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Abstract—Mutation testing realises the idea of fault-based testing, i.e., using artificial defects to guide the testing process. It is used to

evaluate the adequacy of test suites and to guide test case generation. It is a potentially powerful form of testing, but it is well-known

that its effectiveness is inhibited by the presence of equivalent mutants. We recently studied Trivial Compiler Equivalence (TCE) as a

simple, fast and readily applicable technique for identifying equivalent mutants for C programs. In the present work, we augment our

findings with further results for the Java programming language. TCE can remove a large portion of all mutants because they are

determined to be either equivalent or duplicates of other mutants. In particular, TCE equivalent mutants account for 7.4 and 5.7 percent

of all C and Java mutants, while duplicated mutants account for a further 21 percent of all C mutants and 5.4 percent Java mutants, on

average. With respect to a benchmark ground truth suite (of known equivalent mutants), approximately 30 percent (for C) and 54

percent (for Java) are TCE equivalent. It is unsurprising that results differ between languages, since mutation characteristics are

language-dependent. In the case of Java, our new results suggest that TCE may be particularly effective, finding almost half of all

equivalent mutants.

Index Terms—Mutation testing, equivalent mutants, duplicated mutants, compiler optimisation

Ç

1 INTRODUCTION

MUTATION testing [1], [2] has attracted a lot of interest,
because there is evidence that it is capable of simulat-

ing real faults [3], [4], [5] and subsuming other popular test
adequacy criteria [6], [7], [8], [9]. It can also be used as a
technique for generating test data [10], [11], as well as for
assessing test data quality and can also explore subtle faults
[12], [13] in the presence of fault masking and failed error
propagation [14].

A mutant is a syntactically altered version of the pro-
gram under test. The syntactic alterations are typically
small, and are designed to reflect typical faults that might
reside in the original program. A mutant is said to be
killed, if a test case can be found that distinguishes
between the mutant and the original program. The under-
lying idea of mutation testing is that test suites that kill
many mutants will tend to be of higher quality than those
that kill fewer. In this way, mutation testing can be used to
assess the quality of a test suite, and can also be used to

help the test case generation, by guiding the construction
of test cases towards those that kill mutants.

However, at the heart of mutation testing lies a problem
that has been known to be undecidable for more than three
decades [15]: the equivalent mutant problem. That is, muta-
tion testing might produce a mutant that is syntactically dif-
ferent from the original, yet semantically identical. In
general, determining whether a syntactic change yields a
semantic difference is undecidable. As a result, the tester
would never know whether he or she has failed to find a
killing test case because the mutant is particularly hard to
kill, yet remains killable (a ‘stubborn’ mutant [16]), or
whether failure to find a killing test case derives from the
fact that the mutant is equivalent.

A related, newly identified problem, is the problem of
mutant duplication. A duplicated mutant is simply a mutant
that is semantically equivalent to some other mutant,
although both duplicatedmutants maybe semantically differ-
ent from the original program. Duplicated mutants are also a
problem for mutation testing, because they may artificially
inflate the apparent mutant killing power of a test suite; a test
case that kills two ormore duplicatedmutants is, all else being
equal, no better than another test case that kills only a single
non-duplicatedmutant.

Techniques such asmutant sampling [17], [18], [19], higher
order mutation [20], [21], [22], and mutant execution optimi-
sation [23], [24], [25], can be used to reduce the number of
mutants that need to be considered, but not necessarily the
proportion that remain equivalent, nor the proportion of
those that are duplicated.

Although theoretically undecidable, practical techniques
may be able to significantly dent the equivalent and duplicate
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problems by detecting a proportion of equivalent/duplicated
mutants. Equivalent mutant detection techniques have been
extensively studied since 1979. Nevertheless, until now, no
scalable, widely applicable technique has yet been found. Pre-
vious work on the detection of equivalent mutants has
involved complicated program transformation techniques,
which have proved difficult to scale and, thereby, have
remained insufficiently practical to find implementation in
current mutation testing tools and techniques. The equivalent
mutant problem therefore remains the singlemost potent bar-
rier to the wider uptake and exploitation of the potential
power ofmutation testing.

In this paper we study Trivial Compiler Equivalence
(TCE) as a simple, fast and widely applicable technique for
detecting equivalent mutants. The paper is an extension of
our previous ICSE conference paper [26], which studied the
application of TCE to the detection of equivalent and dupli-
cated mutants in the C programming language. The present
paper extends this previous study to also consider the Java
programming language, allowing us to compare TCE per-
formance on these two widely-used languages. The
extended results further confirm that TCE is a highly effec-
tive and readily applicable technique, with strong evidence
to suggest that it may be even more effective when applied
to Java than what is already known to be when applied to C.

Specifically, while TCE finds, on average, approximately
one third of the equivalent mutants in C programs, it finds
approximately half of the equivalent mutants in Java. These
new findings for Java are based on the study of a known
equivalent ground truth set, which we have augmented for
this study (and make available for replication and further
study1). We also study the application of TCE to much
larger Java programs, for which no ground truth is avail-
able, reporting results for the total number of equivalent
and duplicated mutants found (using both the standard
Java compiler2 and the SOOT analysis framework3).

Overall, we believe that the findings regarding TCE are
extremely encouraging. It can ameliorate the adverse effects
of the equivalent and duplicated mutant problems for both C
and Java programs by removing such invaluable mutants (by
an average of approximately 10 percent for Java and nearly
30 percent for C) and, as a consequence, reduces the overall
work needed to develop mutation adequate test suites by
approximately 37 percent, while, at the same time, improving
the accuracy of the mutation score measurement by 0-
18 percent for Java and 0-16 percent for C (depending on the
ratio of the killedmutants). Furthermore, and fundamental to
its success and importance, TCE is not a complicated tech-
nique; it can easily be implemented and added to any muta-
tion testing study. It has already been included in the
mutation testing tool MILU (Version 3.2), and we were easily
able to incorporate TCE analysis into the results produced by
the C and Java mutation testing tools PROTEUM [27] and
MUJAVA [28].

The rest of the paper is organised as follows: Section 2
presents mutation testing and related approaches. Section 3

details our experiment and the studied research questions,
while, Sections 4 and 5 analyse our results. Our findings are
discussed in Section 6. Finally, the threats to validity are
presented in Sections 7, while Section 8 concludes with
potential directions for future work.

2 BACKGROUND

2.1 Mutation Testing

Mutation testing embeds artificial defects on the programs
under test. These defects are calledmutants and they are pro-
duced by simple syntactic rules, e.g., changing a relational
operator from > to�. These rules are calledmutant operators.
By applying an operator only once, i.e., the defective pro-
gram has only one syntactic difference from the original one,
a mutant called a first order mutant is produced. By making
several syntactic changes i.e., applying the operators multi-
ple times, a higher ordermutant is produced. In this paper we
consider only first order mutants. These are generated by
applying the operators at all possible locations of the pro-
gram under test, as supported by the 3.2 version ofMILU and
version 3 of MUJAVA. Additional information about the corre-
sponding operators can be found at Section 3.4.

By measuring the ability of the test cases to expose
mutants, an effectiveness measure can be established.
Mutants are exposed when their outputs differ from those
of the original program. When a mutant is exposed, it is
termed killed, while in the opposite case, live. Of course, ide-
ally, equivalent mutants should be removed from the test
effectiveness assessment. Doing so gives the effectiveness
measure called mutation score, i.e., the ratio of the exposed
mutants to the number of the introduced, excluding the
equivalent ones.

2.2 Equivalent Mutants

Early research on mutation testing has demonstrated that
deciding whether a mutant is equivalent is an undecidable
problem [15]. Undecidability of equivalences means that it
is unrealistic to expect all the equivalent mutants to be
removed; the best we can have here is just effective algo-
rithms that can remove most equivalent mutants. Currently,
a large number of mutants must pass a manual equivalence
inspection [16]. This constitutes a significant cost. In addi-
tion, effort is wasted when testers generate test cases, either
manually or automatically, in attempting to kill equivalent
mutants. Apart from the human effort, there is a computa-
tional cost: since equivalent mutants cannot be killed, they
have to be exercised on the entire test suite, whereas killable
mutants only require the executions until they are killed.

Fortunately, partial and heuristic solutions exist [31]. How-
ever, tackling the equivalent mutant problem is hard. This is
evident by the fact that very few attempts exist. According to
a recent systematic literature review on the equivalentmutant
problem [44], which identified 17 relevant techniques (in 22
articles), the problem is tackled in three ways. One is to
address the problem directly by detecting some equivalent
mutants, while, the other two try to reduce their effects by
avoiding their creation of by suggesting likely non-equivalent
ones to help with the manual analysis process. Following the
terminology of Madeyski et al. [44], we refer to them as the
Detect,Avoid and Suggest approaches, respectively.

1. http://pages.cs.aueb.gr/�kintism/papers/tce/ and http://
www0.cs.ucl.ac.uk/staff/Y.Jia/projects/compiler_equivalence/

2. http://www.oracle.com/technetwork/java/index.html
3. http://sable.github.io/soot/
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Table 1 summarises the current state-of-the-art techniques
in chronological order by focussing on the most recent tech-
niques. Specifically, it records: the publication details, col-
umn “Author(s) [Reference]”, the year of the publication,
column “Year”, the studied programming language, column
“Language”, the size of the largest program used, column
“Largest Subject”, the number of equivalent mutants stud-
ied, column “#Eq. Mutants”, the existence of an automated
publicly available tool, column “Publicly Av. Tool”, the

category of the approach, i.e., detection, avoidance or sug-
gestion, column “Category” and the main findings of the
publication, column “Findings”. From this table it becomes
evident that very fewmethods and tools exist. Regarding the
equivalent mutant detection, only two publicly available
tools exist with the largest considered subject being com-
posed of 319 lines of code. It is noted that all the “large” sub-
jects, i.e., having more than 1,000 lines of code, that were
used in the previous research, involve a form of sampling.

TABLE 1
Summary of the Related Work on Equivalent Mutants

Author(s) [Reference] Year Language Largest
Subject

#Eq.
Mutants

Publicly
Av. Tool

Category Findings

Baldwin and Sayward [29] 1979 - - - - Detect Compiler optimisation can
detect eq. mutants

Acree [30] 1980 Fortran - 25 - Detect Humans make mistakes when
they identify eq. mutants

Offutt and Craft [31] 1994 Fortran 52 255 - Detect Compiler optimisation can
detect eq. mutants

Offutt and Pan [32], [33] 1996-7 Fortran 29 695 @ Detect Constraint-based testing can
detect eq. mutants

Voas and McGraw [34] 1997 - - - - Detect Slicing may be helpful in
detecting eq. mutants

Hierons et al. [35] 1999 - - - - Detect

/Suggest
Program slicing can be used to
detect and assist the identifica-
tion of eq. mutants

Harman et al. [36] 2001 - - - - Detect

/Suggest
Dependence analysis can be
used to detect and assist the
identification of eq. mutants

Adamopoulos et al. [37] 2004 - - - - Avoid Co-evolution can help in reduc-
ing the effects of eq. mutants

Grun et al. [38] 2009 Java 12,449 8 @ Suggest Coverage Impact can be used to
classify killable mutants

Schuler et al. [39] 2009 Java 94,902 10 @ Suggest Invariants violations can be
used to classify killable mutants

Schuler and Zeller [40], [41] 2010-2 Java 94,902 63 @ Suggest Coverage Impact can be used to
classify killable mutants

Nica andWotawa [42] 2012 Java 380 1,424 - Detect Constraint-based testing can
detect eq. mutants

Kintis and Malevris [43] 2013 Java 25,909 84 - Suggest Mutants belonging to software
clones exhibit analogous
behaviour with respect to their
equivalence

Madeyski et al. [44] 2014 Java 80,023 207 - Avoid Second order equivalent
mutants are significantly less
than the first order ones.

Kintis et al. [45], [46] 2012-4 Java 94,902 89 - Suggest Higher order mutants can be
used to classify killable mutants

Papadakis et al. [47] 2014 C 513 5,589 - Suggest Coverage Impact can be used to
classify killable mutants

Kintis and Malevris [48], [49] 2014-5 Java 25,909 165 - Detect Data-flow patterns can be used
to detect eq. and partially eq.
mutants

Bardin et al. [50] 2015 C 319 118 @ Detect Static analysis techniques, such
as Value Analysis and Weakest
Precondition calculus can
identify eq. mutants

Papadakis et al. [26] 2015 C 362,769 9,551 @ Detect Compiler optimisations can be
used to effectively automate the
eq. mutant and duplicated
mutant detection

This paper - C - Java 362,769 13,455 @ Detect Compiler optimisations can be
used to effectively automate the
eq. mutant and duplicated
mutant detection
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Mutants are sampled from the studied projects with no infor-
mation about the relevant size of the component/class that
these mutants are located. In these lines, in Table 1 we report
the size of the projects that we consider. It is noted that the
purpose of this table is to summarise the related work on
equivalent mutants by focussing on the most recent advan-
ces. Further details on the subject can be found on the sys-
tematic literature review ofMadeyski et al. [44].

Acree [30] studied killable and equivalent mutants, and
found that testers correctly identified equivalent mutants for
approximately 80 percent of the cases. In 12 percent of the
cases, equivalent mutants were identified as killable and in
8 percent, killable mutants were identified as equivalent.
Therefore, indicating that detection techniques, such as the one
suggested by the present paper, not only help in saving resour-
ces but also at reducing themistakesmade by the humans.

