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Abstract 

Multiple factors are involved in the mechanism(s) of neuronal loss in neurodegenerative 

disorders whilst mitochondria are thought to play a central role in neurodegeneration of 

Parkinson’s disease. Mitochondria are vital to cellular functions by supplying energy in form 

of ATP and affect cell physiology via calcium, ROS and signalling proteins. Changes in 

mitochondrial calcium homeostasis and ROS overproduction can induce cell death by 

triggering mitochondrial permeability transition pore opening. One of the major triggers for 

PTP is mitochondrial calcium overload. Mitochondrial calcium homeostasis is regulated by 

electrogenic calcium uptake (via calcium uniporter MCU) and efflux (in excitable cells via 

Na+/Ca2+ exchanger NCLX). NCLX inhibition has been described in a familial form of 

Parkinson’s disease where PINK-1 deficiency leads to a delayed calcium efflux and 

mitochondrial calcium overload in response to physiological calcium stimulation. 

Overexpression of NCLX in PINK-1 deficient neurons not only protects against mitochondrial 

calcium overload and calcium induced cell death but also restores mitochondrial 

bioenergetics in these neurons. Mitochondrial NCLX might therefore play an important role 

in the mechanism(s) of neurodegeneration in a variety of neurodegenerative disorders and 

activation of this exchanger may offer a novel therapeutic target.   

 

Introduction 

The most common neurodegenerative disorders – Alzheimer’s disease (AD) and Parkinson’s 

disease (PD) are progressive and incurable diseases affecting elderly people. Considering the 

ageing population worldwide, this represents a serious cost to society. Many years after 
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these diseases were first described, much has been learnt about the pathology and 

pathogenesis of the disease, but a number of gaps in our understanding remain. Only by 

understanding the pathogenic mechanisms that underlie PD and AD, can therapeutic 

strategies be designed to halt or slow disease progression, rather than merely treat the 

symptoms. It is widely recognized that the loss of mitochondrial function is a key event 

leading to necrotic and apoptotic cell death under a wide range of pathological conditions 

(Burchell et al., 2013). Calcium signalling is fundamentally important to neuronal and glial 

cells and might represent either a mediator or a manifestation of pathological processes in 

the CNS (Abeti and Abramov, 2015; Angelova and Abramov, 2014). Calcium ions control and 

coordinate a diverse array of physiological functions within the cell such as muscle 

contraction, proliferation and neurotransmission. The importance of calcium as a secondary 

messenger molecule was first described by Ringer in 1883 who accidentally discovered that 

isolated hearts require calcium for contraction (Ringer, 1883). Subsequent studies in the 20th 

century underlined the importance of calcium in physiology (Carafoli, 2003). Calcium 

oscillations are vital for the depolarisation of neurons and synaptic transmission where basal 

cytosolic free calcium levels increase significantly through the influx of calcium from the 

extracellular space significantly after depolarisation. For neurons, it is crucial to buffer 

excessive calcium from the cytosol at the time of signal transmission. Calcium levels are 

tightly controlled by calcium-buffering proteins such as calbindin and calmodulin and 

intracellular stores where mitochondria are responsible for the “fine-tuning” of calcium 

transients (Baimbridge et al., 1992; Dupont and Combettes, 2016).  

Elevated Ca2+ levels are then either rapidly sequestered into mitochondria and ER or 

extruded into the extracellular space via Na+/Ca2+ exchanger (NCX) or Ca2+ ATPase are the 



4 

 

major calcium extrusion proteins (Lytton et al., 2002; Carafoli et al., 2001). Three plasma 

membrane NCX isoforms have been identified (NCX1, NCX2 and NCX3) where NCX1 is 

ubiquitously expressed in most tissues (elevated expression in heart and skeletal muscle) 

and NCX2/3 are highly expressed in brain tissue. NCX in reverse mode is thought to be 

neuroprotective under pathophysiological conditions such as ischemia and excitotoxicity 

(Jeffs et al., 2007).    

