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Abstract. We study the convergence of monotone P1 finite element methods on unstruc-
tured meshes for fully nonlinear Hamilton-Jacobi-Bellman equations arising from stochastic optimal
control problems with possibly degenerate, isotropic diffusions. Using elliptic projection operators
we treat discretizations which violate the consistency conditions of the framework by Barles and
Souganidis. We obtain strong uniform convergence of the numerical solutions and, under nondegen-
eracy assumptions, strong L2 convergence of the gradients.
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1. Introduction. Hamilton-Jacobi-Bellman (HJB) equations, which are of the
form

(1.1) —0p +sup(L¥v — %) =0,

where the L are linear first- or second-order operators and f¢ € L*°, characterize
the value function of optimal control problems. Indeed, one possibility to introduce
the notion of solution of (1.1) is via the underlying optimal control structure. An
alternative approach is to use the monotonicity properties of the operator, which
leads to the concept of viscosity solutions. While these perceptions are essentially
equivalent [19, p. 72], both views have been instructive for the design and analysis of
numerical methods.

The former approach, based on the discretization of the optimal control problem
before employing the dynamic programming principle, has been proposed in the set-
ting of finite elements in [33, 9, 10]; see also the review article [26] and the references
therein. Regarding finite difference methods we refer to the book [27]. The latter
approach, which is also adopted in this note, was firmly established with the contri-
bution [3] by Barles and Souganidis in 1991, providing an abstract framework for the
convergence to viscosity solutions. Starting with [24, 25], techniques were developed
to quantify the rate of convergence; more recent works are [1, 16]. A third direc-
tion was opened by the method of vanishing moments which neither enforces discrete
maximum principles nor makes use of the underlying optimal control structure but
relies on a higher-order regularization [18]. For a more comprehensive review of the
state-of-the-art in the numerical solution of fully nonlinear second-order equations we
refer to [17]; see also recent results in [5, 6, 28, 31].

It is helpful to briefly recall the convergence argument in [3], formulated there in
the setting of finite difference methods. Consider a sequence of abstract numerical
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schemes F;[v;](sF,yf) = 0 with numerical solutions v;, where {y¢}, is the set of nodes
or grid points and {s¥}; is the set of time levels of the ith refinement level. Under a
stability condition, one can define the upper envelope v* of the sequence v; by

vi(t,x) = sup  limsupvi(s}, ;).
(sfyi)—(tm) 170

One can also define the lower envelope v, analogously to v* by replacing the suprema
with infima. Clearly, v, < v*. It is shown in [3] that if v* — w has a strict local
maximum for a smooth function w, then v; — Z;w also has a strict local maximum
at a nearby node (s¥,yf) for i € N and with the nodal interpolation operator Z;.
A monotonicity assumption implies 0 = Fj[v;](s¥,yf) > Fi[Ziw](s¥, yf). Now the
consistency condition at the point (¢, )

(1.2) Fi[Tiw)(sf,y;) — —wi(t, @) + Huw(t, )

implies that —w(t,z) + Hw(t,x) < 0, where in our context the Hamiltonian H
is defined pointwise by Hw = sup,(L*w — f¢). Therefore, v* is a subsolution.
A similar argument shows that v, is a supersolution. Finally, with a comparison
principle, subsolutions are bounded from above by supersolutions; so v* < v,, which
gives convergence. To have a comparison principle, it is usual that the convergence
properties on the parabolic boundary need to be studied.

Condition (1.2) raises the question of how to enforce consistency in a finite element
setting. In the traditional finite element analysis, the multiplicative testing with hat
functions is viewed as the discrete analogue of the multiplicative testing procedure
to define weak solutions of the (variational) differential equation. While elements of
this viewpoint are implicitly used in section 7 on gradient convergence, we would like
to stress a second interpretation: multiplication with hat functions as regularization
of the residual. Consider for a moment the linear problem —a(x)Au(z) = f(z) with
smooth functions a and u as well as a hat function ¢ at the node y*. Let P be the
orthogonal projection onto the approximation space with respect to the scalar product
(v,w) = [ Vv - Vwdz (given suitable boundary conditions). If y is near y*, then on
a fine mesh

—a(y)Au(y) = - / a(y) Muy) d(z) dz ~ —aly) / Au(z) d(z) da
— a(y?) / Vu() - Vo(z) dz = a(y’) / VPu(z) - Vi(x) da,

since ¢ := #/119ll 1 (o) approximates a Dirac delta as the element size is decreased. In
contrast, on general meshes,

—a(y)Au(y) % a(y?) / VZu(z) - Vo(x) da (Z; nodal interpolant)

even in the limit as the mesh is refined (see Example 1 below). This indicates that the
orthogonality properties of the projection of the exact solution into the approximation
space play an important role for the understanding of the (pointwise) consistency of
the finite element scheme. Furthermore, this interpretation may serve as a starting
point in selecting a discretization of the HJB operator.

Viscosity solutions are a mathematical concept to select the value function v from
the (possibly infinite) set of weak solutions of the HJB equation. Once the conver-
gence to the viscosity solution is guaranteed, the attention turns to other convergence
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properties. For a fixed o and nonnegative v and f¢ one uses (1.1) with
—Ow+ L% — f* <0 = (—0w,v) + (L%, v) < (f*,v),

where (-, -) denotes an L? scalar product. Finite element methods whose test and trial
spaces coincide lend themselves well to exploit this variational inequality together with
coercivity properties of L to control gradient terms of v on unstructured meshes.

Our analysis combines the following features in a single finite element framework.

Treatment of nodally inconsistent discretizations and uniform convergence. The
consistency condition (see [3, eq. (2.4)] or [19, p. 332]) of Barles and Souganidis is
based on a limit involving pointwise values of smooth test functions. This condition is
not satisfied by finite element methods, even for linear equations. Using an alternative
consistency condition, we show the uniform convergence of finite element solutions to
the viscosity solution.

Gradient convergence. For problems with coercive linear operators under the
supremum, we demonstrate how the coercivity is recovered by the finite element
method in order to control the gradient of the numerical solutions. In a uniformly
parabolic setting, this leads to strong convergence in L2([0, 7], H(12)).

Operators of nonnegative characteristic form. The analysis includes the treat-
ment of HJB equations arising from partially and fully deterministic optimal control
problems that correspond to degenerate elliptic operators under the supremum of the
Hamiltonian.

Unstructured meshes. In the spirit of finite element methods the computational
domain may be triangulated with an unstructured mesh, allowing the capture of
complex domains more easily than in a finite difference setting. Typically, weaker
conditions on the mesh than quasiuniformity can be made.

Regularization with second-order operators. We highlight that the regularization
with second-order elliptic operators is sufficient to achieve convergence to the viscosity
solution. Indeed, in the example of the method of artificial diffusion, we illustrate how
the regularization in the second-order fully nonlinear case is of the same kind and order
as for first-order linear operators.

Unconditional time step size. Our analysis permits explicit, semi-implicit and
fully implicit discretizations in time. Fully implicit discretizations in time lead to
unconditionally stable schemes.

The structure of the article is as follows: in section 2, we introduce a framework
of monotone finite element methods for HIB equations. In section 3, we study the
well-posedness of the discrete systems of equations and describe how these systems are
solvable by a known globally convergent algorithm with local superlinear convergence.
Section 4 establishes the consistency properties of the scheme with respect to elliptic
projection operators. This enables us to demonstrate in section 5 that the upper
and lower envelopes of the numerical solutions are sub- and supersolutions. Uniform
convergence to the viscosity solution is derived in section 6 and is then built upon to
analyze the convergence of the gradient in section 7. We provide a concrete specimen
of a scheme belonging to our framework by describing the method of artificial diffusion
in section 8. The scheme is put into practice in section 9, which presents the results
of a numerical test of the convergence rates.

2. Problem statement and definition of the numerical scheme. Let Q2 be
a bounded Lipschitz domain in R, d > 2. Let A be a compact metric space and let

A— C(Q) x C(Q,RY) x C(Q) x C(Q), ars (a®,b*,c, f%)
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be continuous, such that the families of functions {a“}aca, {*}aca, {¢*}aca, and
{f*}aca are equicontinuous. Consider the bounded linear operators

LY: H*(Q) — L*(Q), w —a® Aw + b* - Vw + ¢* w, a€ A

We assume that a® > 0, i.e., that all L* are of nonnegative characteristic form [32].
Furthermore, suppose that pointwise f* > 0. Then

(2.1) sup [ (a®,6%,¢%, F*) llc@)xc@rtyxc@xc@) < °°

and also supye 4 ||| m2(0)—r2(0) < 0o. Let the final-time data vy € C(2) be non-
negative, vy > 0 on Q, and let vy satisfy homogeneous boundary conditions on 9€.
For smooth w, let

Huw = sup(L%w — f¢),

where the supremum is applied pointwise. The HJB equation considered is

(2.2a) —Ow+Hv=0 in (0,7) x Q,
(2.2b) v=0 on (0,7) x 09,
(2.2¢) v=or on {T} x Q.

