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Abstract

Many common genetic factors have been identified to contribute to PD susceptibility, improving our

understanding of the related underlying biological mechanisms. The involvement of rarer variants in

these loci have been poorly studied. Using International Parkinson’s Disease Genomics Consortium

datasets, we performed a comprehensive study to determine the impact of rare variants in 26

previously published GWAS loci in PD. We applied Prixfixe to select the putative causal genes

underneath the GWAS peaks, which was based on underlying functional similarities. The Sequence

Kernel Association Test was used to analyze the joint effect of rare, common or both types of

variants on PD susceptibility. All genes were tested simultaneously as a gene-set and each gene

individually. We observed a moderate association of common variants, confirming the involvement

of the known PD risk loci within our genetic datasets. Focusing on rare variants we identified

additional association signals for LRRK2, STBD1, and SPATA19. Our study suggests an involvement of

rare variants within several putatively causal genes underneath previously identified PD GWAS peaks.

Highlights

 Two genetic datasets comprising a total of 7,968 PD cases and 7,655 controls were used to study

the exome

 Rare variants in LRRK2, STBD1 and SPATA19 are suggested to play a role in PD

 Larger sequencing studies are required in future for follow up.

Keywords

Parkinson’s disease, common risk loci, rare variants, whole exome sequencing, variant aggregation

test
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1. Introduction

Genetic factors play an important role in Parkinson’s disease (PD) pathogenesis. In addition to the

discovery of rare variants using family-based linkage studies, resulting in the identification of, for

example SNCA, LRRK2, parkin, DJ-1, PINK1 and VPS35, numerous genome-wide association studies

(GWAS) have shown that common genetic variants increase PD risk (Bras, et al., 2015). The most

recent and largest PD association study (Nalls, et al., 2014b) identified over 20 common risk variants,

confirming many previously associated risk factors.

Nevertheless, heritability estimates indicate that additional genetic risk factors remain to be

discovered since a relatively large fraction of PD heritability cannot be explained by known PD risk

loci or Mendelian genes (Do, et al., 2011,Keller, et al., 2012,Pihlstrom and Toft, 2011). GWAS

approaches are primarily designed to identify common risk variants by the usage of genotyping

arrays. However, emerging evidence suggests that rare variants may explain part of the missing

heritability (Manolio, et al., 2009,Zuk, et al., 2014). Rare variants in protein coding regions are more

likely to affect the function of a gene than common variants which tag the causal variants via linkage

disequilibrium (LD) and are often located in non-coding regions of the genome (Nelson, et al.,

2012,Tennessen, et al., 2012). Therefore, rare variants might be of more importance to complex

diseases than predicted by the Common Disease-Common Variant hypothesis (Botstein and Risch,

2003,Lander, 1996,Pritchard and Cox, 2002,Sharma, et al., 2014). In contrast to GWAS, exome

sequencing studies aim at systematically analyzing coding regions of the genome to identify causal

variants in complex diseases (Kiezun, et al., 2012). Exome studies have been proven to be effective

for studying familial diseases (Bamshad, et al., 2011) but an increasing number of applications for

populations-based studies have been developed (Cirulli, et al., 2015,Purcell, et al., 2014).

In PD, multiple genes have been shown to harbor both common and rare variants which

contribute to disease pathogenesis. SNCA and LRRK2 contain both PD-risk associated rare variants

with Mendelian effects as common variants that increase PD risk in sporadic patients (Edwards, et al.,

2010,Nalls, et al., 2014b,Nalls, et al., 2011,Paisan-Ruiz, et al., 2004,Polymeropoulos, et al.,

1997,Simon-Sanchez, et al., 2009,Zimprich, et al., 2004). GBA, for which an association was first seen

in families with Gaucher’s disease and parkinsonism (Goker-Alpan, et al., 2004), is furthermore

shown to play a role in PD by both rare coding variants and common risk variants (Do, et al.,

