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1 Multivariate estimation

1.1 An important result

In order to evaluate the expectations required, we will need to be able to compute expressions of the form
btr(A(M ® 3)B), where A and B are np x np matrices, M is an n X n matrix and X is a p X p matrix. We
continue to use the notation A; ; to denote the ith by jth block of A, where these blocks are p x p matrices.
For any three np x np matrices A, B and C, we have

(ACB),; = Z Z A iCi B

i=1 j=1

This is just the law of matrix multiplication applied to blocks. Then taking C = M ® ¥ so that from the
definition of the Kronecker product, C; ; = m;;3, we have

(AM@Z)B)r; =Y Y mijAx:EBj,.
i=1 j=1

To obtain the block trace, we sum the matrices along the main diagonal. Hence to obtain the block trace
we take [ = k to obtain the matrices along the main diagonal and sum over k so obtain

btr(AM ® X)B) = Zn: z”: Zn: mij Ay i 2B k. (1)

The use of equation (1), with the appropriate matrices, almost immediately results in the expected values
required in section 4.

1.2 The estimating equations

In this section we prove the results given in section 4 of the main paper. We do not redefine all quantities or
give the size of all matrices and vectors, see the main paper for these details. As in the univariate approach

D
of Jackson et al. (2016), we will base our estimation on the two quantities btr(Q) and 3 btr(Qg) where D
d=1

is the number of different designs. We match these quantities to their expectations to estimate the unknown
variance parameters. We therefore need to evaluate E[btr(Q)] and E[btr(Qq)].

1.2.1 Evaluating E[btr(Q)] and deriving the first estimating equation

As in Jackson et al. (2013), by direct calculation we have that WHW ! = HT and ((I,, — H)T)? =
(I,, — H)T; if W is not invertible because outcome data are missing then we can justify the use of the



identity WHW ! = HT and the expectation that follows in the limit, where the precision p attributed to
missing data tends towards zero from above, p — 07 (Jackson et al., 2013). Furthermore we can use the
identity W = S~ in this limit. We also have that Y —=Y = (I, — H)Y and E[Y — Y] = 0. Hence from the
definition of Q we have E[Q] = WVar[Y — Y]R. From these results, taking the variance of Y from model
(3) of the main paper, we can evaluate

E[Q] = A(M; ® 5+ M, ® 5,)B + B,

where

and

B=(I,-H'R.
Here A and B are known np X np matrices. For estimation purposes we require E[btr(Q)] = btr(E[Q]). We
write A; ; and B; ; to mean the ith by jth blocks of A and B respectively, so that A; ; and B; ; are both
p x p matrices. Then, using (1), we have

E[btr(Q)] = Z Z Z M1 Ak, 23B;j 1+

Z Z Z Mai; Ay, 2,B;j , + btr(B).

i=1j=1k=1

1.2.2 Evaluating E[btr(Q,)] and deriving the second estimating equation

Then we follow very similar, but much simpler, arguments as in the previous section to derive the result
that we require. We define design specific hat matrices

Hy = Xy(XIWqXq) ' XTW,, (2)
and also design specific png X png A and B matrices
Ag= Ipn, —Hy) "Wy,

and
By = (In, — Hy)"R,.

In equation (2) we take the matrix inverse to be the Moore-Penrose pseudoinverse. This is because, in the
presence of missing outcome data, the design-specific regression corresponding to this hat matrix may not
be identifiable (for example, if studies of a particular design do not provide data for one or more of the
outcomes). In such instances this design may still provide information about some of the unknown between-
study variance components and so it is not desirable to exclude the design from this part of the estimation
procedure. By computing (2) using this pseudoinverse we obtain a suitable hat matrix (Searle, 1971; page
221, his equations 126 and 127). Furthermore all the necessary properties of the hat matrix are retained
when using the pseudoinverse when computing (2) and we retain unbiased fitted values (Searle, 1971; page
181).

Following a simpler version of the arguments in the previous section and the main paper, taking the
variance of Y, from model (5) of the main paper, and upon applying the vec operator, we obtain

vec(Ebtr(Qq)]) = Cavec(E5) + Eq, 3)
where
ndg Nd MNd
Ca= Z Z Z m{; Bl x © Adpi,
i=1 j=1k=1
and

E,; = vec(btr(By)).

We then sum equation (3) across all designs in order to obtain

vec <E[Z btr(Qd)]> = (Z Cd> vec(Xg) + ZEd. (4)
d=1

d=1 d=1



1.3 Special cases of the estimation procedure (an extended version of section
4.5)

The proposed method reduces to two previous methods in special cases. If all studies are two arm studies
(and so provide a single contrast) and consistency is assumed then the proposed method reduces to the
matrix based method for multivariate meta-regression (Jackson et al., 2013). This is because we then have
¥ = 0, so that the second triple sum in our expression for E[btr(Q)] is zero; furthermore the first triple
summation in this expression can be reduced to a double summation, because M is an identity matrix for
multivariate meta-regression (Jackson et al., 2013; their equation A.1.).

Furthermore the proposed multivariate method also reduces to the univariate DerSimonian and Laird
method for network meta-analysis (Jackson et al., 2016) when p = 1. This is because, in one dimension, the
Q matrices all reduce to the () random scalars used in the estimation procedure suggested by Jackson et al.
(2016). This can be shown by replacing the block trace operator with the more familiar trace of a matrix
(btr is the trace when p = 1) in the definition of the Q matrices and using the identity tr(AB) = tr(BA).
These two special cases are in turn generalisations of methods such as that proposed by DerSimonian and
Laird (1986).

There is however one caveat when stating that the new multivariate method reduces to the univariate
method proposed by (Jackson et al., 2016) when p = 1. This is because the account of Jackson et al. (2016)
does not mention the possibility of missing outcome data and so we have implicitly taken all data to be
observed in the argument used in the previous paragraph.