DEFINITION 2.1 (see [2, 19]). An upper semicontinuous (lower semicontinuous)
function v : [0,T] x @ — R is a viscosity subsolution (supersolution) of

(2.3) —Ow+Hv=0 on (0,T)x

if for any w € C=(R x R?) such that v—w has a strict local mazimum (minimum) at
(t,z) € (0,T) x Q with v(t,z) = w(t,z), it gives —Opw(t,z) + Hw(t,x) < 0 (greater
than or equal to 0). If v € C([0,T] x Q) is both a viscosity subsolution and a super-
solution of (2.3), then v is called a viscosity solution.

The viscosity solution of (2.2) is understood to be a viscosity solution of the PDE
(2.2a), in the sense of Definition 2.1, that satisfies pointwise the boundary conditions
(2.2b) and (2.2c); see also Assumption 6.1 below.

2.1. The numerical scheme. We now specify a class of discretizations of the
HJB equation that permit explicit and implicit schemes as well as regularization and
approximation of the data. The conditions required for the analysis of the scheme are
stated in Assumptions 2.1 and 2.2 below. Section 8 provides an example of a concrete
method for putting this framework into practice.

Let V;, i € N, be a sequence of piecewise linear shape-regular finite element
spaces with nodes /. Here £ is the index ranging over the nodes of the finite element
mesh. Let V;" C V; be the subspace of functions which satisfy homogeneous Dirichlet
conditions on 9. It is convenient to assume that y¢ € Q for £ < N; := dim V?,
i.e.,the index ¢ first ranges over internal nodes and then over boundary nodes. The
associated hat functions are denoted ¢f, that is, ¢f € V; and ¢f(yl) = 1if | = ¢,
otherwise ¢/(y}) = 0. Set ¢! := @5 /|68 11 (). Thus, the ¢ are normalized in the
L norm while the q@f are normalized in the L' norm. The mesh size, i.e., the largest
diameter of an element, is denoted Ax;. It is assumed that Az; — 0 as i — oc.

Let h; be the (uniform) time step size used in conjunction with V; with T'/h; € N,
and let s¥ be the kth time step at the refinement level i. It is assumed that h; — 0
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as i — oo. The set of time steps is S; := {s¥ : k =0,...,T/h;}. Let the (th entry of
diw(s¥, ) be

L0 sk gt
(dowst, ), = L) 0L,

For each o and ¢, we introduce operators E* and I{* to break L into an explicit and
an implicit part:

Ef : H*(Q) — L), w — —ad Aw + b - Vw + ¢ w,
I H(Q) — L2(Q), w — —a8 Aw + b2 - Vw + & w

with continuous

(2.4) A= CQ) xCOLRY) xC[@Q), aw (@, b2,c9),
' A= C@Q) x COQRY x C(Q), ar— (@, b2,).

It is required that ¢ and ¢§* are nonnegative and that there is v € R such that
(2.5) el + el <y VieN, Vae A

Also, find for each i a nonnegative f* which approximates f*: f* ~ f*. The con-
ceptual statements L™ ~ E* + I and f* =~ f are made precise as follows.

Assumption 2.1. For all sequences of nodes (y!);cn, where in general £ = /(i)
depends on i,

lim Sup(Haa - (El?(yf) + a?(yf))HL"O(suppéf) + Hba - (6? + l:)?)HLOO(Q,Rd)

100 o€ A

e = @ + 8 Ly + 15 = 1) =0

Let (-,-) denote the standard inner product for both of the spaces L?(Q2) and
L2(92,R?), the two cases being distinguished by the arguments of the inner product.
The operators E{* and I are in nondivergence form with the highest-order term
having the form —a(z)Aw with a continuous function a. We obtain a discretization
that is consistent in the sense needed for the analysis by approximating

—a(z)Aw(z) = —a(yf)(Aw, &f) = a(y))(Vw, Vi)

for w sufficiently smooth and y¢ close to z—this corresponds to “freezing” the coeffi-
cient before integrating by parts. This approach leads to the following discretization
of E¢ and I by operators E® and I that map H'(Q) to RYi: for w € H'(),
¢e{l,...,N; =dimV'},

(2.6a) (EQw)e == a (yf) (Vw, Vo) + (b5 - Vw + e w, ¢%),
(2.6b) (1%w)g == a8 (y!)(Vw, Vi) + (b3 - Vo + &8 w, 6f),
(2.6¢) (FO)e = (f2, o).

Throughout this work, we identify E{ and I, when restricted to V;, with their matrix
representations with respect to the nodal basis {¢f}g. Under this basis, the nodal
evaluation operator w w(yf) corresponds to the identity matrix Id.
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We will make use of the partial ordering of R": for x, y € R", we write x > y if
and only if 2y > y, for all £ € {1,...,n}. For a collection {z“}  C R", we define the
operator sup,, componentwise: (sup, )¢ = sup, 5.

We now define the numerical scheme for (2.2). Define the numerical solution
v;i(T,-) € V2 by nodal interpolation of vr. Then, for each k € {0,...,T/h; — 1}, the
numerical solution v;(s¥,-) € V? is defined inductively by

(2.7) —dvi(sF, ) + sup (v (sFT, ) + 120(sF, ) — F&) = 0.
acA

If all I# vanish, then (2.7) is an explicit scheme; otherwise it is implicit.

2.2. Monotonicity. Monotonicity of the numerical scheme is important for the
proof of convergence to the viscosity solution.

DEFINITION 2.2. An operator F : V; — RN is said to satisfy the local mono-
tonicity property (LMP) if for all v € V; such that v has a nonpositive local minimum
at the internal node y!, we have (Fv), < 0. The operator F satisfies the weak discrete
maximum principle (wWDMP) provided that for any v € V;,

. ' > AN inv > min{min v, 0}.
(2.8) if (Fv),>0Vle{l,...,N;}, then min v mln{rralgznv 0}

More explicit alternative formulations of the wDMP are discussed, for example,
in [7] and [8]. Note that the identity Id and the null operator 0 satisfy the LMP. It
is clear that if F' satisfies the LMP and v € V; has a negative local minimum at the
internal node y¢, then ((F + ¢1d)v), < 0 for all € > 0. This implies for all £ > 0 that
F + ¢1d satisfies the wDMP.

Assumption 2.2. For each a € A, assume that E$, restricted to V;, has nonpos-
itive off-diagonal entries. Let h; be small enough so that h;E$ — Id is monotone for
every a, i.e., so that all entries of all A;EY — Id are nonpositive. For each «, suppose
that I satisfies the LMP.

Notice that the monotonicity assumption on 2;E{ — Id is a time step restriction
if EY has positive diagonal entries. If the scheme is fully implicit, i.e., all E$ vanish,
then there is no time step restriction.

2.3. An alternative formulation of the numerical method. To study the
well-posedness of the numerical scheme, it is useful to reformulate it first. For a
function w : S; x Q — R that satisfies w(s¥, ) € H(Q) for all s¥ € S;, let af7k(w) be
a control o € A which maximizes

(29) Sl(ip (E?w(strlv ) + If‘w(sf, ) - F?)g .

The cost and complexity of the local maximization process in (2.9) depends strongly

on the application at hand. Fortunately, as pointed out by Fleming and Soner in [19,

p. 331}, many applications give rise to explicit formulas that greatly simplify this task.
Let 1¥" and E*" be the matrices whose ¢th row is equal to that of

)

0,k .,k
17 and BN

respectively. Also let the th entry of Ff’w be

0,k
(Ffi “”)) .
L
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Thus, informally speaking, the EF, 1" and FF" are gained by “reshuffling” the
rows of the E¥, 1¢, and F¢, respectively. Notice that the maximizing control in (2.9)
may be nonunique. Where no ambiguity can arise, we simply write I$*, E}’, and F¥
without explicitly referring to k.

These definitions lead to an equivalent formulation of the numerical scheme (2.7):
for each k € {0,1,...,T/h; — 1}, v; solves
(2.10) (hal®Y - 1d) vi(s¥, ) 4+ (hEFY —1d) vs (¥, ) — BFF = 0.