2011,Nalls, et al., 2014b,Pankratz, et al., 2012). Thus, we hypothesize that rare coding variants in the

known risk loci for sporadic PD are involved in the genetic etiology of PD. The combined effect of rare

variants within recently identified PD risk loci will likely explain an additional portion of PD

heritability. We aim to assess this hypothesis by determining the genetic burden of rare variants in

the PD risk loci using two exome cohorts of the International Parkinson’s Disease Genomics

Consortium (IPDGC).
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2. Methods

2.1 Subjects

All PD cases included in this study have given written informed consent. Relevant local ethical

committees for medical research approved involvement in genetic studies. The PD patients were

diagnosed using the UK Brain Bank criteria (Hughes, et al., 1992).

2.2 Whole exome sequencing dataset

The whole exome sequencing (WES) dataset includes 1,167 PD cases and 1,685 controls (post QC) of

European ancestry. The PD patients have a tendency towards a young age of onset with an average

of 41.2 years (SD = 10.9). 1,201 controls originate from the Rotterdam Study version 1 (RSX1), as we

merged the IPGDC WES data with the RSX1 WES data (Hofman, et al., 2015). The samples were

sequenced in different batches with two exome capture kits: EZ Exome Library v2.0

(Roche/Nimblegen) and Truseq Exome Enrichment Kit targeting 44.1 Mb and 62 Mb, respectively

(Supplementary Table 1). To account for putative technical differences between the different capture

kits, we only considered variants that were targeted by both capture protocols and included preQC

individual sample missingness (as a reference to sequencing coverage) as covariates during all

genetic analyses.

On average, 94.4% of the exome was covered for at least 10x. The 100-bp paired-end reads

were sequenced on a HiSeq2000 and aligned to the human reference genome (build hg19) using

Barrow Wheeler Aligner (BWA)-MEM (Li and Durbin, 2009). Genome Analysis Toolkit (McKenna, et

al., 2010) (GATK) called single nucleotide variants (SNVs) and small insertions/deletions (indels) for

each sample, resulting in individual gVCF files. Genotypes of all IPDGC and RSX1 exome samples were

then jointly called and recalibrated, allowing to merge the distinct WES datasets in a correct manner.

Standard GATK filter steps were applied, together with a minimum genotype quality Phred-score of

20 and depth of 8, to only select high-quality variants. Only bi-allelic calls were considered that were

located in regions targeted by both capture kits. Supplementary Table 2 reports the exons that have

been excluded due to insufficient coverage within one of the exome capture protocols.

2.3 NeuroX dataset

The NeuroX dataset encompasses 6,801 PD cases and 5,970 controls (post QC) of European ancestry.

Overlapping samples with the WES dataset were excluded. The average age of onset of the PD

patients is 63.0 years (SD = 12.4). The Exome NeuroX array (Nalls, et al., 2014a) was used consisting

of ~240,000 exonic variants standard to the Illumina HumanExome array v1.1 and ~25,000 variants

focused on neurologic and neurodegenerative diseases.
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2.4 Quality procedures

For individual QC in both the WES and the NeuroX datasets, samples were removed when showing

gender ambiguity, dubious heterozygosity/genotype calls, evidence of relatedness, or being a

population outlier. The latter two were calculated with LD-pruned common variants. Variant QC

procedures were slightly different for the two different datasets. For the WES dataset, variants

passed QC when having a minimum call rate > 85% and being in Hardy-Weinberg equilibrium (HWE

p-values > 1e-8 based on controls). For the NeuroX dataset, variants were excluded for subsequent

analyses with a minimum call rate < 95%, a HWE p-value < 1e-6, or with significant differences in

missingness rate between cases and controls.

2.5 Causal gene selection within PD risk loci

Based on the most recent and largest GWAS (Lill, et al., 2012,Nalls, et al., 2014b) we selected 26 loci

containing at least one top SNP nominated in meta-analysis with p < 5.00e-08 (as reported by

pdgene.org). The published SNPs associated with PD are not the causal variants but rather tag the

unknown causal variants with which they are in LD. As the causal variant (and therefore also the

related gene) has not been determined for most of the PD risk loci, we explored the involvement of

rare variants in PD susceptibility by using the PrixFixe strategy, which selects one gene per locus

based on functional similarities of genes within the LD-blocks from the different loci.

