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Abstract 108 

The nicotinic system plays an important role in cognitive control, and is implicated in 109 
several neuropsychiatric conditions. Yet, the contributions of genetic variability in this system to 110 
individuals’ cognitive control abilities are poorly understood, and the brain processes that 111 
mediate such genetic contributions remain largely unidentified. In this first large-scale 112 
neuroimaging genetics study of the human nicotinic receptor system (two cohorts, males and 113 
females, fMRI total N=1586, behavioral total N=3650), we investigated a common polymorphism 114 
of the high-affinity nicotinic receptor α4β2 (rs1044396 on the CHRNA4 gene) previously 115 
implicated in behavioral and nicotine-related studies (albeit with inconsistent major/minor allele 116 
impacts). Based on our prior neuroimaging findings, we expected this polymorphism to impact 117 
neural activity in the cingulo-opercular network involved in core cognitive control processes 118 
including maintenance of alertness. Consistent across the cohorts, all cortical areas of the 119 
cingulo-opercular network showed higher activity in heterozygotes compared to both types of 120 
homozygotes during cognitive engagement. This inverted U-shaped relation reflects an 121 
overdominant effect, i.e. allelic interaction (cumulative evidence p=1.33*10-5). Furthermore, 122 
heterozygotes performed more accurately in behavioral tasks that primarily depend on 123 
sustained alertness. No effects were observed for haplotypes of the surrounding CHRNA4 124 
region, supporting a true overdominant effect at rs1044396. As a possible mechanism, we 125 
observed that this polymorphism is an expression quantitative trait locus (eQTL) modulating 126 
CHRNA4 expression levels. This is the first report of overdominance in the nicotinic system. 127 
These findings connect CHRNA4 genotype, cingulo-opercular network activation and sustained 128 
alertness, providing insights into how genetics shapes individuals’ cognitive control abilities. 129 
 130 
Significance Statement: 131 
The nicotinic acetylcholine system plays a central role in neuromodulatory regulation of 132 
cognitive control processes, and is dysregulated in several neuropsychiatric disorders. In spite 133 
of this functional importance, no large-scale neuroimaging genetics studies have targeted the 134 
contributions of genetic variability in this system to human brain activity. Here, we show impact 135 
of a common polymorphism of the high-affinity nicotinic receptor α4β2, consistent across brain 136 
activity and behavior in two large human cohorts. We report a hitherto unknown overdominant 137 
effect (allelic interaction) at this locus, where the heterozygotes show higher activity in the 138 
cingulo-opercular network underlying alertness maintenance, and higher behavioral alertness 139 
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performance than both homozygous groups. This gene-brain-behavior relationship informs 140 
about the biological basis of inter-individual differences in cognitive control. 141 
 142 
Introduction 143 

Cognitive control abilities are central to all goal-directed behavior but vary widely across 144 
individuals (Gruszka et al., 2010; Mennes et al., 2011). While cognitive control capacities have 145 
strong heritable components (Friedman et al., 2008; Chang et al., 2013), it is largely unknown 146 
through which brain mechanisms genetic variability translates into their inter-individual 147 
differences. Neuromodulatory neurotransmitter systems are central to cognitive control given 148 
their capacity to broadly modify signal processing across large areas of the brain. In particular, 149 
the broad acetylcholinergic innervation of the neocortex originating in the basal forebrain plays a 150 
central role in cognitive control, especially tonic control functions (Knott et al., 1999; Kozak et 151 
al., 2006). Both tonic control functions and acetylcholinergic modulation are dysregulated in 152 
several neuropsychiatric disorders (Lesh et al., 2011; Sarter and Paolone, 2011; Higley and 153 
Picciotto, 2014), reward processing and addiction to various substances (Hendrickson et al., 154 
2013). Yet, how genetic polymorphisms in this modulatory system influence brain function is 155 
poorly understood. 156 

 157 
The most abundant high-affinity nAChR in the mammalian brain is the α4β2 receptor 158 

(Albuquerque et al., 2009). Among the single nucleotide polymorphisms (SNPs) of the 159 
underlying genes CHRNA4 and CHRNB2, rs1044396 (NM_000744.6:c.1629C>T) of the α4 160 
subunit (chromosome 20q13.3) has been implicated in behaviorally relevant contexts, albeit with 161 
inconsistent impact from major/minor alleles. While this SNP itself is synonymous 162 
(NP_000735.1:p.Ser543=), it is part of a functional CHRNA4 haplotype affecting receptor 163 
sensitivity to acetylcholine (Eggert et al., 2015). The SNP is implicated in nicotine consumption 164 
and addiction (Feng et al., 2004; Breitling et al., 2009), as well as phasic cognitive control 165 
functions. However, this cognitive literature (often comprising relatively small sample sizes) is 166 
inconclusive, since some studies report behavioral advantage of the rs1044396-T allele 167 
(Greenwood et al., 2012, 2005; Espeseth et al., 2010), and some of the rs1044396-C allele 168 
(Parasuraman et al., 2005; Reinvang et al., 2009). Furthermore, the brain mechanisms 169 
mediating the impact on behavior are largely unknown. The only two neuroimaging 170 
investigations of rs1044396 have been carried out in relatively small sample sizes N<50, and 171 
one study lacks heterozygous participants (Winterer et al., 2007; Gießing et al., 2012). 172 

 173 



 

 5 

The cortical target regions of acetylcholinergic stimulation may shed light on the 174 
underlying pathway from genetic variability to cognitive abilities. Using positron emission 175 
tomography, we found that across the cerebral cortex α4β2 receptor density was highest 176 
bilaterally in the dorsal anterior cingulate cortex and anterior insula (Picard et al., 2013). 177 
Together with the thalamus, the brain region with the highest nAchR density (Gallezot et al., 178 
2005), these areas constitute the core of the cingulo-opercular (CO) network, also referred to as 179 
salience network (Fig.2A) (Dosenbach et al., 2006; Seeley et al., 2007). The anatomically 180 
selective mapping of α4β2 receptor density to this network generates a targeted hypothesis 181 
regarding the brain structures mediating the cognitive impact of the α4 polymorphism 182 
rs1044396. 183 

