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This paper discusses the implementation of an intelligent navigation system for an 

autonomous unmanned surface vessel (USV). The focus is developing a multiple 

sensor data acquisition and fusion system to provide accurate and continuous 

information on positions, speeds and courses of the USV itself and also dynamic 

obstacles known as target ships (TSs). For USV’s autonomous navigation, a Global 

Positioning System (GPS) receiver, low-cost sensors for dead reckoning (DR) and 

various types of electronic compasses are employed; For TS’s localisation, the 

Automatic Identification System (AIS) information has been simulated to estimate and 

predict the positions of TSs over time. Simulations and practical trials are provided to 

demonstrate the effectiveness of the proposed system.  
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1. INTRODUCTION. Autonomous surface vehicles (ASVs) and unmanned vessels 

(UVs) are being developed by maritime industries to benefit military operations and 

to provide cheaper transport of cargos. Without deploying a human operator on-board, 

certain benefits are potentially achieved including low operating costs, reduced 

exposure of humans to risk and decreased energy consumption for most missions. 

Developing a robust autonomous navigation system provides a huge challenge for 

researchers and engineers that must overcome if ASVs or UVs are to become fully 

autonomous. A typical autonomous navigation system normally includes three 

different modules, i.e. data acquisition module (DAM), path planning module (PPM) 

and advanced control module (ACM). Figure 1 shows a typical structure of such 

system. The DAM acquires information about the own USV’s position, speed, attitude 

etc. using various sensors such as Global Positioning System (GPS) receivers, sensors 

for dead reckoning (DR), electronic compasses and speed logs. The DAM also 

perceives the surrounding environment and obtains target ships (TSs) positions from 

the Automatic Identification System (AIS) and marine radar. A large amount of sensor 

data is obtained by the DAM so proper data merging and fusion must occur before 

generating a synthetic picture or map of the surrounding field. Based upon the map 

built up by the DAM, the PPM algorithm has the responsibility to generate a safe path 

(path planning) for the vessel. The generated safe path contains a set of waypoints, 

which are used by the ACM as reference points to guide the unmanned vessel with 

security. The purpose of the ACM is to ensure that the vessel adheres to the safe path 

by controlling rudder, propellers and thrusters. 
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Figure 1 Navigation System Structure 

 

In this paper, the DAM is detailed demonstrated. Inputs to this module are sensor data 

from GPS receiver, accelerometer, gyroscope, AIS receiver, radar and electronic 

compasses, and the output from this module is a navigation map of the dynamic 

environment. By using a number of marine sensors, the system will obtain large 

amount of navigational data with low accuracy and frequent disturbances. Therefore 

optimal estimation techniques are required to be applied as the core of the DAM to 

accomplish data fusion process. As shown in the schematic diagram (Figure 2), the 

DAM is built on an embedded hosting platform that incorporates the navigational data 

acquisition and fusion stages. Information accuracy from raw sensor measurements 

will at times be poor considering the sensor and equipment limitations and the 

environmental effects, so consistent and reliable data is likely to be compromised. An 

optimal estimation algorithm based on the Kalman filter (KF) techniques has 

therefore been developed and employed to improve signal accuracy. However, as its 

performance relies upon system reliability a fuzzy multi-sensor data fusion process is 

employed to enhance system robustness. Collision prevention sensors (e.g. AIS 

receiver, marine radar) are employed to detect dynamic obstacles around the USV, e.g. 

TSs. Before developing the data management process for AIS and radar information, 

the AIS data is first decoded and employed to make estimations and predictions of 

TSs’ positions in this paper since it tends to give more reliable information as 

compared to the marine radar. The final stage will be to generate a synthetic map with 

all acquired data from previous processes.  