2 Example of matrices M; and M,

A referee suggested that we provide a concrete example of matrices My and Ms, in order to clarify how
they are computed. We take such an example from Law et al. (2016) which comprises thirteen studies with
the following study designs: AB, BC, BC, BC, BC, BC, BD, BD, CD, CD, ABD, BCD, BCD. This is the
same type of network as used in the simulation study below. The two matrices for this example are given
explicitly below, where we can see that these matrices contain blocks that are comprised of blocks of P,
where in M; the blocks are formed by studies and in My the blocks are formed by designs.
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3 Simulation study

A simulation study was performed in order to investigate the use of the proposed estimation method. This
simulation study was based on the second example of Jackson et al. (2016), in order to motivate it by a
real example that we are already familiar with. This example involves 13 studies, four treatment groups and
six designs (one AB study, five BC studies, two BD studies, two CD studies, one ABD study and two BCD
studies). Bivariate (p = 2) datasets were simulated assuming 13 studies of these particular designs, where
all within-study variances (the entries on the main diagonal of S) were sampled with replacement from the
within-study variances from the real example. Although the mean of these within-study variances is 0.39,
the typical within-study variance proposed by Higgins and Thompson (2002), their equation (9), is 0.24.
All within-study correlations between different contrasts involving the same outcome, or different outcomes
involving the same contrast, were taken to be 0.5. Within-study correlations between different contrasts and
outcomes were taken to be 0.25. Data were simulated from model (6) of the main paper throughout.

Twenty different sets of X3 and X, were used; the basic parameters were all set to zero but this is
immaterial because the estimation of the variance components is location-invariant and the point estimation
of the means is just translated when using an alternative sets of treatment effects. One thousand simulated
datasets were produced for each combination ¥z and X, so that 20,000 datasets were simulated in total.
For fifteen of the simulation runs, both between-study variances (the main diagonal entries of X 3) were set to
0.24, so that the extent of the between-study heterogeneity is comparable with the within-study variation;
this is the case for the real data where the point estimates of the between-study variance are similar to
the typical within-study variance (Jackson et al., 2016). In these fifteen simulation runs the inconsistency
variances (the main diagonal entries of 3,) were set to either 0 or 0.12, to explore the cases where consistency
assumptions are either true or violated, but where the departure from consistency is not very severe; since it
is sometimes argued that considerable inconsistency should strongly discourage the use of models for network
meta-analysis (Jackson et al., 2016), we wished to investigate only relatively minor inconsistencies in the
networks. In runs sixteen to nineteen we explore the use of two different between-study variances (0.12 and
0.6) and two different inconsistency variances (0.06 and 0.24). Finally in run twenty we explored the extreme
case where the between-study variances are large (both 0.6), a very strong between-study covariance (0.59)
and inconsistency variances of 0 (so that the consistency assumption is true). With very considerable and
highly correlated between-study variance components, and no inconsistency, run twenty was performed in
order to try to create the circumstances where borrowing of strength (Jackson et al, 2015a) is more likely to
occur. We analysed all datasets using both the proposed multivariate method and the previous univariate
method (Jackson et al., 2016), where the univariate method was applied to both outcomes separately. We
also applied both the univariate and multivariate methods under the assumption of consistency, in order to
explore the implications of making this assumption.

To investigate a missing data scenario, for all 20,000 datasets we removed the estimated effect for the
second outcome for four of the five BC studies. This was done because there is no direct comparison
of treatments A and C in the simulated networks, because these include only the six designs in the real
dataset. Hence the identification of the basic parameters §:'¢ and §4'° must rely greatly on the BC' studies.



By removing four estimated effects in this way, we hoped to create a situation where borrowing of strength
for 64\ was likely in the incomplete datasets. We performed all univariate analyses using the univariate
code provided previously by Jackson et al. (2016). Using univariate code reduces computation time when
fitting 40,000 univariate network meta-analysis models.

The simulation study results are extensive and are shown in eight tables in these supplementary materials.
Supplementary Tables 1 and 2 show that, for complete data and before truncation, both the univariate and
multivariate estimates of the unknown variance components are unbiased. Truncation results in bias however.
This is as expected for the unknown variance parameters, because truncation forces their estimates to be
positive. However the results suggest that the multivariate approach may be helpful in reducing (but not
removing) the upward bias in the truncated estimates of the inconsistency variances. Similar observations
apply in the missing data scenario in Supplementary Tables 3 and 4. Supplementary Tables 5 and 6 show
that the coverage probabilities of nominal 95% confidence intervals for the basic parameters are close to the
correct level but also suggest that the multivariate approach may help to more accurately attain this level.
This is as expected, because by using more data in the multivariate setting we can expect the asymptotic
approximation of taking the variance components as known to be more accurate. Supplementary Table 7
shows that analyses under the consistency assumption fail to achieve the nominal significance level. This is
even the case when the consistency assumption is true, because the extent of the between-study heterogeneity
is quite large and the uncertainty in the between-study variance parameters is not taken into account. The
extent to which the consistency analysis fails to achieve the nominal coverage probability probability is
comparable to the univariate results in Jackson et al. (2016) when the inconsistency there is mild.

Finally, Supplementary Table 8 shows the ratio of empirical variances of the multivariate and univariate
estimates of the basic parameters. For complete data these ratios are close to 100% so that, as expected,
there is little or no borrowing of strength. Recalling that the incomplete data scenario was intended to
allow borrowing of strength for d5'C, in Supplementary Table 8 we can see some evidence of percentage
efficiencies of slightly less than 100% for this parameter in runs where the correlation in the data is larger.
For the final run, which we performed in order to try to create a situation where borrowing of strength may
occur, we obtain a percentage efficiency of 88% for 64'C in the missing data scenario, which is appreciably
smaller than all other values in Supplementary Table 8 (the second smallest value is 95%). Hence we have
achieved the most borrowing of strength exactly where we expected it. This corresponds to a borrowing of
strength statistic (Jackson et al, 2015a) of 12%. This may appear small but it should be recalled that we
only removed four univariate estimates to achieve this and furthermore that the within-study correlations
are not large. For example, Jackson et al. (2015a) consider a bivariate meta-analysis where all within-study
correlations, and the between-study correlation, are close to one, and further that one outcome is missing
in 17 out of 31 studies (and is complete for the the other outcome). Even then, the borrowing of strength
statistic is only around a half (53%; Jackson et al (2015a), their example 2) for the outcome with missing
data. Our borrowing of strength statistic of 12% is therefore proof of concept that the multivariate approach
can provide more accurate inference than the univariate approach, in situations that facilitate this.

In order to try to encourage a little more borrowing of strength, and also to test the numerical algorithms
when not all design specific regressions are identifiable (see section 4.3.2), we repeated the simulation study
for the final run where the second outcome was removed for all five BC studies; Hy is then not computable
for the BC' design using standard matrix inversion and it is necessary to use the Moore-Penrose pseudoinverse
in this instance. As expected, the estimation performed very similarly to the missing data scenario described
above, and the slightly larger borrowing of strength statistic of 13% was obtained for §4'C.