 184 
The spatial relation between the CO network and α4β2 nAChR density suggests that 185 

functional differences in this receptor may impact the cognitive function of the CO network. 186 
Several lines of research suggest that one core cognitive control function of the CO network is 187 
the maintenance of sustained/tonic alertness, or vigilance (Sturm et al., 2004; Sadaghiani et al., 188 
2010). Tonic alertness describes the mentally effortful, self-initiated (rather than externally 189 
driven) and continuous preparedness to process information and to respond (Parasuraman, 190 
1998; Posner, 2008). A distinctive characteristic of the CO network is that it becomes active 191 
whenever cognitive engagement is required irrespective of the specific task (Dosenbach et al., 192 
2006; Yeo et al., 2014), likely due to tonic alertness demands present across cognitive tasks 193 
(Sadaghiani and D’Esposito, 2015).  194 

 195 
Here, we test the hypothesis that α4β2 nAChR genotype impacts CO network activation 196 

during cognitively demanding tasks, and explains performance differences in tonic alertness. 197 
We focus on the CHRNA4 rs1044396 genotype in light of the above-described prior behavioral 198 
literature. We study the impact of this polymorphism on brain activity and behavior in a large 199 
dataset in adolescents, with replication in an independent cohort of adolescents and young 200 
adults.   201 
 202 
Materials and Methods 203 
Subjects 204 

Adolescents and young adults of Caucasian descent were investigated in two cohorts, 205 
IMAGEN and Philadelphia Neurodevelopmental Cohort (PNC) as detailed in table 1. The 206 
IMAGEN cohort contains over 2000 subjects studied in eight cities across Europe. The cohort 207 
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and data acquisition are described in detail in (Schumann et al., 2010). All subjects were 14 208 
years of age at time of data collection. We retained all subjects with SNP rs1044396 imputation 209 
accuracy >0.9 (See genetics below). Among these, n=1499 subjects had behavioral data in the 210 
Rapid Visual Processing task and n=1358 subjects had neuroimaging data in the Stop Signal 211 
Task (see fMRI section below). Pubertal development stage was determined for use as a 212 
covariate using the Puberty Development Scale (Petersen et al., 1988), a self-reported measure 213 
of physical development based on the scale introduced by Tanner (Tanner, 1978). On this five-214 
category scale the vast majority of subjects had a puberty category score of 3 or 4 (median 215 
(IQR) = 4(1)). 216 

 217 
From over 8000 American subjects studied in Philadelphia for the PNC cohort all those 218 

that identified as being of Caucasian descent (not including mixed ethnicities) were selected for 219 
ethnic homogeneity and comparability with the IMAGEN cohort (n=4734). The cohort and data 220 
acquisition are described in detail in (Satterthwaite et al., 2014, 2016).  We retained all subjects 221 
with SNP rs1044396 imputation accuracy >0.9. For comparability with the IMAGEN dataset, 222 
only subjects of at least 14 years of age were included (age range 14-22). Among these, 223 
n=2151 had behavioral data in the Penn Continuous Performance Test experiment, and n=228 224 
had neuroimaging data in the N-Back experiment. 225 

 226 
------- Table 1 here ------- 227 

 228 
Genetics 229 

IMAGEN subjects were genotyped from blood samples on 610-Quad SNP and 660-230 
Quad SNP arrays from Illumina (Illumina Inc., San Diego, CA). The vast majority of PNC 231 
subjects were genotyped from blood samples on the 550HH and 610-Quad SNP arrays from 232 
Illumina (Illumina Inc., San Diego, CA). Since rs1044396 SNP was not included in the Illumina 233 
array platforms by IMAGEN and PNC consortia, we imputed CHRNA4 rs1044396 using the 234 
Haplotype Reference Consortium r1.1. as reference panel (McCarthy, 2016). In the IMAGEN 235 
cohort, CHRNA4 rs1044396 was successfully imputed for 89.3% of the subjects using the 236 
Sanger Imputation Service (https://imputation.sanger.ac.uk/) with EAGLE2 (Loh et al., 2016) 237 
and PBWT (Durbin, 2014); Minor Allele Frequency (MAF) was 0.479, as expected in 238 
Caucasians (European 1000 Genomes Consortium Phase3 (MAF=0.471) (The 1000 Genomes 239 
Project Consortium, 2015). In the PNC cohort, CHRNA4 rs1044396 was successfully imputed 240 
for 88.4% of the subjects using the Michigan Imputation Server 241 
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(https://imputationserver.sph.umich.edu/) (Das et al., 2016) with SHAPEIT2 (Delaneau et al., 242 
2013) and Minimac3 (Das et al., 2016). Note that while imputation was performed on different 243 
servers for the two cohorts because this process was completed at different instances and sites, 244 
both servers used an identical reference set. The MAF was 0.472. Genotype distribution did not 245 
deviate from Hardy-Weinberg Equilibrium in the IMAGEN (P=0.77) and PNC (P=0.99) cohorts. 246 
LD analysis was performed using Haploview v.4.2, and defining LD blocks based on the solid 247 
spine of LD algorithm (Barrett et al., 2005). Haplotype-based association testing was performed 248 
using PLINK by logistic regression model, adjusting for the same covariates employed in the 249 
analysis of individual datasets. Results from each dataset were fixed-effect meta-analyzed using 250 
GWAMA (Mägi and Morris, 2010). 251 
 252 
fMRI Acquisition 253 

At IMAGEN sites, structural and functional MRI was performed on 3T scanners from a 254 
range of manufacturers (at Hamburg, Mannheim, Dresden, and Paris: Siemens Trio with 12-255 
channel head coil, Siemens, Munich, Germany; at Berlin: Siemens Verio with 8- and 12-channel 256 
head coils; at Dublin and Nottingham: Philips Achieva with 8-channel head coil, Philips, Best, 257 
The Netherlands; at London: GE HDx with 8-channel head coil, General Electrics, Chalfont St 258 
Giles, UK). A set of imaging sequence parameters compatible with all scanners, particularly 259 
those directly affecting image contrast or signal-to-noise, was devised and held constant across 260 
sites. Functional imaging parameters consisted of 8 min echo planar imaging with TR/TE/Flip 261 
Angle = 2200ms / 30ms / 75°, 64x64x40 voxels with 2.4mm slice thickness and 1 mm slice gap 262 
and a field of view of 218x218mm, yielding isotopic 3.4mm voxels. The structural image consists 263 
of a T1weighted MPRAGE image of 256x256x160/166 voxels (depending on manufacturer), 264 
with a 1.1mm isotropic voxel size. Details are provided in (Schumann et al., 2010). Functional 265 
images in the PNC cohort were recorded on a Siemens TIM trio scanner with 32-channel head 266 
coil and consisted of 11.6 min echo planar imaging with TR/TE/Flip Angle = 3000ms / 32ms / 267 
90°, 64x64x46 voxels with 3mm slice thickness and no slice gap and a field of view of 268 
192x192mm, yielding isotopic 3mm voxels. The structural image consists of a T1-weighted 269 
MPRAGE image of 192x256x160 voxels, with a 0.9x0.9x1mm voxel size. Details are provided in 270 
(Satterthwaite et al., 2013, 2014). 271 
 272 
Experimental Design 273 