The functional similarity is defined as the degree of shared biological function and is

determined by overlapping biological features such as protein domains, transcription factor binding

sites, gene-expression, phylogenetic profiles and protein-protein interactions. Based on these

features, cofunction networks are generated which connect genes that are likely to share the same

underlying molecular pathway. Genes that are strongly connected to other candidate genes obtain a

higher PrixFixe score and therefore prioritized as causal gene. As this approach is based on genome-

wide datasets and is not performed with disease-related biological assumptions, the PrixFixe strategy

aims to prioritize genes without the usual text mining bias caused by literature-based knowledge

(Edwards, et al., 2011).

The most significantly associated SNPs from the recent meta-analysis by Nalls et al. (Nalls, et

al., 2014b) were used as seeding SNPs to define the LD region per PD locus. If a SNP was not

applicable to be used as seeding SNP (not present in either the current dbSNP 137 or HapMap public

resources), the next strongest associated SNP or a SNP in high LD (r2 > 0.8) within the same locus was

used as a seed. We were unable to define a legitimate seeding SNP for 3 loci (rs71628662, rs591323,

rs2414739). LD-regions were based on the CEU phase III population with a minimal R2 of 0.5. The

final Prixfixe gene-set consists of 23 genes for downstream analyses (Table 1).
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2.6 Variant selection

To enrich both genetic datasets for deleterious variants we selected multiple subsets of variants,

differing in the method and stringency to select pathogenic variants. Based on variant annotation

with ANNOVAR (Wang, et al., 2010), 3 distinct subsets of variants were created, including: 1) all

exonic variants (disruptive, splicing, (non)synonymous and (non)frameshift indels), 2) amino-acid

changing variants (same as previous except for synonymous) 3) amino-acid changing (AAchanging)

variants that are predicted to be deleterious. The latter subset includes variants that are predicted to

be pathogenic (CADD-score ≥ 12.37 (Amendola, et al., 2015)) by Combined Annotation Dependent

Depletion (CADD) v1 (Kircher, et al., 2014). Figure 1 displays a workflow of the classification of the

different variant subsets. The exonic subset was exclusively tested for the gene-set analysis to

determine the involvement of the known PD risk loci in the WES and NeuroX dataset.

2.7 Variant aggregation analysis

The Sequence Kernel Association Test (SKAT) (Ionita-Laza, et al., 2013,Wu, et al., 2011) was used to

perform burden analyses. The MAF threshold, separating the rare and common variants, was based

on the total sample size using the formula (T = 1/(√(2n)) ) suggested by SKAT (Ionita-Laza, et al., 

2013), therefore resulting in the MAF thresholds of 0.013 and 0.006 for the WES dataset and NeuroX

dataset, respectively. We performed polygenetic burden analyses for exclusively rare variants,

exclusively common variants and both types of variants together. The common variants were pruned

(PLINK (Purcell, et al., 2007) indep settings 50 5 1.5) aiming to only consider independent variants in

our genetic analyses. For the gene-sets we performed a two-sided SKAT test allowing variants within

a gene-set to have different directions and magnitudes off effects, which is in concordance with both

damaging and protective effect estimates observed for the 26 published PD loci. To test individual

genes we performed a one-sided burden test, as we hypothesized that variants in individual genes

are likely to have the same direction of effect. We also performed a two-sided SKAT analysis per gene

in case we were interested which genes are driven an observed rare variant association in the total

gene-set.

To correct for confounding factors (e.g. population stratification and technical artifacts), we

included 20 multi-dimensional scaling components, gender and individual missingness rate pre QC

(as a reference to the individual WES coverage) for the WES dataset. As the NeuroX dataset is more

homogeneous, we corrected for the first 4 MDS components and gender. Empirical p-values were

calculated for significant sample results (p < 0.05). For the gene-set analysis, the original sample p-

value of the gene-set of interest was compared to p-values of 1,000 randomly drawn gene-sets of the

same size. For the individual gene associations, empirical p-values were calculated using the
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resampling method implemented by SKAT, by 10,000 permutations of the affection status. Empirical

p-values are calculated by (n1+1)/(n+1), where n1 = the number of resampling p-values smaller than

the original sample p-value and n = the number of resampling.