The idea of using compiler optimisation techniques to
detect equivalent mutants was suggested by Baldwin and
Sayward [29]. The main intuition behind this technique is
that code optimisation rules, such as those implemented by
compilers, form transformations on equivalent programs.
Thus, when the original program can be transformed by an
optimisation rule to one of its mutants, then, this mutant is,
ipso facto, equivalent. Baldwin and Sayward proposed
adapting 6 compiler optimisation transformations. These
transformations were then studied by Offutt and Craft [31]
who implemented them inside Mothra, a mutation testing
tool for Fortran. They found that on average 45 percent of
the equivalent mutants can be detected. Our approach is
inspired by this recruitment of compilers research to assist
in equivalent mutant detection. As already discussed and
demonstrated in the prior, conference version of this work
[26], it is surprisingly effective for the case of the C pro-
gramming language. However, we propose a truly simple
(and therefore scalable and directly exploitable) use of com-
pilers, which remained unexplored. Our TCE instead of
deliberately implementing specialised techniques, it simply
declares equivalences only for those mutants which their
compiled object code is identical to the compiled object
code of the original program. As indicated by our empirical
findings, in Section 6, our approach is impressively effec-
tive, practical and scalable.

Offutt and Pan [32], [33] developed an automatic tech-
nique to detect equivalent mutants based on constraint solv-
ing. This technique uses mathematical constraints to
formulate the killing conditions of the mutants. If these con-
ditions are infeasible then, the mutants are equivalent.

Nica and Wotawa [42] implemented a similar constraint-
based approach to detect equivalent mutants and demon-
strated that many equivalent mutants can be detected. Voas
and McGraw [34] suggested that program slicing can help
in detecting equivalent mutants. Later, Hierons et al. [35]
showed that amorphous program slicing can be used to
detect equivalent mutants as well. Although potentially
powerful, these techniques suffer from the inherent limita-
tions of the constraint-based and slicing-based techniques.

It is evident that the constraint-based approach, [32], [33],
was assessed on programs consisting of 29 lines of code at
maximum, while, the slicing technique remains unevalu-
ated apart from worked examples. The scalability of these
approaches is inherently constrained by the scalability of

the underlying constraint handling and slicing technology.
Furthermore, a new implementation is required for every
programming language to be considered. By contrast TCE
applies to any language for which a compiler exists and so
is as scalable as the compiler itself.

Kintis and Malevris [48], [49] used data-flow patterns
and showed that a large proportion of equivalent mutants
and partially equivalent mutants, i.e., mutants equivalent
only under specific program paths, form data-flow anoma-
lies. Bardin et al. [50] used static analysis techniques, such
as Value Analysis and Weakest Precondition calculus, to
detect mutants that are equivalent because they cannot be
infected. Their results show that a significant number of
those mutants can be detected. Although promising, these
two methods have only been evaluated with less than 200
equivalent mutant instances and so their effectiveness, effi-
ciency and practicality remain unknown.

Hierons et al. [35] suggested using program slicing to
reduce the size of the program considered during the equiv-
alence identification. Thus, testers can focus on the code rel-
evant to the examined mutants. Harman et al. [36] also
suggested using dependence-based analysis as a comple-
mentary method to assist in the detection of equivalent
mutants.

Adamopoulos et al. [37] suggested the use of co-evolution-
ary techniques to avoid the creation of equivalent mutants. In
this approach test cases and mutants are simultaneously
evolved with the aim of producing both high quality test
cases and mutants. However, these previous approaches
have been evaluated only on case studies and synthetic data
so their effectiveness and efficiency remains unknown.

More recently, several studies sought to measure the
impact of mutant execution. Instead of finding a partial but
exact solution to the problem, as done by the Detect
approaches, they try to classify the mutants to help identify
likely killable ones and likely equivalent ones, based on
their dynamic behavior.

This idea was initially suggested by Grun et al. [38] and
developed by the studies of Schuler et al. [39] and Schuler
and Zeller [40], [41] who found that impact on coverage can
accurately classify killable mutants. Kintis et al. [45], [46]
further develop the approach, using the impact of mutants
on other mutants, i.e., using higher order mutants. Papada-
kis et al. [47] proposed a mutation testing strategy that takes
advantage of mutant classification. Finally, mutants belong-
ing to software clones have been shown to exhibit analo-
gous behaviour with respect to their equivalence [43]. Thus,
knowledge about the (non-)equivalence of a portion of such
mutants can be leveraged to analogously classify other
mutants belonging to the same clones.

Apart from the technical differences between TCE and
the existing approaches, as discussed above, there is also a
fundamental difference that is the identification of dupli-
cated mutants. Existing approaches only aim at equivalent
mutants while TCE tackles the general problem of mutant
equivalences.

2.3 Reducing the Cost of Mutation Testing

Mutant sampling has been suggested as a possible way to
reduce the number of mutants. Empirical results demon-
strate that even small samples [18] can be used as cost
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effective alternatives to perform mutation testing [17], [19].
Other approaches select mutant operators. Instead of sam-
pling mutants at random, they select mutant operators that
are empirically found to be the most effective. To this end,
Offutt et al. [51] demonstrated that five mutant operators
are almost as effective as the whole set of operators.

More recently, Namin et al. [52] used statistically identi-
fied optimal operator subsets. Other cost reduction methods
involve mutant schemata [23], [53]. This technique works
by parameterizing all the mutants through instrumentation,
i.e., introduce all the mutants into one parameterised pro-
gram. However, apart from the inherent limitations of this
technique [28] and the execution overheads that introduces,
it also makes all the equivalent mutant detection techniques
not applicable.

Other approaches identify redundant mutants that fail to
contribute to the testing process. Kintis et al. [54] defined the
notion of disjoint mutants, i.e., a set of mutants that is repre-
sentative of all the others (killing them implies killing all the
others), and found that 9 percent of all mutants are disjoint.
Ammann et al. defined minimal mutants using the notion of
subsumption [55] and demonstrated that a small set of
mutants, approximately 1.2 percent subsumes all the others.
Based on these works, Papadakis et al. [56] demonstrated that
redundancy among mutants has a very good chance
(> 60 percent) to inflate mutation score and lead to biassed
results. Along the same lines, Kurtz et al. [57] analysed the
validity of selectivemutation and found that selectivemutants
score relatively lowwith respect to subsumingmutants.

Kaminski et al. [58], [59] and Just et al. [60] leverage the
suggestions made by Tai [61] on fault-based predicate test-
ing and demonstrated it possible to reduce the redundancy
within the relational and logical operators. Higher order
mutation can also reduce mutant numbers: Sampling [19],
[44] and searching [13], [62], [63] within the space of higher
order mutants both reduce the number of mutants and also
of the equivalent mutants.

3 EXPERIMENTAL STUDY AND SETTINGS

This section details the settings of our experiment. First, it
presents the TCE approach (Section 3.1) and the posed
research questions (Section 3.2). Next, the studied C and
Java programs are described (Section 3.3), along with the
employed mutant operators (Section 3.4), and, finally, the
execution environment (Section 3.5).

3.1 Detecting Mutant Equivalences: The TCE
Approach

Executable program generation involves several transfor-
mation phases that change the machine code. Different opti-
misation transformation techniques result in different
executables. However, when there exist multiple program
versions with identical source code, then there is no point in
differentiating them with test data; it is safe to declare them
as functionally equivalent. TCE realises this idea to detect
mutant equivalences. It declares equivalent any two pro-
gram versions with identical machine code. TCE simply
compiles each mutant, comparing its machine code with
that of the original program. Similarly, TCE also detects
duplicated mutants, by comparing each mutant with the

others residing in the same unit, i.e., function. As the reader
will easily appreciate, the TCE implementation is truly triv-
ial, hence its name: it is a compile command combined with
a comparison of binaries.

3.2 Research Questions

The mutation testing process is affected by the distorting
effects of the equivalent and duplicated mutants on the
mutation score calculation. Therefore, a natural question to
ask is how effective is the TCE approach in detecting equiv-
alent and duplicated mutants. This poses our first RQ:

RQ1 (Effectiveness): How effective is the TCE approach in
detecting equivalent and duplicated mutants?

We answer this question by reporting the prevalence of
the equivalent and duplicated mutants detected by the TCE
approach using gcc

4 and SOOT.5

To reduce the confounding effects of different compiler
configurations, we apply four and two popular options for
gcc and SOOT on the selected classes/packages, and report
the number of the equivalent and duplicated mutants
found. SOOT does not support multiple levels of optimiza-
tions, thus, we only report its intra-procecural optimisations
and report the equivalent and duplicated mutants found.
The answer to this question also allows the estimation of the
amount of effort that can be saved by the TCE method.

The existing mutant equivalent detection techniques suf-
fer from performance and scalability issues. As a result, the
authors are unaware of any mutation testing system that
includes a proposed equivalent mutant detection. By con-
trast, the TCE is static, and can be applied to any program
that can be handled by a compiler. This makes TCE poten-
tially scalable, but we need additional empirical evidence to
determine the degree to which it scales. Hence, in the sec-
ond RQ, we seek to investigate the observed efficiency and
the scalability of the TCE approach:

RQ2 (Efficiency): How efficient and scalable is the TCE
approach?

To demonstrate the scalability, we use selected classes/
packages from 12 large open source projects, 6 for each
studied programming language, and we report the effi-
ciency of the mutant generation, equivalent mutant detec-
tion and duplicated mutant detection processes. For the
case of gcc we also explore the trade-off between the effec-
tiveness and efficiency using different compiler settings.

To decidewhen it is appropriate to stop the testing process,
testers need to know the mutation score. To this end, they
need to identify equivalent mutants. The TCE approach
improves the approximation by determining such mutants.
However, towhat extent? This is investigated in the next RQ:

RQ3 (Equivalent Mutants) What proportion of the equiva-
lent mutants can be detected? What types of equiva-
lent mutants can be detected?

To answer RQ3, we need to know the ‘ground truth’:
howmany equivalent mutants are there in the subjects stud-
ied? We therefore applied the TCE approach on two bench-
mark sets, one for each studied programming language,

4. https://gcc.gnu.org/
5. http://sable.github.io/soot/
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with hand-analysed, ground-truth data on equivalent
mutants. The first benchmark,6 pertaining to the C test sub-
jects, includes 990 manually-identified equivalent mutants
over 18 small- and medium-sized subjects. The second one,7

for the Java programs, comprises 196 equivalent mutants
selected over 6 small- and medium-sized subjects, detected
with manual analysis.

We report the proportion of the equivalent mutants found
by TCE. We also analyse and report the types of the detected
equivalent mutants. This information is useful in the design
of complementary equivalent detection techniques.

Mutation testers usually employ subsets of mutant oper-
ators. Therefore, knowing about the relationship between
the operators and the equivalent and duplicated mutants
found by TCE is useful in the sense that mutation testers
can better understand the importance of their choices.
Hence, the next RQ examines the extent of the equivalent
and duplicated mutants found per mutant operator:

RQ4 (Impact on Mutant operators): What is the contribu-
tion of each operator to the proportion of equivalent
and duplicated mutants found by TCE?

Among the several factors that can affect TCE is the pro-
gram size. Thus, one might expect that in larger programs,
the equivalent mutant identification would be harder,
thereby impeding TCE’s effectiveness. Hence, we investi-
gate whether the size of the programs or the number of
mutants they contain correlate with the effectiveness of the
TCE approach.

RQ5 (Size Influence): Does program size or number of
mutants affect TCE?

We answer this question by investigating correlations
between the number and proportions of both equivalent
and duplicated mutants found by TCE with the program
and mutant set size.

Finally, since we have results for both C and Java, we
investigate the similarities and differences between the two
sets of programs. Thus we ask:

RQ6 (Differences between programming languages):
What are the similarities and differences between C
and Java with respect to TCE?

To answer this question we compare the results of C and
Java and try to provide insights on the differences between
C and Java as viewed by mutation testing.

3.3 Subject Programs

We used two categories of subject programs for both C and
Java. The first category is composed of 6 large to medium
open source programs. In this set, we chose ‘real-world’ pro-
grams that vary in size and application domain. The second
category of programs was taken from the studies of Yao et al.
[16] and Kintis andMalevris [49]. We chose these sets because
they are accompanied by manually-identified equivalent
mutants. The availability of known equivalentmutants allows
us to answer RQ3, because it provides a ‘ground truth’ on the
undecidable equivalence question for a set of subjects. The
rest of RQs are answered using the larger programs.

Regarding the large programs, compiling all their
mutants constitutes a time consuming task. This is due the
increase of the mutants according to the size of the pro-
grams. It is evident by our reported results, presented in
Section 4.2, where it took more than 50 hours to compile
only the mutants involved in the Vim-Eval component
(under -O3). TCE may be scalable in itself, but applying it to
all possible mutants of a large program is clearly infeasible.

Though there are techniques to reduce the number of
mutants, i.e., by sampling, we prefer not to use them in case
we unintentionally bias our sample of mutants. We prefer
to sample, safer, over the code to be mutated in a systematic
way so that we do not pre-exclude any mutants from our
investigation. Therefore, in C we rank their source files
according to their lines of code. Then, we select the two larg-
est components (source code files). On these two compo-
nents we apply mutation to all the functions they contain.
In Java we followed a similar process by ranking all the
project packages according to their size and selected the
three largest classes that could be handled without a prob-
lem by MUJAVA among the four largest packages.

Tables 2 and 3 respectively present the information about
the first category of subject programs for C and Java. Regard-
ing Table 2 (large C subjects), theGzip andMake are GNUutil-
ity programs. The first program performs file compression
and the second one builds automatically executable files from
several source code files. The two largest components of Gzip
are the ‘trees’ and ‘gzip’. The former implements the source
representation using variable-length binary code trees and
the later implements the main command line interface for the
Gzip program. The two largest components of the Make pro-
gram are ‘main’ and ‘job’. The later implements utilities for
managing individual jobs during the source building pro-
cesses and the former implements the command line inter-
face. The GSL (GNU Scientific Library) is a C/C++ numerical
library, which provides a wide range of common mathemati-
cal functions. Its two largest components are ‘gen’ and ‘blas’.
The ‘gen’ implements utilities that compute eigenvalues for
generalised vectors and matrices. The ‘blas’ implements
BLAS operations for vectors and densematrices.

