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1 Multivariate estimation

1.1 An important result

In order to evaluate the expectations required, we will need to be able to compute expressions of the form
btr(A(M⊗Σ)B), where A and B are np× np matrices, M is an n× n matrix and Σ is a p× p matrix. We
continue to use the notation Ai,j to denote the ith by jth block of A, where these blocks are p× p matrices.
For any three np× np matrices A, B and C, we have

(ACB)k,l =

n∑
i=1

n∑
j=1

Ak,iCi,jBj,l.

This is just the law of matrix multiplication applied to blocks. Then taking C = M ⊗Σ so that from the
definition of the Kronecker product, Ci,j = mijΣ, we have

(A(M⊗Σ)B)k,l =

n∑
i=1

n∑
j=1

mijAk,iΣBj,l.

To obtain the block trace, we sum the matrices along the main diagonal. Hence to obtain the block trace
we take l = k to obtain the matrices along the main diagonal and sum over k so obtain

btr(A(M⊗Σ)B) =
n∑
i=1

n∑
j=1

n∑
k=1

mijAk,iΣBj,k. (1)

The use of equation (1), with the appropriate matrices, almost immediately results in the expected values
required in section 4.

1.2 The estimating equations

In this section we prove the results given in section 4 of the main paper. We do not redefine all quantities or
give the size of all matrices and vectors, see the main paper for these details. As in the univariate approach

of Jackson et al. (2016), we will base our estimation on the two quantities btr(Q) and
D∑
d=1

btr(Qd) where D

is the number of different designs. We match these quantities to their expectations to estimate the unknown
variance parameters. We therefore need to evaluate E[btr(Q)] and E[btr(Qd)].

1.2.1 Evaluating E[btr(Q)] and deriving the first estimating equation

As in Jackson et al. (2013), by direct calculation we have that WHW−1 = HT and ((Inp − H)T )2 =
(Inp − H)T ; if W is not invertible because outcome data are missing then we can justify the use of the
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identity WHW−1 = HT and the expectation that follows in the limit, where the precision p attributed to
missing data tends towards zero from above, p → 0+ (Jackson et al., 2013). Furthermore we can use the

identity W = S−1 in this limit. We also have that Y− Ŷ = (Inp−H)Y and E[Y− Ŷ] = 0. Hence from the

definition of Q we have E[Q] = WVar[Y − Ŷ]R. From these results, taking the variance of Y from model
(3) of the main paper, we can evaluate

E[Q] = A(M1 ⊗Σβ + M2 ⊗Σω)B + B,

where
A = (Inp −H)TW,

and
B = (Inp −H)TR.

Here A and B are known np× np matrices. For estimation purposes we require E[btr(Q)] = btr(E[Q]). We
write Ai,j and Bi,j to mean the ith by jth blocks of A and B respectively, so that Ai,j and Bi,j are both
p× p matrices. Then, using (1), we have

E[btr(Q)] =

n∑
i=1

n∑
j=1

n∑
k=1

m1ijAk,iΣβBj,k+

n∑
i=1

n∑
j=1

n∑
k=1

m2ijAk,iΣωBj,k + btr(B).

1.2.2 Evaluating E[btr(Qd)] and deriving the second estimating equation

Then we follow very similar, but much simpler, arguments as in the previous section to derive the result
that we require. We define design specific hat matrices

Hd = Xd(X
T
d WdXd)

−1XT
d Wd, (2)

and also design specific pnd × pnd A and B matrices

Ad = (Ipnd
−Hd)

TWd,

and
Bd = (Ipnd

−Hd)
TRd.

In equation (2) we take the matrix inverse to be the Moore-Penrose pseudoinverse. This is because, in the
presence of missing outcome data, the design-specific regression corresponding to this hat matrix may not
be identifiable (for example, if studies of a particular design do not provide data for one or more of the
outcomes). In such instances this design may still provide information about some of the unknown between-
study variance components and so it is not desirable to exclude the design from this part of the estimation
procedure. By computing (2) using this pseudoinverse we obtain a suitable hat matrix (Searle, 1971; page
221, his equations 126 and 127). Furthermore all the necessary properties of the hat matrix are retained
when using the pseudoinverse when computing (2) and we retain unbiased fitted values (Searle, 1971; page
181).