 
Figure 2 Data Acquisition Module Schematic Diagram 

 

 

2 DAM: OWN USV DATA FUSION. Multi-sensor data fusion (MSDF) for OS’s 

navigation is advancing in recent years; normally a multi-sensor navigation system is 

hybrid with both Global Navigation Satellite System (GNSS) and DR system. Most of 

these integrated systems employ a GPS receiver, several inertial sensors and maybe 

an electronic compass. Some advanced systems would also include sensors like an 

odometer or even a camera. Caron et al. (2007) proposed particle multi-data sensor 

fusion algorithms for land vehicle, and concentrated on observe sensors failure and 

integrated multiple sensors to improve unreliable GPS information. Jared and Gerard 

(2011) proposed several data fusion algorithms for a GPS receiver and several IMUs, 

which provide good performance on reducing GPS position error. Li et al (2014) also 

developed a GPS/INS/Odometer integrated system for a land vehicle, which can 

generate both accurate positions and speed information.  

 

Compared to a land vehicle, ships at sea are normally operated at a constant speed and 

courses are almost the greatest cause of their positions change. Therefore, courses 

determination is particularly important in developing the navigation system of the 

USV. In this study, a GPS receiver, an inertial measurement unit (IMU) that composes 

DR sensors (accelerometer, gyroscope) and three different electronic compasses are 

employed to generate the own USV’s navigational data, i.e. positions, speeds and 

courses. At the beginning of the system, all sensors are connected so the system reads 

data and applies appropriate conversions to establish a coordinate frame. The position 

measurements are provided by the GPS receiver, which measures the distance to the 

satellites by comparing the time difference of the signal transmitting to compute 

absolute positions; the course measurements are formed by electronic compasses, 

which measure the earth’s magnetic filed to compute the USV’s directions; the IMU 

provides acceleration and rotation rates of the USV to calculate its further positions 

and courses. Then proper optimal estimation techniques, e.g. the KF are applied to 

reduce sensors’ errors and generate optimal estimated positions, speeds and courses of 

the own USV. Finally, a trajectory of the own USV will be produced based on those 

data. 

 

  2.1. Kalman Filter Implementation. The KF is a popular technique applied to 

navigation algorithms as an optimal estimator for linear stochastic system (Hu et al, 

2003). In the Kalman filter, a standard stochastic-deterministic state-space set of 

equations is used to describe the predictive and measurement (observation) model pair 



as: 

{
𝒙(𝑘) = 𝑨 𝒙(𝑘－1) + 𝑩 𝒖(𝑘－1) + 𝒘(𝑘－1)

𝒛(𝑘) =  𝑯 𝒙(𝑘) + 𝝂(𝑘)
  (1) 

 

where 𝑥 is the state vector; matrix 𝑨 relates the previous state 𝒙(𝑘 − 1) to the 

current state 𝒙(𝑘); matrix 𝑩 relates the optional control input 𝑢; matrix 𝑯 relates 

state vector to the measurement 𝒛(𝑘); 𝒘 and 𝝂 are assumed to be white noise 

sequences, normally distributed with zero mean and standard deviations, i.e. 

𝑝(𝑤)~𝑁(0, 𝑄), 𝑝(𝑣)~𝑁(0, 𝑅). (Greg and Gary, 2011) 

 

The recursive KF algorithm shown in Figure 3 involves an iterative process with two 

steps, prediction and estimation. With the initial estimate of the state vector 𝒙̂(0) and 

its covariance 𝑷(0) = 𝑐𝑜𝑣{(𝒙(0) − 𝒙(0))(𝒙̂(0) − 𝒙(0))
𝑇
}, the predicted next state 

of system is calculated by the state equation, which is called Prediction or Time 

Update. Then the system introduces the measurement and estimates the optimal state 

by using the minimum mean square error (MMSE) method; this process is called 

Estimation or Measurement Update. After the optimal estimation, the system updates 

its covariance to reduce the error covariance, and loops back.  