We will now prove several properties of hilf’w +1d and hiEf’w —Id that lead to the
well-posedness of (2.10) and, equivalently, of the scheme (2.7). The following lemma
shows that for linear operators on V,?, the wDMP turns into an M-matrix property.

LEMMA 2.3. Consider aw : S; x Q — R so that w(s¥,-) € HY(Q) for all s¥ € S;.

Then, the matrices h; Ef’w —Id are monotone and the matrices of hilf’w +Id restricted

k,w
Ii

to V are diagonally dominant M-matrices. For fized w, the operators v — v and

v (hilf’w + Id) v satisfy, respectively, the LMP and wDMP.

Proof. Monotonicity of hiEf’w — Id is a straightforward consequence of the non-
positivity of the entries of h;E® —1Id for all « € A. The LMP of I¢ for the node y¢ only
imposes a condition on the fth row of the matrix of I{. Hence it is easily checked that
the If”" and the hilf’w + Id, which are composed row-wise from the 1¢ and h;l$ + Id,
satisfy the LMP and wDMP, respectively, when all I satisfy the LMP.

The LMP also implies that the matrix representations of the I restricted to V;°

are weakly diagonally dominant for all & € A. This is because taking v = — é\f:il (bf
yields
N;
0> (IFv), == () — Z (155
L

using the fact that v attains a nonpositive minimum at each internal node. For j # ¢
the hat function ¢ attains a nonpositive minimum at yt, giving (I?)ej < 0. This
shows that

N;

(lz'a)u - Z

J#

(12),] > 0.

Because If’w is composed of the rows of various I, it follows that hili-“w + Id restricted
to V0 is strictly diagonally dominant, and is thus invertible, and additionally satisfies
the wDMP. Furthermore, since (hilf’w—l—ld)—l—a Id is similarly invertible for all ¢ > 0 and
all off-diagonal entries are nonpositive, [20, p. 114] shows that hilf’w + Id, restricted
to VU, is represented by an invertible M-matrix. 0

COROLLARY 2.4. The nonlinear operators w — 1" w and w s (hil¥" + I1d) w
satisfy the LMP and wDMP, respectively. Moreover, w +— —(h; Ef’w—ld) w 18 positive:
if w>0, then —(h;EF" —1d)w > 0.

3. Well-posedness of the numerical method and a solution algorithm.
We record a constructive proof of existence of a solution v;: S; — V to (2.7) for all
k € {0,...,T/h;—1} which uses Algorithm 1, described below. This algorithm, which
can be traced back to [21], is found in the continuous setting in [29] which provides
the proof of convergence and existence of solutions. In [4] it is shown that in the
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discrete setting it is a semismooth Newton method that converges superlinearly. We
also refer to [28] for recent results on Newton methods for fully nonlinear equations.
The algorithm to solve the nonlinear problem (2.7) at a given time level is the
following.
ALGORITHM 1. Given v;(sF™,.) € V? for k € {0,...,T/h; — 1}, choose an
arbitrary o € A and find wo € V° such that

(hil? +1d) wo = hiF® — (hE — Id) vy (s¥F1, ).
Form € {0,1,2,...}, inductively find w11 € V° such that
(3.1) (hil®™ 4-1d) Wy 11 = hiFY™ — (hEY™ —1d) v;(sFT1) ).

For each o € A, we define v¥: S; — V. to be the numerical solution of the linear
evolution problem associated to the control a with homogeneous Dirichlet conditions,
that is, v(T,-) = v;(T, -), the interpolant of v, and for each k € {0,...,T/h; — 1},

(3.2) (hil® +1d) v (s, ) = —(hES — Id) v&(sFH1, ) + hFS.

The wDMP for h;l$ + Id implies that v{* is well-defined. The following result shows
the well-posedness of the numerical scheme and relates v; to v{*.

THEOREM 3.1. There exists a unique numerical solution v;: S; —> V0 that solves
(2.7) and (2.10). Moreover, 0 < v; < v® for each a € A. Given vi(s***,.) € VO for
kedo,.. T/h 1}, the iterates of Algomthm 1 converge superlmearly to the unique
solution vl( sk ) of (2.7), de., wm — vi(sF,-) as m — .

Proof. Bokanowski, Maroso and Zidani [4, Thm. 2.1] show the existence and
uniqueness of a solution v; (s¥, -) given k and v;(s¥™, ) and superlinear convergence of
the algorithm: their Assumptlon (H1) is ensured by Lemma 2.3 and their Assumption
(H2) is guaranteed by the continuity of the maps of (2.4) and the map « — f&. The
existence and uniqueness of a solution v; is then obtained by induction over k.

We now show that v; > 0on S; x Q by induction over k. Recall that vy > 0 on
Q, hence v;(T,-) > 0 since v;(T,-) interpolates vy. Now, suppose that v;(s; k41 ,7) >0
on Q for some k < T/h; — 1. Recall that all entries of h;E;* — Id are nonp051tive and
that all entries of F;* are nonnegative. Therefore, (2.10) shows that

(hal? +1d)v; (s%, ) = —(REY — Id)v; (s¥F1, ) + hFY > 0.

We then deduce that v;(s¥,-) > 0 on Q by using inverse positivity of ;1" + Id, thus
completing the inductive Step

Finally, we prove that v; < v for all & € A by induction. Consider any o € A.
First, v;(T,-) = v®(T,-) by definition of v; and vy*. Now, for given k, assume that
vl(sl’“r ,-) < v@(sF*1 ). Then, the numerical scheme (2.7) implies that

(hil 4+ 1d) v (55, ) < hF — (RES — Id) vy (sF1E) ).

After subtracting (3.2) from the above inequality, we see that monotonicity of h;ES—Id
gives

(half +1d) (vi(s7, ) —vf(s7',)) < (EF —1d) (v (771, ) —wisfH, ) <0,

3

Thus, by inverse positivity of h;I¢ + Id, we conclude that v;(s¥,-) < v®(sk,.) on Q,
which completes the induction. a

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/02/18 to 128.41.61.122. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ON THE CONVERGENCE OF FEMS FOR HJB EQUATIONS 145

Monotonicity properties and mass-lumping are suitable conditions to enforce the
L* bounds of parabolic Galerkin methods; see, for instance, [34, Chap. 15]. With
the next lemma we assure ourselves that these bounds also hold in our setting.

LEMMA 3.2. For all i € N one has ||(h;1¢ +1d) 7 oo <1 and ||LES — Id|| < 1,
where the norms are the matrixz co-norms.

Proof. Define v = Y9V ¢! = 1, and vy = Y0y ¢! € V. By Lemma 2.3,
hil® + 1d is an invertible M-matrix on V2. Thus, (h;l¢ + 1d)~! > 0 entrywise, so

N;
o -1 = o -1 _ o -1
B3)  NlE 41 oo = max 3 (7 105 = ma ((hlf 1)),
j=

where 1 € R"i is the vector with all entries equal to 1. Since Vv =0 (as v = 1) we
have for each 1 < ¢ < N; that ((h;1 4 1d)v), = 1+h;(C, ¢f) > 1, where we have used

nonnegativity of ¢i*. Moreover, since 1 < ¢ < N; and I satisfies the LMP,

dim V;

(Rl +1d)v), = ((hal¥ +1d)vo), + > (hil®)y; < (Rl +1d) o) -
j:Ni+1T

Because (h;1¢ +1d)v > 1, we obtain (h;I$ +1d)vg > 1. So, after applying (h;1¢ +1d)~*
to both sides of this inequality, inverse positivity of h;I{ + Id gives 1 = v > vy >
(hil¥ +1d)711 on Q. This inequality and (3.3) imply ||(h;1¢ +1d) 7! < 1.

One has ||hES — Id|leo = maxi<e<n, (—(REY — Id) vo)e because all entries of
h;E$ — Id are nonpositive. For each 1 < /¢ < N;,

dim V;

(ME? —1d)v), = (MES —Id)vo), + 3 (hED),, < ((ME? —Id)wo),,
Jj=Ni+1

50 (—(hE® —Id)vo)r < (—(hE¥ —1d)v)y = 1 — hi (&, ) < 1 because & > 0.
Therefore, —(h;E® — Id)vg < 1. So [|E? — Id||oc < 1. 0

COROLLARY 3.3. The numerical solutions v; are uniformly bounded in the L™
norm. In particular, there is a finite C > 0 such that for all i € N and o € A,

Vil oo (5, x2) SNVl oo (s, x) S Mvrllpoc @) + T I oo () < €

Proof. Applying Lemma 3.2 to (3.2) shows that for each k € {0,...,T/h; — 1},
(3.4) lof (5, Mz (@) < 108 (57 e (@) + hallFE oo
The definition of F in (2.6) gives ||F{'||cc < [|ff*| £ (0). Induction over k shows that
ol s, i bounded by [[og (7, )| (e + T11£2 | ). Recall that v (T, ) is
the interpolant of vr € C(Q), so |[v(T, )| L) < l|lvrlL=(). By Assumption 2.1,
f&— f%in L*°(Q) uniformly in «. Finally, 0 < v; < 0 on S; x Q by Theorem 3.1,
S0 Hvi”Lm(SixQ) < |‘UgHL°°(Si><Q)' O

4. Consistency properties of elliptic projections. The argument by Barles
and Souganidis [3] takes advantage of the fact that classical finite difference methods
are pointwise consistent (1.2) when applied to nodal interpolants of smooth functions.