2.8 Power calculations

We estimated the power of our study design to detect rare variant associations. Supplementary

Table 3 displays the parameters that were chosen for the calculations. For both datasets, the PD

prevalence was set to 0.0057 (Pringsheim, et al., 2014). As approximately half of the loci in

PDgene.org have an odds ratio below 1, the percentage protective effect was set to 50%. A thousand

simulations (α = 0.025) were performed on a haplotype matrix of SKAT, mimicking linkage

disequilibrium structure of European ancestry, comprising 10,000 haplotypes over 200 kb regions.

3. Results

3.1 WES and rare variants

First, we analyzed the WES dataset as it represents all exonic variants, of which the study design has

65% power to detect a rare variant association signal considering individual genes. Testing the

aggregated effect of grouped variants within a gene-set has the potential to increase power.

Supplementary Table 4 shows the results of the gene-set analyses in the WES dataset. Common

exonic variants are moderately associated to PD. The nominal p-value is significant, but the empirical

p-value exceeds 0.05. Although we anticipated a significant association of common variants, we

attribute the moderate association to a relatively low sample size (compared to the original GWAS),

and the selection of genes (by Prixfixe) with variants in moderate LD with the original highest SNP.

The gene-set association is absent when focusing on the common amino-acid changing and CADD

variants, which is probably due to a decrease in power as the number of variants drops.

No rare variant, or common & rare variant associations were observed for the gene-set in

either of the functional variant categories (nominal p ≥ 0.223; Supplementary Table 4). An alternative 

approach to study the putative rare variant associations is to test each gene individually within the

gene-set. Table 2 displays the 3 strongest associated genes per variant subset and approach. Using

the AAchanging variants category, we observed a significant association for STBD1 (p = 0.046).

3.2 NeuroX and rare variants

The NeuroX dataset contains previously identified exonic variants, of which a large proportion is rare

(Nalls, et al., 2014a). In contrast to the WES data sets, our NeuroX cohort has enough power

(estimated at 96%), due to the larger sample size (6,804 cases 5,970 controls), to detect a rare

variant association signal. Similarly, to the WES dataset, a moderate common variant association is
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detected (nominal p = 0.031). In contrast to the WES dataset, we do observe significant associations

of the gene-set with PD, even when only considering rare variants (AAchanging = 0.007; CADD =

0.002; Supplementary Table 5a).

To discover whether specific genes drive this observed rare variant association as observed in

our cohort, the variants were grouped per gene and two-sided tested for their association to PD.

LRRK2 is the gene driving the association observed in the total gene-sets (Supplementary Table 6).

Focusing on the CADD subset, this association (nominal p = 5.17 x 10-13) is considerably stronger than

the second most significant SPATA19 (nominal p = 0.050). The NeuroX array custom content is

primarily driven by neurodegenerative diseases; therefore, NeuroX chip biases towards capture of in-

depth genetic variability within genes, which are known to cause disease pathogenesis.(Tennessen,

et al., 2012) Likewise, NeuroX harbors many variants of the known PD genes. For example, NeuroX

contains 32 harmful (predicted by CADD) LRRK2 variants, while only 2 harmful variants are present

for SPATA19. The variants in LRRK2 are overrepresented and biasing the results of the total gene-

sets. We, therefore, performed the same gene-set analyses on the NeuroX dataset excluding the

variants of LRRK2 (Supplementary Table 5b), resulting in the absence of a rare variant association in

the NeuroX dataset (nominal p ≥ 0.28). This suggests that the previously observed association of rare 

variants within the total gene-set to PD was solely driven by LRRK2.