Mitochondria play a vital role in a healthy calcium homeostasis whilst the calcium influx in 

to the mitochondria aids the bioenergetic status of the cell. They are strategically placed 

throughout the cell and calcium uptake stimulates dehydrogenases which in turn increase 

NADH and FADH levels and therefore drive ATP synthesis (Denton, 2009). Thus, a tight 

control of calcium transients is particularly important to high pacing cells such as 

cardiomyocytes and dopaminergic neurons which have a particularly high energy demand. 

Chronic elevated calcium levels triggered by altered calcium transient handling as described 

in PD may damage mitochondria, impair ATP synthesis which ultimately may lead to cell 

death (Gandhi et al., 2012). 

The mechanism of mitochondrial calcium uptake and efflux has been extensively studied 

where it was shown that calcium is transported across the inner mitochondrial membrane 

via mitochondrial calcium uniporter (MCU). Calcium is taken up in an electrogenic manner, 

thus not requiring anions or cations for transport across the membrane (Gunter and Pfeiffer, 

1990). Global ablation of MCU in mice is not lethal and does not result in major cardiac 

phenotypical suggesting a limited role in cardiac homeostasis (Pan et al., 2013; Holmstrom 

et al., 2015). However, a transgenic mouse model with a conditional MCU deletion in 

adulthood revealed that MCU is required for calcium-dependent mitochondrial metabolism 
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during acute stress (Kwong et al., 2015; Luongo et al., 2015). These studies suggest that 

mitochondrial calcium uptake under normal physiological conditions may take place via 

other MCU-independent calcium uptake mechanism(s). 

Mitochondrial calcium is extruded in exchange with either H+ or Na+. It is well established 

that calcium exchange in excitable cells such as neurons is mediated by Na+/Ca2+ exchanger 

(Crompton et al., 1978). Molecular identification demonstrated mitochondrial member of 

the Na+/Ca2+ exchanger superfamily – the Na+/Ca2+/Li+ exchanger (NCLX) (Palty et al., 2004; 

Palty et al., 2010). Despite the discovery of the efflux mechanisms, the molecular identity 

remained for many years elusive. Palty et al. finally identified and characterised the 

mitochondrial member of the Na+/Ca2+ exchanger superfamily – the Na+/Ca2+/Li+ exchanger 

(NCLX) (Palty et al., 2004; Palty et al., 2010). NCLX shares a common catalytic core with the 

NCX superfamily but its regulatory domain is shorter and lacks allosteric Ca2+-binding 

domain. NCLX is thought to be the rate-limiting system by which it control mitochondrial 

Ca2+fluxes since the efflux is much slower that the MCU-mediated Ca2+ influx (Palty et al., 

2010; Drago et al., 2012). Impairment of the mitochondrial influx/efflux leads to a 

deregulation of mitochondrial calcium homeostasis and mitochondrial calcium overload in 

combination with oxidative stress are known to induce permeability transition pore opening 

(PTP) that is believed to be an initial trigger for apoptotic and necrotic cell death (Bernardi 

et al., 2015; Zhivotovsky et al., 2009).  The importance of NCLX in mitochondrial calcium 

homeostasis and survival of excitable cells has recently been highlighted as the deletion of 

NCLX in the mouse adult heart leads to myocardial dysfunction and lethality within two 

weeks. This study provides strong evidence that mitochondrial calcium efflux (via NCLX) is 

indispensable for normal calcium homeostasis and cardiac function (Luongo et al., 2017). 
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The importance of NCLX in neuronal calcium homeostasis is yet to be fully established - this 

study would ideally be undertaken in a mouse model lacking neuronal NCLX. 

