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Hydrogen diffusion on metals exhibits rich quantum behavior, which is not yet fully understood. Using
simulations, we show that many hydrogen diffusion barriers can be categorized into those with parabolic
tops and those with broad tops. With parabolic-top barriers, hydrogen diffusion evolves gradually from
classical hopping, to shallow tunneling, to deep tunneling as the temperature (7") decreases, and noticeable
quantum effects persist at moderate 7. In contrast, with broad-top barriers quantum effects become
important only at low 7 and the classical-to-quantum transition is sharp, at which classical hopping and
deep tunneling both occur. This coexistence indicates that more than one mechanism contributes to the
quantum reaction rate. The conventional definition of the classical-to-quantum crossover 7' is invalid for the
broad tops, and we give a new definition. Extending this, we propose a model to predict the transition 7" for
broad-top diffusion, providing a general guide for theory and experiment.
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Hydrogen (H) diffusion on surfaces is fundamental in
disciplines such as surface science, astrophysics, and
catalysis [1-9]. Because of the light mass of hydrogen,
the process can exhibit significant quantum nuclear effects,
such as tunneling and isotope effects. The development of
surface-sensitive techniques means that it is possible to
characterize these diffusion processes with high resolution,
and to understand the quantum nature of hydrogen dif-
fusion [10-13]. Various techniques have been applied,
including field emission microscopy (FEM) [10], laser
optical diffraction (LOD) [11], scanning tunneling micros-
copy (STM) [12], and helium spin echo (HeSE) [13].
Generally, such measurements have been performed on
metals because these afford the opportunity of examining
diffusion on ultraclean and atomically flat surfaces, which
give the greatest opportunity of revealing fundamental
insight of broad relevance.

Several impressive experimental studies have been
performed for H and, at times, deuterium (D) on substrates
such as Ni [10,11,14], Cu [12,15], Pt [16,17], and Ru [18].
Diffusion rates have been measured and, upon examining
how the rates vary with temperature (7'), qualitatively
different behavior has been seen when moving from
one substrate to another. Relatively straightforward behav-
ior is seen on, e.g., Pt(111) where, according to HeSE
measurements, the rate drops as 7 is lowered [17]. On Ru
(0001), a gradual transition from Arrhenius behavior to a
T-independent regime has been reported [18]. However, on
Ni(100) [10] and Cu(100) [12], diffusion rates suddenly
become 7" independent below a certain 7', indicating a sharp
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classical-to-quantum transition. Computational techniques
provide complementary insight [19,20], and previous
studies have helped to explain the behavior observed in
specific experiments [18,21-29]. For example, the sharp
transition on Ni(100) was attributed to the particular shape
of the diffusion barrier [21-24]. However, previous studies
have generally focused on specific surfaces, and force fields
have often been used. A thorough ab initio comparison of
hydrogen diffusion on different surfaces (including ones
yet to be measured experimentally) is lacking. Moreover, a
general physical understanding of surface diffusion and
classical-to-quantum transitions has yet to be obtained.
In this Letter, we study hydrogen diffusion on metal
surfaces with density functional theory (DFT). A key
qualitative finding of this study is that many of these
processes can be categorized as having barriers with
conventional parabolic tops or unconventional broad tops.
Of the substrates considered, parabolic-top diffusion bar-
riers exist on Cu(111), Ni(111), and Pd(111). When T
decreases, the dominant diffusion mechanism evolves
gradually from classical over-the-barrier hopping, through
shallow tunneling through the barrier top, to deep tunneling
at the barrier bottom. Shallow tunneling enables noticeable
isotope effects at moderate 7 (~200 K). Broad-top diffu-
sion barriers exist on Ni(100), Cu(100), Ni(110), and
Pd(110). For these barriers, quantum effects are important
only at low T and the classical-to-quantum transition is
sharp, during which classical hopping and deep tunneling
coexist. In contrast to the parabolic-top barriers, a rapid
onset of isotope effects is predicted for the broad-top
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barriers. Theoretically, the coexistence indicates that multi-
ple quantum transition states (TSs) can contribute to the
reaction rate, providing challenges to quantum rate theo-
ries. Using the general insights obtained, we develop a
simple model to predict the classical-to-quantum transition
T for broad-top barriers and discuss it within the context of
previous experiments and simulations.