TABLE 2
Details of C Subjects: ‘LoC’ Shows the Lines of Code of the
Project; ‘Comp’ and ‘Comp-Size’ Show the Components

Considered and Their Size; ‘Func’ and ‘Muts’ Show
the Number of Functions and Mutants of the Components.

Program LoC Comp Comp-Size Func Muts

Gzip-1.6 7,323 trees 1,075 14 3,859
gzip 1,744 26 4,402

MSMTP-1.4.32 13,068 smtp 1,914 23 3,479
msmtp 4,096 26 9,967

Make 4.0 32,122 main 3,439 11 2,268
job 3,618 10 2,106

Git-2.1 106,012 refs 3,726 121 6,644
diff 5,024 125 12,855

GSL-1.16 228,863 gen 2,116 20 7,260
blas 2,190 106 3,889

Vim-7.2 362,769 spell 16,181 136 33,188
eval 22,827 374 39,244

Total 750,157 - 67,950 992 129,161

6. www0.cs.ucl.ac.uk/staff/Y.Jia/projects/equivalent_mutants/
7. http://pages.cs.aueb.gr/�kintism/papers/tce/
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The program MSMTP is an SMTP client for sending
and receiving emails. The components studied are the
‘smtp’ and the ‘msmtp’. The ‘smtp’ implements the cor-
eutilities for exchanging information with SMTP servers
and the ‘msmtp’ component implements the command
line interface.

The program Git is a source code management system
and the components selected are the ‘refs’ and ‘diff’. The
‘refs’ implements the ‘reference’ data structure that associ-
ates history edits with SHA-1 values and the ‘diff’ compo-
nent implements utilities for checking differences between
git objects, for example commits and working trees.

Finally, the program Vim is a configurable text editor. The
selected components, ‘spell’ and ‘eval’, implement utilities
for checking and built-in expression evaluation, respectively.

The first two columns of Table 3 (large Java subjects)
refer to the first category of programs and their size in terms
of source code lines. The domains of the chosen subjects
range from mathematics libraries (Commons-Math) to build
systems (Ant). The application domains of the remaining
subjects appertain to enhancements of Java’s core class
(Commons-Lang), bytecode manipulation (BCEL), date and
time manipulation (Joda-Time) and database applications
(H2). Finally, the size of the studied Java programs ranges
between 16,753 and 104,479 source code lines. The next two
columns of the table present the names of the utilised pack-
ages and the size of the considered classes, respectively.
Finally, the last two columns of the table refer to the number
of methods that belong to the examined classes and the
number of the generated mutants.

The second category of subjects contains 8 C and 6 Java
programs. The C programs have lines of code ranging
from 10 to 42 lines, 7 programs with 137 to 564 lines and 3
real-world programs with 9,564 to 35,545 lines. Additional
details for these programs can be found in the work of
Yao et al. [16]. Details regarding the Java programs are
given in Table 4. The first two columns of the table present
the examined programs and the considered methods. Bisect
is a simple program that calculates square roots, Com-

mons-Lang and Joda-Time are enhancements to java
core library and time manipulation libraries, Pamvotis is a
wireless LAN simulator, Triangle is the classic triangle

TABLE 3
Java Test Subjects’ Details: ‘LoC’ Shows the Source Code Lines of the Projects; ‘Package’ and ‘Class-Size’ Present the

Packages of the Considered Classes and Their Size; the ‘Methods’ and ‘Mutants’ Columns Show
the Number of Methods and the Corresponding Number of Generated Mutants

Program LoC Package Class-Size Methods Mutants

Commons-Math-1.2 16,753 org.apache.commons.math.ode 951 34 5,868
org.apache.commons.math.analysis 429 16 2,861
org.apache.commons.math.linear 1,294 119 4,962
org.apache.commons.math.distribution 244 32 546

Commons-Lang-2.4 18,168 org.apache.commons.lang 4,008 350 10,371
org.apache.commons.lang.builder 967 130 1,661
org.apache.commons.lang.text 1,915 237 5,983
org.apache.commons.lang.math 1,247 104 3,999

BCEL-5.2 23,726 org.apache.bcel.generic 1,658 145 2,514
org.apache.bcel.classfile 897 112 1,065
org.apache.bcel.verifier.structurals 2,599 351 1,711
org.apache.bcel.util 974 39 1,666

Joda-Time-2.4 28,255 org.joda.time 1,858 302 2,840
org.joda.time.format 1,091 90 2,247
org.joda.time.chrono 487 59 1,723
org.joda.time.tz 353 36 310

H2-1.0.79 72,359 org.h2.jdbc 4,324 476 3,248
org.h2.command 4,707 163 4,666
org.h2.expression 1,130 55 1,774
org.h2.tools 2,177 277 3,058

Ant-1.8.4 104,479 org.apache.tools.ant.taskdefs 2,035 177 1,194
org.apache.tools.ant 2,349 163 1,635
org.apache.tools.ant.types 1,354 91 583
org.apache.tools.util 1,388 110 1,698

Total 263,740 - 40,436 3,668 68,183

TABLE 4
Manually-Analysed Java Test Subjects’ Details: ‘Program’
and ‘Method’ Columns Present the Examined Programs

and the Considered Methods; ‘Mutants’ Shows
the Number of the Generated Mutants and ‘Equivalent’
the Number of the Manually-Identified Equivalent Ones

Program Method Mutants Equivalent

Bisect sqrt 135 17

Commons-Lang capitalize 69 14
wrap 198 19

Joda-Time add 257 37

Pamvotis addNode 318 33
removeNode 55 7

Triangle classify 354 40
XStream decodeName 156 29

TOTAL - 1,542 196
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classification program and XStream is an XML object serial-
isation framework. The last two columns of the table pres-
ent the number of the generated and manually-identified
equivalent mutants. It is noted that for the purposes of the
present study we extended the original set of programs by
manually analysing approximately 400 additional mutants.
Thus, in total the considered set is composed of 1,542 man-
ually analysed mutants, out of which 196 are equivalent.

3.4 Mutant Operators

Based on previous research on mutant operator selection,
we identify and use two sets of operators (one for C and one
for Java). The C set of operators was based on the studies of
Offutt et al. [51] and Andrews et al. [4], [64] and it is com-
posed of 10 operators. A detailed description of the opera-
tors is reported in Table 5.

We detail exactly how these operators were applied since
this is an important piece of information that differs from
one tool to another. The ABS and UOI operators were only
applied to numerical variables. The CRCR was applied to
integer and floating numeric constants. No mutant operator
was applied to the variables of the lefthand side of assign-
ment statements; we only apply them to the right hand
sides. This is an implementation choice that avoids the gen-
eration of duplicated mutants (as any variable on the left-
hand side of assignment statements will be used (and
mutated) later in the program). All operators are applied
recursively to all sub expressions.

With respect to the Java programming language, we
used all the method-level operators of MUJAVA (version
3) [28]. This means that we excluded all the object oriented
related mutation operators. Previous research [65] has
shown that object oriented mutation operators produce a
small number of mutants and a rather low number of
equivalent ones and thus, there is no need to investigate
this case. MUJAVA supports a wide range of mutant opera-
tors built based on the experience and studies of Offutt
and colleagues, i.e., [28] and [51].

Table 6 describes the employed mutant operators: the
first column of the table presents their names and the sec-
ond one the mutation they impose. In total, 15 mutant oper-
ators were utilised which fall into 6 general categories:
arithmetic operators, relational operators, conditional oper-
ators, shift operators, logical operators, and assignment
operators.

We use these operators due to their extensive use in liter-
ature [2]. To generate the C mutants, we use MILU [66], and
for the Java mutants, MUJAVA (version 3).

Further details and the implementation of the tools and
their operators can be found at the webpages of MILU

8 and
MUJAVA.9

3.5 Experimental Environment

Two series of experiments were conducted. The first one
was for programs written in C and the second one for pro-
grams written in Java. All the experiments of the C pro-
grams were undertaken on the Microsoft Azure Cloud

TABLE 5
Mutant Operators of MILU

Name Description

ABS: Absolute Value
Insertion

fðe; absðeÞÞ, ðe;�absðeÞÞg

AOR: Arithmetic
Operator Replacement

fðop1; op2Þ j op1; op2 2 fþ;�; �; =;%g
^ op1 6¼ op2g

LCR: Logical Connector
Replacement

fðop1; op2Þ j op1; op2 2 f&&; jjg
^ op1 6¼ op2g

ROR: Relational
Operator Replacement

fðop1; op2Þ j op1; op2 2 f> ; >¼;
< ; <¼;¼¼; ¼g ^ op1 6¼ op2g

UOI: Unary Operator
Insertion

fðv;�� vÞ; ðv; v��Þ; ðv;þþ vÞ;
ðv; vþþÞg

CRCR: Integer
constant replacement

fðci; xÞ jx 2 f1;�1; 0; ci þ 1,
ci � 1;�cigg

OAAA: Arithmetic
assignment mutation

fðop1; op2Þ j op1; op2 2 fþ ¼;�
¼; � ¼; = ¼;% ¼g ^ op1 6¼ op2g

OBBN: Bitwise operator
mutation

fðop1; op2Þ j op1; op2 2 f&; jg
^ op1 6¼ op2g

OCNG: Logical context
negation

fðe;ðeÞÞ j e 2 fifðeÞ; whileðeÞgg

SSDL: Statement
Deletion

fðs; removeðsÞÞg

TABLE 6
Mutant Operators of MUJAVA

Name Description

AORB: Arithmetic
Operator Replacement
Binary

fðop1; op2Þ j op1; op2 2 fþ;�; �; =;%g
^ op1 6¼ op2g

AORS: Arithmetic
Operator Replacement
Short-Cut

fðop1; op2Þ j op1; op2 2 fþþ;��g
^ op1 6¼ op2g

AOIU: Arithmetic
Operator Insertion
Unary

fðv;�vÞg

AOIS: Arithmetic
Operator Insertion
Short-cut

fðv;�� vÞ; ðv; v��Þ; ðv;þþ vÞ;
ðv; vþþÞg

AODU: Arithmetic
Operator Deletion
Unary

fðþv; vÞ; ð�v; vÞg

AODS: Arithmetic
Operator Deletion
Short-cut

fð� � v; vÞ; ðv��; vÞ; ðþ þ v; vÞ;
ðvþþ; vÞg

ROR: Relational
Operator Replacement

fðða op bÞ; falseÞ, (ða op bÞ; trueÞ,
ðop1; op2Þ j op1; op2 2 f> ; >¼;
< ; <¼;¼¼;¼g ^ op1 6¼ op2g

COR: Conditional
Operator Replacement

fðop1; op2Þ j op1; op2 2 f&&; jj;^ g
^op1 6¼ op2g

COD: Conditional
Operator Deletion

fð!cond; condÞg

COI: Conditional
Operator Insertion

fðcond; !condÞg

SOR: Shift Operator
Replacement

fðop1; op2Þ j op1; op2 2 f> > ;
> > > ; < < g ^ op1 6¼ op2g

LOR: Logical Opera-
tor Replacement

fðop1; op2Þ j op1; op2 2 f&; j;^ g
^op1 6¼ op2g

LOI: Logical Operator
Insertion

fðv; �vÞg

LOD: Logical Opera-
tor Deletion

fð�v; vÞg

ASRS: Short-Cut
Assignment Operator
Replacement

fðop1; op2Þ j op1; op2 2 fþ ¼;� ¼;
�¼; =¼;%¼;& ¼; j ¼;^ ¼; >
>¼; > > >¼; < <¼g ^ op1 6¼ op2g

8. https://github.com/yuejia/Milu/tree/develop/src/mutators
9. https://cs.gmu.edu/�offutt/mujava/
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platform using a A9 Compute Intensive Instance in the
Ubuntu 14.04 operating system with gcc 4.8 compiler. To
compile the mutants we used four configuration options.
We compile with no optimisation settings, denoted as None,
and with the three popular ones, as realised by the gcc

compiler, denoted as -O, -O2 and -O3 . We use the Linux
time utility to measure the CPU execution time of all the
involved processes. To check whether two binaries are
equivalent we use the ‘diff’ utility with the flag ‘–binary’. In
short, we use a gcc -flag’ combined with a ‘diff’.

All the experiments regarding the Java language were
performed on a physical machine running Fedora 22,
equipped with an i7 processor (3.40 GHz, 4 cores) and 16
GB of memory. TCE relies on compiler optimisation to
detect mutant equivalences. While in programming lan-
guages such as C or C++ many optimisation options have
been embedded within the language compilers, e.g., gcc,
this does not hold true for the standard Java compiler, i.e.,
javac. Despite the fact that javac does not possess
advanced optimisation capabilities at the compilation time,
it is able to detect some mutant equivalences.

In order to successfully apply TCE to Java, compiler opti-
misations are required. To this end, we used SOOT [67], a
popular framework for analysing and transforming Java
applications. SOOT implements various analysis and trans-
formation procedures. We utilised the -O option of the tool
which performs intra-procedural optimisations. Such opti-
misations include the ‘elimination of common sub-
expressions’ and ‘copy and constant propagation’, among
others. As in the case of the C language, we used the diff

command line tool, for the purposes of comparing the opti-
mised classes.

4 TCE VIA GCC

This section reports the results pertaining to the C program-
ming language. Sections 4.1 and 4.2 respectively present
results regarding the TCE effectiveness and efficiency.
Sections 4.3 and 4.4 detail our results regarding the ground
truth and the mutant operators. Finally, Section 4.5 investi-
gates the impact of program size to TCE.