 

 
 

Figure 3 Kalman Filter Process 

 

In this study, the KF is used to estimate the positions, velocities and courses of the 

own USV as well as the DR sensors’ bias. Considering an USV navigating in a 2D 

configuration space, the GPS receiver and electronic compasses measure positions 

and courses information respectively, while DR sensors provide the acceleration and 

rotation rates. Let 𝐴𝑖  & ω𝑖  represent the actual acceleration and rotation, the 

sensors’ constant bias is 𝑏 and unpredictive processing errors are 𝑤; 𝐴𝑜 and ω𝑜 

denoting the accelerometer and gyroscope readings, can be given as: 

 

𝑨𝒐(𝑘) =  𝑨𝒊(𝑘) + 𝒃𝒂(𝑘) + 𝒘𝒂(𝑘)  (2) 

𝜔𝑜(𝑘) =  𝜔𝑖(𝑘) + 𝑏𝑔(𝑘) + 𝑤𝑔(𝑘)  (3) 

 

The positions and courses of the vehicle can be obtained by discrete integration of the 

acceleration rate and rotation rate:  



𝒑(𝑘) = 𝒑(𝑘 − 1) +
1

2
𝑇𝑠
2 × 𝑨𝒊(𝑘)  (4) 

𝜃(𝑘) = 𝜃(𝑘 − 1) + 𝑇𝑠 × 𝜔𝑖(𝑘)  (5) 

 

where 𝑇𝑠 denotes the sampling time and k is the number of time-steps. Substituting 

(2) and (3) into (4) and (5), Equation (4) & (5) can be rewritten as: 

 

𝒑(𝑘) = 𝒑(𝑘 − 1) +
1

2
𝑇𝑠
2 × [𝑨𝒐(𝑘) − 𝒃𝒂(𝑘) − 𝒘𝒂(𝑘)]  (6) 

𝜃(𝑘) = 𝜃(𝑘 − 1) + 𝑇𝑠 × [𝜔𝑜(𝑘) − 𝑏𝑔(𝑘) − 𝑤𝑔(𝑘)]  (7) 

 

The velocities of the USV can also be computed by the acceleration rate as: 

 

𝒗(𝑘) = 𝒗(𝑘 − 1) + 𝑇𝑠 × 𝑨𝒊(𝑘)
= 𝒗(𝑘 − 1) + 𝑇𝑠 × [𝑨𝒐(𝑘) − 𝒃𝒂(𝑘) − 𝒘𝒂(𝑘)] 

 (8) 

 

For the positions determination, the state vector 𝑥(𝑘) is defined with the required 

information (positions and speeds) as 

 

𝒙 = [𝑝𝑥   𝑝𝑦  𝑣𝑥   𝑣𝑦   𝑏𝑥   𝑏𝑦]
𝑇
  (9) 

 

where 𝑝𝑥 and 𝑝𝑦 represent the position, 𝑣𝑥 and 𝑣𝑦 are velocities and 𝑏𝑥 and 𝑏𝑦 

are the sensor bias in x and y direction respectively.  

 

The known control input 𝒖(𝑘) is the accelerometer readings at sampling time 𝑘 and 

𝑯 𝒙(𝑘) represents the actual position of the vehicle at time 𝑘, 𝒘(𝑘) and 𝝂(𝑘) are 

random variables which represent the accelerometer and GPS measurement noise 

respectively. 𝒛(𝑘) is the GPS reading with measurement error at time 𝑘: 

 

𝒛(𝑘) = [
𝑝𝑥(𝑘)
𝑝𝑦(𝑘)

] +  𝝂(𝑘) (10) 

 

Therefore the state-space set of equations is determined by Equations (4), (6), (8), (9) 

and (10). It describes the propagation of positions, velocities, as well as the 

unchanging nature of bias as below: 
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𝒙(𝑘) =  
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𝒖(𝑘 − 1) + 𝒘(𝑘 − 1)

𝒛(𝑘) = [
1 0 0 0 0 0
0 1 0 0 0 0

]  𝒙(𝑘) + 𝒗(𝑘)

 (11) 

 

For courses determination, the new state vector is defined as: 

 

𝒙 = [𝜃     𝑏]𝑇 (12) 

 



where 𝜃 denotes the USV’s course and b is the gyroscope bias.  

The control input 𝑢 is represented by the gyroscope reading and the following state 

equation is determined by Equation (7) and (12). 