Our DFT calculations were carried out using the VASP
[30] code with the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [31]. We use the nudged
elastic band (NEB) method [32] to obtain minimum energy
pathways (MEPs) for diffusion (with the substrate atoms
and H free to relax in all directions). The MEPs are then
used as one-dimensional (1D) potential barriers upon
which the exact transmission probabilities P for incoherent
tunneling are calculated by solving the Schrodinger equa-
tion [33]. There are various ways to simulate surface
diffusion [19-22,28,34], e.g., assuming discrete levels
[28,34]; however, for a qualitative understanding of the
tunneling processes, the initial-state distribution is not
crucial and depends on experimental conditions. Hence,
here we use a continuous distribution for simplicity.
Additionally, three Feynman path-integral (PI)-based
approximate theories were tested [35], namely, ring-
polymer molecular dynamics (RPMD) [36-42], thermal-
ized microcanonical instanton (TMI) [43], and the conven-
tional instanton method [44-48]. The 1D TMI rate is
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where W(E) = S(z) — zE is the abbreviated action, S the
Euclidean action of the instanton, 7 its imaginary time, £ =
0S8 /0 its energy, f = 1/kgT, kg the Boltzmann constant,
and the scattering partition function is used for Z,. W(E)=0
is used for E larger than the barrier height. The conventional
instanton rate, which has been applied to gas-phase
reactions [4,49-53], is the steepest-descent (SD) approxi-
mation to the integral in the TMI rate [Eq. (1)] [48];
hence, we refer to it as the SDI. In 1D, the transmission
probability e="/" in Eq. (1) is equivalent to the WKB
approximation [54]. Further details of the calculations,
validation work, and tests with other functionals are
provided in the Supplemental Material (SM) [55], which
includes Refs. [12,16,17,23,24,32,38,43,48,54,56-64].
DFT calculations show that the diffusion barriers
obtained have two different shapes [Fig. 1(a)]. Those
between the threefold hollow sites on Cu(111), Ni(111),
Pd(111) [Fig. 1(a)], and Ru(0001) [18] have a conventional
parabolic shape near the top. Those on the (100) surface
[Fig. 1(c)] of Cu and Ni, and along a path on the (110)
surface [Fig. 1(b)] of Pd and Ni are, however, considerably
broader. We label these barriers as parabolic top and broad
top, respectively. More examples of both kinds of barriers
can be found elsewhere [65]. We see that broad-top barriers

—
Q
~

016| “©-Cu(l00)H-B-H . Cu(111) FCC-HCP
-©-Ni(100)H-B-H .. Ni(111) FCC-HCP
=~ -6~ Pd(110) 3H-SB-3H s, -*-Pd(111) FCC-HCP
2 5.12| ~&- Ni(110) 3H-SB-3H R
Z0.
<
()
c
()
©
<
g
o
a

05 00 05 10 15
Reaction coordinate (A)

FIG. 1. (a) Energy barrier of the H diffusion paths, obtained
from NEB calculations using DFT, for several transition metal
surfaces. The filled symbols show data for the conventional
barriers that are parabolic near the top, and the open symbols are
the data points for broad-top barriers. (b) Top view of the (100)
surface. (c) Top view of the (110) surface. (d) Top view of the
(111) surface. Green arrows show the diffusion paths.

can occur when the adsorption sites are relatively far apart
(>2.5 A). Such barrier profiles are possible because, unlike
covalent bond breaking, a strong bond between H and the
continuum of metal states is maintained throughout the
diffusion pathway. TSs for typical proton-transfer reaction
barriers have an imaginary frequency along the reaction
coordinate of circa 10° cm™'. However, for the broad-top
barriers discussed here, the TSs have almost zero imaginary
frequency. In the case of Ni(110), the barrier top is even a
shallow minimum.

We analyze the H diffusion mechanism across two
example barriers: diffusion from a pseudothreefold hollow
site over a short bridge site to another pseudothreefold
hollow site (3H-SB-3H) [Fig. 1(c)] on Pd(110) is chosen as
the example of a broad-top barrier. We compare it with the
parabolic-top barrier found on Ni(111). The results of this
analysis are shown in Figs. 2(a) and 2(d), where we plot the
thermal transmission probability P(E)e™F as a function of
the incident energy E at T's above, during, and below the
classical to quantum transitions. For Ni(111), the trans-
mission mechanism changes gradually from being domi-
nated by classical hopping, through shallow quantum
tunneling, to deep quantum tunneling as 7 decreases
[Fig. 2(a)]. At 200 K, when classical hopping is dominant,
the transmission probability curve has a tail at low incident
energy, meaning that shallow tunneling is also significant.
For H diffusion across the 3H-SB-3H broad-top barrier on
Pd(110), a different transition behavior, from classical
hopping to deep tunneling, is observed. At 50 K or above,
H can only classically hop over the barrier, as reflected by
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FIG. 2. Temperature dependence of H diffusion on metals for a
conventional barrier that is parabolic near the top [Ni(111), left]
and one that has a broad top [3H-SB-3H path Pd(110), right].
(a), (d) The exact thermal transmission probability P(E)e~#F
(dimensionless) plotted against the incident energy E for the
conventional barrier and the broad-top barrier, respectively. (b),
(c) The transmission action (in units of %) defined as —In(P), as a
function of the incident energy E for the parabolic-top barrier and
the broad-top barrier. (e) Illustration of the peaks in the thermal
transmission probability using tunneling paths represented by the
Feynman PI.