To summarise, the simulation study suggests that the multivariate approach has three main advantages
over the univariate approach proposed by Jackson et al. (2016): it can help reduce the upward bias of esti-
mates of the inconsistency variance, it can help better attain the nominal coverage probability of confidence
intervals and it can result in borrowing of strength. The better nominal coverage probability provided by
the multivariate approach can be explained because multivariate analyses incorporate more information so
that the large sample normal approximations are then more accurate.



79G°0 | 8850 @890 [ 620 [ 6290 @190 [ 2090 F090 [ 90 | 0890 2190 | 1090 71090 | 90] 0z
PET'0- | 89T'0- 99T°0- | 9T'0- | 909°0 0620 | 8260 626°0 | 90 | 100 961°0 | IET0 ET0 | &T0| 61
61T°0- | TST'0-  LPT'O- | 9T0- | T09°0 L8%0 | €60 9260 | 90 | 06T0 P8I0 | G¢1'0 GGT0 | &T0| ST
08T°0 | 6LT°0 8LT°0 | 9T0 | 9290 6190 [ G190 0190 | 90 | 88T°0 S61°0 | 6610 6610 | 10| LI
OPT°0 | 9T°0  TSTO | 9T°0 | 809°0 T09°0 | €6¢°0 €6¢°0 | 90 | 09T°0 LLTO | TITO FIT0 | &T0| 9T
CIT'0- | 8VT°0-  LST'0- | 9T°0- | 282°0 €L2°0 | S6¢°0 S€¢'0 | VE0 | €0€0 €820 | ¥S2'0 0960 | ¥20 | <l
PET'0- | LLT0- €LT0- | 9T0- | @80 930 | 9220 Sge’0 | ¥&'0 | 9650 920 | €70 Sve0 | &0 | I
GIT'0- | PST0-  GST'0- | 9T0- | 0650 TLZO | 66270 S8€T0 | ¥&'0 | €650 FLE0 | 6820 LEO | ¥&0 | €I
g0~ | LST0- 6VT°0- | 9T0- | G0€0 T80 | 1980 6VE0 | ¥&'0 | 0650 €L80 | S€¢°0 860 | ¥&O0 | &I
PIT0- | GST0-  LGT'0- | 9T°0- | G8¢°0 292°0 | 2620 ¥E€C0 | 20 | 0080 G8¢0 | §Fg’0 ¥¥E0 | ¥e0 | 1T
6ST°0 | 6ST°0  SST'0 | 9T°0 | 060 &L2’0 | 020 OVG0 | 20 | P80 GLe0 | ¢he'0 ehed | V&0 | Ol
GeT'0 | LGT0  0ST'0 | 9T0 | 0920 G920 | S50 L&&0 | V&0 | L0 ¥.e'0 | €760 1#G0 | ¥80 | 6
GPT0 | 8PT0  SET0 | 9T0 | 9920 9220 | ¥€¢'0 9860 | V&0 | LFE0 €S20 | gTc0 0180 | ¥80 | 8
210 | 9T0  G9T0 | 9T0 | 6920 T.T0 | 86’0 LEGO | VEO0 | 0820 €8¢°0 | 0960 1SG0 | 80 | L
0ST°0 | SFPT'0  0ST0 | 9T°0 | 1920 9920 | 8220 8220 | ¥2'0 | 992°0 8920 | €660 ¥€2'0 | 20 | 9
220’0 | 000 90070 0| €20 TLZO | OVE0 Vg0 | V&0 | €260 ¢LT0 | 0Ve0 TWe0 | 20| ¢
220’0 | 9000  800°0 0| 282°0 LLZ0 | 1920 0920 | ¥&0 | 6920 6920 | S€2°0 9€¢°0 | V20 | ¥
8T0°0 | €000 0000 0| €820 1820 | 8F'0 6¥0 | ¥T0 | 16270 S88¢°0 | 8%G0 9SG0 | FE0 | €
9200 | €100 1000 0| 1820 1820 | ¥F&'0 LV0 | ¥E0 | 180 8920 | 8660 9§50 | T80 | &
820°0 | 6000 800°0 0| €220 92270 | ¥€¢'0 980 | V30 | 1820 0620 | 6v¢0 1650 | 80| T
DN | DMIN BN | 0L | BN | BN ) | pag | BN o | e g | g |y
TOUILLT, .UQSMQQD TOUILL], .OQSH@QD OUnT, .Ogﬁ.ﬁ«ﬁb
(12)7x pue (21)7x (22)’x (19X

‘910°0 07 L00°0 WoJj aSuel SIOIIS pIepue)s O[Ie)) SJUOJA] dY) ‘Sojeulr)se pajedundjun sSetsse ay) JI0q 'SeI] 9[(eIOU UI SHMNSAI (,OUNif,,)
UOTYROUNI} N sonjes Iojoureled oni) o1} Jo I0LId O[I)) SIUOIN UIYIIM dIR SOIRWIIISD (,"OUNIJU(),) POJedUNIIUN Y], "X UOI}09s Ul poure[dxs se paurejqo
9IR 9OURLILAOD ST} JO SOJRUIIISO ,POJROUTLIULL, OM]) (9DURLIBAOD APNIS-U0dMID( O} SOJRTIISO POYIoml djeLreAlynur pasodord ot ], ‘poyjewt (,Iu(),) o)eLIRATUN
o1} WOIJ 9SO} 0} IR[IUUIS AIOA oI POYIdW ( I1JNIN,) ojelrearynun paosodord o) WOIJ SoOURLIBA ADPIYS-U0MIO] O} JO SOJRUIISO o8RIoAR O], "UNI [ORd 10J
poeonpoid o1om sjeseyep poye[nus 000T “eiep 93[duiod 10§ ¥ XLIFeUL 90URIIBA0D A}10U0S01939Y APNIS-USMID( 9} JO SOLIYUD 9T} JO SOJBUIIISI 9SRIOAY T O[CR],