Tasks for fMRI: Both the IMAGEN and PNC datasets included neuroimaging during 274 
tasks demanding high cognitive engagement. In the IMAGEN dataset, among four fMRI runs (a 275 
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functional localizer and three other tasks) we chose to investigate the Stop-Signal Task due to 276 
its high cognitive control demands. This task requires subjects to press a left or a right button in 277 
response to regularly presented visual ‘go’ stimuli (left- or right-pointing arrows, respectively, 278 
every 1.6 to 2s) but to withhold response if the go stimulus was followed by a ‘stop’ signal 279 
(upwards-pointing arrow). The stop signal was presented unpredictably across trials and the 280 
time between the foregone go stimulus and the stop signal (stop signal delay) was adjusted 281 
continuously during the run so as to keep the individual subject’s stop success at 50%. Stop 282 
signal delay (range 0-900ms) was increased or decreased from an initial duration of 150ms at 283 
the beginning of the experiment in steps of 50ms depending on the subject’s stop 284 
success/failure (Rubia et al., 2005). There were 400 go trials and 87 stop trials. 285 

 286 
In the PNC cohort, among the two available fMRI tasks, we chose to investigate the 287 

fractal N-Back task due to its demands on cognitive control (Satterthwaite et al., 2014). In this 288 
task subjects were presented with complex geometric figures (fractals) for 500ms at a fixed 289 
2500ms interstimulus interval. In different block conditions, subjects pressed a button if they 290 
detected a predefined target fractal (0-back condition), if the current fractal was identical to the 291 
previous one (1-back condition), or if the current fractal was identical to the fractal two trials 292 
previously (2-back condition). Visual instructions (9 s) preceded each block, informing the 293 
participant of the upcoming condition. Each condition was performed in three blocks of 20 trials 294 
(60s) each. There were a total of 45 targets and 135 foils with 1:3 ratio in each block. A 24s 295 
passive fixation period was presented at the beginning, middle and end of the task.    296 
 297 

Tasks for behavioral assessments: CPTs are available as part of larger cognitive test 298 
batteries in both cohorts. The Cambridge Neuropsychological Test Automated Battery 299 
(CANTAB http://www.cambridgecognition.com) acquired in the IMAGEN cohort includes the 300 
Rapid Visual Processing CPT task. This task requires subjects to detect a predefined target 301 
series of 3 digits in a continuous stream of digits (2 through 9) presented at a rate of 100/min. 302 
There were 27 occurrences of the target sequence during the 8 min experimental run. Accuracy 303 
in this task is commonly measured using A’ (Gau and Huang, 2014). A’ is defined as 304 
0.5+[(h−f)+(h−f)2]/[4×h×(1−f)], where h is the probability of hits and f is the probability of false 305 
alarms. A’ is a signal detection measure of sensitivity to the target, regardless of response 306 
tendency. It takes into account both hits and false alarms and is directly comparable to the 307 
classical index of sensitivity d’ (see below) (Sahgal, 1987). However, it is based on a non-308 
parametric signal detection model suitable for the Rapid Visual Processing task where the 309 
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sensory effects of stimulus-triplets may not be well-represented by the normal distribution. 310 
Difference in A’ across genotypes was tested using multiple regression.  311 

The Penn Computerized Neurocognitive Battery (Penn CNB) acquired in the PNC cohort 312 
includes the Penn Continuous Performance Test (Kurtz et al., 2001). This task presents a 313 
stream of 7-segment displays (connected horizontal and vertical lines) at a rate of 60/min. The 314 
subjects were required to press a button whenever the display formed a digit (first half of 315 
experiment) or a letter (second half of experiment). There were 60 occurrences of targets (30 316 
digits and 30 letters) during a total of 6 min. Accuracy was measured as sensitivity to the target 317 
regardless of response tendency, using the classical sensitivity index d’ = Z(h) – Z(f), where 318 
Z(p) is the inverse of the cumulative distribution function of the Gaussian distribution. Hit rates 319 
(h) of 1 were replaced with (n - 0.5)/n, and false alarm rates (f) of 0 were replaced with 0.5/n, 320 
where n is the number of targets or non-targets, respectively (Macmillan and Kaplan, 1985). 321 
Difference in d’ across genotypes was tested using multiple regression.  322 
 323 
Statistical Analysis 324 