4.1 gcc: TCE Effectiveness

To assess the effectiveness of the TCE approach, answering
RQ1, we measure the number of the detected equivalent
and duplicated mutants. We also measure the proportions
of these mutants per program, computed as the percentage
of the detected to introduced. When mutants are mutually
equivalent to each other, i.e., they are duplicated, one of
them should be kept, while, the other(s) should be dis-
carded. In our results we only report the number of mutants
that should be discarded.

Table 7 reports our results per program and per consid-
ered optimisation option. Overall, these results indicate that
TCE can detect in total 9,551 equivalent mutants, accounting
for 7.4 percent of all mutants. TCE also detected 27,163
duplicated mutants, which account for 21 percent of all
mutants. Overall, TCE can thus identify and remove
approximately 28 percent of all mutants as being useless.

Fig. 1 depicts the proportions of both equivalent and
duplicated mutants detected per program. The horizontal
axis of the graph is ordered by the size of the components
while the vertical axis records the proportions of mutants
detected. From these results, it is evident that all the subjects
have a reasonably high proportion of equivalent and dupli-
cated mutants. The proportions of equivalent mutants
detected varies from program to program. In the worst case
it is 2 percent, while in the best, 17 percent. We observe a
small variation in the proportions of the identified equiva-
lent and duplicated mutants. The only exceptions are the

Fig. 1. The proportion of equivalent and duplicated mutants detected by
TCE per studied C program.

TABLE 7
Equivalent and Duplicated Mutants Detected by TCE via gcc. ‘None’, ‘-O’, ‘-O2’ and ‘-O3’ Report the Fraction

of All Identified Equivalent Mutants that Were Detected per Optimisation Flag

Program None -O -O2 -O3 #Mutants % of allMutants

Eq. Dup. Eq. Dup. Eq. Dup. Eq. Dup. Eq. Dup. Eq. Dup.

Gzip–Gzip 0.58 0.85 0.92 0.97 0.94 0.99 0.96 1.00 353 942 8% 21%
Gzip–Trees 0.42 0.60 0.73 0.90 0.97 0.99 0.96 1.00 302 910 8% 24%
Vim–Spell 0.33 0.72 0.76 0.92 0.93 1.00 0.87 1.00 2,493 7,113 8% 21%
Vim–Eval 0.49 0.83 0.88 0.92 0.61 0.99 0.63 1.00 2,570 9,028 7% 23%
Make–Main 0.28 0.97 0.56 1.00 0.95 0.97 0.95 0.97 236 625 10% 27%
Make–Job 0.47 0.87 0.85 0.95 0.90 0.98 1.00 1.00 101 529 5% 25%
Git–Diff 0.43 0.85 0.85 0.97 0.92 0.99 0.97 1.00 921 2,755 7% 21%
Git–Refs 0.42 0.83 0.84 0.96 0.94 0.99 0.97 1.00 602 1,282 9% 19%
Msmtp–Msmtp 0.66 0.72 0.95 0.86 0.73 0.97 0.76 1.00 1,017 1,835 10% 18%
Msmtp–Smtp 0.33 0.79 0.97 0.96 0.96 0.99 0.97 1.00 178 696 5% 20%
Gsl–Blas 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 651 102 17% 3%
Gsl–Gen 0.66 0.93 0.96 0.99 0.97 1.00 0.95 0.99 127 1,346 2% 19%

Total 0.49 0.80 0.86 0.94 0.83 0.99 0.84 1.00 9,551 27,163 7% 21%

‘#Mutants’ reports the distinct number of detected mutants by all the options together and
‘percent of all Mutants’ reports the percentage of detected to the number of mutants.
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Gsl-Blas and Gsl-Gen components. In the former case, TCE
detects many equivalent mutants and very few duplicated
ones, while, in the later case, it detects very few equivalent
mutants and a similar to the other programs ratio of dupli-
cated mutants. This divergence is mainly attributed to the
internal structure and code characteristic of the component.

Finally, Table 7 reveals that, depending on the options
used, the detected equivalences differ. For instance, the -O3
option found on average 84 and 100 percent of the equiva-
lent and duplicated mutants that are detected by applying
all the options. Interestingly, with respect to equivalent
mutants, among the different optimisation options, i.e., -O,
-O2 and -O3, there is no clear winner and their behaviour
varies between programs. However, the overall differences
between the options are relatively small. With respect to
duplicated mutants, the results are clear and they show that
the best options are the -O2 and -O3.

4.2 gcc: TCE Efficiency

To assess the efficiency of the TCE approach and answer
RQ2, we report the CPU execution time. Table 8 summarises
the execution time of TCE in total, average and per
employed component, using the four studied compiler set-
tings. The columns ‘Comp.’, ‘Eq.D.’ and ‘D.D.’ record the
execution time with respect to the compilation process, the
equivalent mutant detection and duplicated mutant detec-
tion, per considered compilation option, respectively.

These results reveal that the execution time of the equiva-
lence detection process is reasonably small compared to the
compilation one. For instance, TCE requires on average 22
seconds, for all cases, to detect equivalent mutants, while,
the average compilation cost is 5,942 seconds in the best case.

A similar case arises when considering the costs for
detecting duplicated mutants. While this is approximately
an order of magnitude higher than the cost of detecting
equivalent mutants, it is still reasonable; 225 seconds, and
no more than 1/30 of the cheapest compilation cost. It is
noted that our approach checks for equivalences only for

the combinations of mutants that are located on the same
function. Therefore, the reported time is analogous to the
number of combinations between the mutants located at
each function of the project and not between the whole com-
binations of all project mutants.

Our results show that the compilation time of the -O3
option is almost 5 times higher than the None option. How-
ever, this is counterbalanced by the improved effectiveness
of the option. In this case, the total time spend for compil-
ing, detecting equivalent and duplicated mutants is 374,162,
260 and 2,744 seconds, respectively. Therefore, TCE ana-
lyzed 129,161 mutants in 377,166 seconds. This time
accounts for less than 3 seconds per mutant suggesting that
its application is reasonable.

4.3 gcc: Equivalent Mutants

To determine the ratio of detected to all existing equivalent
mutants, we applied TCE to the equivalent mutants identi-
fied by Yao et al. [16], using the accompanying website
data.10 This site is regularly updated, so data may differ
slightly from those previously reported [16]. Additional
details about these data can be found on the website.

Table 9 reports the number and the proportions of equiva-
lent mutants detected by TCE when using the different set-
tings. The results are surprisingly good. They reveal that out
of all the existing equivalent mutants, TCE can detect from 9
to 100 percent (with 30 percent on the average case) of them.
With respect to the total number of mutants (killable and
equivalent ones), the TCE equivalent ones are approximately
7 percent. These results are achieved within a few seconds
with the potential to save considerablemanual and computa-
tional resources. Together with the previously presented
results, we conclude that TCE is effective and practically
applicable on large real-world programs.

Regarding the types of the equivalent detected mutants,
i.e., second part of RQ3, we recall that equivalent mutants

TABLE 8
Execution Time, Measured in Sec.: Compilation ‘Comp.’, Equivalent Mutant Detection ‘Eq.D.’ and DuplicatedMutant Detection ‘D.D.’

Program

Optimisation settings for gcc

None -O -O2 -O3

Comp. Eq.D. D.D. Comp. Eq.D. D.D. Comp. Eq.D. D.D. Comp. Eq.D. D.D.

sec sec sec sec

Gzip–Trees 269 8 112 532 8 231 747 8 165 1,217 8 183
Msmtp–Smtp 405 7 180 743 7 163 1,085 7 201 1,145 7 197
Gzip–Gzip 496 8 230 941 9 212 1,444 9 236 1,578 9 230
Gsl–Gen 1,352 14 193 2,663 14 215 3,945 15 196 3,988 15 212
Gsl–Blas 814 7 58 1,318 7 53 1,864 7 61 1,914 7 59
Make–Main 322 4 138 654 5 155 994 5 148 1,099 5 139
Make–Job 243 4 112 488 4 93 747 4 89 997 4 133
Git–Refs 2,087 13 243 4,038 14 201 5,878 13 232 10,432 14 226
Msmtp–Msmtp 1,929 21 251 3,801 21 274 6,019 21 218 6,751 21 266
Git–Diff 5,662 27 516 11,015 26 470 17,650 25 446 22,318 26 399
Vim–Spell 20,832 65 348 51,475 65 304 85,313 65 327 142,218 67 335
Vim–Eval 36,890 79 287 81,981 81 266 132,888 77 408 180,505 77 365

Total 71,301 257 2,668 159,649 261 2,637 258,574 256 2,727 374,162 260 2,744

Average 5,942 22 222 13,304 22 220 21,548 21 227 31,180 22 229

10. www0.cs.ucl.ac.uk/staff/Y.Jia/projects/equivalent_mutants/
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are equivalent because: a) they reside in unreachable code,
b) it is impossible to affect the program state that pertains
immediately after mutant execution or c) there is no

possible way to propagate the infection they introduce to
the program output. Interestingly, the equivalent mutants
detected by TCE reside within all of these categories. In par-
ticular, TCE detected 6, 25 and 45 percent of the equivalent
mutants caused by a), b), and c), respectively.

4.4 gcc: Mutant Operators

To determine the influence of the mutant operators on the
effectiveness of TCE, answering RQ4, we measure the num-
ber of detected equivalent and duplicated mutants per oper-
ator. We also measure the ratios of detected to introduced
mutants by the studied operators. It is noted that the choice
of which mutants should be discarded when computing the
duplicated mutants, can unfairly influence the reported
numbers with respect to the mutant operators that they
belong to. To avoid this, in this section we report the num-
ber and proportions of all the mutants that are duplicated
and not the discarded ones.

Table 10 reports the number and proportions of the
equivalent and duplicated mutants found by TCE per pro-
gram and operator. These results suggest that on different
programs a similar proportion of equivalent and duplicated
mutants can be detected by TCE. The only exceptions are
the Gsl-Blas and Gsl-Gen components.

Fig. 2 depicts the proportions of equivalent and dupli-
cated mutants detected per operator. The horizontal axis
follows the presentation order of the operators from
Table 10, while, the vertical axis records the proportions of

TABLE 9
TCE Applied to Yao et al. [16] Benchmark Set: Number ‘No.’ and

Proportion ‘%’ of Detected Equivalent Mutants

Program None -O -O2 -O3

No. % No. % No. % No. %

Min 0 0% 7 78% 9 100% 9 100%
Bubble 0 0% 2 22% 4 44% 2 22%
Profit 0 0% 24 52% 24 52% 24 52%
Mid 0 0% 14 74% 14 74% 14 74%
Prime 0 0% 2 22% 6 67% 6 67%
Triangle 0 0% 16 40% 16 40% 16 40%
Insert 0 0% 11 58% 7 37% 7 37%
Day 3 21% 6 43% 7 50% 7 50%
Calendar 0 0% 12 39% 14 45% 14 45%
Carsimulator 0 0% 33 75% 33 75% 33 75%
Tcas 7 8% 7 8% 8 9% 8 9%
Defroster 16 11% 20 14% 20 14% 20 14%
Schedule 0 0% 14 29% 15 31% 15 31%
Hashmap 0 0% 18 27% 18 27% 18 27%
Replace 29 13% 29 13% 29 13% 29 13%
Space 17 20% 22 25% 26 30% 27 31%
Flex 8 20% 9 23% 12 30% 12 30%
Make 21 35% 39 65% 39 65% 39 65%

Total 101 10% 285 29% 301 30% 300 30%

TABLE 10
Number ‘No.’ and Proportion ‘%’ of Equivalent and Duplicated Mutants Detected by TCE per Operator

Equivalent Mutants

Program ABS AOR LCR ROR UOI CRCR OAAA OBBN OCNG SSDL

No. % No. % No. % No. % No. % No. % No. % No. % No. % No. %

Gzip–Trees 111 27% 3 0% 0 0% 44 9% 74 9% 39 2% 0 0% 0 0% 1 1% 30 11%
Msmtp–Smtp 43 27% 3 1% 0 0% 7 1% 102 32% 19 1% 0 0% 0 0% 0 0% 4 0%
Gzip–Gzip 42 27% 1 0% 10 16% 37 4% 70 22% 141 6% 0 0% 1 2% 6 2% 45 7%
Gsl–Gen 24 2% 6 0% 0 0% 22 4% 14 21% 59 1% 0 0% 0 – 0 0% 2 0%
Gsl–Blas 0 0% 0 – 0 0% 0 0% 0 – 650 50% 0 – 0 – 0 0% 1 0%
Make–Main 26 59% 26 9% 0 0% 38 10% 14 15% 104 9% 22 26% 0 0% 3 3% 3 1%
Make–Job 22 22% 0 0% 0 0% 16 4% 32 16% 27 2% 0 0% 0 0% 0 0% 4 1%
Git–Refs 131 27% 0 0% 0 0% 19 2% 184 19% 260 8% 0 0% 0 0% 0 0% 8 0%
Msmtp–Msmtp 131 20% 8 3% 0 0% 7 0% 216 17% 645 14% 0 0% 0 0% 0 0% 10 0%
Git–Diff 189 22% 4 0% 0 0% 63 4% 328 19% 327 5% 0 0% 0 0% 0 0% 10 0%
Vim–Spell 832 26% 47 2% 0 0% 476 8% 760 12% 353 3% 9 3% 0 0% 0 0% 16 0%
Vim–Eval 671 32% 8 0% 0 0% 697 7% 836 20% 331 1% 0 0% 0 0% 0 0% 27 0%

Total 2,222 24% 106 1% 10 0% 1,426 6% 2,630 16% 2,955 5% 31 3% 1 0% 10 0% 160 1%

Duplicated Mutants

Program ABS AOR LCR ROR UOI CRCR OAAA OBBN OCNG SSDL
No. % No. % No. % No. % No. % No. % No. % No. % No. % No. %