However, in the case of FEM, the nodal interpolant may fail to satisfy this consis-
tency condition, even for reasonable meshes. Example 1 below illustrates this fact.
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(a) Patch of consistent method (b) Patch of inconsistent method

Fia. 4.1. (a) illustrates a mesh that leads to a FEM discretization of the Laplacian that is
pointwise consistent with respect to the interpolant. This is no longer the case for the mesh depicted

by (b).

Therefore, in the context of finite element methods, the construction of an alternative
to nodal interpolation becomes an essential step of the analysis.

Ezample 1. For a fixed point = in a domain, consider two sequences of meshes,
such that the elements neighboring x are as depicted in Figure 4.1. Denote ¢; and ¢;
the L'-normalized hat functions associated with the node z for the meshes depicted,
respectively, by Figure 4.1(a) and Figure 4.1(b). Let w be a smooth function; let Z,w
and Zpw be the nodal interpolants of w, respectively, on the two meshes. For the
mesh of Figure 4.1(a), it is well known that the FEM discretization of the Laplacian
coincides with a finite difference discretization and that

(VZow, V) = —Aw(z) + O(Ax?).

For the mesh of Figure 4.1(b), a simple calculation shows that
3
(VLyw, V) = —§Aw(x) +0(Az3).

Therefore, the mesh type of 4.1(a) leads to a FEM discretization of the Laplacian that
is strongly consistent with respect to interpolation, whereas the mesh type of 4.1(b)
does not.

We overcome this difficulty by using a different projection operator in the Barles-
Souganidis argument. Given w € C([0,T], H*(2)), denote by P;w a linear mapping
into [0,7)] x V; which satisfies for all ¢! € V0

(4'1) <VPiw(t7 ')7 V(%> = (Vw(t, ')7 Véb vt e [07 T]'

Notice that P; coincides with the classical elliptic projection of the Laplacian if P;w
is chosen to interpolate w on the boundary.

Assumption 4.1. There are linear mappings P; satisfying (4.1), and there is a
constant C' > 0 such that for every w € C*°(R?) and i € N,

(42)  [Pwlyr < Clulyrie@ and  Im [P = wly g =0,

The settings under which the above assumption holds for the elliptic projection
typically include a condition on the mesh grading and on the domain. In [15], it
is shown that (4.1) holds when Q is a bounded convex polyhedral domain in R%,
d € {2,3}, when the mesh satisfies a local quasi-uniformity condition and when the
test functions vanish on the boundary. To apply the result for nonconvex domains §2
and general w € C>®(R x R?), consider for example a convex polyhedral domain B
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containing {2 and assume there is a locally quasi-uniform mesh on B which coincides
with the original mesh on Q2. Let 1 be a smooth cutoff function with compact support
in B such that n = 1 on Q. Then the classical elliptic projection on B, acting on
nw : B — R, has the required properties. Given this construction for P;, it is natural
to refer to it as an elliptic projection.

LEMMA 4.1. Let w € C®(R x R?) and let sf(l) —t€[0,T) asi — co. Then

(4.3) lim d; Paw(s¥¥ ) = dyw(t, ) in W= ().

71— 00
The proof is left to the reader; the main trick is to use the triangle inequality and
the identity d; P;w = P;d;w, followed by stability and convergence of F;.

LEMMA 4.2. Let w € C®(R x R?) and let sk(l —t€[0,7], y; 0 2 e as
1 — 00. Then

(44)  lim (EPPao(sy ™) 4+ 17 Praost )—Ff‘)é(.):L"‘w(t,x)—fo‘(x),

71— 00

where convergence to the limit is uniform over all a € A.

Proof. For ease of notation, the dependence of k£ and £ on 7 is made implicit. First
we show consistency in the second-order terms; see (4.8) below. From the definition
of P; and integration by parts,

ag () (VPiw(st, ), Vo) + a (y ) (VPauw(si T, ), V) — a®(yd) (Vu(t, ), Vi)
a7 (yf)(Vw(sf, ), Vo) + af (y)(Vew(si ™, ), Vof) —a® (i) {Vu(t, ), Véf)

(a®(yf) — @ (yf) — af (yf)) (= Auw(t,-), )| + |aF (yf) (Aw(t, ) — Aw(s],-). 61)

<

)

ot

(.

+|af (g (Aw(t,-) — Aw(si, ), 6)]

Using Assurnption 2.1 and smoothness of w together with uniform boundedness
of the |a%(y!)| and |ag(yf)| over a € A, we conclude from the above inequality that

(4.6) lim bup}a Y (VPw(sk ), V) + as (yf)(VPaw(s ), Vol

=00 e A
- aa(yf)<vw(t7 ')7 Véf” =

Owing to the Heine—Cantor theorem, for all ¢ > 0, there is a § > 0 such that
[Aw(t,z) — Aw(t,y)] < e if |x — y| < §. For i sufficiently large, the support
of ¢! is contained in the ball B(z,d). Also, ¢4y = 1 and ¢! > 0. Thus,

|Aw(t, z) — (Aw(t,-), #¢)| < e. Recall that {a®}aca is an equicontinuous family of
functions, so integration by parts shows that

(4.7) lim sup |a®(y!)(Vw(t,-), Vol — (ao‘(x)Aw(t,x))‘ =0.

71— 00 OLGA

Equations (4.6) and (4.7) imply consistency of the second-order terms:
(48)  Jim sup|aF (y)(VPw(st, ), Vi) +af (i) (VRw(si ™, ), Vo)

— (—a*(x)Aw(t,z))| =0.
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Using Assumption 4.1 and regularity of w, we see that Pyw(s¥,-) and Paw(s*,.)
converge to w(t,-) in WH>°(Q). Analogous estimates to the ones above and equicon-
tinuity of {ba}aeAa {ca}aeA and {fa}aeA imply that

lim sup | (b - VPw(st, ), 6f) + (b - VPa(siH, ), 60) = 0%(2) - Vu(t,2)| =0,

100 o A v

(49) lim sup [(67 Paw(st, ), ) + (6 Pr(sE,),60) — e (@ult, )| =0,

i—00 e A v

lim sup [(7,6f) — f°(x)| = 0.
1— 00 aeA
Combining equations (4.8) and (4.9) yields (4.4). O

The orthogonality condition (4.1), used in (4.5), ensures the consistency of the dis-
cretization for linear operators L® with isotropic diffusion terms of the form —a(x)Aw
but apparently not for operators with anisotropic diffusion of the form A(z) : D?w,
A € C(92,R?*4), This restriction does not arise for finite difference methods because
the discretization of second-order derivatives is consistent under nodal interpolation.
We note that there are linear elliptic equations in nondivergence form for which it
is not possible to construct monotone, pointwise consistent compact stencil schemes.
For estimates on the stencil width see [23] and also [13]. This observation goes back
to [30]; see also [31] for recent results. As pointed out in Example 2 below, in some
cases our method coincides with a finite difference scheme, indicating that similar
constraints are likely to arise in a finite element setting for anisotropic equations as
well.

5. Sub- and supersolution. Set

v*(t,x) = sup lim sup vi(sf,yf), ve(t, ) = inf lim inf vi(sf,yf),
(skyf)—=(t,w) =00 (skyf)—(t,m) 100

where the limit superior and limit inferior are taken over all sequences of nodes in
[0, 7] x Q which converge to (t,z) € [0,7] x Q. Owing to Theorem 3.1 and Corol-
lary 3.3, v* and v, attain nonnegative finite values. By construction, v* is upper and
v, lower semicontinuous and v, < v*. With the use of elliptic projection operators,
key steps of the convergence proof in [3], which is stated there in a suitable form
for finite difference methods, are transferred to finite element schemes, which do not
satisfy the consistency condition in [3].