fMRI preprocessing: The fMRI data provided on the IMAGEN database were already 325 
slice timing corrected, motion corrected, and spatially normalized to MNI space using SPM8 326 
(http://www.fil.ion.ucl.ac.uk/spm/).  For PNC fMRI data we applied motion correction and spatial 327 
normalization to MNI space using ANTs (http://stnava.github.io/ANTs/). Further preprocessing 328 
was equivalent across IMAGEN and PNC datasets, which included regressing out six linear 329 
head motion parameters, white matter and cerebrospinal fluid confounds (based on 330 
segmentation, thresholded at 95% tissue type probability), five principal components of high 331 
variance voxels derived using CompCor (Behzadi et al., 2007), and one-time sample shifted 332 
variants as well as discrete cosine functions (for high-pass filtering at 1/128 Hz) of all confound 333 
regressors. Our volumes of interest were large-scale networks defined using independent 334 
component analysis of resting-state functional connectivity in an independent dataset as 335 
available in the 90-region FIND lab atlas (Shirer et al., 2012). Large-scale functional networks 336 
defined on the basis of their intrinsic connectivity architecture during resting state provide 337 
volume delineation unbiased by particular task-related activation. To this end, the use of an 338 
independent atlas permits application of the same volume of interest to both cohorts. Note that 339 
no resting state data was available for a subject-specific definition of networks for the majority of 340 
IMAGEN subjects. Time courses were extracted from all voxels across the brain areas of each 341 
network, averaged to yield one time course per network and normalized to z-scores. 342 
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In addition to accounting for head motion with the above-described motion parameters, 343 
their time shifted variants and discrete cosine functions, we verified that head motion did not 344 
substantially contribute to between-group effects using mean framewise displacement (MFD) as 345 
a measure (Power et al., 2012). Relatively few volumes per subject showed displacement > 3 346 
standard deviations above the average MFD across all subjects (IMAGEN 16.1 (=3.6%) ±30.7 347 
volumes, and PNC 10.9 (4.7%) ±15.5 volumes per subject). Further, only few subjects had an 348 
MFD > 3 standard deviations over the group average MFD (25 (1.8%) IMAGEN subjects, and 5 349 
(2.2%) PNC subjects). Therefore, we did not exclude any subjects or fMRI volumes based on 350 
head motion. Direct contrast of MFD across genotypes ensured that head motion did not differ 351 
significantly between T/T, T/C and C/C carriers (p>0.4 for all pair-wise t-tests in IMAGEN and 352 
PNC).  353 

 354 
fMRI General Linear Models: Analyses were performed using in-house MATLAB code. 355 

In IMAGEN’s Stop Signal Task, successful go trials densely covered the experimental run and 356 
thus served as implicit baseline. The time course of all other events, i.e. successfully inhibited 357 
stop trials, inhibition failures on stop trials, left-right errors on go trials and errors of omission 358 
(not responded in time on go trials) were convolved with the canonical hemodynamic response 359 
function to yield regressors of interest. A General Linear Model was constructed with these 360 
regressors for each subject and each network’s time-course averaged across all the respective 361 
voxels (CO, fronto-parietal, dorsal attention and default mode networks) as response. An 362 
equivalent GLM analysis was performed for the whole brain using voxel-wise time-courses as 363 
response. The contrast of interest comprised the sum of the respective regression coefficient 364 
estimates. Errors of omission were absent in 20% of participants, very sparse in the other 365 
subjects and therefore excluded from the contrast. At the group level, the resulting contrast 366 
value entered multiple regression with genotypes as regressor of interest.  367 

The whole-brain voxelwise statistics in the IMAGEN cohort was derived by restricting the 368 
overdominance contrast volume (T/C carriers > other subjects) to the union of all 116 AAL atlas 369 
regions as lenient generic grey matter mask, and applying an auxiliary uncorrected threshold of 370 
p<0.005 (two-sided t-test) followed by cluster-level correction for multiple comparisons. 371 
Covariates of no interest were co-regressed. The cluster size for this correction was determined 372 
using a Monte Carlo simulation with 1000 permutations of randomized genotypes using in-373 
house MATLAB code. 374 
 375 
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In PNC’s N-back Task, regressors were generated by convolving the canonical 376 
hemodynamic response function with the boxcar time course of 0-back, 1-back and 2-back 377 
blocks. Additionally, we modeled pre-block instructions (9s) as an additional regressor of no 378 
interest to account for the respective brain processes. A General Linear Model was constructed 379 
with these regressors for each subject, and the time-course averaged across all the voxels of 380 
the network volume-of-interest as response. The contrast of interest comprised the sum of the 381 
regression coefficient estimates of 0-back, 1-back and 2-back blocks. At the group level, the 382 
resulting contrast value was entered into multiple regression as response, with genotypes as 383 
regressor of interest.  384 

 385 
For data quality assurance, subjects for which the estimated BOLD response in any of 386 

the network volumes-of-interest deviated by > 3 SD from the mean were excluded from fMRI 387 
group statistics (33 subjects in IMAGEN, none in PNC).  388 

 389 
Group-level regression (fMRI and behavioral): An initial model compared fMRI signal 390 

across rs1044396 genotypes with no a priori assumption on the genetic model of association, 391 
using two binary regressors to encode genotypes, with the values 0 0 for T/T, 1 0 for T/C, and 0 392 
1 for C/C. In subsequent models that specifically tested for presence of overdominance, a 393 
binary regressor with 1 encoding T/C carriers and 0 encoding T/T and C/C carriers was used, 394 
hence testing T/C heterozygotes against T/T and C/C homozygotes. For the IMAGEN cohort, 395 
covariates of no interest comprised sex, puberty score, scan site (7 categorical covariates) and 396 
population structure (first 3 principal components).  For the PNC cohort, covariates of no interest 397 
included sex, age and population structure (first 3 principal components). 398 
 399 
Results 400 
CO network activation was investigated using fMRI of tasks that have high cognitive demands 401 
known to engage this network (Whelan et al., 2012; Satterthwaite et al., 2013). Behavior was 402 
studied using Continuous Performance Tests (CPTs) whose continuous nature is specifically 403 
designed and widely used to selectively measure tonic alertness or vigilance (Beck et al., 1956; 404 
Kurtz et al., 2001). 405 
 406 
CHRNA4 polymorphism and cingulo-opercular network activation 407 
 We hypothesized that activity in the CO network during cognitive engagement is affected 408 
by rs1044396 genotype. The CO network volume of interest was taken from a functional atlas 409 
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derived from resting-state functional connectivity analysis of an independent sample (Fig 1A. 410 
(Shirer et al., 2012)). In the IMAGEN fMRI dataset (n=1358, see table 1), we investigated 411 
network activity during a Stop-Signal Task that requires a high level of cognitive control. 412 
Subjects had to press a button in response to regularly presented go stimuli but withhold 413 
response if the go stimulus was followed by a stop signal. Note that although this task requires 414 
several other cognitive control functions such as top-down inhibition and spatial attention, it is 415 
known to heavily involve tonic alertness and the CO network (Satterthwaite et al., 2013). For 416 
each subject, the CO network fMRI signal time course was entered in a General Linear Model 417 
(GLM) comprising regressors for all estimable task events. Estimated brain activity across these 418 
events confirmed strong engagement of the CO network volume of interest across all subjects 419 
irrespective of genotype (one sample t-test t1357=54.57, p<10-10). With T/T (homozygous carriers 420 
of the major allele) as the baseline, we examined the effects of the presence of minor allele C, 421 
i.e. T/C and C/C genotypes, on CO network activity using multiple regression with no a priori 422 
assumption on the genetic model of association. Task-related activity in this network was 423 
significantly higher in T/C carriers compared to T/T carriers (t1343=2.83, p=0.005; Figure 1), while 424 
activity for C/C carriers did not differ from T/T carriers (t1343=-0.003, p=0.998). This result is 425 
suggestive of an overdominant effect, where the phenotype of heterozygotes lies outside the 426 
phenotypical range of both homozygous groups due to allelic interaction at a single locus 427 
(Hochholdinger and Hoecker, 2007). Following this observation, we used multiple regression to 428 
specifically test for overdominance, i.e. T/C carriers > all other subjects. This analysis confirmed 429 
higher CO network activity in heterozygotes as compared to homozygotes (t1344=3.44, 430 
p=0.0006, 0.9% variance explained). 431 
 432 

