily maximised or is poorly behaved in

finite samples.

4. PRELIMINARY EXAMPLES

In this section we obtain local probability matching priors in three examples for

which analytic solutions are available. These examples are discussed in Datta & M.

Ghosh (1995b).

Example 1. Suppose that Yi ∼ N(µ, σ2), Y n = (Y1, . . . , Yn) and that θ1 = µ +

1
2
σ2 = log E{exp(Yi)} is the parameter of interest. If we take θ2 = σ2, the information

matrix is

I(θ) = n

(
σ−2 −1

2
σ−2

−1
2
σ−2 1

2
σ−4(1 + 1

2
σ2)

)
,

from which we obtain (κ11)−1 = n−1I11.2 = σ−2(1 + 1
2
σ2)−1 and α2 = (κ11)−1κ12 =

σ2(1+ 1
2
σ2)−1. Therefore u(θ) = D2(α

2) = (1+ 1
2
σ2)−2, and from equation (8) a local

probability matching prior is given by

πl(θ) ∝ σ−1(1 +
1

2
σ2)−1/2e−θ1(1+ 1

2
s2)−2

, (15)
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where s2 = n−1 ∑
i(Yi−Ȳ )2 and Ȳ = n−1 ∑

i Yi are the maximum likelihood estimators

of σ2 and µ respectively.

In this problem φ = µ− log σ2 is orthogonal to θ1 and probability matching priors

for θ1 are of the form

π(θ) ∝ σ−3(1 +
1

2
σ2)1/2h(θ1 − 1

2
σ2 − log σ2) , (16)

where h is an arbitrary function (Datta & M. Ghosh, 1995b). Although not immedi-

ately obvious from (15) and (16), if we express both formulae in terms of (θ1, φ) and

carry out a first-order Taylor expansion, it can be seen directly that (15) is indeed

locally equivalent to a prior of the form (16) to Op(n
−1).

Example 2. Suppose again that Yi ∼ N(µ, σ2) but that now θ1 = σ−1µ is the

parameter of interest. If we take θ2 = σ, the information matrix is

I(θ) =

(
1 σ−1θ1

σ−1θ1 2σ−2(1 + 1
2
θ2
1)

)
,

from which we obtain (κ11)−1 = n−1I11.2 = (1 + 1
2
θ2
1)
−1 and α2 = (κ11)−1κ12 =

−1
2
σθ1(1 + 1

2
θ2
1)
−1. Therefore u(θ) = D2(α

2) = −1
2
θ1(1 + 1

2
θ2
1)
−1, so from (8) a local

probability matching prior is given by

πl(θ) ∝ (1 +
1

2
θ2
1)
−1/2e

1
2
θ1sȲ (s2+ 1

2
Ȳ 2)−1

,

where Ȳ and s2 are defined in Example 1.

In this example it turns out that all priors of the form

π(θ) ∝ h(φ) (17)

are probability matching, where φ = σ(1 + 1
2
θ2
1)

1/2 and h is an arbitrary function.

Again, by Taylor expansion, it can be shown that πl is locally of this form. Also, as

previously noted we will obtain different local matching priors depending on the pa-

rameterisation used for θ2. For example, if we had worked with the parameterisation

(θ1, φ) here, then we would have obtained a uniform prior in the (θ1, σ) parameter-

isation, which is also a probability matching prior. From a Bayesian point of view

there may be additional reasons for preferring one form of matching prior to another.

For example, the reference prior (Bernardo, 1979) for which h(φ) = φ in (17) avoids

the marginalisation paradox; see for example the discussion in Datta & M. Ghosh
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(1995b). However, in the more complex applications we envisage, it is likely to be

extremely difficult, if not impossible, to verify such additional properties.

Example 3. As a final example in this section we consider the one-way random

effects model Yij = µ + τi + εij, j = 1, . . . , n, i = 1, . . . , k, where τi and εij are

mutually independent random variables with τi ∼ N(0, σ2
τ ) and εij ∼ N(0, σ2). Let

Ȳi = n−1 ∑
j Yij and Ȳ = k−1 ∑

i Ȳi. Objective priors for this model are discussed

in Berger & Bernardo (1992), Ye (1994) and Datta & M. Ghosh (1995a, b). For

comparison with Levine & Casella (2003) we suppose that the parameter of interest is

θ1 = σ2 and take θ2 = τ 2, θ3 = µ. Then, from Datta & M. Ghosh (1995b), the nonzero

elements of the information matrix are κ11 = 1
2
{(n − 1)θ−2

1 + (θ1 + nθ2)
−2}, κ12 =

κ21 = 1
2
kn(θ1 + nθ2)

−2, κ22 = 1
2
kn2(θ1 + nθ2)

−2 and κ33 = kn(θ1 + nθ2)
−1. It follows

that (κ11)−1 = n−1I11.2 = 1
2
(k − 1)θ−2

1 , α2 = k−1 and α3 = 0, giving u(θ) = 0 and

hence the local matching prior

πl(θ) ∝ θ−1
1 ,

which is an exactly probability matching prior for θ1 in this case. This example was

discussed in Levine & Casella (2003), assuming µ to be known.

