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Supplementary Table S1. Drug to CATH-FunFam mapping. The names and codes of 

our association between drugs and CATH-FunFams are provided in a separate excel 

file. Druggable Genome class: type of protein family according to the categories of the 

druggable genome by Hopkins and Groom1. Number of Side Effects: Number of 

preferred MedDRA terms associated with the drug in the SIDER database2. Kernel 

Similarity: mean STRING combined score of the relatives of the CATH-FunFam. 

Probability of SE free: Probability that the CATH-FunFam do not contain a relative 

associated with side effects according to our logistic regression model (see main text). 

Molecular similarity of approved drugs 

Molecular similarity between chemical compounds is a fundamental and 

pervasive concept in medicinal chemistry. Although similarity assessment is 

complicated due to its ambiguous and subjective nature3, similarity coefficients based 

on fingerprints (bit or numerical string representations of molecular structure) 

provide a convenient way to compute molecular similarity on a large scale. We have 

used the Tanimoto similarity based on MACCS fingerprints (Tc)4 to assess the 

similarity of any pair of drugs from our dataset. The ambiguity of the similarity 
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concept makes it difficult to define a threshold value that indicates a statistically 

significant level of similarity between two chemical compounds. We implemented a 

statistical analysis similar to that described by Maggiora and co-workers3, to compute 

the threshold Tc for our multi-target drugs dataset. 

To define a statistically significant threshold Tc we calculated the Tanimoto 

similarity between each drug pair combination from a large set of approved drugs in 

ChEMBL. Supplementary Fig. S2 reports the threshold Tc values as a function of the 

significance level in terms of p-values. We chose a Tc cut-off of 0.65 (p-val = 0.005) 

as the threshold to define that two drugs are similar. Then, from our significance 

analysis and according to3 the probability that two randomly chosen molecules have a 

Tc value 0.65 or higher is less than 0.5%. 
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Supplementary Fig. S2. Threshold Tanimoto similarity of approved drugs. Median 

(solid line) and first and third quartile (dashed lines) of the cumulative distribution 

function derived from 2015 sampled distributions. 

Drug neighbourhoods in the protein functional network 

We have shown that the relatives of druggable CATH-FunFams and drug 

targets have higher kernel similarity than random proteins, meaning that they 

agglomerate in the protein functional network establishing drug neighbourhoods. 

Based on the work by Menche et al.5 we demonstrated that this effect is a property of 

drug targets and druggable CATH-FunFams rather than caused by the characteristics 

of the kernel derived from the STRING matrix. 

Menche et al. studied the segregation of disease proteins in the same network 

neighborhoods considering the incompleteness of the interactome and developed a 
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method to detect network neighbourhoods related to diseases. The situation of 

network incompleteness described by Menche et al. is pertinent in our study as 

illustrated in Supplementary Fig. S3. The ideal scenario of a complete network (i.e. a 

network where all the interactions are known and all the targets of a drug known) 

leads to easily detecting clusters of drug targets: if we consider a drug 𝑑 with 𝑁# 

targets, we would obtain a connected subnetwork of size 𝑁#. However, we always 

work with incomplete networks and with unknown drug targets. Therefore, clusters 

of drugs targets might appear as connected subnetworks of size 𝑛 < 𝑁# close to each 

other in the network.  

Supplementary Figure S3. Consequence of the network incompleteness and missing 

targets. The left panel shows the ideal situation of network completeness and where 

all the targets of a drug d (blue nodes) are known. The targets of d are easily 

detected as a connected subnetwork of size 6. In the real situation depicted in the 

right panel, there are only five known targets for d and some missing interactions, the 

targets of d appear as two small clusters of sizes 2 and 3.  

We applied a cut-off of 0.8 on the matrix of STRING combined scores to 

generate a protein functional network containing high confidence functional 

interactions among human proteins. We implemented the two measures developed by 

Menche et al. to quantify the tendency of drug targets to agglomerate in the same 
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neighbourhoods of this protein functional network: the relative module size, 𝑆 = ()
*)

, 

where 𝑛# is the number of targets of the drug 𝑑 that forms a connected subgraph in 

the protein functional network and 𝑁# is the total number of targets of 𝑑; and the 

distribution of shortest distances between drug targets, 𝑑+. The relative module size is 

very sensitive to network incompleteness, as missing links or drug targets in the 

network may destroy the connected subnetwork and leave the drug targets isolated. 𝑑+ 

is defined for each of the 𝑁# drug targets as the shortest distance to the next closest target 

of the same drug. Therefore, for each drug we obtain a distribution 𝑃 𝑑+  of 𝑁# data points 

which average value 𝑑+  can be seen as the diameter of the drug in the network. 

We compared the observed drug modules with random models. For each drug with 

𝑁# targets we select 1000 random sets of 𝑁# proteins and compute a distribution of 1000 

random module sizes 𝑆-.(# and a corresponding distribution of 1000 random 𝑑+  values for 

which we used its average.  As we can see in Supplementary Fig. S4 almost all drug targets 

are located within 2 links to another target in the network, and ca. 25% of them are directly 

connected forming close neighbourhoods –the median drug network diameter for drug targets 

is 1.3 (IQR = 1), whereas for random proteins is 2.8 (IQR = 0.5). Drug targets tend to form 

larger modules than random sets of proteins. The random sets of proteins are almost never 

fully connected, usually one third of them form a module, whereas ca. 40% of the observable 

drug target modules contain more than half of the targets. However, we observe the important 

effect of network incompleteness as only ca. 15% of the drugs have their targets forming 

fully connected modules.  
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Supplementary Figure S4. Drug modules and drug diameter in the protein functional 

network. Cumulative distribution function of the drug relative module sizes (left) and 

the drug network diameters (right) for drug targets and random proteins in the 

protein functional network. 
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