0IT°0 | 180°0-  L10°0- 0| 8L1'0 9€€°0 | ¥20°0-  S20°0- 0| LLI'O 6€€°0 | €20°0- 2200 0| 0
€50°0- | 9L0°0-  980°0- | 80°0- | 8920 L9€°0 | LL00  6L0°0 | 90°0 | PIE0 €0£0 | 86T0  G€T0 | FTO | 61
290°0 | 080°0 890°0 | 800 | G¥T0 GPED | 8GO0 6S0°0 | 90°0 | G2€0 6IE0 | €5T0 6¥C0 | ¥EO | ST
PIO0- | T80°0-  L80°0- | 80°0- | LS'0 LLED | T900  090°0 | 90°0 | 000 G620 | 228’0 81E0 | ¥&0 | LI
EIT0 | 06000 980°0 | 80°0 | 6350 99€°0 | €F0°0  2F00 | 90°0 | 2060 LOE'O | 8FT0 6FE0 | GO | 91
6600~ | 980°0- 0L0°0- | 80°0- | 80 ¥GT0 | LEI'0  STI0 | &L'0 | 600 8¥E0 | €600 L6000 | Tr0 | GI
890°0 | 680°0 880°0 | 80°0 | 6250 9T0 | €U0 ggl'0 | &I'0| €660 ¥ST0 | SIT0  FITO | &0 | ¥I
200°0- | 000 €T0°0- 0| 620 €90 | 2210 €€1°0 | 2I'0 | 0FE0 8920 | €61°0 CETO | &ro | €I
00°0 | S00°0  900°0- 0| PET0 96T°0 | ¥00'0-  €00°0- 0| 6220 690 | 10 ¥21°0 | 2I'0| &l
€00°0 | 2000~ €00°0 0| 8€T°0 L6T0 | 0100 L0070 0| €610 66T°0 | 2000~  TO00- 0 11
00°0- | 990°0- GL0°0- | 80°0- | €250 GSE0 | 0210 TEL’0 | &r'0 | 1660 6950 | 1810 0310 | &ro | Ol
PIT0 | 080°0 880°0 | 80°0 | SZ&'0 6S2°0 | OPT'0 2610 | &I'0 | 0180 GSE°0 | 8IT°0  6IT0| &I0| 6
7500 | €100 L10°0 0| 61270 60 | €10 T1€1°0 | 2I'0 | 0220 1920 | €610 €ET0 | &ro| 8
7500 | $000 6000 0| 8T0 ¥6T°0 | 2100 0100 0| ere0 250 | 0g1°0 0210 | 20| 2
0S0°0 | €000 000 0| 0810 €6T°0 | €000  S00°0 0| €r0 0080 | 000 £00°0 0l 9
0€0°0- | 890°0- ¥L0°0- | 80°0- | G020 9€Z°0 | L60°0  L600 | TL'0 | 0220 L¥G0 | SIT0  PITO| L0 | ¢
L20°0 | 890°0 0L00 | 800 | L0Z0 ST0 | 00T0 00T0 | &I'0| €160 €520 | SIT0  SIT0| &Io| ¥
120°0 | ¥00°0-  000°0 0| g0 ¥9¢°0 | 9110  9IT°0 | 2I'0 | 212’0 G520 | SO0 9010 | &ro| ¢
610°0 | 9T0°0-  S00°0- 0| €10 €610 | L00'0- 010°0- 0| 2120 850 | 22’0 €10 | 20| &
020°0 | ¥00°0-_ ¥10°0- 0| 2810 €6T°0 | $00'0  S00°0 0] 06T°0 €020 | T000  €00°0- 0] 1
DON | OO BN | WL | BN 0| BN U | 0L | BN | BN ) | i |y
TOUNIT, ounIjyu) TOUIIT, ounIju) OUnT, ounIjun
(12) "X pue (21)"X (¢2) " (I)"x

*270°0 0} L00°0 WOJ}j 2SuUel SIOLId pIepue)s o[Ie)) 2JUOTA 9} ‘S9jeuiI}sd pajeduntjun d8erdAe a9 J0 'Selq 9[qejou Ul
S)[Nsal (,OUNIT,) UOIYRIUNI) INQ SonfeA Igjourered onIj oY) Jo 10110 O[IR)) SJUOTN UIILM dIe S9IRTIIISO ("OUNIIU[),) POIRIUNIIUN ST, X UO0I}09s Ul poure[dxo
Se PaurRICO OI' 9OURLILAOD SIU} JO SOJRUIIISO POJROUNLIJUN, OM) (OOURLIRAOD ADUSJSISUOIUI O} S9JRUII)SO poyjou ojerrearjnut pasodoid ot ], "poyewt (,1u),)
9JRLIRATUN O} WOIJ 9SO} O} IR[IWIS AIoA dIe poyloul (1)nyN,) ojerrearynur pasodoid oy) WOIJ seoURLIBA ADUSISISUOOUL O} JO SOIRUIIISO 0FRIoA® U, UILI
oea 10] poonpold d1om $)jasEIRD PIYRNWIS ()OO "ejep 9391duwod 10] 7 XIIJRUI 9OURIIRAOD ADUDISISTIOIUT 9T} JO SOLIJUS A} JO SOILUIISS dFRIOAY g O[],



Cpe0 | €86°0 88G°0 | 6S°0 | 199°0 @90 | 6650 6650 | 090 | S¢9°0 €190 | 1090 1090 | 090 o0z
€0T°0- | 2ST°0- OFPT'0- | 9T°0- | 6S9°0 8€9°0 | 6650 965°0 | 090 | €620 9610 | €10 @€T'0 | r'0 | 6l
60T°0- | €ST°0- CST'0- | 9T°0- | 6¥9°0 8€9°0 | 0650 0650 | 090 | 112’0 ¥8T°0 | ¥2T'0 SeT'0 | &r0 | ST

LLTO | LLT0  0LT°0| 9T°0| SP90 0290 | 0090 090 | 090 | 210 S6T°0 | 6610 6610 | @I'0| LI

CPT0 | SPT0  6€T°0 | 9T°0 | &F9°0 F9°0 | 86S°0 009°0 | 090 | 68T°0 LLT'0 | ¥IT°0 ¥IT0 | &r0| Of
680°0- | SPT'0- OFI'0- | 91°0- | 1680 9280 | 6220 G20 | %20 | LIE0 €820 | 0560 020 | Vg0 | oI
€210~ | 18T°0- 681°0- | 91°0- | 9280 61€0 | 120 g0 | %20 | 61€0 9280 | S0 SPe0 | Vg0 | ¥I
€IT°0- | OLT0- LLT'O-| 9T°0- | GE€0 ¥€€0 | 8220 620 | ¥20 | T1€0 ¥.20 | 860 1820 | Vg0 | €I
€0T0- | S9T°0- 0ST'0- | 9T°0- | 6F€°0 8EE0 | 1S6°0 0S¢0 | ¥2°0 | 6080 €80 | S€¢’0 8e¢0 | Vg0 | &t
L60°0- | #CT'0- SPT°0- | 9T°0- | 8660 T€L0 | 0FC0 6€6°0 | ¥20 | STE0 98¢0 | €720 90| ¥20 | TI