Following a simpler version of the arguments in the previous section and the main paper, taking the
variance of Yd from model (5) of the main paper, and upon applying the vec operator, we obtain

vec(E[btr(Qd)]) = Cdvec(Σβ) + Ed, (3)

where

Cd =

nd∑
i=1

nd∑
j=1

nd∑
k=1

md
1ijB

T
d,j,k ⊗Ad,k,i,

and
Ed = vec(btr(Bd)).

We then sum equation (3) across all designs in order to obtain

vec

(
E[

D∑
d=1

btr(Qd)]

)
=

(
D∑
d=1

Cd

)
vec(Σβ) +

D∑
d=1

Ed. (4)
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1.3 Special cases of the estimation procedure (an extended version of section
4.5)

The proposed method reduces to two previous methods in special cases. If all studies are two arm studies
(and so provide a single contrast) and consistency is assumed then the proposed method reduces to the
matrix based method for multivariate meta-regression (Jackson et al., 2013). This is because we then have
Σω = 0, so that the second triple sum in our expression for E[btr(Q)] is zero; furthermore the first triple
summation in this expression can be reduced to a double summation, because M1 is an identity matrix for
multivariate meta-regression (Jackson et al., 2013; their equation A.1.).

Furthermore the proposed multivariate method also reduces to the univariate DerSimonian and Laird
method for network meta-analysis (Jackson et al., 2016) when p = 1. This is because, in one dimension, the
Q matrices all reduce to the Q random scalars used in the estimation procedure suggested by Jackson et al.
(2016). This can be shown by replacing the block trace operator with the more familiar trace of a matrix
(btr is the trace when p = 1) in the definition of the Q matrices and using the identity tr(AB) = tr(BA).
These two special cases are in turn generalisations of methods such as that proposed by DerSimonian and
Laird (1986).

There is however one caveat when stating that the new multivariate method reduces to the univariate
method proposed by (Jackson et al., 2016) when p = 1. This is because the account of Jackson et al. (2016)
does not mention the possibility of missing outcome data and so we have implicitly taken all data to be
observed in the argument used in the previous paragraph.

2 Example of matrices M1 and M2

A referee suggested that we provide a concrete example of matrices M1 and M2, in order to clarify how
they are computed. We take such an example from Law et al. (2016) which comprises thirteen studies with
the following study designs: AB, BC, BC, BC, BC, BC, BD, BD, CD, CD, ABD, BCD, BCD. This is the
same type of network as used in the simulation study below. The two matrices for this example are given
explicitly below, where we can see that these matrices contain blocks that are comprised of blocks of Pcd ,
where in M1 the blocks are formed by studies and in M2 the blocks are formed by designs.

M1 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1

2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1

2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1

2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 1
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M2 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1

2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1

2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1

2 1 1
2

0 0 0 0 0 0 0 0 0 0 0 0 1
2 1 1

2 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1

2 1 1
2

0 0 0 0 0 0 0 0 0 0 0 0 1
2 1 1

2 1


3 Simulation study

A simulation study was performed in order to investigate the use of the proposed estimation method. This
simulation study was based on the second example of Jackson et al. (2016), in order to motivate it by a
real example that we are already familiar with. This example involves 13 studies, four treatment groups and
six designs (one AB study, five BC studies, two BD studies, two CD studies, one ABD study and two BCD
studies). Bivariate (p = 2) datasets were simulated assuming 13 studies of these particular designs, where
all within-study variances (the entries on the main diagonal of S) were sampled with replacement from the
within-study variances from the real example. Although the mean of these within-study variances is 0.39,
the typical within-study variance proposed by Higgins and Thompson (2002), their equation (9), is 0.24.
All within-study correlations between different contrasts involving the same outcome, or different outcomes
involving the same contrast, were taken to be 0.5. Within-study correlations between different contrasts and
outcomes were taken to be 0.25. Data were simulated from model (6) of the main paper throughout.