THEOREM 5.1. The function v* is a viscosity subsolution of (2.3), and v, is a
viscosity supersolution of (2.3).

Proof. Step 1 (v* is a subsolution). To show that v* is a viscosity subsolution,
suppose that w € C®°(R x R?) is a test function such that v* — w has a strict
local maximum at (s,y) € (0,7) x Q with v*(s,y) = w(s,y). Consider a closed
neighborhood B := {(t,z) € (0,T) x Q : |t —s| + |z — y| <} with § > 0 such that

v*(s,y) —w(s,y) >v*(t,z) —w(t,z) V(t,z)e B\ (s,y).

Choose i sufficiently large for B to contain nodes. Let (s¥,4¢) denote the position
where v; (s, y}) — Piw(s?,y) attains a maximum among all nodes (sF,y)) € B.
Let us pass to a subsequence {(sf(j),yf(j))}j of {(s¥,y!)}i for which {vi(sf(j),yf(j))}j
converges to the limit superior of {vl(sf,yf)}l By compactness of B, there is a

subsequence of {(sf( j),yf( j))}j, to which we pass without change of notation, that
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converges to a point (3,§) € B. Then Piw(s);), y;;) — w(3.9) due to (4.2) and
continuity of w. Since the (s¥,y!) are maximizers, one has

’U*(§7 g) - w(é,g) = llmsupvz(sf(J)ayf(])) - -Pzw(sf(j)ayzk(j)) = U*(S,y) - w(S,y);
j—o00

hence (8,9) = (s,y) since (s,y) is a strict maximizer of v* —w on B. Thus there is a
subsequence of maximizing nodes converging to (s,y) to which we now pass without
change of notation: (s¥,y!) — (s,y). It follows that

(5.1) vist,yi) — Prw(sf, y) — v*(s,y) —w(s,y) =0.

Moreover, because of (s¥,yf) — (s,y) € int B, the neighbors of the (s¥, yf) eventually
also belong to B: for i sufficiently large, we have (sf,y?) € B if k € {k,k + 1} and
y € supp ¢¢, in which case

vi(s?, u) — Pow(sf,y) < vilsh,yf) — Paw(st,yl) & Paw(sf,y)) + i > vi(sy, )

with p; = v;(s¥,y5) — Paw(sF, yf). Notice that p; — 0 as i — oo because of (5.1).
Recall that the matrices E¢ have nonzero off diagonal entries (E®)sy only if y? €
supp ¢¢ and that vi(skﬂ, )< Piw(s]”l, -) 4+ i on supp ¢f. Therefore, monotonicity

of hiE® — Id for all a € A implies that
((hEF —1d) [Prw(sf ) + p]), < ((hEE = Id)vi(sfH1,)),

i i

Applying the LMP and linearity of 1 to Pyw(s¥,-) + u; — v;(s¥, ), which has a non-
positive local minimum at yf , yields

((hal¢ +1d) [Paw(sy, ) + pi]), < ((Ralg +1d)oi (s, ), -
From the definition of the scheme (2.7),
0= —dyvi(sf, y;) + sup (Efvi(si ™) + 1f0i(st, ) — FF),
acA

> — d; (Paw(st, yf) + i) + sup (EF (Pow(sith, ) + i) + 19 (Paw(sf, ) + i) — FY),

= — diPao(st, yf) + sup | (B¢ Pao(sE™ ) + 17 Paw(sh, ) = FE) 4 et + &7, 60)]
acA

> - dl'le(Sf7yf) + sup (E?Piw(strlv ) + l?-le(Sfa ) - F?)g - |M1| .
a€cA
(5.2)

Since
i
a€cA acA

< Slég |(E?Pzw(sf+lv ) =+ |?P1’UJ(Sf, ) - F?)g - (Law(sa y) - fa(y))| ’

sup (Ef Paw(si ™) + 17 Paw(sf, ) — ), — sup (Lw(s,y) — f"‘(y))‘

Lemmas 4.1 and 4.2 show that we may take the limit ¢ — oo in inequality (5.2) and
recall that p; — 0 to obtain

(5.3) 0> —dyw(s,y) + sup (L%w(s,y) — f*(y)) -

Therefore v* is a viscosity subsolution.
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Step 2 (vs is a supersolution). Arguments similar to those above show that v,
is a viscosity supersolution, where the principal changes to the proof are that one
considers w € C®(R x RY) such that v, — w has a strict local minimum at some
(s,y) € (0,T) x Q with v.(s,y) = w(s,y). With analogous notation, the last line in
(5.2) corresponds to

0 < _dZle(sfvyf) + sup (E?-Piw(sf—i_la ) + |?le(8f7 ) - F?)g + aé |/’l‘l| 5
acA

i.e., there is a slight asymmetry in the argument due to the last sign in (5.2). Never-
theless, it is then deduced that

0§—@m@w%+ﬁg@%daw—f%w%

Thus v, is a viscosity supersolution. O

6. Uniform convergence. We now turn to the initial and boundary conditions.
Together with the sub- and supersolution property we appeal to a comparison principle
to obtain uniform convergence of the numerical solutions.

For each o € A, define

v&*(t,x) = sup lim sup v (s¥, y£),
(sFyf)=(tz) 700
where the vf* are as in (3.2) and the limit superior is taken over all sequences of nodes
which converge to (t,z) € [0,7] x . Because of Corollary 3.3 it is clear that v*®*
attains finite values.

Assumption 6.1. Suppose that for each (t,x) € [0,T] x O

6.1 inf v**(¢t,z) = 0.
(6.1) [nf v*7(t,2)

Before further considerations, let us motivate Assumption 6.1 with a simple ex-
ample. As a side remark, this example also illustrates how in some settings Kushner—
Dupuis finite difference schemes, as described in [27, 19], may be interpreted as finite
element methods in the framework of this paper.

Ezxample 2. Consider the backward time-dependent equation in one spatial di-
mension

(6.2) —vg+ vz =1 on (0,1) x (—1,1),

with boundary conditions v = 0 on [0,1] x {—1,1}U{1} x [-1, 1]. Equation (6.2) may
be rewritten in HJB form as
—ve+ sup (avy —1)=0.
ae{-1,1}

The viscosity solution is v = min(l — ¢,1 — |z|). We choose a uniform mesh with
element size Az;, and we use a fully explicit discretization, where monotonicity will
be achieved by using the method of artificial diffusion, as described in [7]. Thus we
have (E¢w), = €(0,w, 0,¢¢) + (0, w, ¢f), where ¢ is the artificial diffusion parameter
to be chosen to obtain a monotone scheme. Calculating the entries shows that

—a/2Ax; —e/Ax? ifj=10-1,

(), = 2e/Ax? itj=2¢,
i )ej af2Az; —e/Ax?  ifj=0+1,
0 otherwise.
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For monotonicity we require that all off-diagonal terms of the E$* be nonpositive, i.e.,
we require ¢ > Ax;/2, because |a] < 1. With the special choice e = Az;/2 the
matrices E} and E; L are triangular. This is equivalent to discretizing the spatial part
of —vi+v, with backward finite differences and discretizing the spatial part of —v; —v,,
with forward finite differences, as can be done in applying a Kushner—Dupuis scheme.
If appropriate time steps sizes are used, then it can be deduced that v} approximates
the solution of

—vg+vy; =1on (0,1) x (—1,1), v=0on (0,7) x {-1}U{1} x (-1,1),
while v;” L approximates the solution of
—vg — vy =1on (0,1) x (—1,1), v=0on (0,7) x {1} U{1} x (=1,1).

Consequently, Assumption 6.1 is enforced by v!* on [0,1] x {—1} and by v=%* on

0,1] % {1}.

Recall from Theorem 3.1 that
0<wv <o} VYaeA,

and note that by construction 0 < v, < v*. Since v* < v®* for all o, Assumption 6.1
implies v |j0,71x00 = v*|j0,r1x00 = 0. Observe that because (6.1) holds in particular
for all (t,z) € {T'} x 02, Assumption 6.1 implicitly enforces that the initial condition
vr vanishes on 0f2 as the v{* interpolate v at the final time.

LEMMA 6.1. The sub- and supersolutions v* and v, satisfy

(6.3) v (T,) = vi(T,") =vr on Q.

Proof. Fix ¢ > 0 and choose a v5. € C°°(R%) such that vr — 2e > v5 > vr — 3e.
Owing to Assumption 4.1 there is n € N such that ||Pv5 — 'UTHLOO(Q < ¢ and
| Zivr — vr||Le(q) < € for all i > n. Hence, for i > n,

(64) ’Ui(T, ) = Il"UT 2 Pl’l}% 2 vr — 4e.