€OT°0 | 28T°0 OLT°0 | 9T°0| 0280 T€8°0 | S0 TPE0 | 20 | S68°0 CLTO | €20 ¢ve0 | ¥20 | 01

€CT°0 | LST0  OFPT0 | 910 | €620 9T1€0 | LIg0 SIE0 | 20| 1620 ¥.20 | &ve’0 T¥e0 | ¥2°0 6

LPT0 | OPT0  LPT'0 | 9T°0 | €080 F¥2€0 | 1€6°0 6820 | 20 | €920 SST0 | 0180 0120 | ¥20 8

LET0 | 99T'0  LST°0 | 9T°0 | TI€0 92€0 | 0FC0 @FE0 | ¥20 | 0060 €820 | 192°0 1S20 | ¥2°0 L

€CT0 | TS0 6ST°0 | 9T°0 | 2I€0 8280 | 6660 8€Z'0 | ¥2'0 | S8¢°0 8920 | €65°0 ¥€¢0 | 720 9

¢e0'0 | 8000 9100 | 000 | 0280 ¥EEL0 | 0F6'0 &he'0 | 20 | 68¢°0 TLTO | 6€5°0 T¥0 | V20 G

0v00 | ¥T0°0 12070 | 000 | Lg€0 F¥€€0 | 1960 9F&'0 | 20 | 8820 6920 | G660 9620 | ¥20 ¥

2e0'0 | 6000 2000 | 000 | 62€°0 TFEO | 0S50 TSE0 | ¥E0 | L06°0 88%0 | 8560 95¢0 | ¥&0 ¢

€60°0 | 0T0'0  900°0 | 000 | ¥2€'0 8€€0 | €920 LFVE0 | 20 | 1820 8920 | LEGO 9€C0 | ¥20 4

620°0 | 6000 S00°0- | 000 | 6680 0z€0 | 9160 6160 | ¥2°0 | €080 06870 | 0560 1580 | 720 !

NN | DO DO | g | v | oppy | gy | omn ) | oy ) | qngg | any
.UQS.HM_U .UQSHQQD .UQS.H,H .UQ5H@QD .UQS.H,H .UQSM@ED

(12)7x pue (z1)9 (z2)’x (I

€70°0 0} L00°0 WoJj 9Suel SI0LId plepue)s
o[Ie)) 9JUOJA] 97 ‘Sojeulr}so pajedundjun adeioAe oY} JI0f 'S[RLI} D G oY} JO  WOIJ SUI0INO PUOIDS 91} JUIAOUWIAL I9Je g T d[qe], SY :¢ 9[qe],



G210 | 2100-  ST0°0- 0| ¥9z0 8.¥°0 | ¢100- ¥10°0- 0| ziz0 6€e0 | 2200- 2200- 0| oz
¥G0'0- | G80°0- TIT'O- | 80°0-| S¥€0 ¥IG0 | 0900 8S0°0 | 900 | V€0 €0E0 | 860 GET0 | ¥20 | 61
6G0°0 | LL000 TL00 | 800 | €2€0 €SF'0 | 0%00 0S0°0 | 900 | 9¥€0 6T€0 | TST0 6V80 | ¥20 | ST
€00°0- | €80°0- L60°0- | 80°0- | LEE0 L3S0 | 2S00 TG00 | 900 | 2TE0 620 | €580 8I1T0 | ¥EO | LI
eIT’o | 9200 6800 | 800 | T0E0 O0SF'O | IPOO  TPOO | 900 | 82€0 LOEO | 9%C0 6¥C0 | ¥20 | OT
¥G0°0- | €60°0- €80°0- | 80°0- | FO£0 GFE0 | €610 GETO | €U0 | 0WE0 8FZ0 | 9600 L1600 | &I0 | QI
1200 | 6800 ¥0T'0| 800 | L0€0 6¥€0 | LET'0 6210 | <I'0| 6¥20 ¥S0 | €110 FIT0| TI'0| W1
600°0 | STO0 9000 0| 90£0 69¢0| 9210 TET0| €I0| €920 8920 | ¢ET'0  2E€T0 | 2ro| €I
010°0 | 9100 1000 0| 0120 1620 | 1000 0000 0| 80 6920 | 810 ¥gI0| TI0o| aI
¥00°0 | S00°0-  €00°0- 0| 2020 00€0 | 2000 2000 0| 09T°0 6610 | 0000 T00°0- 0| 11
G000 | 0L0°0- ¥80°0- | 80°0- | ¥8€'0 GGE'0 | LIT0 €210 | <¢I'0| 0520 6920 | 6110 0210 | TI'0| O
9IT'0 | ¥80°0 8800 | 800 | SL2°0 8€L0 | 9VT0 F¥T'0 | €I'0 | 6280 G920 | 6110 6IT0| &I0 6
190°0 | 8100 0100 0| €20 L£80| L6T0 OVT'0| €U0 | 620 71920 | G€T'0 €ET°0| IO 8
€900 | 7000 0200 0| 98T°0 6820 | 6000 €000 0| 1€2°0 1920 | 02T0 010 | IO L
¥50°0 | 0000 T00°0- 0| PL1°0 1820 | G00'0- €00°0- 0| €10 0020 | €000 €000 0 9
620°0- | 8L0°0- €80°0- | 80°0- | 020 62€0 | 2600 €600 | <I'0| €20 L¥ZO | SIT0O FITO| <TI0 g
8L0°0 | ¥90°0 G900 | 800 | SL20 TISE0 | TOT'O 90T0 | €I'0 | OWC0 €920 | SIT0 CIT0| &ro i
¥20°0 | 210°0-  010°0- 0| €820 L9€0 | TITO0 GIT0| €I'0 | S€¢0 G920 | S0T'0 9010 | &€ro ¢
920°0 | 210°0- 2000~ 0| 98T°0 ¥82°0 | 900°0- T10°0- 0| OVe'0 8920 | €€T0 €210 | ¢ro z
920°0 | 100°0-  T00°0- 0| €610 1820 | 1200 13070 0| 2510 €020 | 0000 €00°0- 0 !
DN | BN BN | OO | BN U | BNy W0 | @A | BN U0 | 0N [ | [y | unyg
.UQS.HrH .OE‘D.SQD .UE‘D.MHL .UQSH@QD .UQS.H,H .UQSH«QD
(17)"% pue (21)"X (22)"x 1"z