Twenty different sets of Σβ and Σω were used; the basic parameters were all set to zero but this is
immaterial because the estimation of the variance components is location-invariant and the point estimation
of the means is just translated when using an alternative sets of treatment effects. One thousand simulated
datasets were produced for each combination Σβ and Σω, so that 20,000 datasets were simulated in total.
For fifteen of the simulation runs, both between-study variances (the main diagonal entries of Σβ) were set to
0.24, so that the extent of the between-study heterogeneity is comparable with the within-study variation;
this is the case for the real data where the point estimates of the between-study variance are similar to
the typical within-study variance (Jackson et al., 2016). In these fifteen simulation runs the inconsistency
variances (the main diagonal entries of Σω) were set to either 0 or 0.12, to explore the cases where consistency
assumptions are either true or violated, but where the departure from consistency is not very severe; since it
is sometimes argued that considerable inconsistency should strongly discourage the use of models for network
meta-analysis (Jackson et al., 2016), we wished to investigate only relatively minor inconsistencies in the
networks. In runs sixteen to nineteen we explore the use of two different between-study variances (0.12 and
0.6) and two different inconsistency variances (0.06 and 0.24). Finally in run twenty we explored the extreme
case where the between-study variances are large (both 0.6), a very strong between-study covariance (0.59)
and inconsistency variances of 0 (so that the consistency assumption is true). With very considerable and
highly correlated between-study variance components, and no inconsistency, run twenty was performed in
order to try to create the circumstances where borrowing of strength (Jackson et al, 2015a) is more likely to
occur. We analysed all datasets using both the proposed multivariate method and the previous univariate
method (Jackson et al., 2016), where the univariate method was applied to both outcomes separately. We
also applied both the univariate and multivariate methods under the assumption of consistency, in order to
explore the implications of making this assumption.

To investigate a missing data scenario, for all 20,000 datasets we removed the estimated effect for the
second outcome for four of the five BC studies. This was done because there is no direct comparison
of treatments A and C in the simulated networks, because these include only the six designs in the real
dataset. Hence the identification of the basic parameters δAC1 and δAC2 must rely greatly on the BC studies.
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By removing four estimated effects in this way, we hoped to create a situation where borrowing of strength
for δAC2 was likely in the incomplete datasets. We performed all univariate analyses using the univariate
code provided previously by Jackson et al. (2016). Using univariate code reduces computation time when
fitting 40,000 univariate network meta-analysis models.

The simulation study results are extensive and are shown in eight tables in these supplementary materials.
Supplementary Tables 1 and 2 show that, for complete data and before truncation, both the univariate and
multivariate estimates of the unknown variance components are unbiased. Truncation results in bias however.
This is as expected for the unknown variance parameters, because truncation forces their estimates to be
positive. However the results suggest that the multivariate approach may be helpful in reducing (but not
removing) the upward bias in the truncated estimates of the inconsistency variances. Similar observations
apply in the missing data scenario in Supplementary Tables 3 and 4. Supplementary Tables 5 and 6 show
that the coverage probabilities of nominal 95% confidence intervals for the basic parameters are close to the
correct level but also suggest that the multivariate approach may help to more accurately attain this level.
This is as expected, because by using more data in the multivariate setting we can expect the asymptotic
approximation of taking the variance components as known to be more accurate. Supplementary Table 7
shows that analyses under the consistency assumption fail to achieve the nominal significance level. This is
even the case when the consistency assumption is true, because the extent of the between-study heterogeneity
is quite large and the uncertainty in the between-study variance parameters is not taken into account. The
extent to which the consistency analysis fails to achieve the nominal coverage probability probability is
comparable to the univariate results in Jackson et al. (2016) when the inconsistency there is mild.