Gzip–Trees 24 5% 139 42% 2 20% 193 42% 239 29% 738 50% 8 10% 4 80% 44 80% 65 25%
Msmtp–Smtp 6 3% 66 35% 3 6% 108 18% 46 14% 831 50% 0 0% 3 25% 71 63% 67 16%
Gzip–Gzip 8 5% 25 19% 1 1% 178 22% 74 24% 1,193 56% 0 0% 17 41% 97 47% 88 14%
Gsl–Gen 28 3% 418 21% 0 0% 88 18% 8 12% 1,691 55% 3 3% 0 – 39 33% 53 8%
Gsl–Blas 0 0% 0 – 0 0% 88 5% 0 – 0 0% 0 – 0 – 88 67% 28 4%
Make–Main 0 0% 145 54% 0 0% 90 24% 9 10% 701 64% 0 0% 0 0% 34 41% 24 10%
Make–Job 3 3% 41 66% 2 5% 84 21% 33 16% 636 68% 0 0% 5 31% 41 47% 40 14%
Git–Refs 25 5% 76 46% 4 3% 170 21% 184 19% 1,654 56% 0 0% 27 50% 70 24% 61 6%
Msmtp–Msmtp 17 2% 95 43% 7 4% 188 13% 257 20% 2,026 45% 13 13% 9 33% 149 35% 300 22%
Git–Diff 35 4% 95 20% 8 4% 357 23% 313 18% 3,494 59% 11 18% 47 35% 142 23% 165 11%
Vim–Spell 353 11% 730 32% 16 4% 1,888 31% 1,306 21% 6,809 59% 22 8% 23 27% 533 60% 504 18%
Vim–Eval 124 5% 329 38% 16 2% 2,503 28% 1,036 24% 10,793 62% 1 0% 13 17% 882 61% 430 11%

Total 623 7% 2,159 31% 59 3% 5,935 25% 3,505 21% 30,566 57% 58 7% 148 32% 2,190 49% 1,825 13%
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detected mutants. These results reveal that the ABS and
UOI operators introduce at least 15 percent equivalent
mutants of all that they introduce. They also show that TCE
detects more than 5 percent of equivalent mutants produced
by the ABS, ROR, UOI and CRCR operators. Regarding the
duplicated mutants, TCE detects large proportions, above
10 percent, on all of them but, the ABS, LCR and OAAA.
Interestingly, the LCR operator seems to produce very few
equivalent or duplicated mutants.

In conclusion, our results show that all but the LCR
and OAAA operators produce a relatively high ratio of
useless mutants, i.e., equivalent and duplicated. In prac-
tice this involves a huge overhead that, fortunately, can
be saved by TCE.

4.5 gcc: Program Size and Mutant Equivalences

To answer RQ5, we use the Spearman rank correlation coef-
ficient r. This is a non-parametric statistical test that meas-
ures whether two variables’ ranks are related, i.e., it
assesses the monotonic relationship between the two varia-
bles. The Spearman correlation gives values in the range of
[�1, +1] with 0 indicating no relationship and +1 indicating
a perfect one (�1, also implies a perfect inverse relation-
ship). In addition to the the correlation coefficient r we
report the obtained p-values that represent the chance that
we would observe the r value reported, were there, in fact,
to be no correlation.

We found a correlation between the number of mutants
and the number of equivalent mutants detected (r ¼ 0:818,
p-value ¼ 0:002). This suggests that more mutants lead to
more equivalent ones. Similarly, a strong correlation
between the number of mutants and the detected dupli-
cated ones (r ¼ 0:930, p-value < 2:2e� 16) was also found.
The correlation between the number of mutants and the
proportion of TCE equivalent and duplicated mutants was
found to be (r ¼ �0:091, p-value ¼ 0:783) and (r ¼ 0:280,
p-value ¼ 0:379) respectively. These results suggest that we
have no evidence supporting the argument that mutants’
number can have a strong influence on the proportions of
the equivalences detected by TCE.

We also study the relation between the program size
with the number of detected equivalences. We found a
medium to small correlation in case of equivalent mutants
(r ¼ 0:692, p-value ¼ 0:016). A slightly lower correlation
was found between the size of program and the number of
duplicated mutants (r ¼ 0:650, p-value ¼ 0:026). With
respect to proportions, i.e., correlation between the program
size and the proportion of the detected equivalences, we
found (r ¼ �0:035, p-value ¼ 0:921) and (r ¼ 0:084, p-value
¼ 0:800) for the cases of equivalent and duplicated mutants,

which indicate that we have no data supporting the argu-
ment that program size impacts the ratios of the detected
equivalences.

Finally, we found a medium correlation between the size
of program and the whole number of mutants (r ¼ 0:671,
p-value ¼ 0:020), which indicates that larger programs have
more mutants than smaller ones. In conclusion, we find
no evidence of any correlation between the ratios of
equivalent and duplicated mutants in any of the size indi-
cators. This means there is no evidence that the propor-
tion goes up or down as the size of the program or the
number of mutants changes. However there is evidence
that the number goes up with the size, as one would
expect. Taken together based on the studied mutant set,
these can be regarded as evidence suggesting that the
number of TCE equivalent and duplicated mutants is a
fairly consistent proportion, unaffected by the size of the
program. These results may be explained by the fact that
the compiler optimisations we use only apply “locally”,
i.e., on the occurrences of code patterns, and not on the
semantic of the entire system.

5 TCE VIA JAVAC AND SOOT

This section details our results for Java. Sections 5.1 and 5.2
respectively present results regarding TCE effectiveness
and Efficiency. Sections 5.3 and 5.4 detail our results regard-
ing the ground truth and the mutant operators. Finally,
Section 5.5 investigates the impact of program size on TCE.

5.1 javac and SOOT: TCE Effectiveness

In an analogous manner to the results of Section 4.1, we
present our findings that are pertinent to RQ1, i.e., the effec-
tiveness of TCE. These results are illustrated in Table 11 and
Figure 3.

Table 11 presents the equivalent and duplicated mutants
detected by javac and SOOT per test subject. The ‘#Mutants’
column, which is divided into the ‘Eq.’ and ‘Dup’ sub-
columns, presents the number of the detected equivalent
and duplicated mutants (per tool). The ‘% of all Mutants’
column records their corresponding proportion to the gen-
erated mutants. From the depicted results, it is clear that
SOOT outperforms javac in both equivalent and duplicated
mutant detection, managing to detect 3,904 equivalent
mutants and 3,687 duplicated ones. Thus, code optimisa-
tions implemented in SOOT appear to be superior to the ones
of javac. Furthermore, it should be mentioned that the
mutants detected by SOOT form a superset of the ones
detected by javac. Therefore, we conclude that SOOT consti-
tutes an appropriate tool for TCE.

It is noted that most Java-to-bytecode compilers mainly
perform runtime optimizations than static ones. Thus, class
files are optimised by the Java virtual machine as they are
interpreted and not at the compilation time. This explains
why the Java stock compiler is infective.

Fig. 3 illustrates the proportion of equivalent and dupli-
cated mutants per test subject. The horizontal axis presents
the corresponding proportions and the vertical presents the
test subjects in ascending order, according to their size. By
examining the figure, it becomes evident that TCE manages
to detect a considerable number of equivalent and

Fig. 2. The proportion of equivalent and duplicated mutants detected by
TCE per mutant operator in case of C.
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duplicated mutants, ranging between 1 and 18 percent for
equivalent ones and 2 and 17 percent for duplicated ones.

To summarise, in the case of Java, TCE managed to detect
6 percent of all mutants as equivalent and 5 percent of them
as duplicated ones.

5.2 javac and SOOT: TCE Efficiency

In this section, we detail the empirical findings pertaining to
TCE’s efficiency for the case of Java. To this end, Table 12
presents the CPU execution time that the equivalent and
duplicated detection required per test subject and optimisa-
tion tool.

Table 12 is divided into three columns: ‘Program’ refers
to the names of test subjects; the ‘javac’ column reports
the compilation time (‘Comp.’ sub-column), the equivalent
mutant detection time (‘Eq.D.’ sub-column) and the dupli-
cated mutant detection time (‘D.D.’ sub-column) of TCE via
javac; and, ‘SOOT’ presents the corresponding results in the
case of TCE via SOOT. It should be noted that in this column
the reported compilation time also includes the execution
time of the tool. Finally, the last two rows of the table pres-
ent the total and average time of the examined analyses.

Regarding equivalent mutant detection, TCE via javac

required in total 140 seconds to detect 124 equivalent
mutants, while, TCE via SOOT required 208 seconds for the
identification of 3,904 equivalent mutants, with an average
of 6 and 9 seconds per examined package, respectively.
Given that the corresponding compilation time is 2,703 sec-
onds for javac and 78,318 seconds (compilation and opti-
misation) for SOOT, with an average of 113 and 3,263, it can
be argued that TCE forms a practical approach for detecting

equivalent mutants. Considering the duplicated mutants,
the application of javac detected 3,123 mutants in 13,636
seconds and SOOT detected 3,687 mutants in 19,399 seconds.
It is noted that both equivalent and duplicated mutants that
are detected by javac form a subset of those detected by
SOOT. Overall, the presented data suggest that TCE manages
to automatically and safely discard a significant number of

TABLE 11
Equivalent and Duplicated Mutants Detected by TCE via javac and SOOT

Program javac SOOT

#Mutants % of allMutants #Mutants % of all Mutants

Eq. Dup. Eq. Dup. Eq. Dup. Eq. Dup.

org.apache.commons.math.ode 2 63 0% 1% 150 110 3% 2%
org.apache.commons.math.analysis 0 25 0% 1% 192 91 7% 3%
org.apache.commons.math.linear 0 90 0% 2% 82 140 2% 3%
org.apache.commons.math.distribution 0 8 0% 1% 64 14 12% 3%
org.apache.commons.lang 0 645 0% 6% 498 697 5% 7%
org.apache.commons.lang.builder 20 108 1% 7% 84 110 5% 7%
org.apache.commons.lang.text 0 265 0% 4% 364 339 6% 6%
org.apache.commons.lang.math 8 171 0% 4% 260 199 7% 5%
org.apache.bcel.generic 1 92 0% 4% 157 108 6% 4%
org.apache.bcel.classfile 0 27 0% 3% 54 27 5% 3%
org.apache.bcel.verifier.structurals 1 256 0% 15% 29 257 2% 15%
org.apache.bcel.util 0 30 0% 2% 104 35 6% 2%
org.joda.time 5 118 0% 4% 511 129 18% 5%
org.joda.time.format 6 97 0% 4% 156 151 7% 7%
org.joda.time.chrono 0 39 0% 2% 184 75 11% 4%
org.joda.time.tz 2 21 1% 7% 26 25 8% 8%
org.h2.jdbc 11 138 0% 4% 433 150 13% 5%
org.h2.command 30 210 1% 5% 214 240 5% 5%
org.h2.expression 20 124 1% 7% 78 129 4% 7%
org.h2.tools 1 115 0% 4% 134 161 4% 5%
org.apache.tools.ant.taskdefs 14 123 1% 10% 24 127 2% 11%
org.apache.tools.ant 1 157 0% 10% 44 162 3% 10%
org.apache.tools.ant.types 2 100 0% 17% 4 101 1% 17%
org.apache.tools.util 0 101 0% 6% 58 110 3% 6%

Total 124 3,123 0% 5% 3,904 3,687 6% 5%

Fig. 3. The proportion of equivalent and duplicated mutants detected by
TCE per studied Java program.
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useless mutants in only a small fraction of the time, in less
than 2 seconds per examined mutant.

The question that is raised here is whether the time
required by TCE is acceptable. While this depends on many
uncontrolled parameters, we would like to underline that
detecting equivalent mutants is a tedious and manual task.
Previous research estimated the time of the manual identifi-
cation of a single equivalent mutant to be approximately 15
minutes [40]. Assuming this is a fair approximation, identi-
fying the TCE equivalent mutants pure manually would
require 124� 15 minutes or 111,600 seconds for the case of
javac and 3;904� 15 minutes or 3,513,600 seconds for the
case of SOOT. Thus, it can be easily concluded that the execu-
tion cost of TCE is small when compared to the estimated
manual effort. In fact, the total cost of TCE (optimisation
phase þ detection phase) constitutes only 3 percent of the
estimated manual effort.

5.3 javac and SOOT: Equivalent Mutants

This section, which answers RQ3, provides insights into the
actual proportion of equivalent mutants that can be auto-
matically detected by TCE. We perform this evaluation
based on manually-identified sets of such mutants to gives
us a ground truth. Table 13 describes the corresponding
findings per utilised tool. As can be seen, javac failed to
detect equivalent mutants on our ground truth benchmark.
By contrast, SOOT detected 105 out of 196 equivalent
mutants, indicating that it can automatically weed out more
than 50 percent of the studied equivalent mutants. These

results provide strong evidence regarding the TCE’s effec-
tiveness. Finally, it should be stated that these automati-
cally-detected equivalent mutants correspond to 7 percent
of all the studied ones, which is in line with the results of
the large-scale experiment we report in Section 5.1.

A manual analysis of the types of equivalent mutants
that are TCE equivalent reveals that all but one of the
detected mutants belong to the third category, i.e., the corre-
sponding mutant can be reached and can infect the program
state locally but subsequently fail to propagate the cor-
rupted state to the observable output. The one mutant not
falling into this category is a mutant that can be reached but
not infected.