 

[
𝜃(𝑘)
𝑏(𝑘)

] = [
1 −𝑇𝑠
0 1

] [
𝜃(𝑘 − 1)
𝑏(𝑘 − 1)

] + [
𝑇𝑠
0
]ω𝑜(𝑘 − 1) + 𝒘(𝑘 − 1) (13) 

  

The compass reading, the new observation 𝑧(𝑘), on the other hand provides a direct 

measurement of the course angle of the vehicle, can be modelled as: 

 

𝑧(𝑘) = 𝜃(𝑘) +  𝜈(𝑘) (14) 

 

  2.2. Fuzzy Multi-sensor Data Fusion (MSDF) System. The DAM also includes a 

fuzzy multi-sensors data fusion algorithm to provide robust navigational information 

for the system. The system employs the Federated filter architecture, which was first 

proposed by Carlson (1988). It is a two-stage filter architecture, each sensor is fused 

with the reference sensor and constitutes a final optimal estimation by a master fusion 

filter or a sensor management process. 

 

 
Figure 4 Federated Filter Architecture for the Fuzzy MSDF Algorithm 

 

As Figure 4 demonstrates, three independent electronic compasses represent local 

sensors; and a gyroscope is used as the reference. Local filter employs the Kalman 

filter implemented in the previous section. The designed fuzzy MSDF algorithm acts 

as a master fusion process to cope with possible sensor failures, by assigning a weight 

to each of the local KF state estimates, as illustrated in Figure 5. 

 



 
Figure 5 Fuzzy Multi-sensor Data Fusion Process 

 

The fused state estimate is then computed as: 

 

𝑥̂(𝑘) =∑𝑤𝑖(𝑘) 𝑥̂𝐾𝐹𝑖(𝑘)

3

𝑖=1

 (15) 

  

The decision making of the aforementioned weights is based on observation of the 

innovations sequence of each KF, where the innovations sequence of a KF is defined 

as: 

 

{𝑖𝑛𝑛(𝑘)} = {𝑧(𝑘) − 𝐻 𝑥̂(𝑘)} (16) 

 

that is the difference between the compass measurement and the predicted course 

angle at each time-step 𝑘. Under an ideal scenario, the innovations sequence should 

be comprised of a zero-mean, white noise sequence (Subramanian et al, 2009, Bijker 

et al, 2008). Therefore this sequence could be monitored to detect a failure in the 

correct estimation by one of the KFs. In order to monitor the innovations sequence, 

which in general is a random process and the individual value is meaningless, the 

simple moving average (SMA) of the innovations sequence of each KF is computed: 

 

𝑆𝑀𝐴(𝑘) =  
𝑖𝑛𝑛(𝑘) + 𝑖𝑛𝑛(𝑘 − 1) + ⋯+ 𝑖𝑛𝑛(𝑘 − 𝐾 + 1)

𝐾
 (17) 

  

where 𝐾 is the number of samples considered in the moving average. Since the SMA 

is, in the ideal case, a sum of zero-mean independent random variables, it is in itself a 

zero-mean random variable, and tends to be normally distributed by the Central Limit 

Theorem. However, its variance is 𝐾 times smaller than that of the innovations 

random variable. Thus, sporadic high values of the SMA are more improbable than 

for the innovations, and will almost only occur when the innovations stops being a 

white sequence. Hence it is chosen to indicate a compass fault in the KF estimate. In 

order to obtain a smooth decision process, the following fuzzy membership functions 

are defined: 

 

Negative function:  𝜇𝑁 = {

1 𝑖𝑓 𝑆𝑀𝐴 <  𝑆𝑀𝐴𝑁
𝑆𝑀𝐴/𝑆𝑀𝐴𝑁 𝑖𝑓 𝑆𝑀𝐴𝑁 ≤  𝑆𝑀𝐴 < 0

0 𝑖𝑓 𝑆𝑀𝐴 ≥ 0
 (18) 

 

Zero function: 𝜇𝑧 = {
1 − 𝑆𝑀𝐴/𝑆𝑀𝐴𝑁 𝑖𝑓 𝑆𝑀𝐴𝑁 ≤ 𝑆𝑀𝐴 < 0
1 − 𝑆𝑀𝐴/𝑆𝑀𝐴𝑃 𝑖𝑓 0 ≤ 𝑆𝑀𝐴 ≤ 𝑆𝑀𝐴𝑃