The two-sided SKAT analysis per gene aimed at the discovery of genes driving the rare variant

association in the total gene-set. Next, we were interested to explore the genetic burden of rare

variants for each gene individually when assuming all rare variants to have the same direction of

effect (one-sided BURDEN test). Table 3 shows again that LRRK2 is the strongest associated gene.

Furthermore, SPATA19 (p =0.017) is significantly associated when specifically considering rare CADD

variants.

3.3 Directionality of effect

We further explored the significant individual association signals (empirical p < 0.05) for LRRK2 and

STBD1, and SPATA19. By focusing on the variant level we aimed to comprehend the direction of

effect estimates. LRRK2 showed a significant burden of 32 rare damaging variants in the NeuroX

dataset. Single-marker association analysis of LRRK2 variants revealed that the observed association

(p = 3.17 x 10-13) is attributed to the p.G2019S (rs34637584), the most common cause of

monogenetic forms of PD. Interestingly, this particular variant was present in 78 cases (MAF = 0.006).

Performing the rare variant aggregation test on 31 pathogenic LRRK2 variants, excluding p.G2019S,

resulted in no association (p = 0.98) to PD, and thus suggesting that the observed rare variant

association in LRRK2 was solely driven by the p.G2019S variant. As this variant is only present in 7

cases in the WES dataset (MAF = 0.003) with a single-marker p-value of 0.002 (LRRK2 mutations
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generally observed in late-onset PD), it explains the discrepancy of results for LRRK2 locus as

observed in the WES dataset, while it showed a strong association in the NeuroX dataset.

In addition to the rare variant association test in LRRK2, we explored the presence of the

previously published common LRRK2 haplotype with a protective effect of 3 exonic variants (N551K-

R1398H-K1423K) (Ross, et al., 2011). K1423K is not included in the NeuroX genotyping array, but is in

high linkage-disequilibrium (r2 = 1.00) with R1398H. We therefore tested the N551K-R1398H (G-A)

haplotype and confirmed the protective effect (OR = 0.89, p = 0.027) of this haplotype for the PD

cases, showing a minor haplotype frequency of 6.2% in cases and 6.9% in controls. All 3 variants were

detected in the WES dataset, allowing to test the full haplotype (G-A-A). Although the haplotype

association was not significant in the WES dataset (OR = 0.81, p 0.223), the trend of effect is similar

with a minor haplotype frequency of 7.0% in cases and 7.5% in controls. The smaller sample size of

the WES dataset is a plausible reason for not obtaining a significant association.

Next, the WES-based STBD1 and NeuroX-based SPATA19 were investigated for their variant

frequencies. Single-marker association analysis showed no significant results for the 8 variants within

STBD1. It therefore appears that the observed rare variant association is not caused by one exclusive

variant but is rather the effect of multiple rare variants. Seven of the 8 variants are control-specific as

they are only present in 10 control individuals. In contrast, only 1 variant is present in a single case.

The direction of effect of the variants that are generating the STBD1 gene association is therefore

implied to be protective. The significant gene-based association for SPATA19 is relatively strong

considering that it is driven by only 2 CADD variants that are present in 7 cases and 0 controls. The

absence of SPATA19 CADD variants in controls suggests that the association signal is damaging.

4. Discussion

To establish the influence of rare variants in sporadic PD risk loci, we explored two independent PD

datasets (WES and NeuroX) enriched for coding rare variants. We used the PrixFixe strategy to select

the most likely causal genes underlying the PD loci peaks, which is based on overlapping biological

functional similarities. We tested both the effect of rare variants in the gene-sets at once, as each

gene individually. Aggregating variants simultaneously across a set of genes has the potential to

increase power to detect an association signal, given that the selected genes are enriched for a group

of genes that are genuinely involved in the disease pathogenesis.