Finally, Supplementary Table 8 shows the ratio of empirical variances of the multivariate and univariate
estimates of the basic parameters. For complete data these ratios are close to 100% so that, as expected,
there is little or no borrowing of strength. Recalling that the incomplete data scenario was intended to
allow borrowing of strength for δAC2 , in Supplementary Table 8 we can see some evidence of percentage
efficiencies of slightly less than 100% for this parameter in runs where the correlation in the data is larger.
For the final run, which we performed in order to try to create a situation where borrowing of strength may
occur, we obtain a percentage efficiency of 88% for δAC2 in the missing data scenario, which is appreciably
smaller than all other values in Supplementary Table 8 (the second smallest value is 95%). Hence we have
achieved the most borrowing of strength exactly where we expected it. This corresponds to a borrowing of
strength statistic (Jackson et al, 2015a) of 12%. This may appear small but it should be recalled that we
only removed four univariate estimates to achieve this and furthermore that the within-study correlations
are not large. For example, Jackson et al. (2015a) consider a bivariate meta-analysis where all within-study
correlations, and the between-study correlation, are close to one, and further that one outcome is missing
in 17 out of 31 studies (and is complete for the the other outcome). Even then, the borrowing of strength
statistic is only around a half (53%; Jackson et al (2015a), their example 2) for the outcome with missing
data. Our borrowing of strength statistic of 12% is therefore proof of concept that the multivariate approach
can provide more accurate inference than the univariate approach, in situations that facilitate this.

In order to try to encourage a little more borrowing of strength, and also to test the numerical algorithms
when not all design specific regressions are identifiable (see section 4.3.2), we repeated the simulation study
for the final run where the second outcome was removed for all five BC studies; Hd is then not computable
for the BC design using standard matrix inversion and it is necessary to use the Moore-Penrose pseudoinverse
in this instance. As expected, the estimation performed very similarly to the missing data scenario described
above, and the slightly larger borrowing of strength statistic of 13% was obtained for δAC2 .

To summarise, the simulation study suggests that the multivariate approach has three main advantages
over the univariate approach proposed by Jackson et al. (2016): it can help reduce the upward bias of esti-
mates of the inconsistency variance, it can help better attain the nominal coverage probability of confidence
intervals and it can result in borrowing of strength. The better nominal coverage probability provided by
the multivariate approach can be explained because multivariate analyses incorporate more information so
that the large sample normal approximations are then more accurate.
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4 Obtaining the within-study covariance structure for the RRMS
example

Denote data in a three-arm study i with treatments A,B,C with three outcomes 1, 2, 3 by
Ydi = (y1AB , y2AB , y3AB , y1AC , y2AC , y3AC)T , where yjbk represent estimates of difference in treatment effect
of treatment k vs treatment b on outcome j. Then the within-study covariance matrix has the following
form (study index i have been dropped in the matrix elements):

Sdi =


σ2
1AB σ1ABσ2ABρw12 σ1ABσ3ABρw13 ψ14 ψ15 ψ16

σ1ABσ2ABρw12 σ2
2AB σ2ABσ3ABρw23 ψ24 ψ25 ψ26

σ1ABσ3ABρw13 σ2ABσ3ABρw23 σ2
3AB ψ34 ψ35 ψ36

ψ41 ψ42 ψ43 σ2
1AC σ1ACσ2ACρw12 σ1ACσ3ACρw13

ψ51 ψ52 ψ53 σ1ACσ2ACρw12 σ2
2AC σ2ACσ3ACρw23

ψ61 ψ62 ψ63 σ1ACσ3ACρw13 σ2ACσ3ACρw23 σ2
3AC


This within-study covariance matrix comprises of 4 blocks: two covariance matrices within each treatment
contrast (one for B vs A and one for C vs A) and two covariance matrices between treatment arms.

The σjbk are the standard errors of the estimates yjbk. The correlations ρwjl are the within-study
correlations between treatment effect difference on outcome j and treatment effect difference on outcome l.