€70°0 03 800°0 W0J] 9SUel SI0LId plepue)s
o[Ie)) 9JUOJA] 97 ‘Sojeulr}so pajedundjun adeioAe oY} JI0f 'S[RLI} D G oY} JO  WOIJ SUI0INO PUOIDS 91} JUIAOUWIAL IR INq g 9], SY :F 9[qel



0960 9¥6'0 €960 | 2960 0960 TS6°0 | OV6'0 GE60  FF60 | SV60  TS60 1960 | 0T
8¥6'0 €960 SV6'0 | ¥W60  LF60 1960 | LE6'0  €¥6'0  L€6°0 | 9260 LZ60 6360 | 61
976’0 9960 TG6°0 | 2960 FF60 2960 | €60  9¥6'0  OV6'0 | SW60  LE60  IF60 | ST
986'0  2S6'0  €96°0 | 2960 TS6'0  2S6°0 | ¥S6'0 6V60  IS6°0 | LV60  FEEO  6F6°0 | LI
6V6'0 V960  €96°0 | V60  8€6'0  SF60 | 9¥6'0 8F60  S¥60 | TE6'0 1260  SE€6°0 | 9T
LS6°0 0960 6V6°0 | 6560 TS6°0 6V60 | 9¢60 9860  FE6'0 | €660 OF60  OV60 | QT
2G6'0 0960 F¥G6°0 | ¥H60 2960 €960 | I¥6'0 OV6'0  6E6°0 | 6260 9F60  6€60 | FI
L96°0 9960 0960 | 0960 6960 6960 | 6960 TS6°0 TS6°0 | 6V60 SF60 960 | €T
6960 TL60 GL60 | SV60  9%6'0 0S6°0 | 60 L9600 €960 | LE6'0  8€6'0  S€6°0 | &I
996'0 8960 €960 | TL60 9.60 €960 | 2S6°0 G960  TG6°0 | LV60  GS6°0 G960 | TT
V60 OF6'0  6E6°0 | €S6'0 €S6°0 6960 | VE60  SE6'0  6€6°0 | FF60  6£60  LV60 | OT
V60 LG60  0S6°0 | TP6'0  SV6'0 3960 | P60 8¥6'0  E€¥6°0 | LE60 6860  I¥60 6
gre'0  O¥V6'0  FY6'0 | IF60  E€F60  8F60 | S€6'0 2260 €860 | 960 9860  OF60 8
LS6°0 G960  LG6°0 | 6860 9260 SV60 | SF60 €560  0S6°0 | 6860 GI60  GE60 L
6860 9960 LV60 | 0960 1960 G960 | 0S6°0 €960 F¥60 | TI60 LS6°0 G960 9
V60 9F6'0 9960 | FG6'0 8G6°0  9F60 | VE6'0 9860  FY60 | L¥60  IS6°0  9€6°0 g
ev6'0  OF6'0  FE6'0 | LV60  LS6'0  LF60 | G600 CE60 TE60 | €¥60  FVE0  VE60 i
0960 V60 V60| LS6'0 8960 0960 | S¥6'0 €660 6860 | 8F60 60  6£6°0 ¢
¥S6°0 €960 2960 | 9V6'0 7960 L9600 | IS60  €G6'0  LG6°0 | S€6'0  I¥60 6760 z
9¥6'0 0960 TS6°0 | 0960 0960 LS6°0 | 8260 OF60 6E6°0 | 0960 GS6°0  ¥¥60 I

(@av  (@ov (@gv | (Hav  (mopv (mav | @av  (@ov  (@gv | (Dav  (1)ov  (Dgv

@pﬁﬁﬁ\rﬂﬁﬁz @udgﬁ\ﬁgb QSMM

"X 9MI02INO I0] ‘Y 07 QAIIR[OI [ JO 1000 JUDTIIRAI) 9FRIOAR 9T} 10] SRAIDIUI 9OUSPYU0D JO AIqrqold 98eIoA0d o1} Soj0Udp (X)[ Y
"SpoYjoul djeLIeATUN pue djerrearinur pesodoid o) 3oq Sursn “eyep 939[dUW0D I0] S[RAISIUI 9OUSPYU0D %66 oyewrrxoldde Jo seriiqeqold a8eIono)) :G o[qR],

10



TG6'0 6960 9960 | FI6'0 2960 6960 | TFE0 9860 6V60 | 8F60  ¢G60  I1S6°0 | 0C
G660 €960 9960 | £96°0 9960 €960 | LE60 6¥6°0 TPE0 | 9360 LT60 6260 | 6T
8G6'0  9G6'0 €960 | G960  €S6'0 9960 | LV6'0 OF60 TF60 | S¥V60 L8600  IF60 | ST
¥S6'0 9960 0960 | G960  €96°0  LS6°0 | FW60  OF60  IF60 | LF60  FEEO0  6F6°0 | LT
9660  FG6'0 €G6°0 | 6760 6V60 G960 | FFE0 OV6'0  TP60 | T1€60 1360 SE€6°0 | 9T
8660  T96'0  LG6°0 | 2960 9960 G960 | €60  9¥6'0  OV60 | €860 OF60 060 | ST
996'0 TL60 F96'0 | E€F6°0 2960 9960 | TF6'0 6960 0S6°0 | 6360 9F60  6€60 | FI
L96°0  F96'0 1960 | 7960 €960  F96'0 | ¥G6'0 1960 IS6°0 | 6760 S¥60  9F60 | €T
TL60 9260  9L6°0 | 9960 0960 9960 | 1960 960 T96°0 | LE60  8E6'0  GE60 | T
9L6'0  GL6'0  TL60 | 0L60 TL60 FL60 | 7960 T196°0 T96°0 | L¥60  GG6°0  GG6°0 | IT
G660 9¥6'0  FF6'0 | L9600 6960 L9600 | 9¥6'0  TFE0  €¥6°0 | ¥W60  6€60  LW6O | 0T
1960 9960 8S6°0 | LP6'0  GG6°0  LG6°0 | 9F6'0 2960 OF60 | LE60 6860  TVE0 6
€66'0  6V6'0 €960 | LF6'0 1960 0960 | €660 9860 6860 | 9€6'0 960  OF60 8
€66°0 8960 960 | SF6'0  6E6'0 6560 | €260 960  9¥6'0 | 6260 SI60  GE6O L
896'0 €960 T96°0 | 8960 8960 G960 | 6V6'0 6960 6V6°0 | TG60  LG6'0  GG6°0 9
€660 9960 8960 | 9960 6960 1960 | 6860 €¥6'0  GS6°0 | LP6O  IS60  9£6°0 g
P60 0960 €660 | 9960 7960  FG6'0 | €€6'0 €F6°0  TH60 | E€V60  TF60  FE60 i
6G6'0 TG6'0 FG6'0 | 2960 2960 860 | L¥E0 TF60  9¥60 | SF60  FF60  6£6°0 ¢
L96°0 TL60  TL60 | 9960 996°0  T96°0 | LS6°0  LG6'0 0960 | 8€6'0 I¥60 6760 é
966°0 €960 LS6°0 | 8960 9960 1960 | SE6'0 IF60  SF60 | 0S6°0  SG6°0  FF60 T