The average age of onset within the cases of the WES dataset (~41 years) is 20 years younger

than in the meta-analysis of the most recent PD GWAS (~61 years) where the PD risk loci were based

on. As some rare genetic risk factors (DJ-1, parkin PINK1) (Bras, et al., 2015) are specific for young

onset PD (YOPD), we acknowledge the putative existence of YOPD-specific common genetic risk

factors within the WES dataset. However, risk factors related to late onset sporadic PD might also
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play a role in YOPD. PD risk loci, such as SNCA and GBA (Klein and Westenberger, 2012,Nalls, et al.,

2014b) overlap between late and young onset. We therefore expect that our WES dataset is an

adequate dataset to study the rare exonic variants in PD risk loci. Furthermore, YOPD is often

genetically explained through rare variants (Bras, et al., 2015). The YOPD patient group in the WES

dataset could therefore be enriched for cases which are genetically influenced by rare variants,

possibly increasing the likelihood of detecting rare variant association.

Using gene-set approach in the WES dataset, we did not detect a burden of rare variants

when comparing PD subjects to controls. However, it is undetermined whether the absence of a rare

variant association is genuine or due to insufficient power. A genuine rare variant association might

furthermore be impeded by the gene-set composition. By using PrixFixe, we increase the likelihood

of selecting the truly involved PD genes underneath the known PD risk loci, yet unrelated genes

might still be included, possibly diluting an association signal. In contrast, with the gene based

association test for the genes selected with the Prixfixe strategy we observed a rare variant

association for STBD1, implying that rare variants in this gene could decrease the risk to develop PD.

STBD1 has its function in lysosomal-mediated autophagy to specifically guide glycogen to lysosomes

for sequestration and degeneration (Jiang, et al., 2011). It, therefore, seems that variants in STBD1

could have beneficial effects for the removal of glycogen. The lysosomal-mediated autophagy has

been implied to be involved in PD through the association of multiple genes, such as LRRK2, ATP13A2

and GBA (Trinh and Farrer, 2013). However, the involvement of STBD1 in PD pathogenesis has to be

carefully considered, as we currently did not have an adequate independent dataset to replicate the

association that was generally based on singletons. The NeuroX genotyping array typically includes

variants that have been observed in previous datasets, minimizing the probability to detect similar

singletons with an extremely low minor allele frequency. Only 3 of the 8 STBD1 variants of the WES

dataset, were present within the NeuroX dataset reducing the power to detect the single gene

association. Hence, further genetic validation studies are warranted to establish the role of STBD1 in

PD. Once a legitimate replication is realized, functional assays on lysosomal-mediated autophagy

should further decipher the contribution of STBD1, preferably in relation to well-established PD

genes.

We detected a strong association of rare variants within the gene-sets for the NeuroX

dataset. However, subsequent analyses showed that these associations were dominated by LRRK2

variants. Association analysis on variant level revealed that the LRRK2 gene signal was driven by the

known p.G2019S variant. This observation highlights the importance of cataloguing the individual

rare variants to fully resolve the impact of rare variants in disease susceptibility for PD. As shown for

the LRRK2 association and even the total gene-set association, it is driven by only 1 variant, which

also could have been detected with the performance of a simple single-marker association test.
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Besides the pathogenic association signal of rare variant G2019S, we observed a significant

protective effect of a previously published common haplotype (Ross, et al., 2011). This observation

supports the theory that other variants with opposite effects could interact and potentially influence

the penetrance of pathogenic LRRK2 variants, such as G2019S. Besides LRRK2, we furthermore

detected a NeuroX-based burden of rare CADD variants for SPATA19 that increases PD risk (p =

0.017). This association signal is relatively strong considering that it is driven by only 2 CADD variants

that are present in 7 cases and 0 controls. As SPATA19 is involved in spermatogenesis

(Nourashrafeddin, et al., 2014), and the GTEx portal displays specific high expression for the testis, it

diminishes the likelihood that defects of this gene would contribute to neurodegeneration. Further

genetic and functional studies are warranted to decipher a role of this gene in PD.

