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The discontinuous Galerkin time-stepping method has many advantageous properties for solving
parabolic equations. However, it requires the solution of a large nonsymmetric system at each time-
step. This work develops a fully robust and efficient preconditioning strategy for solving these systems.
Drawing on parabolic inf-sup theory, we first construct a left preconditioner that transforms the linear
system to a symmetric positive definite problem to be solved by the preconditioned conjugate gradient
algorithm. We then prove that the transformed system can be further preconditioned by an ideal block
diagonal preconditioner, leading to a condition number bounded by 4 for any time-step size, any approxi-
mation order and any positive-definite self-adjoint spatial operators. Numerical experiments demonstrate
the low condition numbers and fast convergence of the algorithm for both ideal and approximate precon-
ditioners, and show the feasibility of the high-order solution of large problems.

Keywords: discontinuous Galerkin; time discretizations; parabolic PDE; preconditioning; conjugate gra-
dient algorithm.

1. Introduction

The discontinuous Galerkin (DG) time-stepping method is a single-step implicit scheme defined by a
variational temporal discretization of parabolic evolution equations that generalizes the backward Euler
method to higher-order approximations (Delfour et al., 1981; Eriksson et al., 1985; Jamet, 1978; Hulme,
1972). For an introduction to this time discretization scheme in the context of abstract parabolic prob-
lems, we refer the reader to (Thomée, 2006). In certain cases, it coincides with the Radau IIA Implicit
Runge–Kutta (IRK) schemes and the subdiagonal Padé approximations to the exponential function (Ax-
elsson, 1969; Hairer & Wanner, 2010; Makridakis & Nochetto, 2006). It can be coupled with standard
spatial discretization schemes, such as finite difference, finite element or spectral methods; in particular,
when coupled to a spatial finite element method (FEM), it leads to a tensor-product space-time FEM.

The DG time-stepping method features many advantages that make it an attractive choice for solv-
ing parabolic problems. First, it permits arbitrarily high-order approximation to the solution, along
with superconvergence at the time-step nodes (Akrivis & Makridakis, 2004; Chrysafinos & Walkington,
2006; Makridakis & Babuška, 1997), see also (Schötzau & Schwab, 2000) for optimal-order a priori
error estimates in natural norms with explicit dependence on the polynomial degree. Unlike linear mul-
tistep schemes, it is thus not constrained by the Dahlquist barrier theorem and it does not require an
auxiliary scheme to compute the first few solution values. Furthermore, the DG time-stepping method
allows fully variable time-step sizes, approximation orders, and even spatial mesh refinement/coarsening
between time-steps; it is thus well-suited for adaptive algorithms driven by rigorous a posteriori error es-
timates (Akrivis et al., 2009; Eriksson & Johnson, 1991, 1995; Makridakis & Nochetto, 2006; Schötzau

†Corresponding author. Email:iain.smears@inria.fr

ar
X

iv
:1

60
8.

08
18

4v
1 

 [
m

at
h.

N
A

] 
 2

9 
A

ug
 2

01
6



2 of 23 I. SMEARS

& Wihler, 2010). The DG time-stepping method also permits the temporal version of hp-refinement,
where one varies both the time-step size as well as the approximation order on each time-step, thereby
yielding exponential convergence rates for a broad class of solutions with singularities induced by the
initial datum or by the source term (Schötzau & Schwab, 2000). In these applications, it is common to
use high temporal polynomial degrees in order to match the high-order spatial approximation, see for
instance the experiments in (Schötzau & Schwab, 2000; von Petersdorff & Schwab, 2004; Schötzau &
Wihler, 2010; Werder et al., 2001).