Cellular and mitochondrial pathology in Parkinson’s disease 

Neurodegenerative diseases are classified as progressive degeneration and selective death 

of neuronal subtypes. In PD, Lewy body inclusions with a loss of dopaminergic neurons of 

the substantia nigra are the main histopathological hallmarks. On cellular level, oxidative 

stress and mitochondrial complex I deficiency have been described in many studies 

investigating PD pathology (Schapira et al., 1990; Dexter et al., 1989; Zhang et al., 1999; Dias 

et al., 2013). Neurodegenerative conditions often affect mitochondria and the bioenergetic 

status of the cell where mitochondria calcium dysregulation plays a key role in 

pathogenesis. The underlying molecular mechanism(s) are still debated whilst mitochondrial 

biogenetics and calcium regulation have received more attention in the recent years.  

For many years, the mitochondrial complex I inhibitor MPTP (1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine) has been employed to recapitulate the pathophysiology of PD in mice 

and assess therapeutic compounds (Meredith and Rademacher, 2011). The discovery of 

genes affected by mutations in familial PD has not only provided a firm link between 

mitochondria and PD but also improved our understanding of the underlying mechanism(s) 

in this debilitating disease.  Among those PD-risk genes discovered by linkage analysis is α-

synuclein itself, the proteins that aggregates in PD Lewy body pathology (Polymeropoulos et 

al., 1997; Polymeropoulos et al., 1996; Singleton et al., 2003). Alpha-synuclein has been 

shown to induce oxidative stress and calcium dysregulation (Deas et al., 2016; Angelova et 

al., 2015; Angelova et al., 2016). Further PD risk genes are protein deglycase DJ-1 (DJ-1) and 
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PTEN-induced putative kinase 1 (PINK1) which have both been proposed to be involved in 

neuronal stress-response pathways (Piccoli et al., 2008; Gandhi and Abramov, 2012). 

Mutations in PINK1 cause a recessive form of PD where mitochondrial phenotypes have 

been described by many research groups. Limited mitochondrial substrate availability and 

inhibition of complex I have been reported to result in impaired respiration with elevated 

levels of ROS (Wood-Kaczmar et al., 2008; Gautier et al., 2008; Yao et al., 2011). 

Furthermore, alterations in mitochondrial metabolism through inhibition of NCLX in 

pancreatic β-cells of PINK-1 deficient mice lead to changes in glucose sensitivity of these 

cells (Deas et al., 2014). 

Since cytosolic calcium dysregulation has been shown to be a major pathogenic hallmark in 

PD and the role for mitochondria in calcium transient buffering it is not surprising that 

mitochondrial calcium overload was described in PINK1-deficient neurons (Schapira, 2013; 

Hurley et al., 2013; Surmeier, 2007; Gandhi et al., 2009). In 2009, Gandhi et al. found that 

PINK-1 deficient midbrain neurons are sensitive to dopamine (non-toxic to wild type 

neurons) and that dopamine induced mitochondrial calcium overload which in turn 

triggered PTP opening and cell death. The authors found that calcium extrusion in PINK-1 

deficient neurons was severely inhibited leading to mitochondrial calcium overload, increase 

ROS production and ultimately neuronal cell death. Although functional inhibition of the 

mitochondrial sodium/calcium antiport was demonstrated in PINK-1 deficient neurons a 

direct proof of regulation or integration of NCLX and PINK1 could not be provided in this 

study as the molecular identity of NCLX was not established in 2009. An insight into the 

question to whether mitochondrial calcium or dopaminergic dysregulation are early 

pathogenic processes, Akundi et al. (2011) showed that increased mitochondrial calcium 
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sensitivity precedes dopamine dysregulations observed in a PINK1-deficient mouse model 

again highlighting the importance of mitochondrial calcium homeostasis in PD. Importantly, 

the inhibition of mitochondrial calcium efflux was also demonstrated in cells of PD patients 

bearing PINK-1 mutations (Abramov et al., 2011). The molecular identification of NCLX 

opened up avenues to study of mitochondrial calcium efflux in PD. A study in 2015, has 

shown that NCLX activation is able to rescue the pathogenic mitochondrial calcium efflux, 

MMP depolarisation and neuronal cell death in PINK-1 deficient models via a protein kinase 

A mediated process confirming Gandhi et al. (2009) hypothesis (Kostic et al., 2015). 