TABLE 12
Execution Time, Measured in Sec., of Equivalent and Duplicated Mutant Detection per Considered Tool and Test Subject

Program javac SOOT

Comp. Eq.D. D.D. Comp. & Opt. Eq.D. D.D.

sec sec

org.apache.commons.math.ode 82 11 4,376 5,583 16 7,065
org.apache.commons.math.analysis 27 6 1,277 2,194 8 2,022
org.apache.commons.math.linear 90 9 633 5,060 14 1,029
org.apache.commons.math.distribution 9 2 22 381 2 34
org.apache.commons.lang 995 18 903 13,930 26 1,319
org.apache.commons.lang.builder 45 4 112 1,480 5 184
org.apache.commons.lang.text 152 12 665 6,847 17 960
org.apache.commons.lang.math 57 7 582 3,658 12 923
org.apache.bcel.generic 62 5 185 2,530 7 242
org.apache.bcel.classfile 26 2 54 991 3 77
org.apache.bcel.verifier.structurals 138 4 67 2,673 6 110
org.apache.bcel.util 45 4 484 1,529 5 702
org.joda.time 65 6 102 2,923 8 126
org.joda.time.format 37 5 291 1,997 7 397
org.joda.time.chrono 21 4 266 1,348 5 379
org.joda.time.tz 9 1 12 301 2 17
org.h2.jdbc 165 8 365 4,870 21 424
org.h2.command 349 9 2,011 8,656 14 1,721
org.h2.expression 39 4 179 1,645 5 247
org.h2.tools 98 6 715 3,887 8 934
org.apache.tools.ant.taskdefs 46 3 51 1,367 4 78
org.apache.tools.ant 64 4 91 1,966 5 132
org.apache.tools.ant.types 26 2 21 615 3 33
org.apache.tools.util 56 4 172 1,887 5 244

Total 2,703 140 13,636 78,318 208 19,399

Average 113 6 568 3,263 9 808

TABLE 13
TCE Applied to Java Benchmark Set: Number ‘No.’
and Proportion ‘%’ of Detected Equivalent Mutants.

Method javac SOOT

No. % No. %

sqrt 0 0% 11 65%
capitalize 0 0% 2 14%
wrap 0 0% 12 63%
add 0 0% 22 59%
addNode 0 0% 31 94%
removeNode 0 0% 6 86%
classify 0 0% 21 52%
decodeName 0 0% 0 0%

Total 0 0% 105 54%
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5.4 javac and SOOT: Mutant Operators

In order to answer RQ4 for Java, this section reports the con-
tribution of each mutant operator to the detected mutants.
More precisely, Table 14 presents the number of the
detected equivalent mutants per operator, along with their
proportion to all the generated mutants by that specific
operator, and Table 15 presents the respective results for the
case of the duplicated mutants. For brevity, we only record
the cases that the number of detected mutants was higher
than 0 in the studied programs.

By examining Table 14, it becomes clear that TCE (via
SOOT) managed to detect equivalent mutants that belong to
7 out of the 15 utilised mutant operators, indicating that it
can be effective across a wide range of operators. With
respect to the duplicated mutants discovered, the findings
of Table 15 show that these mutants belong to 8 operators,
corroborating the previous statement.

Fig. 4 visualises the proportions of detected mutants
across the corresponding mutant operators. It can be seen
that TCE manages to identify at least 4 percent of the equiv-
alent mutants produced by LOR, AODS and AOIS and at
least 24 percent of the duplicated ones generated by ROR
and COI. Again, for brevity reasons we depict only those
operators with higher than 0 percent detection rates.

It is noted that the TCE equivalences are a special form of
redundancy as they require mutual subsumption between
mutants (mutant a subsumes mutant b and mutant b sub-
sumes mutant a). This is different from the redundant
mutants studied by Kaminski et al. [59] and Just et al. [60]
which consider non-mutual subsumptions (mutant a sub-
sumes b and mutant b does not subsumes a). In view of
this, it is normal that the COR operator produces redundant

mutants that are not captured by TCE (results reported in
Tables 14 and 15). Still, a stronger version of the COR opera-
tor may provide more chances for TCE equivalences.

5.5 javac and SOOT: Program Size and Mutant
Equivalences

In order to answer RQ5, i.e., whether or not the number of
generated mutants or the program size affects TCE, we
examined the correlation between the program size and the
number and proportions of the detected equivalent and
duplicated mutants. All r values, and p-values, were com-
puted using the Spearman rank correlation test.

Regarding the correlation between the number of
mutants and the number of identified equivalent ones, a r

of 0.786, p-value ¼ 8:536e� 06, was obtained, indicating a
strong correlation. The correlation between the number of
mutants and the proportion of the equivalent ones was
found to be r of �0:008, p-value ¼ 0:972.

In the case of duplicated mutants, i.e., correlation
between the number of mutants and the number of dupli-
cated ones, r ¼ 0:657, p-value ¼ 0:001 and r ¼ �0:271,
p-value ¼ 0:199 with respect to number and proportions of
duplicated mutants detected. Based on these data, it can be
concluded that the number of equivalent and duplicated
mutants detected by TCE tends to increase as the number of
the generated mutants increases. However, this does not
appear to be the case when considering the detected
proportions.

With respect to the correlation of program size with the
detected equivalent and duplicated mutants, the obtained
results suggest that there is a very weak correlation in the
case of the equivalent mutants (r ¼ 0:230, p-value ¼ 0:277)

TABLE 14
Number ‘No.’ and Proportion ‘%’ of Equivalent Mutants Detected by TCE per Operator

Program AODU AOIS AOIU AORB AORS ASRS LOR

No. % No. % No. % No. % No. % No. % No. %

org.apache.commons.math.ode 0 0 % 148 6 % 0 0 % 2 0 % 0 0 % 0 0 % 0 0 %

org.apache.commons.math.analysis 0 0 % 192 13 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 %

org.apache.commons.math.linear 0 0 % 82 3 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 %

org.apache.commons.math.distribution 0 0 % 64 28 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 %

org.apache.commons.lang 2 5 % 494 14 % 2 0 % 0 0 % 0 0 % 0 0 % 0 0 %

org.apache.commons.lang.builder 20 44 % 64 12 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 %

org.apache.commons.lang.text 0 0 % 364 14 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 %

org.apache.commons.lang.math 4 17 % 252 17 % 4 2 % 0 0 % 0 0 % 0 0 % 0 0 %

org.apache.bcel.generic 0 0 % 156 17 % 0 0 % 0 0 % 0 0 % 0 0 % 1 25 %

org.apache.bcel.classfile 0 0 % 54 11 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 %

org.apache.bcel.verifier.structurals 0 0 % 28 10 % 0 0 % 0 0 % 0 0 % 0 0 % 1 25 %

org.apache.bcel.util 0 0 % 102 16 % 0 0 % 0 0 % 2 6 % 0 0 % 0 0 %

org.joda.time 0 0 % 506 51 % 5 1 % 0 0 % 0 0 % 0 0 % 0 0 %

org.joda.time.format 0 0 % 150 19 % 6 4 % 0 0 % 0 0 % 0 0 % 0 0 %

org.joda.time.chrono 0 0 % 184 25 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 %

org.joda.time.tz 0 0 % 24 24 % 2 8 % 0 0 % 0 0 % 0 0 % 0 0 %

org.h2.jdbc 0 0 % 422 33 % 11 3 % 0 0 % 0 0 % 0 0 % 0 0 %

org.h2.command 0 0 % 184 14 % 29 5 % 1 1 % 0 0 % 0 0 % 0 0 %

org.h2.expression 0 0 % 58 14 % 20 9 % 0 0 % 0 0 % 0 0 % 0 0 %

org.h2.tools 0 0 % 130 10 % 2 1 % 0 0 % 0 0 % 2 7 % 0 0 %

org.apache.tools.ant.taskdefs 0 0 % 10 5 % 14 19 % 0 0 % 0 0 % 0 0 % 0 0 %

org.apache.tools.ant 1 100 % 42 11 % 1 1 % 0 0 % 0 0 % 0 0 % 0 0 %

org.apache.tools.ant.types 0 0 % 2 2 % 2 7 % 0 0 % 0 0 % 0 0 % 0 0 %

org.apache.tools.util 0 0 % 58 12 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 %

Total 27 11 % 3,770 15 % 98 2 % 3 0 % 2 0 % 2 0 % 2 4 %
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whereas, in the case of the duplicated ones, there is a strong
one, i.e., r ¼ 0:797, p-value ¼ 3:081e� 06. The correlations
between program size and proportion of detected equivalent
and duplicatedmutants was found to be r ¼ �0:337, p-value
¼ 0:107 and r ¼ 0:423, p-value ¼ 0:041. It is noted that this
last case, i.e., program size and duplicated mutants, is the
only onewhere our data show a correlation.

In conclusion, our data show that an increase in the pro-
gram size is expected to increase the number of equivalent
and duplicated mutants identified by TCE. However, the
proportion of equivalent mutants detected is expected to be
unaffected by the program size, while the proportion of
duplicated ones is affected. Finally, we found a low but non-
trivial correlation between the program size and the number
of generated mutants, i.e., r ¼ 0:417, with p-value = 0.044.

6 DISCUSSION

This section summarise our results and concludes the stated
RQs. It also discusses the practical implications and con-
straints of applying mutation with the use of TCE.

6.1 Results Summary

6.1.1 TCE Effectiveness

Our results suggest that TCE can reduce the total number
of mutants by 11 percent for Java and 28 percent for C. In
the case of C, TCE equivalent mutants range from 2 per-
cent to 17 percent depending on the studied program and
account for 7.4 percent of all mutants on average. In the
case of Java, TCE, using Soot, revealed 5.7 percent equiva-
lent mutants, on average, that range from 1 to 18 percent.
TCE duplicated mutants range from 3 to 27 percent and

account for 21.0 percent on average when considering C,
while for Java, they range from 2 to 17 percent and they
are 5.4 percent on average.

6.1.2 TCE Efficiency

The time to detect equivalent and duplicated mutants, using
the diff utility, ranges between programs and it is on aver-
age 22 and 225 seconds for C and 9 and 808 seconds for
Java. This indicates that once the mutants have been
compiled/optimised, the equivalence detection comes
‘almost for free’. This is an important finding because it sug-
gests that TCE can be applied to remove equivalent and
duplicated mutants before the application of other time con-
suming cost-reduction methods.

Our results show that the total time spent for compiling,
detecting equivalent and duplicated mutants is 374,162 and

TABLE 15
Number ‘No.’ and Proportion ‘%’ of Duplicated Mutants Detected by TCE per Operator

Program AODS AOIS AOIU AORB COD COI ROR SOR

No. % No. % No. % No. % No. % No. % No. % No. %

org.apache.commons.math.ode 0 0% 96 4% 0 0% 24 1% 0 0% 47 24% 47 11% 0 0%
org.apache.commons.math.analysis 0 0% 106 7% 0 0% 0 0% 0 0% 25 31% 25 7% 0 0%
org.apache.commons.math.linear 0 0% 100 4% 0 0% 0 0% 0 0% 90 36% 90 15% 0 0%
org.apache.commons.math.distribution 0 0% 12 5% 0 0% 0 0% 0 0% 8 27% 8 8% 0 0%
org.apache.commons.lang 0 0% 102 3% 0 0% 0 0% 0 0% 643 63% 643 25% 0 0%
org.apache.commons.lang.builder 0 0% 4 1% 0 0% 0 0% 0 0% 108 57% 108 27% 0 0%
org.apache.commons.lang.text 0 0% 206 8% 0 0% 0 0% 0 0% 235 68% 235 21% 0 0%
org.apache.commons.lang.math 0 0% 48 3% 2 1% 0 0% 0 0% 171 56% 171 17% 0 0%
org.apache.bcel.generic 0 0% 32 3% 0 0% 0 0% 0 0% 92 63% 92 24% 0 0%
org.apache.bcel.classfile 0 0% 0 0% 0 0% 0 0% 0 0% 27 37% 27 27% 0 0%
org.apache.bcel.verifier.structurals 0 0% 2 1% 0 0% 0 0% 1 1% 255 77% 256 45% 0 0%
org.apache.bcel.util 0 0% 10 2% 0 0% 2 1% 0 0% 29 37% 29 19% 0 0%
org.joda.time 0 0% 18 2% 0 0% 0 0% 0 0% 118 87% 118 25% 0 0%
org.joda.time.format 0 0% 70 9% 0 0% 0 0% 0 0% 97 61% 97 21% 0 0%
org.joda.time.chrono 0 0% 70 9% 0 0% 0 0% 0 0% 39 71% 39 18% 0 0%
org.joda.time.tz 0 0% 8 8% 0 0% 0 0% 0 0% 20 69% 20 36% 2 33%
org.h2.jdbc 0 0% 24 2% 0 0% 0 0% 0 0% 138 63% 138 30% 0 0%
org.h2.command 1 1% 56 4% 0 0% 8 5% 0 0% 206 44% 206 20% 0 0%
org.h2.expression 0 0% 10 2% 0 0% 0 0% 1 5% 123 59% 124 31% 0 0%
org.h2.tools 0 0% 66 5% 6 4% 0 0% 0 0% 115 52% 115 23% 0 0%
org.apache.tools.ant.taskdefs 0 0% 8 4% 0 0% 0 0% 0 0% 123 44% 123 42% 0 0%
org.apache.tools.ant 0 0% 10 3% 0 0% 0 0% 0 0% 157 48% 157 46% 0 0%
org.apache.tools.ant.types 0 0% 2 2% 0 0% 0 0% 0 0% 100 65% 100 54% 0 0%
org.apache.tools.util 0 0% 21 4% 0 0% 0 0% 0 0% 99 47% 99 20% 0 0%

Total 1 1% 1,081 4% 8 0% 34 1% 2 0% 3,065 56% 3,067 24% 2 4%

Fig. 4. The proportion of equivalent and duplicated mutants detected by
TCE per program studied in case of Java.
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95,222 seconds for C and Java respectively. Thus, a candi-
date mutant can be analyzed by TCE in less than 3.0 and 1.5
seconds for C and Java respectively.