In applying the DG time-stepping method in practice, we are faced with the challenge of solving
a large nonsymmetric linear system at each time-step. In this work, we are interested in developing
preconditioned iterative methods for solving these linear systems. We focus here on the DG time-
stepping method in the context of an abstract semi-discrete evolution problem of the form

MU ′(t)+AU(t) = f (t) in (0,T ), (1.1)

where the solution U : [0,T ]→ V, with V a finite dimensional space, where M and A are symmetric
positive definite matrices. Semi-discrete problems of the form (1.1) arise from the application of a
wide range of spatial discretizations, including conforming and nonconfirming finite elements, finite
differences, and spectral methods, to a broad class of parabolic problems, such as general self-adjoint
second-order and fourth-order parabolic partial differential equations (PDE). We emphasize that our
results are valid for general symmetric positive definite matrices M and A, although the reader may
consider the heat equation as a concrete example, with M and A respectively representing the mass and
stiffness matrices for a suitable approximation space V. The DG time-stepping method applied to the
evolution problem (1.1) leads to a sequence of linear systems of the general block formb00 M+ c00 τ A · · · b0p M+ c0p τ A

...
. . .

...
bp0 M+ cp0 τ A · · · bpp M+ cpp τ A


u0

...
up

=

f0...
fp

 , (1.2)

where τ denotes the time-step size, the polynomial degree p defines the approximation order of the
scheme, the solution coefficients uk ∈ V for k = 0, . . . , p, and, after mapping the time-step interval to the
reference interval (−1,1), we have

b jk :=
∫ 1

−1
φ ′k φ j ds+φk(−1)φ j(−1), c jk :=

1
2

∫ 1

−1
φk φ j ds, (1.3)

where {φk}p
k=0 is a chosen basis of Pp the space of real-valued polynomials of degree at most p. For the

case p= 0, the DG method reduces to the backward Euler method and the system is therefore symmetric.
However, for p> 1, the system matrix B of (1.2) is nonsymmetric with dimension dimV×(p+1), which
is considerably larger than for linear multistep methods; even for moderate sizes of A and M, standard
direct solution algorithms can be prohibitively expensive. Unlike the block triangular linear systems
obtained from Diagonally IRK (DIRK) and Singly Diagonally IRK (SDIRK) schemes (see (Hairer &
Wanner, 2010) and the references therein), the system (1.2) does not immediately reveal any simple
structure offering a straightforward solution algorithm. See also (Hairer & Wanner, 2010, p. 129–130)
for a discussion of SIRK methods.

Since the DG time-stepping method is connected to the Radau IIA IRK scheme, it is interesting
to relate our approach to the literature on solving the systems of IRK schemes. In particular, one of
the earliest approaches (Butcher, 1976; Bickart, 1977) for solving the linear systems of general IRK
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schemes, such as (1.2), is based on transforming the system matrix to a block-diagonal matrix with
blocks of the form M + τ

µi
A, where the {µi}p

i=0 denote here the generalized eigenvalues of (b jk) with
respect to (c jk), and where the transformation is given by the corresponding eigenvectors. This leads
to p+ 1 independent smaller linear systems that can be solved in parallel. It turns out that for the
DG time-stepping method, the generalized eigenvalues µi are complex numbers related to the roots of
the denominator of a rational Padé approximation to the exponential function. Therefore, the resulting
transformed system is complex-valued and non-Hermitian despite M and A being symmetric. In addition
to the increased computational cost of complex arithmetic, this approach has an important shortcoming
in terms of robustness and numerical stability for high-order approximations, due to ill-conditioning
of the eigenvector transformations, as pointed out in (von Petersdorff & Schwab, 2004, Remark 5.4).
This issue can be avoided by employing alternative factorizations, at the expense of the block-diagonal
structure of the transformed problem: Schötzau & Schwab (2000) propose a factorization based on the
Schur decomposition theorem, leading to a block-triangular complex transformed problem; the solution
is then obtained by solving p+1 complex non-Hermitian systems in sequence.

Preconditioned iterative methods offer an alternative approach to decoupling the system by complex
transformations. In this direction, Richter et al. (2013) propose a linear iterative fixed point scheme
based on an approximation of the block LU factorization of B, and they analyse the contraction rates of
their method for p 6 3. An alternative approach is to apply directly a preconditioned Krylov subspace
method to (1.2), as proposed in Mardal et al. (2007) propose a block-diagonal preconditioner for IRK
schemes to be used with GMRES. They show that the preconditioner is robust with respect to the
time-step size τ , but their experiments show that it is not robust with respect to p. Weller & Basting
(2015) develop a preconditioner specifically for the DG time-stepping method for p = 1 (as well as
for the related continuous Galerkin method of same size) based on an approximate Schur complement
preconditioner for one of the unknown coefficients u j in (1.2). It is thus apparent from these references
that finding preconditioning strategies for the DG time-stepping method that are robust with respect to
the polynomial degree p has been a challenging open problem.