Recalling (4.1) and as v € C*(R?), it is clear that there exists K = K (&) > 0 which
bounds

‘((Ea+|)P”T )‘
D |- (az () + @2 ) (Ao 60)
+ (05 () + 0 (1) - VP + (&8 (47) + & () Piv, 6) — (FF) |

foralli e N, ¢ e {1,...,N;} and o € A. Notice that (x) uses (4.1). Define w;
Pivs, — K(T —t). To show inductively that v;(s¥,-) > w;(sF,-) assume v;(sF1,.)

’L7 2

w;(s"1-), noting (6.4) for s*™' = T. Fix an 4 and £ and let o = ak “(v;) as for (2.9).
From Lemma 2.3 and

AVAN

_diwi(sfvyz) (anz( o ) + lqwi( 1'67 ))g
—K + ((EF +19) Pvg), — K(T = si™)(ef, 0f) — K(T = s)(e, &)

« (2.10) v v
<(F), = —divi(sf,yi) (E vi(s k+17 )+ (s za'))g
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we may deduce that

(Rl +1d) [vi(sf, ) —wilsy, )]), = = ((REF = 1d) [ua(sFHY, ) —wilsi ™, )]), > 0.
Note that v;(s¥,:) € V. vanishes on 9 and w;(sk,-) < 0 on Q. Thus (2.8) and
Lemma 2.3 imply v;(s¥,-) > w;(s¥,-) on Q. Because K is independent of i and
Pv§ — v5 as i — 0o, we have for any sequence (sF,y!) — (T, z), z € Q,

lim inf v; (sf, yf) > lim inf w; (sf, yf) > vp(x) — 4e.
1— 00 71— 00

So v, (T, -) > vr —4e. Since € was arbitrary, v« (T, -) > vr. The argument for showing
that v* < vp is analogous with w; = Pjvs + K(T —t) and vr + 2 < v5 < vp + 3e.
To conclude, vr < v, (T,-) < v*(T,-) < vr, which proves (6.3). O

The proof of Lemma 6.1 is related to the arguments in [19, p. 335]. In the next as-
sumption we draw upon one of the building blocks of the theory of viscosity solutions,
namely, the extension of classical comparison principles to spaces of semicontinuous
functions; cf. [12, sect. 5] and [19, p. 219].

Assumption 6.2. Let T be a lower semicontinuous supersolution with 5(7, -) = vp
and 7|, rjxaq = 0. Similarly, let v be an upper semicontinuous subsolution with
v|jo,7)x00 = 0 and v(7',-) = vr. Then v <.

Let t = 9sF + (1 —9)st™ € [s¥, s771] lie between two time steps, 9 € [0, 1]. Then

3 Y
we interpret v;(t,-) as the linear interpolant between v;(s¥,-) and v;(s¥!,):

(6.5) vi(t, ) = Vi (sk, ) + (1 — D) (s5FL, ).

70 i
THEOREM 6.2. One has v, = v* = v, where v is the unique viscosity solution of
(2.3) with v(T,-) = vr and v|jgr1xo0 = 0. Furthermore

(6.6) Jim[oi = vl L (0.1 x) = 0.

Proof. The previous assumption implies that v, > v* on [0,7] x Q and thus
v* = v, = v. It also follows that v is continuous and is the unique viscosity solution.
Select for each i € N a point (t;,x;) € [0, 7] x Q such that

[vi = vl Lo (0,7 x) = |vi —v|(ti, ).

Such (¢;,x;) exist as v; — v is a continuous function on a compact domain. Let x;
belong to (the closure of) the element T' of the finite element mesh and t € [s, s7];
then v;(¢;, ;) is a weighted average of the values of v; at the corners of the slab
[s5, 55 x T. Thus there is a corner (s¥,y!) of the slab such that

[vi = vll L= (0,7 x2) < Jvilst, yi) — v(ts, ).
If (6.6) was wrong we could select a subsequence and an £ > 0 such that

. k0

limnf vy (i) Yics)) — vt 2ics))| = &
By possibly passing to a further subsequence we may assume that {(t;(;),;))};
converges to an (t,z) € [0, 7] x Q. However, this contradicts

B .. k )
v(t,z) = vi(t, ) S].l}glogfvi(j)(si(j)ayi(j))

<lim sup Vi(4) (Sf(J)ayf(j)) < ’U*(ta {E) = U(t7 x)

j—o0

Thus (6.6) holds. O
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7. Gradient convergence. For the proof of convergence in L?([0,7T], H'(£)),
we suppose condition (7.1) below, which points towards uniform ellipticity of at least
one L*. See also Example 3 at the end of this section.

For shorthand, let W = W1°((0,7) x Q). It is convenient to introduce the
discrete spaces W, := {v € C([0,T],V?) : V| (g gt+1]5q 18 affine in time}, which means
that functions in W; have between two time siceps the form of (6.5). Observe that
W; c W for all i € N.

Fix an arbitrary a € A. It is convenient to view E{ and I as bilinear forms on
H(Q) x V;. Functions u € V; have the nodal representation

uly) =Y u(y)) ¢ (y).

4

To test with functions other than q@f we introduce the following bilinear form as a
partially discrete pivot: for w € H'(Q) and u € V;

(EFw,u)) =D ulyd) (af (4){Vew, Vi) + (b - Ve + & w, ¢1)).
¢
We use the corresponding interpretation for (I%w,u)) and also

{w,u) = (Mdw,w) =Y w(y) uly) 5] L),

)
(Feu) =D ulyd) (f7 65) = (f ).
)
Assume that there is o € A such that

hli—l
|w|%2([07T])H1(Q)) SJ Z (<<(h1EZa — |d)w(3f+1, ) + (hllza + Id)w(sf, ),’UJ(Sf, )>>)
k=0

() 5 (Bt ) + (st (st )

—
*

N

/N

(sl ) = w(sh, ) wlst ) — wsh, )
for all w € W; with w > 0 and ¢ € N, where (x) is a simple reformulation in terms of

a telescope sum.
Due to the definition of the numerical method and the nonnegativity of the v,

|Ui|%2([O,T]7H1(Q)) 5 (<< (hlE? - Id)vi(strla ) =+ (hllza + |d)11i(8f, ')7 ’Ui(si’ca )>>)

+ 5T, ), 0i(T,)) + hilloi (T, ) 1

T
7y L

< Z (RiFS vi(sE, )N + (i (T, ), vi(T, )N + hallvi(T, i
k=0

ST Lo vill oo o.1x0) + hillvi(T, )13 -
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Thus, with the L> control established in the previous section and (7.1), it is apparent
that the v; are bounded in L2([0,T], H*(Q)) provided that h;v;(T,-) = h;Z,vr are
bounded in H(2); this condition holds for instance if v(T,-) € W1°°(Q). The first
convergence result for the gradient is therefore that, owing to the Banach—Alaoglu
theorem, v; — v weakly in L?([0,T], H'(2)), using L>((0,T) x ) convergence to
pass from L2([0,T], H*(Q)) weak convergence of subsequences to L?([0,7T], H'(f2))
weak convergence of the whole sequence.

The question arises under which circumstances the convergence in the gradient
is also strong. We demonstrate this under Assumption 7.1. Let Ay be the level set
{(t,xz) € (0,T) x Q : v(t,x) = 0}. For a smooth v the boundary of A¢ is always a
d — 1 dimensional set if 0 is a regular value.

Assumption 7.1. The value function v belongs to the space W, and the d-
dimensional Lebesgue measure of the boundary of A vanishes: vol(0Ag) = 0. There
is an a such that the coefficients @& and a& belong to W1°°(Q) and (7.1) is satisfied.