the negligible tail of the thermal transmission probability
on the low-energy side. At lower T (30 K or below), only
deep quantum tunneling is allowed. However, around an
intermediate transition 7 [38 K, middle of Fig. 2(d)] the
thermal transmission probability curve has two maxima,
meaning that H can deep tunnel through or classically hop
over the barrier with similar probability.

To understand the origin of the anomalous tunneling, we
compare the transmission action, defined as —# In(P) for
the two examples. The larger the transmission action, the
more difficult it is for H to tunnel through the barrier at a
given incident energy. The broad-top barrier has a convex-
shaped action when plotted against incident energy
[Fig. 2(c)], implying that the broad barrier top hinders
shallow tunneling. With a parabolic-top barrier, the action
versus incident energy function is concave [Fig. 2(b)],
indicating that shallow tunneling is favorable. It is the
qualitatively different shapes of the transmission action
curves for the two classes of barriers that leads to such
different tunneling behaviors. Moreover, this distinction
between the two classes of barrier enables us to define
broad-top barriers precisely as those barriers for which the
transmission action versus energy curve is convex. This
definition is valid for all barriers considered in this study
(Fig. S2 [55]), and classical hopping and deep tunneling
channels coexist near the classical-to-quantum transition 7
when a barrier has a convex transmission action.

The coexistence of classical hopping and deep tunneling
on the broad-top barrier indicates that, in contrast to the
classical transition state theory picture, multiple quantum
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FIG. 3. Performance of different rate theories on 1D barriers
(for H) with different shapes. (a) Rates on a parabolic-top barrier
(inset). (b) Rates on a broad-top barrier (inset); the legend is the
same as in (a). (c) The W action [Eq. (1)] plotted against energy £
for the broad-top barrier in (b). The closed (open) circles show
first- (second-) order saddle instantons obtained through ring-
polymer instanton searches. (d) The thermal transmission
probability at 40 K plotted against energy E for the barrier
shown in (c) obtained using the TMI theory and using the SDI
theory.

TSs can be important. To explore how well quantum rate
theories describe this behavior, we analyzed a series of 1D
barriers [Eq. (S3) [55]] constructed by varying the potential
from a cosine (parabolic-top) shape to a broad-top one.
We calculated rates using three Pl-based methods
[Figs. 3(a) and 3(b)], and compared them to the exact rate.
On the parabolic-top barrier, all three theories perform well,
agreeing with the exact rate within a factor of 3 [Fig. 3(a)].
When the barrier top is broad, TMI and RPMD rates agree
with the exact rate within a factor of 2, except for the lowest
T (30 K), where RPMD underestimates the rate slightly
[Fig. 3(b)]. However, the SDI underestimates the rate by a
factor of 3—10 in the 3045 K range [Fig. 3(b)], and with an
even wider top, the SDI underestimates the rate by 2-3
orders of magnitude. This is because the SD integral over E
breaks down when the instanton is close to £ = 0, and if
multiple quantum TSs contribute. This is the case for
broad-top barriers with convex W action; the instanton
exists either very close to £ = 0 or collapses at the top
[Fig. 3(c)]. (Other periodic orbits do exist, but unlike
normal instantons [46] these are second-order saddles of
the ring-polymer potential.) Hence, the SDI does not
capture the coexistence of classical hopping and deep
tunneling, and fails to accurately describe the rate at
low T [Fig. 3(d)]. The TMI solves these problems by
avoiding the SD integral over E and instead uses several
microcanonical instantons for the rate, which seems to be
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a promising method for treating complex tunneling
problems.