In this work, we propose a robust and efficient preconditioned iterative method for the DG time-
stepping method. Instead of focusing exclusively on the block structure of (1.2), our approach draws
upon the inf-sup analysis of the method and the underlying continuous analysis of parabolic PDEs,
and we take advantage of the variational structure of the DG time-stepping method in an essential
way. First, in section 3.1, we construct and apply a left-preconditioner P> to the linear system Bu = f
given by (1.2), resulting in a preconditioned system Lu = g with the key benefit that the transformed
matrix L := P>B is symmetric positive definite. We immediately point out that P> 6= B>, i.e. we are not
forming the normal equations of the system. Instead, our construction of P> is motivated by parabolic
inf-sup theory, and we show that the matrix L represents the discrete version of the natural parabolic
energy norm of the underlying evolution equation: for example, in the context of second-order parabolic
PDEs, the matrix L is a discrete Gram matrix for the natural solution space H1(H−1)∩L2(H1); we refer
the reader to (Wloka, 1987) for an introduction to the continuous analysis of parabolic problems. The
transformed symmetric positive definite system can therefore be solved by the preconditioned conjugate
gradient (PCG) algorithm (Hestenes & Stiefel, 1952; Málek & Strakoš, 2015; Wathen, 2015), which,
in our case, minimizes the error in the physically relevant norm over a Krylov subspace. In order to
obtain the fast and robust convergence of the PCG algorithm, in section 3.2, we construct a spectrally
equivalent preconditioner H for L, such that the condition number of the preconditioned system satisfies

κ(H−1L)6 4, (1.4)

independently of all parameters τ , p, M and A. Therefore, the preconditioner is fully robust with respect
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to all problem and discretization parameters, including the polynomial degree. Furthermore, the precon-
ditioners are efficient, firstly in the sense of guaranteeing the fast convergence of the PCG algorithm in
the physically relevant norm, and secondly in the sense of computational cost, for the following reasons.
In section 4 we show that the preconditioners are well-suited for parallelization over the blocks and
involve only simpler matrices of the form A and M+µA with real positive µ for which efficient solvers
are often available. Furthermore, we show experimentally in section 5 that the ideal preconditioners
can be approximated in practice by cheap spectrally equivalent approximations, such as a small number
of multigrid V -cycles. We refer the reader to (Wathen, 2015, p. 367) and (Hiptmair, 2006, p. 705) for
further discussions of the notion of efficiency of preconditioners.

This paper is organized as follows: after introducing in detail the DG time-stepping method in
section 2, we present the preconditioning strategy in section 3, where we construct the preconditioners
P> and H, and where we establish the condition number bound (1.4). Section 4 considers the efficient
implementation of the method, and section 5 presents the results of numerical experiments testing the
robustness and efficiency of the preconditioners.

2. Preliminaries

In this section, we introduce in detail the DG time-stepping method in the context of self-adjoint semi-
discrete dissipative evolution equations. We also introduce two key ingredients in our approach. The first
ingredient is the well-known temporal reconstruction operator commonly used in a posteriori analysis
(Makridakis & Nochetto, 2006), which is the subject of section 2.3. The second ingredient is a spectral
equivalence result for preconditioners from (Pearson & Wathen, 2012), which we present in section 2.4.

2.1 Approximation space

Let V denote a finite dimensional real vector space, equipped with a given basis {ei}dimV
i=1 . Let V be

equipped with two inner products (·, ·)M and (·, ·)A, and let M and A be their matrix representations,
given by Mi j := (ei,e j)M and Ai j := (ei,e j)A for all i, j = 1, . . . ,dimV. The inner products (·, ·)M and
(·, ·)A induce the norms ‖·‖M and ‖·‖A on V. Let Pp denote the space of real-valued polynomials of
degree at most p, and let Vp be the space of V-valued polynomials of a single real variable with degree
at most p. For example, if {φ j}p

j=0 is a basis of Pp, then every v ∈ Vp is of the form

v : s 7→ v(s) =
p

∑
j=0

v j φ j(s),

with coefficients v j ∈V for each j = 0, . . . , p. We gather these coefficients in the vector v=(v0, . . . ,vp)∈
Vp+1. It follows that dimVp, the dimension of the space Vp, is equal to (p+1)×dimV. An equivalent
point of view is to consider Vp as the tensor-product space derived from Pp and V.