Let us suppose momentarily that there are approximations Q;v € W; to v such
that Q;v < v; for all i € N and, as i — oo,

7.2
( ||22 — Qiv| 20,77, (2)) + hill (v — Qi) (T, ) (o) + [[(v — Qi) (T, )| 2 () — O,
as well as
L1
(7.3) 1 ((RES —1d)Quu(sEHh, ) + (Ril® +1d) Qiv (s, ), (vi — Qiv)(sF, ) — 0.
k=0

We will construct such Q;v below. With & = v;(sF,-) — Qiv(sF, ),

(7.4)

|v; — QiU|2L2([O,T]7H1(Q))

L1
(7.1) hi
S D0 ((hEr ) (7 + )" )
k=0
 SGETM €T + hall€T 3
£-1

= << (th? - Id)vi(Serlv ) + (hll? + |d)’U1(Sf, )v€k>> =+ %<<€T/hiv€T/hi>>

k=0
%71
= ) L (hEY —1d)Qiv(siT, ) + (il +1d) Qiv(sF, ), €5 ) + hall€™ /1311
k=0
(9 !
< Z <<h1F?7§k>> - << (hZEza - Id)Qi’U(Serlv ) + (hzl? + Id)Ql’U(va )7£k>>
k=0 k=0

2

+ %«gT/hiafT/hi» + hngT/hi H(Q)’

using in (*) the numerical scheme and that, due to the assumptions on the @;, the
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sign of v; — Q;v is known. Since

T T
a1 a1

Y (hiF ) <ULz Y hi(llvilst, ) = o, ez + llv(sf, ) — Qiv(st, )ll2)
k=0 k=0

SNz (los = vlln2o,my <) + lv = Qivll 20,1 %))

the first term in (7.4) vanishes as ¢ — oco. The second term vanishes due to (7.3).
For the remaining terms, we recall ¢7/h = (v — Qv)(T,-) — 0 by (7.2). Hence
|Ui — 'U|L2([O)T]7H1(Q)) — 0 as 7 — oo.
THEOREM 7.1. If there is an o € A such that Assumption 7.1 holds, then the
numerical solutions converge to the exact solution strongly in L?([0,T], H*(9)).
Proof. It remains to be shown that suitable @); can be constructed, given As-
sumption 7.1. Denoting the nodal interpolant on [0,7] x Q by Z; we define

(7.5) Qi W — Wi, w Zymax{w — [[v — vi Le=((0,1)x0), 0}

Observe that for Q;v the max operator in (7.5) switches between the first and second
argument in the vicinity of A for ¢ sufficiently large. Furthermore, Q;v € W; satisfies
homogeneous boundary conditions and Q;v < v;, and by the mean value theorem,

[Qivllwre(0,m)x0) < [vllwies(0.1)x9);
1Qiv(T, ) lwr.(0) < [[o(T, ) w0

Note also that for all nodes y¢ and time levels s?

(7.6)

0 < (vi = Qi) (sf,y7) = min{ (vi — ) (57, 97) + 05 = V]l oo 0.7y w2y - Vi (55 1) }
(7.7) < 2lvi = vl oo 0,7y x0) -

Consider the set I'; of points which is not affected by the cutoff below 0 in (7.5) in
the sense that

L= {(t,z) € (0,T) x Q: iI;fij(t,x) >0 or (t,z) € Ao}
Jj=t

The set I'; contains the points which are at least one element’s length away from the
boundary of T'; \ 9A¢:

L= {(t,z) €l : {(s,9) € (0,T) x Q: || (t,x) — (s5,9)|| < sup h; + Az;} C I\ 0Ao}.

Jjz

Notice that I'; and I'j are hierarchical families. Since ||[v — vil[ o ((0,7)x0) — 0 and
h; + Ax; — 0 as ¢ — oo it follows that

T} = ((0,7) x Q) \ 0A,.
ieN
Crucially, (0:Q;v)|r: = (0:Z;v)|r: and (VQ;v)|rs = (VZ;v)|r, for j > i.

For each ¢ > 0 there are i, j € N such that vol((0,7) x Q\T%) < &? and ||Qxv —
vl|gary) <€ for all k > j. Therefore, by (7.6),

1Qkv — vl (0,7 x) S NQkv — [l 1 (rsy + 4/ vol((0,T) x @\ T%) [[vllw.ee ((0,1)x0)

< eI+ llvllwree(0,1)x))s

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/02/18 to 128.41.61.122. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

156 MAX JENSEN AND TAIN SMEARS

giving strong convergence in H((0,T) x ), meaning convergence in the spatial gra-
dient and the time derivative. Hence we proved that the first term in (7.2) vanishes.
The second term goes to 0 because h; — 0 and since ||(v —Qv)(T, -)|| g1 () is bounded
by (7.6). The last term in (7.2) vanishes in the limit, owing to inequality (7.7) and
Theorem 6.2.

The terms connected to the time derivative in (7.3) vanish in the limit as

71 I

(7.8) Z <<sz( k+1 ) — Qiv( “. € Z h 8thv k,s?ﬂ)’gk»
k=0

(7.9) S ||3tU||L°°((o,T)xQ) 1€¥ ] 20,1y x )

using the uniform convergence in &*. Recall that

(17 Qiv(sf, ), %) =D (vi = in)(8f7yf)(5?‘(yf)<VQw(8f, ), Vi)

Y4

+ (b7 - VQiv(st, ) + & Quulsh, ), ).

The lower-order terms vanish due to the uniform convergence of v; — Q;v to 0 and the
bound

supra VQZ’U( s7,0) + ¢ Qiv(s 1,-)|\Lm(g) < 00.

We note for the second-order term that

D (i = Qo) (st y))ag (Y (VQiv (st ), Vo) = (VQiv (s} ), VIi(af (vi — Qiv))(sF,)),

14

so that in (7.3) the implicit part of the second-order term becomes

(7.10) S hi (VQuu(sk, ), VI(as (01 — Quv)) (s, )
k=0

T
- / (TVQu, TV T (@ (05 — Qo)) di
0

where J; maps any w : [0,7] — L?(£;R?) onto the step function (Tiw)| (e ger1y =
w(s¥, ). Note that J;VQ;v converges strongly in L2((0,T) x ;R9). At a time
sk €10,7T) the bound
IVZi (@i (vi — Qiv))ll2(eray SIVLi(@vi)ll L2 irey + |67 Qivllwr (g
Sllas wre @) - (lvill @) + [ollwr= @)
follows from an inverse estimate and

Z ||VI1(C:L?U1)H%2(K7]Rd) S Z Axlli( ||VI1(E’?U1)H%°°(K,Rd)
KeT; KeT;

S Z ”a?H%Vlvm(K) (Axl;(HUi”%/Vlvm(K))’
KeT;
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where Az denotes the diameter of the element K of the mesh 7;. The convergence

T T
lim (w, VT (af(v; — Qv)))dt = — lim (V-w, T1Z;(a (v; — Qiv)))dt =0

71— 00 0 1—> 00 0

with test functions w in the dense subset C&((0, T') x ; R?) gives weak convergence of
VZ;(a¢ (v — Qiv)) in L2((0,T) x Q;R?); see [37, p. 121]. Combining weak and strong
convergence [38, Prop. 21.23], it is ensured that (7.10) converges to 0 as i — co. A
similar argument guarantees that 3, h; (E¢Qu(s¥11,-),€F) vanishes in the limit.
Therefore we proved (7.3). 0

The regularity of the exact value function v is, for instance, discussed in sec-
tion IV.8 and IV.9 of [19]. Another item of Assumption 7.1, namely, the justification
of (7.1), is examined in the following example.

Ezample 3. (a) Suppose that a® is positive and constant and for all smooth w,

L%w = I%w = —a®Aw + b* - Vw + c®w, E%w =0,

and to obtain semidefiniteness in the lower-order terms, ¢ — %V -b* > 0. Then, for
w e Wi,

%71
|w|i2([07T],H1(Q)) S Z hi<Vw(sf, '%Vw(é‘f, ')> + hil|w(T, ')H?{l(ﬂ)
k=0
%71
5 hi<<|§"w(sf, ')7 w(5§7 )>> + hi”w(Tﬂ ')H?{l(ﬂ)'

k=0

(b) Suppose that a® € W2°°() is nonconstant, positive, and uniformly bounded
from below and that ¢® — 3(V - % 4+ Aa®) > 0, noting for w € H'(Q)

(7.11) (Lw, w) = (a*Vw, Vw) + ((¢* — $(V - b* + Aa®))w, w).

Again choosing a fully implicit scheme with L* = I% the highest-order term in
(12w, w)) is at time s¥

i

Z w(sf, yf)aa(sf, yf)(Vw(sf, ')7 V(bf> = <VU}(S§, ')7 VIi(aa(va ')w(sfv ))>
14

According to Theorem 2.1 in [14] there is a constant C' = C(||a®||w=2.=(q)) such that
for 4 sufficiently large

(Vw, VIi(a®w)) — (Vw, Va®w) < [[Vwl|r2ora) - [ Zi(a®w) — a®wl| g1 (o)
< C Az |wlF (g,
using that the 7 appearing in the proof in [14] is defined in terms of nodal interpolation.
Therefore for large ¢ the difference between I and L* is small, making the positivity

of (7.11) available. More precisely, from Poincaré’s inequality there is some C such
that for CAz; < §infga® one has |w|§11(9) < (19w, w)) for w € VP, implying (7.1).

