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Computational results 
The initial g-C3N4 structure, consisting of infinite 1D chains of linked heptazines, was based 

on the characterization study.
1
 Density-functional theory calculations were done, as described 

in the Computational Method section of the main text. The optimized g-C3N4 structure 

(Figure 1a) has the lattice parameters a = 12.62 Å, b = 16.48 Å, c = 3.64 Å,  = 92.2,  = 

56.1,  = 90.0 (AB stacking); the interlayer distance is 3.07 Å. The stoichiometry of this 

structure, C3N4.5H1.5, is very close to the experimental g-C3N4 stoichiometry (C3N4.5O0.1H1.6). 

The band gap was calculated to be 3.18 eV; the ~0.5 eV overestimate compared to the 

experiment is caused by the use of the B3LYP functional (cf. a recent review
2
 found the 

mean absolute error of 0.47 eV for band gaps calculated with B3LYP), and because the 

calculated gap is the fundamental gap rather than the optical gap and does not include 

excitonic effects. 

To model ONLH, several structures were considered, with oxygen atoms replacing NH 

groups either in linkers, or in terminal –NH2 groups, or in heptazine rings (the latter were 

high in energy). Among the structures with –O– linkers and –OH terminals, one structure, 

with –O– linkers present in only one of the two chains in the unit cell, has the band gap 

noticeably reduced compared to g-C3N4: 2.84 eV compared to 3.18 eV for g-C3N4. The 

structure is shown in Figure 2b (a 22 extension of the unit cell). The stoichiometry, 

C3N4.3O0.3H1.3, is close to the experimental ONLH-600 stoichiometry (C3N4.3O0.5H1.8). The 

lattice parameters for this structure are a = 12.62 Å, b = 16.54 Å, c = 3.57 Å,  = 80.7,  = 

60.2,  = 89.8 (approximately AB stacking), very similar to the g-C3N4 structure; the 

interlayer distance (3.09 Å) is very slightly larger than in g-C3N4 – in good agreement with 

the PXRD results. However, while the g-C3N4 structure is planar, the layers in the oxygen-

linked structure are not entirely planar and show a wave pattern, caused by bending of the C-

O-C linker bond; this nonplanarity is consistent with the experimental indication of disorder 

in the ONLH structure. 

The density of states of ONLH projected on C, N and O atoms in the two chains (Figure 1c) 

shows that the top of the valence band (VB) and the bottom of the conduction band (CB) are 

dominated by the NH-linked and O-linked chains, respectively, while oxygen atoms make 

negligible contributions to the VB and CB. The calculated infrared absorption spectra for g-

C3N4 and ONLH (Figure S2) show that the intensity of absorption is reduced in ONLH 



3 

 

compared to g-C3N4, both in the N-H and C-N stretch regions, and the peaks are somewhat 

broadened – both in agreement with experimental FT-IR spectra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme S 1. Proposed mechanism of the reaction paths for the formation of polymeric g-

C3N4 and ONLH. 
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Fig. S1. SEM images of g-C3N4 and ONLH-600.  Both are porous and sheet-like materials. 

Fig. S2. Calculated IR spectra of ONLH and g-C3N4, with the low-frequency region (below 

2500 cm
-1

) broadened with the Lorentzian parameter 50 cm
-1

, and the high-frequency region 

(above 2500cm
-1

) broadened with Lorentzian parameter 200 cm
-1

. The large broadening for the 

N-H stretch region is probably due to a variety of arrangements available to the NH2, NH and 

OH groups, while the C-N framework is more rigid. 
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Fig. S3. XPS spectra: C1s and N1s spectra (a)-(d) and survey spectra (e-f) of ONLH-600 

and g-C3N4. 
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Fig. S4. (a) Tauc plot of ONLH samples. (b) Hydrogen evolution rate under control conditions (> 420 nm) of 

ONLH. No activity is detected under dark condition or without photocatalyst or without sacrificial regent. 

(c) Hydrogen evolution rate under control conditions (> 475 nm) of ONLH-600 and g-C3N4.  

 

Fig. S5. Valence band (VB) XPS spectra of ONLH-600 and g-

C3N4 
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Table S1. Comparison of apparent quantum yields at 420 nm of ONLH and recent 

reported polymer photocatalysts measured under 1 bar pressure. 

 

 

 

 

 

 

 

Table S2. Comparison of the properties of foreign atom modified g-C3N4. The majority 

were measured under vacuum condition, while the P-doped material
4
 and this work 

were measured at 1 bar atmosphere. The majority of the heteroatoms were doped into 

heptazine units, whilst this work selectively doped oxygen at the linker positions. 

Method 
Band Gap / 

eV 
Abs. Edge / 

nm 

HER > 420 
nm 

/μmol(gh)-1 

AQY at 420 

nm / % 
Reference 

O-linker 1.55 800 337 10.3 This work 

P-doped 2.55 487 650 5.8 4
 

N-doped 
(> 400 nm) 

2.65 467 553 Not Given 5
 

I-doped 2.69 462 740 Not Given 6
 

O-doped 2.49 498 375 Not Given 7
 

B-doped 2.07 600 255 Not Given 8
 

F-doped 
(500 W) 

2.63 472 140 Not Given 9
 

S-doped 2.85 436 750 Not Given 10
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Samples AQY / % Ref. 
ONLH 10.3 This work 

Planarized conjugated 

polymer photocatalyst 
2.3 3

 

P-doped g-C3N4 5.8 4
 