6.1.3 Equivalent Mutants

In an attempt to identify the prevalence of TCE equivalent
mutants we estimated their ratio, with respect to all equiva-
lent mutants, based on the studied benchmarks. We found
that approximately 30 and 54 percent of the benchmark
mutants are trivially equivalent with respect to C and Java.
Here it should be noted that there is a large variation on the
detected ratios among the studied programs. This is common
for both C and Java subjects, indicating that program charac-
teristics have a strong influence on the TCE equivalences.

Another important finding regards the causes of mutant
equivalences that are detected by TCE. Our results are sur-
prising since they show that the majority of detected
mutants are due to failed propagation, i.e, there is no possi-
ble way to propagate the mutant infection to the program
output. This is true for both C and Java. In Java almost all,
99 percent, of the detected mutants are of this category,
while in C these are 57 percent. In the case of C, 41 percent
of the detected mutants fall in the second category, i.e, it is
impossible to affect the program state that pertains immedi-
ately after mutant execution, and 2 percent to the first one,
i.e., mutants reside in unreachable code.

6.1.4 Mutant Operators

To better understand the nature of TCE mutants we identi-
fied their prevalence according to the considered mutant
operators. Our results suggest that in C the ABS and UOI
operators introduce more than 15 percent of trivial equiva-
lent mutants, ROR and CRCR more than 5 percent and
OAAA just 3 percent while, LCR, OBBN, AOR, OCNG and
SSDL introduce a small fraction, less than 1 percent. Regard-
ing Java most of the detected equivalent mutants are due to
AOIS, 15 percent, and AODU, 11 percent. Also, LOR and
AOIU introduce notable numbers that respectively account
for 4 and 2 percent. The rest of the operators introduce none
or non-significant numbers.

With respect to duplicated mutants, all operators intro-
duce a large number of such mutants in C. Most of them,
account for more than 7 percent. Only LCR introduces a
smaller fraction that is 3 percent. In the case of Java, the situ-
ation is a bit different. Only COI and ROR operators have
large proportions of TCE duplicated mutants. These are 56
and 24 percent for COI and ROR. AOIS also produces a
large number of duplicated mutants which accounts for 4
percent. The rest of the operators introduce none or small
numbers.

6.1.5 Program Size and Mutant Equivalences

We measured the correlation between the number of
mutants and the size of programs. Our results reveal that in
both cases there is medium level correlation which is stron-
ger for C, i.e., r ¼ 0:671 for C and r ¼ 0:417 for Java. Thus,
programs of similar size can vary much in terms of number
of mutants. By measuring the average number mutants per
statement we get 1.90 and 1.69 for C and Java respectively.
Hence, for the programs we studied, we conclude that C

programs have approximately 10 percent more mutants
and a stronger correlation, between mutants number and
program lines of code, than the Java ones.

With respect to equivalent mutants, our results indicate a
strong correlation with the number of mutants, for both C
and Java, i.e., r ¼ 0:818 and r ¼ 0:786. This is getting
weaker when considering program size, i.e., r ¼ 0:692 for C
and r ¼ 0:230 for Java. However, in all cases we found no
evidence indicating that the ratio of the detected equivalent
mutants correlates with the number of mutants. Together
these two results can be regarded as evidence suggesting
that the number of the detected equivalent mutants is a
fairly consistent proportion, unaffected by the size indica-
tors of the program under analysis.

With respect to duplicated mutants, our results suggest a
strong correlation with the number of mutants, for both C
and Java, i.e., r ¼ 0:930 and r ¼ 0:657. However, both in C
and Java we found no evidence indicating that the ratio of
the duplicated mutants correlates with the number of
mutants. Program size has medium to strong correlation
with the number of TCE duplicated mutants, i.e., r ¼ 0:650
and r ¼ 0:797 for C and Java. In case of C we found no evi-
dence indicating that the ratio of the duplicated mutants
correlates with program size. In contrast a medium level
correlation was found in the case of Java, r ¼ 0:423.

6.2 Differences between C and Java

Our presentation this far has focused on our results as
found by the two versions of TCE, i.e., for C and Java. Here
we attempt to compare the results of the C with Java ver-
sions, answering RQ6, and highlight commonalities and dif-
ferences between them.

One first observation is that TCE detects more equivalen-
ces in C than in Java. This can be attributed to the compiler
optimisations implemented in gcc that are way more
advanced than that of Java and SOOT. We took a close look
at the analysis on the detected causes of equivalence and
found that almost all TCE equivalent mutants detected in
Java programs are those that cannot propagate, while, only
the 57 percent of the C ones are due to the same reason. This
suggests, that there is a 42 percent difference between the
results of C and Java, mainly due to the lack of Java optimi-
sations. The average detected ratios are 7.4 and 5.7 percent,
for C and Java, that reflects the mentioned differences.

Our results demonstrate that equivalent mutants are
more prevalent in C than in Java. This is evident from our
ground truth analysis which revealed that in C the equiva-
lent mutants account for 23 percent, while, in Java for 12.7
percent of all mutants. Additionally, Java has a larger num-
ber of trivially equivalent mutants. This is also shown by
our ground truth analysis, which revealed that 54 percent of
all Java equivalent mutants are TCE equivalent. The same
ratio for C is 30 percent. In this result, we should consider
our first observation, i.e., that 42 percent of the TCE equiva-
lent mutants cannot be detected by SOOT due to lack of com-
piler optimizations, that a potentially high number of Java
trivially equivalent mutants exists but not found by SOOT.
Thus, we can easily conclude that Java programs have con-
siderably less equivalent mutants than the C ones and at the
same time Java programs contain a much larger proportion
of trivially equivalent mutants.
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Regarding duplicated mutants, we found TCE dupli-
cated mutants in C are more prevalent than in Java pro-
grams. As our results shown that while in C a large
proportion, of 21.0 percent on average, exists, in Java these
mutants are considerably less and account for 5.4 percent
on average. This difference is partly attributed to the lack of
optimisations in Java and to language characteristics. Thus,
characteristics, like the distinction of logical and arithmetic
operators in Java, the typed conventions that are stronger in
Java than in C and the use of pointers and arrays make C
mutants more vulnerable to duplication.

Another interesting point is that after removing the TCE
equivalent mutants, a ratio of 5.8 percent of equivalent
mutants remain in java, while in C the ratio of equivalent
mutants that remain is 16.1 percent. Considering this obser-
vation together with the one regarding the number of
mutants, that are approximately 10 percent less in Java than
in C, we conclude that, based on the programs we studied,
mutation analysis in C is harder than in Java.

The efficiency differences between C and Java in detecting
duplicated mutants is believed to be due to the language dif-
ferences. Our results suggest that 0.028 sec are required per C
mutant under analysis while 0.28 per Java one. C binary code
tends to be smaller than Java bytecode. While the differences
are not practically significant, these could be ameliorated by
using some form of checksum, as done by md5 to improve
substantially the performance of the diff comparisons.

Considering other parameters, like the tools and operator
sets used, could also lead to the differences in C and Java
results. While, in C we have 10 operators and in Java 15,
this difference is more conventional than actual. It is noted
that the CRCR operator corresponds to many Java operators
mainly due to the language differences, i.e., in C there are
only arithmetic values while in Java logical operations are
strictly of boolean types. Only two C operators, the ABS and
SDL, are only partially implemented in Java; ABS is par-
tially implemented by AODU and SDL by the various dele-
tion operators like the COD. Three Java operators, SOR,
AODS, and AORS, are not implemented in C.

Comparing individual operators, C-ABS produces
24 percent of TCE equivalent mutants while Java-AODU
11 percent. Similarly, C-UOI 16 percent while Java-AOIS
15 percent. Interestingly, C-ROR, C-CRCR and C-OAAA
account for 6, 5 and 3 percent respectively while their
Java version for 0 percent. With respect to duplicated
mutants, C-ROR produces 25 percent while the Java-ROR
24 percent. C-OCNG produces 49 percent and the Java-
COI 56 percent. C-UOI produces 21 percent and the Java-
AOIS 4 percent. All other C operators introduce many
duplicated mutants not detected by the related Java ones.
A manual inspection of the detected C mutants suggests
that most of these mutants are due to a failed infection,
i.e., mutant execution cannot result in a corrupted pro-
gram state. As shown by our results, Java optimizations
are ineffective for these cases and hence we get a reduced
effectiveness.

6.3 Implications for Research Studies

Our results have direct implications for research studies: the
application of TCE can improve the accuracy of a study’s
results when no manual analysis of equivalent mutants have

been performed. To better understand these implications,
Fig. 5 illustrates the range in which TCE can change the
resulting mutation scores in the case of Java (left part of the
figure) and C (right part of the figure), when assuming that
our results are generalisable. Both parts present themutation
scores with no manual analysis (line “traditional”) and the
improved mutation scores that could be obtained by apply-
ing TCE. We report the minimum and maximum number
of detected equivalent mutants (lines “TCE_min” and
“TCE_max”) to better reflect the impact of TCE. Note that
the minimum and maximum values are based on the results
of our large-scale experiment (see also Sections 4.1 and 5.1).
By examining the figures, it can be seen that TCE can
improve the accuracy of the obtained mutation scores. More
precisely, in the case of Java, this improvement ranges
between 0-18 percent and, in the case of C, it ranges between
0-16 percent.

While these results are only illustrative and have to be
treated with a great deal of caution, they provide evidence
that research studies will benefit from the application of
TCE, by automatically improving the accuracy of the results
reported. Consider for instance a study that compares two
test generation methods, say methods X and Z which
achieve a mutation score (without the analysis of equivalent
mutants) of 60 and 67 percent respectively, and the study
concludes that Z is better because it manages to achieve a
better mutation score of 67 percent with an improvement of
7 percent over the previous method. TCE can be used to
improve the accuracy of the study’s results: by applying
TCE, the mutation score of X will range between 61 and 73
percent and the one of Z, between 68 and 82 percent. Thus,
the application of TCE will result in more accurate mutation
scores and will potentially reveal a greater difference, of 9
percent, between X and Z, improving the empirical evi-
dence of Z’s superiority.

6.4 Practical Implications

Practitioners use test criteria to develop test suites and to
assess the level of test thoroughness. Thus, in practice, TCE
affects the effort needed (required work) to develop test
suites and the ability of the criterion to accurately measure
the effectiveness of the test suites. This section investigates
these two practical implications of TCE by examining its
impact on the work required, when generating mutation
adequate test suites, and by examining the improvements it
makes when measuring the mutation score.

Fig. 5. Mutation score improvements by TCE, when no manual analysis
of equivalent mutants has been performed, e.g., in large-scale
experiments.
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To reliably investigate both the required work and the
improvements of TCE we need to know which mutants are
equivalent. We also need to have multiple test suites of vari-
ous levels of test thoroughness, i.e., with low and high
mutation scores. The benchmark set of Yao et al., which we
use to answer RQ3 (for C programs), is unfortunately short
on both of the above two requirements. Thus, we used the
benchmark of Papadakis et al. [47], which is an extension of
the famous Siemens suite [68] and contains manually aug-
mented test suites (mutation adequate) and analysed
mutants. This benchmark was constructed using: a) the PRO-

TEUM
11 mutation testing tool to generate mutants, b) manual

analysis to characterise these mutants as killable or equiva-
lent and c) manual analysis to augment the test suites (gen-
erate tests that kill the identified killable mutants) [47]. In
the case of Java, we used the mutation adequate test suites,
which we generated when analysing the mutants of the
ground truth set (used to answer RQ3).

A summary of the mutants produced by PROTEUM,
when applied to the Siemens suite and the results of TCE
(using the -O option) are given in Table 16. From these
data, it becomes evident that a non-trivial number of
mutants has been detected by TCE. The numbers of the
TCE equivalent mutants account for 30-48 percent (41
percent on average) of all the existing equivalent mutants.
Interestingly, the results are very similar to those reported
in our previous analysis (approximately 6.9 and 24 per-
cent of all the PROTEUM mutants are TCE equivalent and
duplicated) and thus, we are confident that they are
representative.

6.4.1 Practical Implications: Required Work

To measure the manual effort involved when performing
mutation testing, we adopt the model used by the recent
study of Kurtz et al. [57]. Thus, we define work as “the num-
ber of mutants that are examined by the engineer”, or
equally, “the sum of the number of tests written to kill all
non-equivalent mutants and the number of equivalent
mutants identified” [57]. This metric in essence approxi-
mates the manual effort that a tester needs to perform when
doing mutation testing.

Equation (1) presents the work model. In order to com-
pare the results across different programs, we normalise the
recorded work by dividing with the overall required work,

per subject. The corresponding formula is presented in
Equation (2).

work ¼ jtestCasesj þ jEquivalentMutantsj (1)

normalised work ¼ jtestCasesj þ jEquivalentMutsj
OverallWorkRequired

(2)

Algorithm 1 presents the procedure followed to calculate
work, as suggested by Kurtz et al. [57]. First, a mutant is
randomly selected from the generated set of mutants of the
program under test. Next, if the mutant is equivalent, the
work is increased by one and the process is repeated. If the
mutant is killable, a test case that kills this mutant is ran-
domly selected, the value of work is increased by one and
the other mutants that can be killed by this test case are
marked as killed. This process continues until every killable
mutant of the considered mutants is selected/killed.