REMARK 2.1 In this setting, it is natural to view functions in Vp as mappings from time into V, and as a
slight abuse of standard terminology, we will say that {φ j}p

j=0 forms a basis of Vp. Of course, this must

be interpreted as the lengthier statement that {eiφ j} j=0,...,p
i=1,...,dimV forms a basis of Vp, where {ei}dimV

i=1 is a
basis of V.

If L is a linear operator between V and either itself or its dual V∗, then we can extend L to Vp by
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applying it coefficient-wise:

Lv(s) :=
p

∑
j=0

(Lv j)φ j(s) ∀v =
p

∑
j=0

v jφ j ∈ Vp. (2.1)

The inner products (·, ·)M and (·, ·)A also extend to Vp in the natural way. Likewise, if π : Pp→Pp is
a linear operator then we define πv := ∑

p
j=0 v j (πφ j). For instance, we define the time derivative v′ of

v ∈ Vp by v′ := ∑
p
j=0 v j φ ′j.

Let (·, ·)L2 and ‖·‖L2 denote respectively the L2-inner product and L2-norm over the interval (−1,1).
Let {Lk}k>0 denote the set of Legendre polynomials, as defined for instance in (Gradshteyn & Ryzhik,
2015, Sec. 8.9). The Legendre polynomials are orthogonal in the L2-inner product: for all k, j > 0,

(Lk,L j)L2 =
2

2k+1
δk j. (2.2)

Furthermore, Lk(1) = 1 and Lk(−1) = (−1)k for all k > 0.

2.2 The DG time-stepping method

After mapping a given current time-step interval to the reference interval (−1,1), the DG time-stepping
method leads to the discrete problem of finding u ∈ Vp such that

B(u,v) = F (v) ∀v ∈ Vp, (2.3)

where F is a bounded linear functional on Vp, and the bilinear form B : Vp×Vp→ R is defined by

B(u,v) :=
∫ 1

−1

(
u′,v

)
M ds+(u(−1),v(−1))M +

τ
2

∫ 1

−1
(u,v)A ds, (2.4)

where τ denotes the time-step size and p denotes the polynomial degree of the approximation. In
practice, the time-step size, the polynomial degree, or even the matrices M and A may vary between
time-steps, although on any given time-step the linear system has the general form of (2.3). Given a
basis {φ j}p

j=0 for Vp, the problem (2.3) can be represented by a linear system

Bu = f, (2.5)

where B is a (p+1)×(p+1) block matrix, where u∈Vp+1 is the vector of coefficients of the expansion
of u, and where f = (f0, · · · , fp) with each f j ∈V∗, j = 0, . . . , p, being the restriction of F to spanφ j⊗V.
Therefore, the system (2.5) has the block structure shown in (1.2).

REMARK 2.2 In order to motivate our approach to preconditioning, it will be helpful to bear in mind
the following point concerning the structure of the bilinear form B. It is well-known that the bilinear
form B enjoys the following coercivity property

B(v,v) =
1
2
‖v(1)‖2

M +
1
2
‖v(−1)‖2

M +
τ
2

∫ 1

−1
‖v‖2

A ds ∀v ∈ Vp, (2.6)

which enables us to deduce the well-posedness of (2.3). Unfortunately, the norm defined by the right-
hand side of (2.6) does not include the time derivative, and thus coercivity and boundedness of B in
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this norm can only be obtained from an inverse inequality for the finite dimensional space Vp, at the
expense of introducing constants that are not robust with respect to τ and p. This point suggests that
norm preconditioners for B that are based on the right-hand side of (2.6) are unlikely to be robust with
respect to the discretization parameters.