(@av_ (@ov (@av | (Hav (mov (mav | @av  (@ov (@av | (Dav  (Dpv  (Dav

@amﬂdxﬁﬁﬂz @uﬁi@ﬁﬂb Q.Dm

‘S[RLIY D¢ G 9} JO § WOIJ SUI0IJIO PUOIAS d1[} SUIAOWAI I3k INq G d[qe], SV :9 9[qR],

11



826'0 6160 G260 | 0T60 6260 LT60 | 6160 9160 0260 | €60 0360 €60 | 0T
8T6'0 0260 €260 | 8680 9280 2060 | TI60 6160 FI60| 6880 TLY¥O 9680 | 6T
916'0 ¢I6'0 Tg60 | CI60 ¥880 0I60 | 9160 0OI60 0260 | 9060 1880 1060 | ST
826°0  0C6'0 0860 | €160 0680 FI60 | LE6'0 6360 S€6'0 | €160 680 6160 | LI
1260 6060 60 | 6680 0880 T060| 6360 TI60 9260 | 6680 LL80 S060 | OT
L26'0  L06'0 GT6°0 | €860 LI60 9160 | OI60 G680  S06'0 | L680 S060 SI60 | GT
¢16'0  FI6'0  LI60 | 9060 2I60 160 | ¢I60 ¢I60 T060 | €060 €160 SI60 | FI
€e6'0  TE6'0  T€60 | 0860 160 0Z60 | LE6'0  CI60  FE6'0 | 9260 9160  9I60 | €T
ev6°'0  GP6'0 €960 | ST60 L0600  LI60 | 0860 OF60  FF6'0 | 6060 G680 OI60 | &I
W60  L£6'0  OV6'0 | LE6'0 TP6'0  TH60 | 860  0€6'0  GE6°0 | TE6'0  FT60 9860 | 1T
906'0 6680 8060 | 6160 6060 V60 | 6060 1680 6060 | 0T60 TI60 160 | O
2160 1260 F¥26'0 | 8060 60 60 | €160 €160 6160 | ¥I60 SI60 6160 6
916'0 9680 6060 | 0T6'0 680 L0600 | TI60 1680 L060 | 9060 T060 6060 8
1260 €860 LI6°0 | €160 G680 STI60 | 7260 €360 T260 | L060 G680  9I6°0 L
826'0 0860 SI60 | €860 2T60 €860 | TE6'0 8C6'0  GT60 | 0860 860 9760 9
0060 €060 SI6'0| 1860 €160 9060 | 2060 €060 TI60| 9260 €160 9060 g
L68°0 6880 8060 | TI60 6060 9060 | 8680 0680 G060 | 0T60 L0600  ¥060 i
€16'0 0060 TI60 | G260 6160 LI60 | SI60 0060 <TI60| 0360 CI60 9160 ¢
0£6'0  L26'0 8T6'0 | LI60 6060 LZ60 | LZ60 ¥T60 9260 | 2I60 1160  LT60 é
G06'0  LI60 6I6°0 | 8€6'0 6E6'0 0860 | S060 8060 €260 | €660 T€6'0  0£6°0 !

(@av_ (@ov (@av | (Hav (mov (mav | @av  (@ov (@av | (Dav  (Dpv  (Dav

@amﬂdxﬁﬁﬂz @uﬁi@ﬁﬂb Q.Dm

‘uonyduwmnsse £ou9)sIsSuod 1) SUIYRW INq G 9[qR], SV ) 9Ll

12



96 88 96 L6 86 L6 L6 96 96 96 86 16| 0z
001 ) 001 101 00T 001 00T 00T 00T 00T 00T 00T | 61
001 z01 10T 10T 00T 001 00T 00T ) 00T 10T 00T | ST

66 66 00T 00T 00T 10T 00T 00T 00T 10T 10T T0T | 21
001 66 001 00T 00T 66 001 00T 66 66 66 86 | 91T
101 €01 66 66 66 66 66 86 66 66 66 00T | GT
101 101 66 00T 00T 001 00T 00T 001 66 66 66 | ¥I
001 10T 001 00T 001 001 00T 00T 001 00T 001 00T | €T

86 00T 001 66 66 00T 66 00T 66 66 66 66 | cI
10T z01 001 00T ) 66 00T 00T 001 00T 001 66 | 1T

66 86 001 66 66 86 00T 00T 001 66 66 86 | 01T

86 96 L6 00T 00T 66 86 86 L6 00T 66 86 6

66 L6 86 66 00T 66 66 66 66 66 00T 66 8

86 96 66 86 36 86 66 00T 86 86 86 86 L

86 6 66 66 66 66 L6 L6 66 66 66 66 9

66 101 66 101 00T 66 86 66 66 00T 10T 66 G
101 €01 001 101 66 001 101 10T 001 00T 66 001 id
001 00T 001 00T 66 66 00T 00T 66 66 66 66 ¢