------ Figure 1------- 433 

Figure 1: Heterozygotes at the CHRNA4 SNP have increased cingulo-opercular network 434 
activation. A) The CO network volume of interest in the FINDlab atlas based on intrinsic 435 
functional connectivity (Shirer et al., 2012). B) Estimated brain activation averaged across the 436 
CO network volume of interest in the IMAGEN cohort during the Stop Signal Task. Higher CO 437 
network activation is observed in heterozygotes compared to homozygous T/T and C/C carriers. 438 
On boxes, the central mark indicates the median, and the bottom and top edges indicate 25th 439 
and 75th percentiles, respectively. The whiskers extend to the most extreme data points not 440 
considered outliers (within 1.5 interquartile range of the bottom and top of box), and the outliers 441 
are marked by '+'. C) The genotype contrast T/C > homozygotes is shown for activation in the 442 
CO network and three other networks for comparison: FP = fronto-parietal, DAT = dorsal 443 
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attention, DM = default mode. A significant overdominant effect was observed for the CO 444 
network only. Error bars show standard error. 445 
 446 

To test the neuroanatomical specificity of rs1044396 impact on the CO network, we 447 
investigated three other high-level networks as controls. These comprised the default mode 448 
network as well as two networks underlying other cognitive control functions, namely the dorsal 449 
attention network supporting selective attention, and the lateral fronto-parietal network 450 
supporting phasic adaptive control. Using identical first and second level GLM analyses, neither 451 
T/C nor C/C carriers showed significant differences in network activation compared to T/T 452 
carriers in these three control networks (all t1343<1.2), nor was an effect observed when 453 
comparing T/C against both homozygous groups (all t1344<1.6, Figure 1C).  454 

 455 
To further investigate this neuroanatomical specificity, we complemented our volume of 456 

interest-based approach with whole-brain voxel-wise regression. Contrasting T/C carriers with 457 
homozygotes, we found significantly higher activity in T/C carriers across several cortical areas 458 
of the CO network (cluster-level corrected based on Monte Carlo permutation test, following an 459 
auxiliary uncorrected threshold p<0.005). These nodes comprised right and left anterior insulae, 460 
right and left anterior prefrontal cortices, and left dorsal anterior cingulate cortex (Fig 2, table 2). 461 
The clusters showed anatomical overlap and correspondence with all five cortical areas of the 462 
CO network as defined by the FIND atlas (Shirer et al., 2012). We found additional significant 463 
clusters largely located in sensory and motor processing regions (table 2) that may represent 464 
task-specific processing top-down modulated by higher cognitive control engagement of the CO 465 
network in heterozygotes. 466 

------ Figure 2------- 467 

 468 
Figure 2: The whole-brain map shows that activation differences across genotypes overlap with 469 
the CO network. Shown is the contrast T/C larger than homozygous T/T and C/C carriers in the 470 
IMAGEN cohort during the Stop Signal Task (p<0.005 auxiliary uncorrected threshold, corrected 471 
at cluster-level). Blue shows the CO volume of interest as in Fig. 1, red shows areas of higher 472 
activation in heterozygotes, displayed on a canonical single subject structural image, 473 
demonstrating the overlap in dorsal anterior cingulate, anterior prefrontal and anterior insula 474 
loci. 475 

 476 

--------- Table 2 here --------- 477 
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 478 
We tested whether an overdominant effect could be confirmed in the independent PNC 479 

fMRI dataset (n=228). This cohort completed an n-back task that requires subjects to monitor a 480 
continuous stream of abstract geometric images for specific stimulus repeats. In different block 481 
conditions, subjects pressed a button if they detected a predefined target image (0-back 482 
condition), if the current image was identical to the previous one (1-back condition), or if the 483 
current image was identical to the image two trials previously (2-back condition). Again, we 484 
investigated brain activity evoked by all estimable events (0-back, 1-back and 2-back trials). 485 
Strong engagement of the CO network was confirmed across all subjects irrespective of 486 
genotype (one sample t-test t227=12.50, p<10-10). Activation in the CO network was then 487 
compared across subjects with rs1044396 T/T, T/C and C/C genotypes (Figure 3A). Using 488 
multiple regression we tested for overdominance, i.e., T/C carriers > all other subjects. This 489 
analysis confirmed higher CO network activation in heterozygotes as compared to homozygotes 490 
(t221=2.77, p=0.006, 3.4% variance explained). 491 

 492 
Note that beyond increased demands on tonic alertness, the n-back task requires 493 

considerable working memory engagement. This task is thus commonly used to extract working 494 
memory processes associated with regions of the fronto-parietal network, especially the 495 
dorsolateral prefrontal cortex (Owen et al., 2005; D’Esposito and Postle, 2015). Indeed, while 496 
the fronto-parietal network was activated by this task (one sample t-test irrespective of genotype 497 
t227=4.31, p<10-4), no significant activation difference was found across genotypes in this 498 
network or the other two networks, dorsal attention and default mode networks, that we 499 
investigated as controls (all t221<0.8 for T/C against homozygotes, Figure 3B). This result again 500 
speaks to the anatomical specificity of the impact of rs1044396 on CO network activation. 501 
 502 