As we shall see below, our approach is based on the inf-sup stability of the bilinear form B, which
provides a sharper analysis of the structure of the problem than the coercivity result of (2.6). Some
of our main tools are the reconstruction operator defined in section 2.3, and a corresponding suitable
negative norm along with a key spectral equivalence result, which we recall in section 2.4.

2.3 Reconstruction operator

We introduce the reconstruction operator I : Pp→Pp+1, defined by

I v := v− v(−1)
(−1)p (Lp−Lp+1)

2
∀v ∈Pp. (2.7)

As noted above, I naturally extends to an operator from Vp to Vp+1. As explained in Remark 2.3 below,
I is the reconstruction operator commonly used in a posteriori error analysis (Makridakis & Nochetto,
2006). The key benefit of the reconstruction operator I for our purposes is that we may express the
bilinear form B in the following equivalent form

B(u,v) =
∫ 1

−1

(
(I u)′,v

)
M +

τ
2
(u,v)A ds ∀u, v ∈ Vp. (2.8)

We emphasize here that (I u)′ ∈ Vp since I u ∈ Vp+1 for u ∈ Vp. To see how (2.8) is obtained from
(2.7), we note that the properties of the Legendre polynomials imply that, for any v ∈ Vp,

I v(1) = v(1), I v(−1) = 0,
∫ 1

−1
(I v,w)M ds =

∫ 1

−1
(v,w)M ds ∀w ∈ Vp−1. (2.9)

Substituting w for w′, which belongs to Vp−1 whenever w ∈ Vp, in (2.9) and using integration by parts
shows that ∫ 1

−1

(
(I v)′,w

)
M ds =

∫ 1

−1
(v′,w)M ds+(v(−1),w(−1))M ∀w ∈ Vp. (2.10)

The equivalent form of B given in (2.8) then follows from (2.10).

REMARK 2.3 The operator I is the reconstruction operator commonly used in the a posteriori error
analysis of the DG time-stepping method (Makridakis & Nochetto, 2006). This operator is often defined
by the interpolation conditions I v(sk) = v(sk) for all k = 1, . . . , p+ 1, where −1 < sk 6 sp+1 = 1 are
the Gauss–Radau quadrature points, in addition to a further condition, chosen here as I v(−1) = 0. It
turns out that the definition given above in (2.7) and this interpolatory definition are equivalent, since
the Gauss–Radau points are the roots of the polynomial (1− s)P(1,0)

p = Lp−Lp+1, see (Gautschi, 1997)
and (Gradshteyn & Ryzhik, 2015, eq. 8.961.5). We note here that a straightforward consequence of the
above properties is that, for any v∈Pp, we have v≡ 0 in (−1,1) if and only if (I v)′≡ 0 in (−1,1). We
also note that we will not need the Gauss–Radau points for the implementation of the preconditioners
in this work.
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2.4 Negative norms and a result of Pearson and Wathen

In addition to the norms ‖·‖M and ‖·‖A, we will also use the negative norm ‖·‖MA−1M defined by

‖v‖MA−1M := sup
w∈V\{0}

(v,w)M

‖w‖A
∀v ∈ V. (2.11)

The negative norm ‖·‖MA−1M can be equivalently characterized by the identity

‖v‖2
MA−1M = v>MA−1Mv ∀v ∈ V, (2.12)

where v is identified with its vector representation in the basis {ei}dimV
i=1 . Indeed, (2.12) follows from

the upper bound ‖v‖2
MA−1M > v>MA−1Mv, which is obtained by choosing w = A−1Mv in (2.11), and

from the lower bound ‖v‖2
MA−1M 6 v>MA−1Mv, which is obtained by applying the Cauchy–Schwarz

inequality as follows: w>Mv = w>A
(
A−1Mv

)
6
√
w>Aw

√
v>MA−1Mv, where we have simplified

(A−1Mv)>A(A−1Mv) = v>MA−1Mv. The identity (2.12) thus shows that the norm ‖·‖MA−1M is in fact
induced by an inner product (·, ·)MA−1M represented by the matrix MA−1M.

The following result due to J. W. Pearson and A. J. Wathen (Pearson & Wathen, 2012) will play a
key part in the construction of our preconditioners.