The covariances ψqr are present for studies with multiple arms (more than two arms) resulting in multiple
treatment contrasts (in this example two contrasts; B vs A and C vs A). They form two sub-blocks with
covariances on the diagonal (of the sub-block) ψqr = var(yj(q)A) (the variance of the treatment effect in the
control arm on outcome j(q) = j(r)) and off the diagonal ψqr = ψrq = ρ?j(q),j(r) (where j(q) is the outcome

corresponding to Ydi[q] and j(r) outcome corresponding to Ydi[r]). For example,

Sdi[1, 4] = ψ14 = cov(y1AB , y1AC) = cov(y1B − y1A, y1C − y1A)

= cov(y1B , y1C)− cov(y1B , y1A)− cov(y1A, y1C) + cov(y1A, y1A) = var(y1A).

Sdi[2, 4] = ψ24 = cov(y2AB , y1AC) = cov(y2B − y2A, y1C − y1A)

= cov(y2B , y1C)− cov(y2B , y1A)− cov(y2A, y1C) + cov(y2A, y1A) = ρ?1,2
√
var(y1A) ∗ var(y2A).

Here yjb represents the treatment effect in arm b on outcome j and ρ?j(q),j(r) is the correlation between

treatment effects on outcome j(q) and j(r) in arm b (here outcomes 1 and 2 in arm A).
Similarly

Sdi[2, 5] = ψ25 = cov(y2AB , y2AC) = cov(y2B − y2A, y2C − y2A)

= cov(y2B , y2C)− cov(y2B , y2A)− cov(y2A, y2C) + cov(y2A, y2A) = var(y2A).

and

Sdi[2, 6] = ψ26 = cov(y2AB , y3AC) = cov(y2B − y2A, y3C − y3A)

= cov(y2B , y3C)− cov(y2B , y3A)− cov(y2A, y3C) + cov(y2A, y3A) = ρ?2,3
√
var(y2A) ∗ var(y3A).

5 Data for the RRMS example

The data for the example in relapsing remitting multiple sclerosis (RRMS) are listed in Supplementary Table
9. In this table when we write, for example, ‘IFNbeta-1b vs PBO’, we mean that PBO is the reference group
and IFNbeta-1b is the treatment that we compare this to when computing the treatment effect. In the
notation of the paper, this means that we write B versus A to mean an ‘AB trial where A is the reference
group.

As explained in the previous section, the correlations include those between the differences in treatment
effects (scale of the data) ρwjl and also those between treatment effects in reference treatment arm ρ?jl (that
are necessary for a complete specification of the within-study matrices for the multi-arm studies). The
within-study correlations ρwjl and ρ?jl are assumed the same across studies (and treatments). They are
listed in Supplementary Table 10. The covariance matrix also contains standard errors (or variances) of the
average effects in control arms for each study – those are listed in Supplementary Table 11.
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The procedures for obtaining all data elements; the summary measures of treatment effects yjbk on
appropriate scales, with corresponding variances var(yjbk) and var(yjb) and the correlations between them,
ρwjl and ρ?jk (listed in Tables 9–11) are described in detail in Section 2.2 and Appendix A of manuscript by
Bujkiewicz et al. (2016).

Table 10: Within-study correlations.
Correlations
ρwjl

y1bk y2bk y3bk
y1bk 1.00 0.25 0.09
y2bk 1.00 0.09
y3bk 1.00
ρ?jk

y1b y2b y3b
y1b 1.00 0.4 0.15
y2b 1.00 0.17
y3b 1.00

Table 11: Standard errors of treatment effects in control arm
relapse disability MRI

author SE(log AR) SE(log odds) SE (log rate)
IFNB SG (1) 0.08 0.28 0.27
IFNB SG (2) 0.08 0.28 0.27
Johnson 0.07 0.20
Jacobs/Simon 0.08 0.23 0.10
PRISMS (1) 0.06 0.22 0.08
PRISMS (2) 0.06 0.21 0.08
Durelli 0.09 0.23
Mikol 0.10 0.18 0.14
O’Connor (1) 0.06 0.17
O’Connor (2) 0.06 0.17
FREEDOMS1 0.08 0.16 0.09
FREEDOMS1 0.08 0.16 0.09
FREEDOMS2 0.08 0.17 0.14
FREEDOMS2 0.08 0.16 0.14
TRANSFORMS 0.12 0.25 0.15
TRANSFORMS 0.12 0.25 0.15
AR – annualized rate
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