In contrast to selecting the physically closest gene to the strongest SNP within each PD locus,

we followed a comprehensive strategy to define true causal gene, which is based on biological

similarities. As we expect that only one gene per locus is the true causal gene, we did not define a

gene-set including all the genes underneath the GWAS loci assuming the overrepresentation of non-

causal genes would dilute a putative association signal. We acknowledge that the ultimate strategy

to test the effect of rare variants in the PD loci would be to sequence all genes in a large cohort, and

test the effect of rare variants in each gene individually. Furthermore, sequencing rather than

genotyping will define novel rare variants and contribute to cataloguing the influence of rare variants

underneath the PD risk loci. Acknowledging these caveats, our study suggests for the first time that,

apart from LRRK2, SNCA and GBA, other common PD risk loci might harbor rare variants that

contribute to PD risk.
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Figures

Figure 1. Flowchart of variant subset classification. The variants undergo multiple analyses

procedures, including quality control, selection of variants within PD loci and functional annotation.

Each genetic dataset (WES and NeuroX) is tested for 6 different variant categories, differing in causal

gene selection approach and functionality of variant.
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Tables

Table 1. Selected set of genes.

Polymorphism Location (hg19) P -value Seeding SNP Prixfixe gene

rs71628662 chr1:155359992 6.86 x 10
-28

NA

rs823118 chr1:205723572 1.96 x 10
-16

rs823114 RAB7L1

rs10797576 chr1:232664611 1.76 x 10
-10

rs2182431 SIPA1L2

rs6430538 chr2:135539967 3.35 x 10
-19

rs6430538 ACMSD

rs1955337 chr2:169129145 1.67 x 10
-20

rs2390669 STK39

rs12637471 chr3:182762437 5.38 x 10
-22

rs12637471 LAMP3

rs11724635 chr4:15737101 4.26 x 10
-17

rs11724635 FBXL5

rs6812193 chr4:77198986 1.85 x 10
-11

rs6812193 STBD1

rs356182 chr4:90626111 1.85 x 10
-82

rs356219 SNCA

rs34311866 chr4:951947 6.0 x 10
-41

rs748483 MFSD7

rs9275326 chr6:32666660 5.81 x 10
-13

rs9275311 HLA-DRB5

rs199347 chr7:23293746 5.62 x 10
-14

rs199347 GPNMB

rs591323 chr8:16697091 3.17 x10
-8

NA

rs117896735 chr10:121536327 1.21 x 10
-11

rs10886515 RGS10

rs329648 chr11:133765367 8.05 x 10
-12

rs329648 SPATA19

rs3793947 chr11:83544472 2.59 x 10
-08

rs1400313 DLG2

rs11060180 chr12:123303586 3.08 x 10
-11

rs11060180 HIP1R

rs76904798 chr12:40614434 4.86 x 10
-14

rs2708435 LRRK2

rs7155501 chr14:55347827 1.25 x 10
-10

rs2878174 LGALS3

rs1555399 chr14:67984370 5.70 x 10
-16

rs7155830 ARG2

rs2414739 chr15:61994134 3.59 x 10
-12

NA

rs14235 chr16:31121793 3.63 x 10
-12

rs14235 PRSS8

rs17649553 chr17:43994648 6.11 x 10
-49

rs17649553 MAPT

rs12456492 chr18:40673380 2.15 x 10
-11

rs12456492 RIT2

rs62120679 chr19:2363319 2.52 x 10
-09

rs2074546 PLEKHJ1

rs55785911 chr20:3153503 3.30 x 10
-10

rs2295545 AVP

P -va l ue = Meta p-val ue as reported on pdegene.org. Seeding SNP = input SNP for PrixFixe

software. Prixfixe gene = genes selected based on underlying functional s imi lari ties , which is

determined by overl apping biol ogica l features such as protei n domains , transcri ption factor

bi ndi ng s i tes , gene express ion, phylogenietic profi les and l i terature-bas ed protein-protein

interactions .
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Table 2. Gene-based rare variant association results for WES dataset.