5. ANALYSIS OF TWO EXAMPLES

In this section we consider two examples discussed in Levine & Casella (2003).

Since both these examples involve discrete observations, we note that probability

matching is not actually to second order. However, this order is correct if we consider

asymptotic coverage probabilities in a very weak sense (see for example the discussion

in Section 2 of Datta & Sweeting, 2004). An alternative would be to include continuity

corrections based on uniform perturbations (Rousseau, 2000).

5.1 Logistic regression example

The data for this example (Levine & Casella, 2003) are taken from Hosmer &

Lemeshow (2000, Table 1.1). The presence or absence of coronary heart disease was

recorded for one hundred subjects and the relationship between coronary heart disease

status, y, and age, x, was investigated using a logistic regression model. As in Levine

& Casella (2003), we suppose that the unknown effect of age, θ1, is the parameter

of interest and that the intercept, θ2, is a nuisance parameter. As noted by Levine
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& Casella, analytic solutions to the probability matching prior equations (3) are not

available and numerical solution appears to be difficult.

The information matrix for grouped binary data under the logistic regression

model is

I(θ) =
k∑

i=1

hi(θ)

(
x2

i xi

xi 1

)
,

where

hi(θ) =
nie

θ2+θ1xi

(1 + eθ2+θ1xi)2
,

k is the number of age groups and ni is the number of subjects in the ith age group,

i = 1, . . . , k. After some algebra we obtain I11.2(θ) = Rxx(θ) and u(θ) = 2Txp(θ),

where Txp(θ) = {∑i hi(θ)}−1Rxp(θ),

Rxx(θ) =
∑

i

hi(θ){xi − x̄(θ)}2

Rxp(θ) =
∑

i

hi(θ){xi − x̄(θ)}{pi(θ)− p̄(θ)} ,

x̄(θ) = {∑i hi(θ)}−1 ∑
i hi(θ)xi, p̄(θ) = {∑i hi(θ)}−1 ∑

i hi(θ)pi(θ) and pi(θ) = {1 +

exp(−θ2−θ1xi)}−1 is the probability of disease in the ith age group. From (8) a local

probability matching prior that gives correct coverage probabilities for θ1 to Op(n
−1),

where n =
∑

i ni, is therefore

πl(θ) ∝ {Rxx(θ)}1/2e−2θ1Txp(θ̂) . (18)

With this prior, the logistic regression model was fitted to the coronary heart

disease data by performing a random walk Metropolis-Hastings routine (Robert &

Casella, 1999), which was run for 25000 iterations following a burn-in period. This

yielded an approximate equi-tailed 95% confidence interval for θ1 of 0.064 to 0.160. For

comparison, the posterior distribution of θ1 was also obtained using the signed-root log

likelihood ratio approximation based on the Laplace approximation (13), as described

in §3. This yielded values of 0.065 and 0.159, which are close to the above figures. In

order to see the effect of the prior distribution, the equi-tailed 95% Bayesian credible

region under a uniform prior for θ was calculated using the signed-root approximation.

This was found to be 0.069 to 0.166. Since the coverage probability bias of equi-tailed

Bayesian regions is Op(n
−1) for every smooth prior (Hartigan, 1966), a uniform prior

will also produce a 95% confidence interval for θ1 to Op(n
−1). Indeed, using the signed-

root approximation again, we obtained the posterior probability of the above interval
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under the local matching prior as approximately 0.948. However, the directional

coverage errors were approximately 3.8% and 1.4%.

In order to assess the accuracy of confidence intervals produced by the local match-

ing prior (18), as in Levine & Casella (2003) we simulated smaller datasets having

thirty subjects divided into three age groups. One thousand datasets were simulated

and the 95% equi-tailed posterior intervals for θ1 under the local matching prior (18)

were calculated, each by using a random walk Metropolis-Hastings algorithm run for

25000 iterations following burn-in periods. The overall coverage rate was 94.8%, with

3.0% and 2.2% in the lower and upper tail respectively, indicating good directional

coverage.

5.2 Beta-binomial example

As a final example we consider the beta-binomial example discussed in Levine &

Casella (2003), which is a somewhat more demanding problem since the information

matrix is not available analytically. We implement the modified version of the local

matching prior obtained in §3.