A key experimental quantity for H diffusion is the
classical-to-quantum transition temperature. Its theory
counterpart is the crossover T (T, = hw,/2xkg), defined
using the imaginary frequency @, at the barrier top.
However, T, is ill defined for broad-top barriers. Here
we define an alternative transition 7" using the W action in

Eq. (1),

h E
kg Wo
E, is the classical activation energy and W, =

a

§+/2mV(x)dx, V(x) is the potential. Ty, is defined in
this way such that —1/kg Ty is the slope of the dashed line
in Fig. 3(c). This means that at Ty, the classical hopping
(incident energy E = E,) and deep tunneling (E =0")
have equal contributions to the diffusion rate; hence, it is
the transition 7" to deep tunneling for broad-top barriers.
For barriers with activation energy E, and width w, Eq. (2)
becomes

0<ng<2, (3)

where n; is a barrier shape factor and m is the mass of
hydrogen, and, on parabolic-top barriers, 7'y, and T, are
closely related (for derivations, see the SM [55]). For the
model potentials in Eq. (S3), when the action curve
becomes convex, ng 2 1.5 [55]. Therefore, we used n, =
1.5 and plotted Eq. (3) over arange of E, and w [Fig. 4(a)].
This model allows one to estimate the transition 7" for
broad-top barriers without performing rate calculations and
is based only on quantities measurable in experiments, i.e.,
the activation energy E, and the barrier width w.

We now use the model and insight obtained to explain
and possibly predict the transition 7 to deep tunneling for H
diffusion on several surfaces [Fig. 4(b)]. On Cu(100), STM
has revealed a classical barrier for H hopping of ~0.2 eV
and a sharp classical-to-quantum transition at 60 K [12].
Using the experimental £, our model predicts a transition 7'
of 56 K, in excellent agreement with experiments. Using
the DFT barrier, along with the WKB approximation, the
transition temperature predicted is ~40 K. This is still in
reasonable agreement with experiments and also consistent
with the simple model. On Ni(100) the experimental
transition temperatures are in the 100-125 K regime
[10,11]. Previous calculations using force fields have,
however, led to predictions in the 40-70 K regime
[21,23-26]. Both our DFT results and the model yield
transition 7 s that are consistent with the previous simu-
lations. Indeed, even using the experimental E, reported
(~0.15 eV) our model predicts a transition 7" of 50 K. It
therefore does not seem unreasonable to suggest that an
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FIG. 4. (a) Transition temperature to deep tunneling [Eq. (2)]
predicted by the model over a range of barrier parameters. The
four broad-top barriers calculated with DFT in Fig. 1 are marked.
(b) Comparison of the transition 7 predicted by the model with
previous experiments (filled symbols) and theoretical studies
(open symbols) on Cu and Ni. Previous results are taken from
STM [12], FEM [10], LOD [l1], PT Monte Carlo (PIMC)
calculations with an embedded atom model (EAM) potential
[21], and RPMD with an EAM4 potential [24]. The PBE WKB
points are from this work (Fig. 1).

experimental reexamination of H diffusion on Ni(100)
could be worthwhile. On Pt(111) we show in the SM that
our calculations are consistent with the HeSE experi-
ments [17,55].

Isotope effects are another important aspect of quantum
diffusion and a key experimental signature of tunneling. We
have examined the H-D isotope effect on a broad-top
barrier and a parabolic-top barrier as a function of 7. On the
parabolic-top barrier, the H-D isotope effect appears at
moderate 7 (100 K) and the rate ratio ky/kp increases
gradually over a wide temperature range (down to 25 K). In
contrast, for the broad-top barrier, no H-D isotope effect
appears until 7'y, (~40 K) is reached; then, ky;/kp increases
sharply within a narrow temperature window (40-25 K).
These general observations are consistent with previous
studies on Ni(100) [23-25], and the qualitative difference
between the two types of barriers holds for a broad range of
barrier heights and widths. The sharp onset of isotope
effects could, therefore, serve as an experimental signature
of diffusion on a surface with broad-top barriers.

To conclude, insight into the quantum nature of hydro-
gen diffusion on metals has been obtained. A clear
qualitative distinction between barriers with broad tops
and conventional parabolic tops has been identified. For the
broad-top barriers, we observed a regime at which both
classical hopping and deep tunneling are favored. Despite
the long history of theories for general tunneling phenom-
ena [54,66], we are not aware of discussion of such
behavior. It remains to be seen if similar behavior for
hydrogen diffusion and proton transfer will be seen in other
environments. Treating more complex systems will likely
require a full multidimensional description of the process.
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The unique behavior observed here has led to a series of
general implications, including a requirement for a multi-
TS theoretical treatment, a new definition of the classical to
quantum transition 7 (Ty), and a sudden emergence of
strong isotope effects around Ty, .
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