Algorithm 1. Calculating the Work Metric

Let muts represent the program’s generated mutants
Let tcs represent the program’s mutation test suite

1: functionWORKCALCULATION (muts, tcs)
2: work 0
3: while 9 killable mutant 2 muts do
4: mut SELECTRANDOMALIVEMUTANT(muts)
5: if ISEQUIVALENT(mut) then
6: work workþ 1
7: CONTINUE

8: end if
9: killing tc SELECTRANDKILLINGTC(mut; tcs)
10: work workþ 1
11: UPDATEKILLEDMUTANTS(killing tc,muts)
12: end while
13: return work
14: end function

As can be seen from the algorithm, it requires two inputs:
a mutant set and a set of mutation adequate test cases. Thus,
we calculate the work based on manually analysed test sub-
jects. To avoid any bias from the selection process, we
repeated the experiment 100 times.

Figs. 6 and 7 illustrate the results obtained for both pro-
gramming languages. These figures plot the normalised
work (x-axis) against the subsuming mutation score [56]
(MS�, y-axis) realised at each step of Algorithm 1 with and
without the application of TCE (denoted by the “TCE” and
“Traditional” lines respectively) per test subject and pro-
gramming language. Following the process of Kurtz et al.
[57], we used the subsuming mutation score as effectiveness
measurement. This measurement avoids the inflation effects
caused by redundant mutants [56], [57].

By examining Fig. 6, it can be seen that TCE manages to
substantially reduce the work required to achieve a given
test effectiveness level: for instance, in the case of Joda-
Time, by applying TCE, the work required to achieve a 70
percent subsuming mutation score is reduced by 11 percent
compared to the application of mutation without TCE, this
reduction increases to approximately 20 percent when the
subsuming mutation score reaches 80 percent and to 30 per-
cent when the score reaches 90 percent; finally, at the 100
percent effectiveness level, TCE realises a 49 percent work

TABLE 16
TCE Applied to Siemens Suite and PROTEUM Mutants

(Benchmark Set by Papadakis et al. [47]): Number ‘No.’
and Proportion ‘%’ of Detected Equivalent Mutants

Program Mutants Killable Equivalent Duplicated

No. % No. %

Replace 10,694 8,572 918 8.58% 2,431 22.73%
TCAS 2,872 2,357 156 5.43% 482 16.78%
TotInfo 6,411 5,839 177 2.76% 1,422 22.18%
Schedule 2,107 1,769 143 6.79% 527 25.01%
Schedule2 2,594 2,068 229 8.83% 535 20.62%
Printtokens 4,266 3,541 295 6.92% 1,139 26.70%
Printtokens2 4,574 3,783 377 8.24% 1,534 33.54%

11. We used the version 2.0 of the Proteum/IM tool [27].
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reduction. This trend, i.e., the increase of the work reduction
as the subsuming mutation score increases is present in
most Java subjects.12 This fact can be justified by TCE’s
equivalent mutant detection which, in turn, gives practi-
tioners a higher chance of selecting killable mutants than
equivalent ones, as the application of mutation progresses.
Regarding the results for C depicted in Fig. 7, it can be seen
that analogous conclusions can be drawn.

To better portray TCE’s implications for work, Fig. 8
presents the overall work reduction when developing muta-
tion adequate test suites per test subject and programming

language. It can be seen that the application of TCE realises
a work reduction between 0 and 51 percent, with an aver-
age of 37 percent, in the case of Java and a work reduction
that ranges between 28 and 47 percent, with an average of
37 percent, in the case of C. These results suggest that the
work of an engineer aiming at creating mutation adequate
test suites can be substantially reduced by the application
of TCE.

6.4.2 Practical Implications: Mutation Score

Improvement

This section investigates how the use of TCE improves the
accuracy of the mutation score measurement. Consider the
following example: an engineer applies mutation to a test

Fig. 6. Work required for different effectiveness levels with and without
the application of TCE in the case of Java.

Fig. 7. Work required for different effectiveness levels with and without
the application of TCE in the case of C.

12. XStream is a clear outlier but it should be mentioned that it is the
only program for which TCE did not detect any equivalent mutant.
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subject based on the available test cases and obtains a value
x of mutation score; the question that is raised here is how
much does the x score differ from the true mutation score,
i.e., the score computed by removing the equivalent
mutants?

We calculate the error of the measurement by comparing
the true mutation score with the obtained one (with and
without applying TCE). Equation (3) details the error of the
computation. This metric quantifies the distance of our met-
ric from the true one. Our results are depicted in Figs. 9 and
10 for Java and C, respectively. The y-axis of the figures
refers to the aforementioned error and the x-axis to the
effectiveness levels denoted by the subsuming mutation
score.

Error ¼ True MS �Obtained MS (3)

By examining Figs. 9 and 10, it can be seen that the appli-
cation of TCE results in a much lower error than calculating
the mutation score without its application in most test sub-
jects. For instance, in the case of the wrap method of the
Commons test subject, at the 75 percent subsumingmutation
score, the error in the mutation score’s calculation is 9 per-
cent without the application of TCE; this error is reduced to 4
percent when TCE is applied; this difference remain approxi-
mately the same until the 100 percent subsuming mutation
score is reached. Overall, in the case of Java, TCE reduces the

calculation error of the mutation score by 1-10 percent. In the
case of C, we find analogous results, with the calculation
error reduction ranging between 0 and 4 percent.

6.5 Application Constraints

The proposed technique is solely based on the use of com-
pilers and their optimisation options, thereby avoiding the
several limitations of othermethods and tools, e.g., applicabil-
ity and scalability. It does not require any sophisticated source
code analysis techniques or any expensive test executions.
Thus, it can be directly applied to real-world systems and can
be easily incorporatedwithinmutation testing tools.

Interestingly, the detected mutant equivalences are
partly dependent on the compiler options used. Although it

Fig. 8. Overall work reduction after the application of TCE per test
subject and programming language.

Fig. 9. Mutation score improvement after the application of TCE in the
case of Java.
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is rather unlikely that equivalent mutants detected by one
compiler option are not equivalent according to another, to
be absolutely sure, beyond any doubt that TCE guarantees
equivalence, we need to know which compiler settings are
going to be used in the deployment environment. No previ-
ous research takes into account the particular compiler set-
tings, but since we are using TCE, this cannot be ignored.
All previous work implicitly assumes that there is only one
compiler option, but actually there are as many options as
the actual settings used by the deployed programs. When
the deployed-code compiler settings are known, TCE can
exploit this information. When they are unknown at muta-
tion test time, we can investigate with a reasonable sample,
checking for variance in equivalence behaviour. We

investigated this issue by exploring the main gcc and SOOT

settings covering a wide range of optimisation options and
found that all of them can be used to detect mutant equiva-
lences (some are more effective than others of course).

We also explored the trade off between effectiveness and
efficiency using different settings. Our results suggest that
the -O and -O2 options are reasonably good, because they
consume less compilation time than the -O3 option. How-
ever, none of them is superior to the others in detecting
equivalent mutants. Here it should be noted that there are
many more optimisation options in the modern compilers,
there might exist some combinations of them that can detect
faster or more mutant equivalences. Thus, our future
research is directed towards identifying the options that fit
best to TCE. Detailed information about the performed opti-
mizations can be found in the gcc13 and SOOT

14 websites.

7 THREATS TO VALIDITY

As it is usual in software engineering experiments, our sub-
jects might not be representative. It is also possible that they
might not hold for complete system analysis (as we only
analysed sampled components of the large programs). To
ameliorate this issue, we selected 12 real-world programs of
varying size and application domain, 6 written in C and 6
written in Java, several orders of magnitude larger than
those used in previous equivalent mutant detection studies.
We also performed an additional evaluation using different
sets of programs, composed of 31 manually-analysed
benchmark subjects, taken from the literature. To further
cater for this issue, we draw attention to strongly observed
effects and present our results as ranges of expected values.

The evaluation of our approach resulted in analogous
findings in all studied sets. With reference to the C test sub-
jects, it detected approximately 7.4 percent of all the
mutants as equivalent ones for the large-scale experiment,
and 7.2 and 6.9 percent of the mutants of the manually-ana-
lysed test subjects (for the Yao et al. [16] and Papadakis
et al. benchmarks [47]), on average. In the case of Java, it
identified 5.7 and 6.8 percent, accordingly. Regarding the
range of the results (range between worst and best cases), a
similar picture appears. Thus, we are confident that TCE
can eliminate a considerable number of equivalences.

Additionally, our results are in line with those reported
in the literature15 providing confidence that they are realis-
tic. We studied the mutants of the C and Java languages
and TCE implemented using gcc and SOOT. Therefore,
some of our results might be a realisation of independent
uncontrolled variables, such as the sample size, sample
selection procedure (excluding classes not handled by
MUJAVA), programs’ internal characteristics, used software
platforms and tools’ operation. Therefore, it is important to
note that all our results form empirical observations that
might not hold in the general case. However, our findings
fit intuition and rely on the foundations set by previous
studies [31]. Furthermore, we control the major factors that

Fig. 10. Mutation score improvement after the application of TCE in the
case of C.

13. https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
14. https://ssebuild.cased.de/nightly/soot/doc/soot_options.htm
15. Offutt and Pan [33] reported that 9 percent of all the mutants are

equivalent. Delamaro et al. [69] found 12 percent, Kintis et al. [46],
Schuler and Zeller [40] 7-8 percent, Papadakis et al. [47] 17 percent, Yao
et al. [16] 23 percent and Madeyski et al. [44] 4-39 percent.
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we believe can influence our results. Additional studies are
needed to determine what influences the performance of
TCE and its practical use on different languages and com-
piler optimisation techniques.

Other threats are due to the use of software systems. For
instance, the gcc compiler or the SOOT optimisation frame-
work may have defects. However, these systems are heavily
tested and deployed. Thus, it is unlikely that the remaining
defects would influence our results to a great extent. Imple-
mentation defects of MILU, MUJAVA and PROTEUM may also
have an influence. To reduce this threat we carefully
checked their results. However, we consider this as a minor
threat since all the used tools have been used by several
authors in recent studies, e.g., [6], [57], [70], [71], [72], inde-
pendently of us. Furthermore, we utilised three equivalent
mutant benchmark sets which were entirely built by hand.
These results served as a ‘sanity check’ to reduce the threat
to validity.

Our results might be affected by our choice of mutant
operators. As shown by other studies [73], [74] it is also pos-
sible that the realisation of the mutant operators by the
employed tools may particularly affect the comparison
between C and Java. To mitigate this threat, we detailed
exactly how the operators supported by the used tools are
realised (Tables 5 and 6) and analysed the common C and
Java operators. Based on these lines we draw some conclu-
sions. Overall, we used a wide range of 75 mutant operators
(realised by PROTEUM) and all the popular operators
(included in most existing mutation testing tools and those
empirically found to correlate with fault detection). In all
cases we found large numbers of equivalences, which have
a major impact on the application of mutation testing.

The use of the equivalent mutants’ benchmarks may also
pose another threat. This is due to the performed manual
analysis: some killable mutants may have been mistakenly
identified as equivalent. However, these studies were per-
formed independently of the present one and hence, it is
not likely that this kind of mistakes coincidentally match
the results of TCE. Additionally, it is equally possible that
such mistakes have also led to the underestimation of TCE’s
effectiveness.

Finally, all our subjects, tools and data are available in
the accompanied website of the present paper.16 This helps
reducing all the above-mentioned threats [75] since inde-
pendent researchers can check, replicate and analyse our
findings.

8 CONCLUSION AND FUTURE WORK

We have presented the results of an extensive empirical
analysis of the ability of Trivial Compiler Equivalence
(TCE) to detect both equivalent and duplicated mutants in
the C and Java programming languages.

We have conducted an empirical study of TCE on 25 C
and 6 Java benchmark systems, for which the programs
under study are sufficiently small for their equivalent
mutants to be determined manually. These systems pro-
vided us with the ground truth against which we can empir-
ically assess the equivalent mutant detection power of TCE.

We augmented this study with a much larger study for
which no ground truth is possible. In total, we have experi-
mented with over 1 million lines of code, consisting of the
31 smaller benchmark systems, together with 6 larger Java
systems (with a total of 263,740 LoC) and 6 larger C systems
(with a total of 750,157 LoC).

Overall, we find that for both C and Java, TCE is a useful,
fast and widely-applicable technique that can detect
between 17-100 percent (30 percent on average) of C lan-
guage equivalent mutants, and 0-94 percent (54 percent on
average) of Java equivalent mutants (for the ground truth
set). Furthermore, over all mutants studied in all large real-
world programs, the detection of trivially equivalent and
trivially duplicated mutants was found to reduce the total
number of mutants by 5-23 percent for Java and 20-37 per-
cent for C, which accounts for 11 and 28 percent on average.
These achievements imply that a practitioner who applies
mutation testing and is using TCE will spend 0-51 and 28-47
percent less manual effort in the case of Java and for C than
without using it. TCE also improves the accuracy of the
mutation score measurement by 1-10 and 0-4 percent for
Java and C. Thus, future research should integrate compiler
optimisations within mutation testing tools in order to
avoid any generation of such trivial mutants and future
research studies should consider applying TCE to reap the
benefit of the technique.

Our results revealed interesting findings that suggest
topics for future work on mutation-based analysis of the
semantic differences between programming languages. For
example, it is intriguing that a larger proportion of Java’s
equivalent mutants were found to be detectable using TCE
than for C. Furthermore, if the proportion of equivalent
mutants from the ground truth study is similar to that for
mutants overall, then it would appear that the Java lan-
guage suffers significantly less from the equivalent mutant
problem than the C language does.

One might conjecture that this is related to the relatively
small size of Java methods when compared to the size of C
functions. Alternative conjectures might revolve around the
differing semantic features of these two languages (and the
consequent mutation operators that are applicable). Of
course, since we have insufficient data to make scientifically
reliable statements on these conjectures, we have refrained
from making any claims in the present paper and leave
them as just that; conjectures. Nevertheless, our results sug-
gest that future work might use TCE as one approach to
tackle such conjectures, potentially leading to a better
understanding of the difference between programming lan-
guage semantics, based on mutation analysis.
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