 (19) 

 

Positive function: 𝜇𝑃 = {

0 𝑖𝑓 𝑆𝑀𝐴 <  0
𝑆𝑀𝐴/𝑆𝑀𝐴𝑃 𝑖𝑓 0 ≤  𝑆𝑀𝐴 < 𝑆𝑀𝐴𝑃

1 𝑖𝑓 𝑆𝑀𝐴 ≥ 𝑆𝑀𝐴𝑃
 (20) 



 
Figure 6 Input & Output Membership Functions 

 

As indicated by the output fuzzy membership functions (Figure 6), the output to the 

fuzzy logic inference system is chosen to be a change in the weight of the filter, Δ𝑤, 

rather than the weight itself. This is to avoid brusque transitions in the overall 

estimate.  

 

Based on the afore described membership functions, the following fuzzy rules are 

established: 

 

Rule 1: If SMA negative then Δ𝑤 is negative 

Rule 2: If SMA is zero then Δ𝑤 is positive 

Rule 3: If SMA is positive then Δ𝑤 is negative 

 

Then, at each sampling time k, depending upon the value of the SMA, Δ𝑤 is 

defuzzified by applying Centroid method (Sameena et al., 2011) as follows: 

 

Δ𝑤⋇ = 
∫ 𝜇𝑖 𝛥𝑤 𝑑Δ𝑤

∫𝜇𝑖 𝑑𝛥𝑤
 (21) 

 

where 𝜇𝑖  represents the membership function ( 𝜇𝑁 , 𝜇𝑍 , or 𝜇𝑃 ), Δ𝑤⋇  is the 

defuzzified output and 𝛥𝑤 is the output variable.   

Once the Δ𝑤 has been calculated at time step k for each KF (Δ𝑤𝑖(𝑘), 𝑖 = 1,2,3), 

these values are normalised so that their sum equals to zero to ensure that the sum of 

the weights themselves remains one, 

 

Δ𝑤𝑖,𝑛(𝑘) = Δ𝑤𝑖(𝑘) −
1

3
∑Δ𝑤𝑗(𝑘)

3

𝑗=1

, 𝑖 = 1,2,3 (22) 

 

The resultant updated weights of each filter is given by: 

 

𝑤𝑖(𝑘) = 𝑤𝑖(𝑘 − 1) + Δ𝑤𝑖,𝑛(𝑘) , 𝑖 = 1,2,3 (23) 

 

The initial weights are assumed to be equal (𝑤𝑖 =
1

3
, 𝑖 = 1,2,3) and they are not 

modified until time instant 𝐾 has been reached, which is the number of samples 

required to compute the SMA. This novel fuzzy system could also be applied to other 

applications as long as more sensors could be integrated, e.g. several GPS receivers. 



3. DAM: TARGET SHIPS DETECTIONS. TSs navigational data fusion has 

analogous process as the own USV. But the data are obtained from different sensors; 

and require different data conversion and decoding process. In this paper, an AIS 

receiver, a collision avoidance sensor, is simulated to determine surrounding dynamic 

obstacles’ positions as well as to predict their positions during the AIS 

data-transmitting intervals.  

 

  3.1 AIS Data Decoding. The AIS is an automatic tracking system that is employed 

by both mariners and the vessel traffic services (VTS) for identifying and locating 

surrounding vessels. The AIS data normally provide static information, dynamic 

information, voyage related information and short safety information. Static 

information, such as the ship’s call sign, name and its Maritime Mobile Service 

Identity (MMSI) is permanently stored in the mounted AIS transponder. Dynamic 

information that contains the ship’s position, speed and course, is collected from the 

ship’s own navigational sensors, e.g. GPS receivers, odometer and electronic 

compasses, etc. Voyage related information that includes ship’s destination, 

Harzardous cargo type, etc. is set up at the beginning of the voyage (Lin, et al. 2008). 