------ Figure 3 ------- 503 

Figure 3: Increased cingulo-opercular network activation in heterozygotes is replicated in the 504 
PNC cohort. A) Estimated brain activation averaged across the CO network volume of interest 505 
in the PNC cohort during the fractal N-back task is shown separately for each genotype. Higher 506 
CO network activation is observed in heterozygotes compared to homozygous T/T and C/C 507 
carriers. Boxplots are arranged as explained in Figure 1. B) The genotype contrast T/C > 508 
homozygotes is shown for activation in the CO network and three other networks for 509 
comparison (abbreviations as in Fig. 1). A significant overdominant effect was observed for the 510 
CO network only. Error bars show standard error. 511 
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 512 
CHRNA4 rs1044396 and tonic alertness 513 

After observing that the rs1044396 polymorphism is associated with the strength of 514 
activation in brain areas maintaining tonic alertness, we next asked whether this impact 515 
translates into inter-individual differences in behavioral measures of tonic alertness. Tonic 516 
alertness, the intrinsically maintained preparedness to process information and to respond, is a 517 
necessary prerequisite for more specialized cognitive functions such as selective attention and 518 
perceptual processes to build on. In contrast to selective attention and phasic stimulus-driven 519 
alertness, tonic alertness is continuous rather than transient (Posner and Boies, 1971), and has 520 
a general overarching nature, rather than operating with respect to specific information and 521 
sensory features (Robertson and Garavan, 2004). 522 

Note that the tasks for which fMRI data were available co-engaged multiple higher order 523 
cognitive processes, rendering the selective investigation of alertness difficult. Hence, to study 524 
behavior we turned instead to behavioral CPTs that selectively target tonic alertness. The 525 
IMAGEN study contains a visual CPT called Rapid Visual Processing, during which subjects 526 
(n=1499) continuously attend a visual stream of digits and press a button whenever a 527 
predefined target sequence of 3 digits is detected. Performance accuracy (A') was compared 528 
across rs1044396 genotypes. Paralleling the neuroimaging findings, we tested for presence of 529 
overdominance (i.e. T/C carriers > all other subjects) and found that heterozygotes showed the 530 
highest performance accuracy (t1485=2.28, p=0.023, 0.4% variance explained). For 531 
completeness, we also comprehensively investigated behavior during the fMRI SST task 532 
(individual Stop-Signal Delay, Stop-Signal reaction time, reaction time on Go trials, failures to 533 
stop, and left-right errors). We found no significant impact of genotype, presumably because of 534 
dependence of performance in this task on multiple overlapping cognitive control faculties, in 535 
line with lack of behavioral effects during the two previous neuroimaging studies of rs1044396 536 
(Winterer et al., 2007; Gießing et al., 2012). 537 
 538 
 We then attempted to replicate the presence of overdominance at rs1044396 on 539 
behavior in the independent PNC cohort. PNC uses a visual CPT during which subjects 540 
(n=2151) continuously attend a visual stream of figures made of seven lines and press a button 541 
whenever the lines form a digit or a letter. Performance accuracy (d') was compared across 542 
subjects with rs1044396 T/T, T/C and C/C genotypes (Figure 4B). This analysis confirmed 543 
higher performance accuracy in heterozygotes as compared to T/T and C/C carriers (t2144=3.18, 544 

p=0.0015, 0.5% variance explained). 545 
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------ Figure 4 ------- 546 
Figure 4: The impact of genotype on tonic alertness capacity shows an overdominant effect. 547 
Performance accuracy in Continuous Performance Tests (CPTs) as measured by perceptual 548 
sensitivity is shown for the IMAGEN (A) and PNC (B) cohorts for the three rs1044396 genotypes. In 549 
both datasets, heterozygotes performed better than homozygote carriers of the major (“T”) or minor 550 
(“C”) allele. Boxplots are arranged as explained in Figure 1. 551 
 552 
Meta-analysis of overdominance 553 
Finally, to investigate the cumulative evidence gained from IMAGEN and PNC cohorts for 554 
overdominance at rs1044396 (T/C > [T/T C/C]) in fMRI and behavioral data, we performed a meta-555 
analysis over the respective effect sizes. We found z=4.36, p=1.33*10-5 (total n=1586) for the fMRI 556 
measures of CO activation, and z=2.54, p=0.011 (total n=3650) for behavioral measures of 557 
alertness. The behavioral meta-analysis under-performed compared to the fMRI meta-analysis 558 
presumably due to heterogeneity of the behavioral measure across the two cohorts (behavioral: 559 
q=8.88, p = 0.003; fMRI: q=0.5, p=0.48). 560 
 561 
CHRNA4 overdominance and haplotypes 562 
To further elucidate whether the observed overdominant effect was due to allelic interaction at 563 
the SNP of interest, or resulting from heterozygosity at multiple neighboring locations (pseudo-564 
overdominance, see Discussion section), we performed haplotype association tests for the 565 
linkage disequilibrium (LD) block surrounding rs1044396, which includes 28 SNPs. Eleven 566 
haplotypes with frequency above 1% were considered for the analysis. Haplotype frequencies 567 
are comparable between IMAGEN and PNC, with H1 haplotype, which includes the rs1044396-568 
T allele, being the most frequent (38%) in both IMAGEN and PNC cohorts. We found no 569 
significant association of CO network activation levels or behavioral measures of alertness for 570 
haplotypes of the surrounding CHRNA4 region in either cohort (the omnibus tests were not 571 
significant, and no individual haplotype showed a significant association). This result speaks 572 
against pseudo-overdominance in favor of a true overdominant effect at rs1044396. 573 
 574 
CHRNA4 rs1044396 and gene expression levels 575 
The potential biological mechanisms underlying the observed impact of the synonymous SNP 576 
rs1044396 remains unclear. While the SNP has no effect on the amino acid level, the change 577 
from T to C disrupts a potential methylation site (CpG). Indeed, the entire exon 5 of CHRNA4 578 
overlaps with a CpG island (UCSC genome browser (Kent et al., 2002)). Thus, we investigated 579 
the dependence of CHRNA4 expression in neural tissue on this polymorphism using publicly 580 
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available data from the Genotype-Tissue Expression (GTEx) project (The GTEx Consortium, 581 
2015). Based on the focus of our neuroimaging investigations on large-scale cortical networks, 582 
we investigated the two available cortical regions Brodmann Area 9 (samples=92; in the vicinity 583 
to BA46 that encompasses the anterior prefrontal region of CO network; cf. Fig. 1A), and 584 
Brodmann Area 24 (samples=72; directly overlapping with the anterior cingulate cortex region of 585 
the CO network). Additionally, we analyzed the Tibial Nerve, because much higher tissue 586 
samples were available for it compared to brain tissues (samples=256). In all investigated 587 
neural tissue, we found a linear dosage effect, such that homozygous major allele carriers (T/T) 588 
had the highest expression levels, and heterozygotes showed intermediate gene expression 589 
(Brodmann Area 9 t=4.3, p=6*10-5, Brodmann Area 24 t=2.6, p=0.011; Tibial Nerve t=5.4, 590 
p=2*10-7). This analysis shows that rs1044396 is an expression quantitative trait locus (eQTL) 591 
modulating expression levels of CHRNA4. 592 
 593 
Discussion 594 
While the nicotinic system plays an important role in cognitive control processes, the 595 
contribution of genetic variability in this system to (nicotine consumption-unrelated) cognition 596 
has received scant attention (Greenwood et al., 2012). Furthermore, it is not well understood 597 
whether any specific brain structures are affected by the genetic makeup of the nicotinic system. 598 
Here, we investigated the relation between brain activity and behavior with a common SNP of 599 
the most prevalent, high affinity nicotinic receptor in the brain. Specifically, based on our prior 600 
findings of nicotinic receptor distribution (Picard et al., 2013), we expected the rs1044396 601 
genotype to impact neural activity in the CO network. Additionally, based on the previously 602 
established link between the CO network and sustained alertness (Sadaghiani and D’Esposito, 603 
2015), we expected an impact of this polymorphism on the ability to engage this cognitive 604 
control function. The CO network is known to show pervasive activation across numerous 605 
distinct cognitive tasks. This general activation profile allowed us to study the CO network in 606 
previously acquired fMRI experiments across two large cohorts. We found that during cognitive 607 
engagement the CO network, but not other control-related networks, showed higher activity in 608 
heterozygotes (T/C carriers) as compared to homozygous carriers of the major (T/T) or minor 609 
allele (C/C). Furthermore, we observed that heterozygotes performed at significantly higher 610 
accuracy in behavioral tasks that primarily depend on the ability to maintain alertness. Findings 611 
were consistent across both cohorts totaling N=1586 subjects for neuroimaging and N=3650 for 612 
behavior. These results therefore expand considerably upon encouraging, but relatively 613 
underpowered (N<50), neuroimaging studies of this SNP (Winterer et al., 2007; Gießing et al., 614 
2013). One of these studies found highest task-related activity in T/T homozygotes in 615 
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supplementary motor/anterior cingulate cortex and left postcentral gyrus (Winterer et al., 2007). 616 
Conversely, the other study, which did not include heterozygous subjects, found higher activity 617 
for C/C compared to T/T carriers in right middle temporal, but lower activity in right superior 618 
temporal gyrus (Gießing et al., 2012). Our results constitute the first report of overdominance in 619 
a CHRNA4 association study of brain activity and cognitive performance. This overdominant 620 
effect may be one contributor to discrepancy in impact from T vs. C alleles in previous 621 
behavioral and fMRI studies with smaller sample sizes.   622 
 623 
Possible mechanisms underlying overdominance 624 