66 00T 001 001 00T 66 00T 101 001 66 66 66 z

66 86 001 66 66 001 00T 00T 001 66 00T 001 T

(@av_ (@ov_ (@av | (Dav_ (Dpv _ (mav | kav  (@ov  (@dgav | (Dav_ (1)ov_ (Ddv

elep 91o1dwoour eep aje[dwo) | uny
.mﬂmﬁp Om m @Qu mo w Eo.ﬂ ouI099INOo UQOQ@@ @Qp U@\roaw.H

om ejep 9jo[dwioour I0] a19UM ‘“ejep oje[duwodur pue 939[duIod 30q I0] UMOYS IR SYNSOY POYISU 9JRLIBATINUI JY) SB JUSIIIJO S8 J0U SI POYIOUI d)RLIBATUN
o1} JeY) 9JRIIPUL ()] URY[} SSO[ JO S0SRIIOIo] ’SOIRUIIISO 9JRLIRATUN 91} JO SodURLIRA [RILIIdUIS o1} PUR S9)RUII)SO 9JRLIRAIJNUL oY) JO sedURLIRA [RILIIdUID
o1} JO sorjeI oY) oIe umoys sofejueoiod ot ], *(porjew oyerrearynur pesodoid o) 01 poredurod) POYIOUT )RLIRATUN BT} JO ADULIOI o8eIuadiod :§ 9[qR],

13



4 Obtaining the within-study covariance structure for the RRMS
example

Denote data in a three-arm study i with treatments A, B, C' with three outcomes 1, 2,3 by

Yai = (Y148, Y248, Y3AB, Y1AC, Y2AC Y3Ac) |, Where Yjbk Tepresent estimates of difference in treatment effect
of treatment k vs treatment b on outcome j. Then the within-study covariance matrix has the following
form (study index i have been dropped in the matrix elements):

o2 .p 01ABO2ABPw12 O1ABO3ABPw13 P14 P15 Y16
O1ABO2ABPwi2 o5 4n 02ABOU3ABPw23 Vo4 Va5 Y26
S, — | T1ABO3ABPwI3  O24BO3AB w3 o3 .4n 1/534 V35 )36
Y41 P42 Y43 Ol AC O1ACT2ACPw12 OT1ACO3ACPwl3
P51 P52 V53 O1ACT2AC Puwi2 o340 02ACT3AC Pw23
Y61 () )63 O1ACO3ACPw13  O2ACT3AC Pw23 02 4c

This within-study covariance matrix comprises of 4 blocks: two covariance matrices within each treatment
contrast (one for B vs A and one for C vs A) and two covariance matrices between treatment arms.

The ojp are the standard errors of the estimates yjpr. The correlations p,; are the within-study
correlations between treatment effect difference on outcome j and treatment effect difference on outcome I.

The covariances 1, are present for studies with multiple arms (more than two arms) resulting in multiple
treatment contrasts (in this example two contrasts; B vs A and C vs A). They form two sub-blocks with
covariances on the diagonal (of the sub-block) 1, = var(y;q)a) (the variance of the treatment effect in the
control arm on outcome j(g) = j(r)) and off the diagonal 1gr = 1rq = p, ;¢ (Where j(g) is the outcome
corresponding to Yy;[g] and j(r) outcome corresponding to Yy;[r]). For example,

Sai[1,4] = 114 = cov(y1aB,Y14c) = cov(Y1B — Y14, Y1c — Y14)

= cov(y1B,Y1c) — cov(y1B,y14) — cov(yia, yic) + cov(yia,y14) = var(yia).

Sai[2,4] = oa = cov(y2ap,y1ac) = cov(Yap — Y24, Y1C — Y14)

= cov(y2m,y10) — cov(y2p, y14) — cov(yoa, Y1c) + cov(yaa, y14) = pi o/ var(yra) * var(ysa).

Here y;, represents the treatment effect in arm b on outcome j and p;( i) is the correlation between

q)
treatment effects on outcome j(¢) and j(r) in arm b (here outcomes 1 and 2 in arm A).

Similarly

Sai[2,5] = o5 = cov(y24B, Y24c) = cov(Y2B — Y24, Y20 — Y24)
= cov(y2B,Y2c) — cov(Y2B,Y24) — cov(Y2a, Y2c) + cov(y2a, Y24) = var(yza).

and

Sai[2,6] = o = cov(y2aB, Yzac) = cov(Y2B — Y24, Y3c — Y3A)

= cov(yap,Yy3c) — cov(y2p, y3a) — cov(y2a,Y3c) + cov(yaa,ysa) = p§,3 \/UGT(Q2A) *var(ysa)-

5 Data for the RRMS example

The data for the example in relapsing remitting multiple sclerosis (RRMS) are listed in Supplementary Table
9. In this table when we write, for example, ‘IFNbeta-1b vs PBO’, we mean that PBO is the reference group
and IFNbeta-1b is the treatment that we compare this to when computing the treatment effect. In the
notation of the paper, this means that we write B versus A to mean an ‘AB trial where A is the reference
group.

As explained in the previous section, the correlations include those between the differences in treatment
effects (scale of the data) p,,;; and also those between treatment effects in reference treatment arm Pj1 (that
are necessary for a complete specification of the within-study matrices for the multi-arm studies). The
within-study correlations py,; and p} are assumed the same across studies (and treatments). They are
listed in Supplementary Table 10. The covariance matrix also contains standard errors (or variances) of the
average effects in control arms for each study — those are listed in Supplementary Table 11.
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The procedures for obtaining all data elements; the summary measures of treatment effects v,y on
appropriate scales, with corresponding variances var(y;s,) and var(y;») and the correlations between them,
pwji and piy (listed in Tables 9-11) are described in detail in Section 2.2 and Appendix A of manuscript by
Bujkiewicz et al. (2016).

Table 10: Within-study correlations.

Correlations
Pwjil

Yivk Y2k Y3bk
Yivk 1.00 0.25 0.09
Y2bk 1.00 0.09
Y3bk 1.00
P;k

Y1b Y2b Y3b
Yib 1.00 0.4 0.15
Y2b 1.00 0.17
Y3b 1.00

Table 11: Standard errors of treatment effects in control arm

relapse disability MRI
author SE(log AR) SE(log odds) SE (log rate)
IFNB SG (1) 0.08 0.28 0.27
IFNB SG (2) 0.08 0.28 0.27
Johnson 0.07 0.20
Jacobs/Simon 0.08 0.23 0.10
PRISMS (1) 0.06 0.22 0.08
PRISMS (2) 0.06 0.21 0.08
Durelli 0.09 0.23
Mikol 0.10 0.18 0.14
O’Connor (1) 0.06 0.17
O’Connor (2) 0.06 0.17
FREEDOMS1 0.08 0.16 0.09
FREEDOMS1 0.08 0.16 0.09
FREEDOMS2 0.08 0.17 0.14
FREEDOMS2 0.08 0.16 0.14
TRANSFORMS 0.12 0.25 0.15
TRANSFORMS 0.12 0.25 0.15

AR - annualized rate
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