Unlike other sensors that provide measurements in human readable ASCII characters, 

the AIS messages use 6-bit binary encoding for the bulk of the sentences to reduce the 

amount of data. Figure 7 indicates the flow of decoding an AIS message. Firstly, the 

valid characters in the AIS message are analysed and converted to the 6-bit binary to 

form a long-bit binary sentence. Then the message type can be determined from the 

first 6-bit and all the binary is further converted to decimal values according to the 

data position distribution of each message type. Finally, some information like ships 

name, destination need to be converted from the decimal values to corresponding 

ASCII characters. 
 

  

Figure 7 Flow chart of AIS Data Decoding 



  3.2. TSs positions Predictions. The AIS transponder autonomously transmits 

messages at different update rates depending on message types. The speed and course 

alteration will cause different reporting intervals of the dynamic information; the 

bigger the change is, the faster the message transmits. The information updating 

intervals can be as short as 2 seconds for the course change of a high-speed ship, 

while a 3 minutes interval would be generated for the ship at anchor. Therefore TSs’ 

positions predictions during the time intervals are valuable for the PPM to take 

actions of collision avoidance and a KF algorithm is applied to cope with this 

situation. Assume a TS is operating in a constant speed nearby the USV and may have 

a collision. The real time positions of this TS is required for the PPM to generate a 

safe path to avoid the collision. Hence, the system state vector can be defined as 

following: 

 

𝑥 = [𝑝𝑥   𝑝𝑦  𝑣𝑥   𝑣𝑦] 
𝑇 (24) 

 

where 𝑝𝑥  and 𝑝𝑦 represent the positions, 𝑣𝑥  and 𝑣𝑦  are velocities in x and y 

direction. As mentioned in section 2.1, the KF employs a prediction model and 

measurement model pair (Equation (1)). Then the state equation of the TS positions 

determination can be determined with the matrixes below: 

 

𝐴 =  

[
 
 
 
 
1   0    𝑇𝑠  0

0   1    𝑇𝑠  0

0   0     1    0

 0   0     0    1 ]
 
 
 
 

, 𝐵 =  

[
 
 
 
 
 
 
𝑇𝑠
2

2
0

0
𝑇𝑠
2

2
𝑇𝑠 0
0 𝑇𝑠 ]

 
 
 
 
 
 

 (25) 

 

where  𝑇𝑠 is the sampling period and the control input 𝑢(𝑘) is defined as: 

 

𝑢(𝑘) = [𝛼𝑥(𝑘) , 𝛼𝑦(𝑘)]
𝑇 (26) 

 

where 𝛼𝑥 and 𝛼𝑦 are zero-mean white noise in 𝑥 and 𝑦 directions to model the 

uncertain accelerations, which only causes small deviation for the velocities in 𝑥 or 𝑦 

directions. As aforementioned, the observations are provided by the decoded AIS 

messages, which give the absolute positions of the detected TS. Therefore, the system 

measurement model can be determined as: 

 

𝑧(𝑘) = [
1 0 0 0
0 1 0 0

] 𝑥(𝑘) +  𝜈(𝑘) (27) 

 

During each AIS information update interval, the KF algorithm only executes the 

Prediction process shown in Figure 3 for each sampling time, which generates 

possible positions of the TS so that the PPM is able to investigate whether the 

distance between the TS and own USV is in the safe range. This method is highly 

effective as the time interval will be long only when the movement of the detecting 

TS is stable. After the updated AIS measurement inputs to the algorithm, the KF will 

carry out its two-step process and reduces measurement noises to improve AIS data 

accuracy.  
 



4. RESULTS & DISCUSSIONS. This section is divided into two parts. The 

developed multi-sensor data fusion algorithm, was tested in practical trials; and the 

designed TS detecting and its positions predicting algorithm was simulated. 

 

  4.1. Practical Trial Results. Practical trials were launched on Springer USV at 

Roadford lake, Devon in April, 2014. It was a cloudy day with drizzles and the wind 

speed was 1-3.2m/s west. Three different electronic compasses, a GPS receiver, a 

low-cost IMU that consists of DR sensors were set up on the Springer via serial 

connections, as the input of the designed fuzzy MSDF system. The USV was operated 

in approximately 1.5 m/s and the duration for one trial was around 20 minutes. The 

sampling time for sensors to take measurements was 1 second. Three buoys were set 

up as waypoints, constituting a waypoint-tracking path for the USV. 