The data, taken from Williams (1975), are from an experiment consisting of

two groups of 16 pregnant female rats given control and test chemical diets re-

spectively. Let nij and Yij be the number of rats from the jth litter in group i

that were alive at four days and, respectively, that survived the 21-day lactation pe-

riod. A beta-binomial distribution is adopted, where, for j = 1, . . . , n and i = 1, 2,

Yij|pij ∼ Bi(nij, pij), pij ∼ Be(αi, βi) and αi, βi are unknown parameters. The ex-

pected proportion of survivals in group i is µi = αi/(αi + βi). As in Levine & Casella

(2003) we suppose that µ1 and µ2 are the two parameters of interest here. Since the

likelihood contributions for the two groups are orthogonal we can consider the groups

separately.

In this example it is not possible to obtain an analytical form for the information

matrix. We therefore use the version of the local probability matching prior based on

observed quantities described in §3. For each group separately each of the quantities

on the right-hand side of (12) was estimated to Op(n
−1/2) by the averages of the

corresponding observed quantities for each of the 16 rats in the group; we omit the

details. Furthermore, in this example it is simplest to evaluate the above quantities at

moment estimates of θ, since the first two moments of the beta-binomial distribution
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are available in closed form. In fact it made hardly any difference here whether the

moment or maximum likelihood estimates were used.

We parameterise the problem by θi1 = log{µi/(1−µi)} and θi2 = log(αi +βi), i =

1, 2. Using the additional approximations to (8) described above for each group, we

found that the resulting local prior for these data that gives probability matching to

Op(n
−1) for both µ1 and µ2 is

πl(θ) ∝ e1.182θ11+0.129θ12−1.107θ21+0.023θ22 . (19)

Two random walk Metropolis-Hastings samplers, one for each group, were run for

50000 iterations following burn-in periods in order to achieve sufficient Monte Carlo

precision. The posterior mean of µ1 was 0.90 with five and ninety-five percentiles

0.86 and 0.94 respectively, while the posterior mean of µ2 was 0.71 with five and

ninety-five percentiles 0.57 and 0.82 respectively. The results for the control group

are approximately the same as those obtained by Levine & Casella (2003), although

for the treatment group the mean is slightly lower and the 90% confidence interval

much wider. Similar results were obtained in repeat runs. In terms of the parameters

αi, βi, i = 1, 2, the local matching prior (19) becomes

πl(α1, β1, α2, β2) ∝ α0.182
1 β−2.182

1 (α1 + β1)
0.129α−2.107

2 β0.107
2 (α2 + β2)

0.023 .

Note that there is no reason to expect the coefficients of αi and βi to be similar in

the two groups since the two likelihood functions are concentrated in quite different

regions of the parameter space. The two local priors will therefore be estimating dif-

ferent versions of the probability matching prior (6). In fact the maximum likelihood

estimates of α1 and β1 here are 43.56 and 4.95 respectively, while those of α2 and β2

are 1.592 and 0.559 respectively.

Finally, as noted by Levine & Casella, the two posterior samples could also be

used to obtain a credible interval for the log-odds log Ψ = θ21 − θ11. However, if

an Op(n
−1) confidence interval for log Ψ is required then this parameter needs to be

declared as the parameter of interest and the associated local probability matching

prior obtained for the four-parameter problem.

6. DISCUSSION

13



In this paper we have demonstrated a method for the implementation of probabil-

ity matching priors for one parameter of many via local solutions to the probability

matching prior partial differential equation. Although in particular applications some

analytical work is needed to obtain the local prior (8), we have seen in §3 that the

process can be fully automated in the sense that the local probability matching prior

contains only observed quantities calculated from components of the likelihood func-

tion.

As discussed in the paper, alternative nuisance parameterisations will give rise to

different versions of the local matching prior. Sometimes there will be a good reason

for preferring a particular parameterisation, such as avoidance of a marginalisation

paradox, or to achieve higher-order matching (Mukerjee & Ghosh, 1997). However,

it will be difficult to identify such additional properties in more complex problems

and an appropriate parameterisation should be guided by experience. For example,

there may be a natural parameterisation for the model or a parameterisation similar

to one known to have good properties in simpler models.

Peers (1965) showed that in general there will not exist a probability matching

prior that matches posterior and coverage probabilities simultaneously to Op(n
−1)

when there is more than one parameter of interest. When such a prior does exist it

is referred to as a simultaneous (marginal) probability matching prior (Datta, 1996).

Initial results indicate that it may be possible to construct local priors with the

simultaneous matching property even when no simultaneous probability matching

prior exists. It would also be of interest to obtain local versions of other forms of

probability matching priors, such as joint probability matching priors (Datta, 1996)

and predictive matching priors (Datta et al., 2000).
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