Furthermore, the authors provided a detailed analysis of a putative regulatory NCLX site 

serine 258. This study provided the first evidence that upregulation of mitochondrial 

calcium efflux via NCLX is able to rescue the pathogenic phenotypes observed in PD.  

Whilst it is well recognised that NCLX is the main extrusion mechanism in excitable cells 

however, it should be noted that pharmacological inhibition (and KO) of NCLX reduces the 

efflux by 80% indicating the presence of other extrusion mechanism(s). NCX2 and NCX3 

have been suggested to be play a role in mitochondrial calcium efflux where inhibition of 

NCX2/3 by siRNA or antibody-blocking led to a reduced mitochondrial calcium efflux (Wood-

Kaczmar et al., 2013). This finding is supported by other studies which demonstrated a 

possible role for the plasmalemmal NCX in mitochondrial calcium efflux (Gobbi et al., 2007; 

Sisalli et al., 2014).  

Considering the cytosolic calcium dysregulation observed in PD and mitochondrial calcium 

overload in PINK-1 deficient neurons the question remains whether mitochondrial calcium 

efflux is a common phenotype. Preliminary results produced by our laboratory provides 

further support that mitochondrial calcium homeostasis may play a central role to PD 
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pathology. Rat primary neuronal co-cultures overexpressing alpha-synuclein were loaded 

with a mitochondrial calcium dye (Rhod5N) and cells were permeabilized using pseudo-

intracellular buffer containing digitonin (+5mM malate/glutamate). This approach allowed 

direct application of CaCl2 to permeabilized neurons and recording of mitochondrial calcium 

handling (Fig.1A) (Abramov and Duchen, 2011). The calcium efflux in alpha-synuclein 

overexpressing neurons was severely impaired when compared to wild type neurons 

suggesting a role for NCLX in another PD model (Fig.1B). Interestingly, we have previously 

shown that exogenous alpha-synuclein is readily taken up by neuronal cultures and localises 

to the mitochondria (Ludtmann et al., 2016; Cremades et al., 2012; Angelova et al., 2016). 

These results warrant further investigations as to how alpha-synuclein triggers 

mitochondrial calcium accumulation and whether NCLX plays a role in this pathogenic 

process. 

Mitochondrial calcium dysregulation impairs mitochondrial health and can lead to cell 

death. Our data on PINK-1 deficient neurons and alpha-synuclein overexpressing neurons 

(Kostic et al., 2015)) suggest that NCLX may play a common role in the mitochondrial 

pathogenesis of PD. The molecular identification of NCLX enabled studies of mitochondrial 

calcium homeostasis in PD models. Recent data provide evidence that the role of NCLX and 

mitochondrial calcium efflux in the pathogenesis of Parkinson’s disease, and possibly some 

other neurological disorders, are underestimated.   
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Figure legend 

Fig.1 Impaired mitochondrial calcium efflux in neurons overexpressing alpha-synuclein. A) 

Representative traces of mitochondria loaded with Rhod5N exposed to CaCl2 stimulus. B) 

The significant delay in mitochondrial calcium efflux suggests a role for NCLX in alpha-

synuclein pathology. n=3 experiments; ***p<0.001 Method: Rat primary neuronal co-

cultures were prepared as described in Gandhi et al. (2012) and cells were loaded with 
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Rhod5N before being permeabilized as described in Abramov and Duchen (2011). Confocal 

images were obtained using a Zeiss 710 equipped with a META detection system and a 40× 

oil immersion objective. Rhod-5N measurements were undertaken using the 543 nm laser 

line and 560 nm longpass filter. Statistical analysis and exponential curve fitting were 

performed using Origin 2017 software (Microcal Software Inc.). Results are expressed as 

means ± standard error of the mean. Student’s T-tests was performed for statistical analysis. 
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