 
 

Figure 8 Trial results for USV trajectory with three buoys and signal blockage 

 

As indicated in the trajectory in Figure 8, the USV came across sequentially three 

waypoints and returned back to the first one. GPS raw measurements were manually 

blocked for the two short time periods (as highlighted by the green circles in Figure 8). 

In actuality, the USV hit the 1st white buoy while bypassed the other two; whereas the 

raw GPS positions (black line) indicate differently. As opposite to the raw GPS 

positions, the KF estimated positions match the practical situation. Note also from the 

enlarged figure, the raw GPS measurements fluctuate all the time while the KF 

estimation can provide much smoother results. In addition, the KF estimations are 

able to recover the trajectory while the GPS signal had been blocked (indicated by the 

reproduction of trajectory when GPS signal is unavailable). 

 



 
Figure 9 Trial results: SMA of the innovations sequence of each KF 

 
Figure 10 Trial Results: KF estimates of the course and fuzzy data fusion estimates 

 

At time step k = 180, the SMA values of the innovations of the KF2 start to deviate 

largely from zero (Figure 9), which indicates malfunctions of Compass 2 since then. 

As shown in Figure 10, although the associated KF2 of Compass 2 gives incorrect 

estimations, the fuzzy master filter still gives a proper fused result in the presence of 

sensor failure. Due to the fact that in practical experiment, the actual courses of the 

USV are unpredictable, it is ambiguous to tell whether the fuzzy master filter provides 

better results than any KFs. However, evidence does show that the fuzzy master filter 

can aggregate different fuzzy inputs and discard sensor malfunctions. 

 

  4.2. Simulation Results. The simulation area is the Portsmouth Harbour. It has first 

been converted into a binary map, which has the dimension of 500 pixels * 500 pixels 

representing a 2.5 km * 2.5 km area (1 pixels = 5 m). The simulated TS is assumed to 

be operated in a constant speed and an invariable course via a straight line. AIS 

information update interval is simulated to be 1 minute and the total operational time 

is 10 minutes. The sampling time for the position prediction is assumed to be 12 

seconds. 

 



 
Figure 11 Simulation Results: KF estimates and predictions for a moving TS 

 

 
Figure 12 Simulation Results: KF estimation errors in x and y axis  

 

As demonstrated in Figure 11, 5 possible positions (green dots) are predicted by the 

KF during each AIS data update interval and all the predictions are along the 

simulated trajectory, which proves that the algorithm is able to provide effective 

positions without AIS measurement in the certain time period. In the meantime, 10 

KF estimated positions are obtained after each AIS data update. From the enlarge 

figure, it is evidently that the KF has a good performance on improving AIS data 

accuracy since the estimated positions (blue star) are closer to the actual positions 

(black line). It is further verified from Figure 12, the position errors in x and y 

directions are reduced from almost 9 meters and start to fluctuate within a narrow 

range along the zero line. All the evidences indicate the KF algorithm for the AIS data 

is efficient for both detecting the TS and predicting its positions.  

 

 

 

 



5. CONCLUSIONS & FUTURE WORK. In this paper, the sensor data managements 

for identifying own USV’s navigational information as well as detecting the moving 

TS are demonstrated. The developed data acquisition and fusion system can recover 

the trajectory of the USV when GPS signal is unavailable in a short time interval; 

improve GPS data accuracy by analysing error covariance of the raw data to reduce 

unpredicted sensors error; distribute the weights of the estimations from each KF 

automatically by analysing the innovation sequences and produce continuous final 

optimal estimation for the USV course; reduce AIS measurement error and make 

predictions for TSs positions in the AIS data updating intervals to assist the PPM. 

Future work upon this study should include the data merging and fusion process for 

the AIS and the marine radar as well as the synthetic map generation.  
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