What could be driving the observed overdominant effect? Overdominance is often 625 
missed because the most prevalent genetic models used in Genome-wide Association Studies 626 
(GWAS) rely on the a-priori assumption that alleles contribute to complex traits in a linear 627 
additive fashion. However, overdominance is expected to be very prevalent (Comings and 628 
MacMurray, 2000). One common source of overdominance is thought to be the interaction 629 
among multimeric protein products (Comings and MacMurray, 2000). The α4β2 nicotinic 630 
receptor is a pentamer and commonly contains two α4 subunits, readily suggesting functional 631 
interactions between these subunits. However, rs1044396 leads to a synonymous amino-acid 632 
substitution and it seems unlikely that such modification would affect α4 multimerization. A more 633 
plausible explanation could relate to a pseudo-overdominant effect (Draghi and Whitlock, 2015) 634 
due to the presence of multiple, cis-acting CHRNA4 SNPs in the LD block including rs1044396, 635 
which may favor the expression of a particular haplotype over-represented in rs1044396 636 
heterozygotes. However, according to our haplotype analysis we can exclude the existence of 637 
cis-interacting SNPs at the rs1044396-LD block. At the same time, we should not ignore the 638 
possibility of a hidden interaction between rs1044396 and another genetic/environmental factor 639 
(e.g., SNPxSNP interaction, SNPxEnvironment interaction). The possibility of a 640 
SNPxEnvironment interaction is supported by the fact that rs1044396 is followed by a “G” 641 
nucleotide, thus creating a potential methylation site (CpG) in rs1044396 C-allele carriers, which 642 
is absent in rs1044396 T-allele carriers.  643 
 644 
Overdominance and functional advantage of intermediate expression levels 645 
  A source for overdominance at rs1044396 could be an advantage of intermediate 646 
CHRNA4 expression levels, possibly modulated by the methylation site. One of the best-known 647 
examples of overdominance is the non-synonymous (Val Met) SNP rs4680 of the COMT 648 
gene. COMT encodes the dopamine-metabolizing enzyme catechol-O-methyltransferase, with 649 
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the Met variant (T-allele) showing a dosage effect on prefrontal dopamine concentrations. 650 
Association of cognitive performance with prefrontal dopamine often follows an inverted U-651 
shape. Thus, intermediate dopamine levels observed in heterozygous carriers result in better 652 
performance in specific cognitive tasks compared to homozygous C/C and T/T carriers (Cools 653 
and D’Esposito, 2011). An analogous effect could underlie our overdominance observations of 654 
CHRNA4, such that having one rs1044396 T-allele would result in intermediate expression 655 
levels of the corresponding α4 protein. This interpretation is strongly supported by our finding 656 
that rs1044396 is an eQTL for CHRNA4, resulting in intermediate gene expression levels in 657 
heterozygotes. Since CHRNA4 likely affects receptor sensitivity to acetylcholine (Eggert et al., 658 
2015), intermediate expression levels might be optimal for certain functions such as those 659 
underlying maintenance of tonic alertness, resulting in heterosis (superior phenotype of 660 
heterozygotes). 661 
 662 