8. Example: The method of artificial diffusion. The purpose of this sec-
tion is to provide a way of constructing the operators EY* and I in order to satisfy
Assumptions 2.1 and 2.2. This approach, called the method of artificial diffusion,
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is based on the fact that for strictly acute meshes, the discrete Laplacian is mono-
tone. Further details on the method of artificial diffusion and monotone finite element
schemes may, for example, be found in [7], [11], [35], and [36].

Let 7; be the mesh corresponding to the finite element space V;. Given a function
g : Q2 — R? and an element K of 7;, we denote

d
9|k == (;HQJ‘HQLOQ(K))
iz

If g is elementwise constant, then |g|x is simply the Euclidean norm of g on K. Let
Az denote the diameter of K. We assume that the meshes 7; are strictly acute [7]
in the sense that there exists ¥ € (0,7/2) such that for all i € N

[N

(8.1) V¢i V|, < —sin() [Véi|x [Voilx  VLI<dimV;, £#1, VK €T

We choose a splitting of the form a® = af* + ciz?, b = bY + I:)f‘, ¢ =¢¥ + ¢, and
f* = f#, where all terms are in C(2), @ and a$ are nonnegative, and all ¢ and ¢

are nonnegative and satisfy inequality (2.5). Choose nonnegative ;" “ and v * such

that for all K that have y! as vertex
(8.2a) (199 + Awk ]| e (rey) <7 sin(9) [V |k vol(K),
(8.2b) (16815 + Az L= r)) <7 sin(9) [Vof |k vol(E).

Choose a$ and c:z both in C(Q) such that a®(y?) > max{a®(y’), 7"} and a*(y!) >
max{a$(yt), v}’ l 1. Now suppose that w € V; has a nonpositive 1oca1 minimum at an
interior node y¢. By extending the arguments of [7], we show that

(8.3) (Efw), <0, (IFw)e < 0.

We illustrate the proof of (8.3) for the implicit term. From the strict acuteness
condition on the mesh, it can be shown that on the restriction to K [7, Lem. 3.1]

Vw - Vot = cos(£(Vw, V) [Vw|k Vi |k < —sin(9)|Vw|k [V | k.

Using ¢ > 0, w(yf) < 0 and ||¢E1€HL1(Q) =1,
(& w, 3 = /Q 22 (2) (w(y!) + Vo(z) - (@ - 40)) () dz
< / 2 (2) Vale) - (z — ) 3(@) dz < 3 180 e i) [Vl Az,
Q K

Consequently,

(19w), = af(y ><Vw Vo) + (08 - Vw + & w, ¢f)

> —ag () sin(9)|Vw|k [Véi|k vol(K)
K

IN

+ (69 & |Vl + (16| oo (0) [Vl x Az
< IVwlk (159 x + Azk]|& ]|z (x)) — 75 sin(9) V| vol(K)) < 0.
K
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The proof of (E¢w), < 0 is analogous. As hat functions ¢! attain a nonpositive
minimum at all y!, where [ # /£, all off-diagonal entries of E are nonpositive. Hence
with a suitable time step restriction the h;E$* — Id are monotone, which ensures that
Assumption 2.2 is satisfied. We make the time step restriction more precise below.

The scaling of the terms in (8.2) with respect to Az leads to Assumption 2.1.
Due to shape-regularity, all elements K on a patch are of comparable size, giving
6] (@) < Cvol(K) for all K C supp #¢ with a constant C which is independent of
i and £. Hence in (8.2), we see that

vol(K) 1

vol( K V%KZ - .
(K) V5| Axg 6L ~ CAzk

Thus, if Df“é and z:/ia’z are chosen optimally, then for K C supp ¢f

7" = O(sup {08 |k Arg + (|68 [| 1 () A% })

With (8.4) in mind we return to the time step restriction for semi-implicit and explicit
methods. The nonpositivity of the diagonal terms of h;E* — Id expands to

12 b (G (4 (V6! V) + (b7 - Vol + 27 0l 61))
—hi(0(aF Aay?) + O (b |k Aay!) +O(e) ).

Therefore the time step restriction imposed by L* is h; < inf g (Azg, /a¢ (), vl € K,
if there is a nonzero ag* and i is large. It is h; < infx (Azg /b5 (yf)| k) if all a® = 0,
i € N, and there are nonzero b%, and is O(1) if all a® and by vanish. There is no

restriction if also all & are zero.

9. Numerical experiment. Consider the HJB equation (2.2) with the following
data. Let Q = (—1,1)2, T =1, and A = [0,4]. Let the final time data be vy =
(1 — 22)(1 — y?). Let the operators L be defined by

L% = —(a+ |z|? /2)Av + z v,
and let f@ = a?fy + afi + fo be chosen such that the exact solution of (2.2) is
v(z,y,t) = torp(z,y) + (1 — ) sin(wz) cos(my/2).

Note that the operator L* is degenerate at the origin for a = 0.

The problem is discretized as follows. In order to illustrate the fact that strictly
acute meshes are sufficient but not always necessary, we use a sequence of non-strictly
acute Delaunay triangulations of the type depicted in Figure 9.1(a). The operators
L* are split into explicit and implicit parts defined by

(9.1a) (12v), = (max(a — v£,0) + |z[? /2) (Vv, VL),
(9.1b) (Efv), = vf (Yo, Voy) + (2 vz, 67),

where v is the smallest value such that the off-diagonal entries of the fth row of E®
are nonpositive. It can be checked that for meshes similar to that of Figure 9.1(a), the
above choice fulfills the requirements of Assumptions 2.1 and 2.2, and it can also be
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102 101

(a) (b)

Fic. 9.1. (a) depicts the type of mesh used; (b) plots Axz; on the abscissa against the error at
t =0 on the ordinate when using a time step h; = O(Az?).

TABLE 9.1
(a) shows that a stability is achieved with a time step h; = O(Ax;), whereas (b) demonstrates
that a time step h; = O(Az?) yields optimal convergence rates in H' and L? norms.

(a) Errors and convergence rates obtained by using a time step h; = O(Ax;).

Ax; DoF [lv(0,-) —vi(0,-)|[z1  Rate | [[v(0,-) —v;(0,-)]|,2 Rate
0.1053 685 2.590e-1 1.02 4.643e-2 1.08
0.0513 2965 1.246e-1 1.00 2.141e-2 1.02
0.0202 19405 4.899e-2 1.00 8.308e-3 0.99
0.0106 71065 2.570e-2 1.00 4.369e-3 0.99
0.0050 317605 1.220e-2 1.00 2.086e-3 0.99
0.0033 716405 8.136e-3 1.00 1.395e-3 0.99
0.0025 1275205 6.103e-3 1.049e-3

(b) Errors and convergence rates obtained by using a time step h; = O(Az2).

Az; DoF [[v(0,-) —v;(0,)|[:  Rate | [[v(0,-) —v;(0,-)[|,2 Rate
0.1053 685 2.059e-1 1.02 1.404e-2 1.92
0.0513 2965 9.887e-2 1.00 3.520e-3 1.97
0.0202 19405 3.878e-2 1.00 5.622e-4 1.99
0.0106 71065 2.030e-2 1.00 1.554e-4 1.99
0.0050 317605 9.614e-3 1.00 3.508e-5 1.95
0.0033 716405 6.404e-3 1.588e-5

seen that a time step h; = O(Auz;) is sufficient for stability. Moreover, Assumption 4.1
holds for the current choice of meshes. It is also found that { may be taken to be 0
everywhere except at the nodes closest to the origin, in which case v{ = O(Ax?).

The numerical solutions were obtained on a sequence of meshes with mesh sizes
ranging from 0.10 to 0.0025 with corresponding number of degrees of freedom ranging
from 685 to 1.275x 106, Table 9.1 presents the results of two sets of computations. The
first set of results show that the discretization of (9.1) and a time step size h; = O(Ax;)
lead to stability, whereas the second set of results, also plotted in Figure 9.1(b), shows
that, similarly to linear parabolic problems, a time step size h; = O(Az?) gives optimal
convergence rates in the H(Q) and L?(2) norms, evaluated at the initial time ¢ = 0.
The number of time steps ranges in Table 9.1(a) from 20 to 956 and in 9.1(b) from
91 to 89701.
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The results shown here are further supported by [22], which presents further in-

vestigations into the application of locally adapted artificial diffusion, the treatment
of first-order problems, the performance of Algorithm 1 for solving the discrete equa-
tions, and the use of unstructured meshes for problems on complicated geometries.

23]

[24]
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