Variant type Gene p -value (emp) n variants maf cases maf controls

AAchanging STBD1 0.018 (0.046) 8 0.05% 0.32%

HIP1R 0.082 20 0.61% 0.53%

STK39 0.126 4 0.20% 0.00%

CADD STBD1 0.105 5 0.05% 0.16%

SPATA19 0.122 4 0.19% 0.06%

GPNMB 0.141 18 0.85% 0.92%

p -va lue = theoretica l p-va lue; (emp.) = emperica l p-value ca lculated by comparison to

10000 permutations of affection s tatus . AAchanging = amino acid changing variants ;

CADD = variants predicted pathogenic

Table 3. Gene-based rare variant association results for neuroX dataset.

Variant type Gene p -value (emp) n variants maf cases maf controls

AAchanging LRRK2 0.0004 (0.0005) 48 1.70% 1.13%

RIT2 0.051 2 0.00% 0.03%

PRSS8 0.098 1 0.04% 0.01%

CADD LRRK2 0.0003 (0.0005) 32 1.38% 0.86%

SPATA19 0.014 (0.017) 2 0.05% 0.00%

RIT2 0.051 2 0.00% 0.03%

p -val ue = theoretica l p-va lue; (emp.) = emperi ca l p-va lue cal culated by comparison to

10000 permutations of affection status . AAchanging = ami no acid changi ng variants ;

CADD = variants predicted pathogenic
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Supplemental data

Table 1. WES capture protocols

cases

IPDGC IPDGC RSX1

Nimblegenv2 252 37 1201

Truseq 912 446 0

Mixed 3 1 0

Total 1167 484 1201

Mixed = samples that have been captured using the 2

distinct capture kits.

controls

Table 3. Parameters for power calculations.

Arguments WES NeuroX

Subreg. Length 3205 3205

Prevalence PD 0.0057 0.0057

% protective effect 50 50

n samples 2852 12771

Case proportion 0.41 0.53

Causal MAF cutoff 0.013 0.006

% causal variants 40 52

Subregion length = the average lenth of trans cripts corres poding to

the genes included in the gene-sets . % protective effect = % of causa l

variants with a negative coefficient. Causa l MAF cutoff i s s imi lar to

common/rare variant cut-off. % caus a l variants = % of CADD variants
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Table 4. Gene-set association results of WES dataset.

Gene-set Variant type p- value (emp.) n variants p- value (emp.) n variants p- value (emp.) n variants

Prixfixe exonic 0.014 (0.074) 29

AAchanging 0.227 343 0.319 14 0.223 357

CADD 0.189 212 0.414 10 0.247 222

p -va lue = nominal p -value; (emp.) = empirica l p -va lue ca lculated by comparis on to 1000 randomly drawn gene-sets of same size. P -va lues

in bold are s igni ficant. MAF cut-off to separate rare and common variants is 0.013 on sample s ize).

CommonRare Common & rare

Table 5. Gene-set association results of neuroX dataset.

Rare Common Common & rare

Gene-set Variant type p- value (emp.) n variants p- value (emp.) n variants p- value (emp.) n variants

a. LRRK2 included exonic 0.031 (0.101) 18

AAchanging 1.06 x 10
-5

(0.007) 176 0.0084 (0.053) 23 8.45 x 10
-7

(0.026) 199

CADD 5.99 x 10
-7

(0.002) 114 0.0032 (0.034) 13 8.58 x 10
-8

(0.020) 127

b. LRRK2 excluded exonic 0.243 13

AAchanging 0.28 128 0.154 16 0.367 144

CADD 0.70 82 0.197 8 0.411 90

p -va lue = theoretical p -value; (emp.) = emperical p -value ca lculated by comparison to 1000 randomly drawn gene-sets of same size.

Boldfaced p -va lues are s ignificant. MAF cut-off to separate rare and common variants is 0.006 (based on sample s i ze).
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Table 6. Gene-based rare variant association results for neuroX dataset.

Variant type Gene p -value n variants

AAchanging LRRK2 4.32 x 10
-13

48

PRSS8 0.098 1

RIT2 0.129 2

CADD LRRK2 5.17 x 10
-13

32

SPATA19 0.050 2

HIP1R 0.091 9