The optimal expression level however, might be dependent on the cognitive function 663 
under investigation. In the context of COMT, the ideal prefrontal dopamine level (i.e., the peak 664 
of the inverted U-shape function) is task-dependent, resulting in discrepancies across COMT 665 
association studies (Cools and D’Esposito, 2011). An inverted U-function could drive a similar 666 
task-dependence for rs1044396 effects and explain the contradictory reports in behavioral 667 
association studies (Störmer et al., 2012). While the high density of α4β2 receptors in the CO 668 
network suggests an especially prominent role of CHRNA4 polymorphisms in sustained 669 
alertness, other cognitive control functions are likely affected as well. The association of 670 
rs1044396 genotype with performance might differ for tasks that primarily rely on sustained 671 
alertness (such as CPT tasks studied here) compared to those targeting phasic and selective 672 
control functions such as spatial attention or cued orienting investigated in previous studies 673 
(Greenwood et al., 2005, 2005; Espeseth et al., 2010). Such task-dependence may also explain 674 
the different findings in the two previous brain imaging studies of rs1044396 that focused on 675 
selective attention tasks (Winterer et al., 2007; Gießing et al., 2012). 676 

 677 
Limitations  678 

One limitation to making use of previously acquired datasets is that we were not able to 679 
administer an ideal task specific to tonic alertness. Rather, we had to interrogate tonic alertness 680 
as a cognitive control function that was common to the cognitively demanding tasks examined 681 
here. The available neuroimaging tasks heavily involved more specific functions such as 682 
response inhibition (Stop-Signal task in IMAGEN) and working memory (N-back task in PNC) in 683 
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addition. This co-engagement of cognitive functions limits an unequivocal interpretation of the 684 
neuroimaging effects as tonic alertness. However, the fact that two very different tasks resulted 685 
in comparable overdominant effects supports the interpretation that rs1044396 impacts an 686 
omnipresent cognitive control function shared across the respective tasks. The observation of 687 
overdominant effects in behavioral CPT procedures that selectively target tonic alertness 688 
suggests that this general control function might constitute alertness.   689 
 690 
 Another potential limitation of our study, and a difference from previous association 691 
studies of rs1044396, is the subjects’ age. The IMAGEN and PNC cohorts consist of 692 
adolescents and young adults, while the average age in previous behavioral studies has 693 
commonly spanned mid-30s and higher (Greenwood et al., 2005; Parasuraman et al., 2005; 694 
Reinvang et al., 2009). It is conceivable that the genotype effects observed in our cohorts 695 
change across the lifespan beyond the age range that we investigated. This question should be 696 
addressed in future studies using neuroimaging and genetics cohorts at other ages. A potential 697 
difference in CHRNA4 genotype effect between teen-aged subjects and older subjects would 698 
provide an important step forward in understanding genetic contributions to individual brain 699 
development during puberty. 700 
 701 
Finally, the hypothesis-driven investigation of a single common SNP may present a potential 702 
limitation in terms of overall functional impact. Common SNPs generally have small effect sizes, 703 
and are only a small piece of a large picture in the explanation of complex traits and their neural 704 
substrate. 705 
 706 
Conclusions 707 

In this association study of the high-affinity nicotinic receptor α4β2 in two large cohorts, 708 
we establish the importance of the CO network in mediating neuromodulatory effects of 709 
acetylcholine on cognition. We further provide a piece of the genetic puzzle underlying inter-710 
individual differences in the foundational ability to maintain alertness. These insights into the 711 
role of genetic variability in brain activation and cognitive control may help understand how 712 
genetic changes translate into aberrant behavior in various disorders of cognitive control. This 713 
line of work may facilitate individualized medicine in the future by informing how particular 714 
neuropharmacological treatments will affect individual patients’ brain activity and cognition 715 
based on their genotype. The specific study of nicotinic receptors can further lend insights into 716 
the basis of individuals’ susceptibility to nicotine addiction as it depends on brain activity and 717 
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cognitive control profile. In summary, the current findings establish a connection between 718 
CHRNA4 genotype, CO network activation and sustained alertness, providing insights into 719 
brain-behavior relations and how genetics shapes this relation. 720 
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Table 1: Demographics and genotype breakdown of included subjects 

 IMAGEN cohort PNC cohort 

 fMRI Behavioral fMRI Behavioral 

T/T carriers 354 (189 females) 403 (209 females) 66 (37 females) 608 (333 females) 

T/C carriers 671 (340 females) 751 (383 females) 111 (55 females) 1077 (573 females) 

C/C carriers 333 (166 females) 345 (168 females) 51 (25 females) 466 (250 females) 

Total 1358 (695 females) 1499 (760 females) 228 (117 females) 2151 (1156 females) 
 

Age (years) 14 0 14 0 16.9 1.8 16.7 1.9 
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Table 2: Contrasting task-evoked activity between T/C carriers and homozygotes 

 MNI x y z 
coordinates 

Peak 
t1344 

Peak p Cluster size 
(voxels) 

Corrected 
cluster p* 

CO Network      
 Anterior insula - Right 

                        - Left 
                        - Left 

36  20  -5 
-45  11  -2 
-33  17  -8 

4.22 
4.16 
4.52 

<5*10-5 

<5*10-5 

<5*10-5 

95 
54 
14 

0.0004 
0.002 
0.040 

 Anterior prefrontal - Right 
                              - Left 

30  47  19 
-30  50  7 

3.52 
4.50 

<5*10-4 

<5*10-5 
14 
22 

0.040 
0.017 

 Dorsal anterior cingulate - Left -6   23  31 3.50 <5*10-4 13 0.046 
       
Non-CO regions      
 Precentral gyrus - Left -51  -10  40 4.0 <5*10-5 38 0.005 
                                   - Right 33  -25  49 4.43 <5*10-5 19 0.023 
                                   - Right, inferior 57  -1   24 3.81 <5*10-4 17 0.028 
 Cuneus - Right 18  -78  31 3.68 <5*10-4 30 0.010 
 Lingual gyrus - Left -18  -49   4 4.16 <5*10-5 28 0.010 
 Putamen - Left -21   8    4 3.83 <5*10-4 20 0.021 
 Superior temporal gyrus - Left -66  -37  17 3.83 <5*10-4 18 0.025 
* Permutation-based, following an auxiliary uncorrected threshold p<0.005 
 

 