LEMMA 2.1 Let A and M be arbitrary symmetric positive definite matrices and let µ > 0 be a nonnega-
tive real number. Then we have

1
2
6

v>
(
MA−1M+µ A

)
v

v>
(
M+
√µ A

)
A−1

(
M+
√µ A

)
v
6 1 ∀v ∈ V \{0}. (2.13)

Proof. For the original proof of this result, see (Pearson & Wathen, 2012, Thm 4). We provide here an
alternative proof which highlights the negative norm structure of the matrix MA−1M, as given in (2.11).
First, the upper bound of (2.13) is immediate from

‖v‖2
MA−1M +µ‖v‖2

A 6 ‖v‖2
MA−1M +2

√
µ‖v‖2

M +µ‖v‖2
A.

Now, for any v ∈ V, we have ‖v‖2
M 6 ‖v‖MA−1M‖v‖A by (2.11). It follows from the inequality ab 6

1
2 a2 + 1

2 b2 for any a, b ∈ R that

v> (M+
√

µ A)A−1 (M+
√

µ A)v = ‖v‖2
MA−1M +2

√
µ‖v‖2

M +µ‖v‖2
A

6 2‖v‖2
MA−1M +2µ‖v‖2

A = 2 v>
(
MA−1M+µ A

)
v.

(2.14)

Note that (2.14) is precisely the lower bound of (2.13). �

3. Preconditioners

3.1 Left preconditioner

In this section, we construct a left preconditioner that will transform the linear system (2.5) to a sym-
metric positive definite system that represents a discrete parabolic energy norm. Our left preconditioner
is defined simply in terms of a substitution for the test function v appearing in the bilinear form B(u,v).
We start by defining the operator P : Vp→ Vp by

Pv := A−1M(I v)′+
τ
2

v, (3.1)
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where we recall the definition of the reconstruction operator I from (2.7) and its natural to extension to
Vp as explained in section 2.1. The fact that Pv ∈ Vp for any v ∈ Vp implies that the solution u of (2.3)
also solves

L (u,v) = G (v) ∀v ∈ Vp, (3.2)

where the bilinear form L and linear functional G are obtained by substituting the test function Pv in
place of v:

L (u,v) := B(u,Pv), G (v) := F (Pv) ∀u, v ∈ Vp. (3.3)

We note that the operator P can be viewed as defining a left preconditioner for the linear system (2.5)
that represents (2.3). Indeed, let P denote the matrix representation of the linear operator P in the
basis {φ j}p

j=0. Then, for any functions u and v ∈ Vp, and their respective vector representations u and
v ∈ Vp+1, we have B(u,Pv) = v>P>Bu and F (Pv) = v>P>f. Therefore, the linear system (3.2) is
equivalent to

Lu = g, (3.4)

with L = P>B and g = P>f denoting respectively the left-preconditioned matrix and right-hand side.
As the following theorem shows, L represents a discrete version of the natural energy norm for

parabolic problems. Indeed, in applications to second-order parabolic PDEs, L is comparable to the in-
ner product of L2(H1)∩H1(H−1), which is the natural solution space of the continuous problem (Wloka,
1987).

THEOREM 3.1 Let the bilinear form L : Vp×Vp → R and linear functional G : Vp → R be defined
by (3.3). Then, for any functions u and v ∈ Vp, we have the identity

L (u,v) =
∫ 1

−1

(
(I u)′,(I v)′

)
MA−1M ds+

τ2

4

∫ 1

−1
(u,v)A ds

+
τ
2
(u(1),v(1))M +

τ
2
(u(−1),v(−1))M

(3.5)

Therefore, L is symmetric and positive definite on Vp, and for any symmetric positive definite matrices
A and M, any p> 0 and any τ > 0, we have

L (v,v)> ‖v‖2
D , |L (v,w)|6 2‖v‖D‖w‖D ∀v, w ∈ Vp, (3.6)

where ‖·‖D :=
√

D(·, ·) is the norm induced by the auxiliary bilinear form D defined by:

D(u,v) :=
∫ 1

−1

(
(I u)′,(I v)′)

)
MA−1M ds+

τ2

4

∫ 1

−1
(u,v)Ads. (3.7)

Thus, the function u ∈ Vp solves (2.3) if and only if u solves (3.2).

Proof. First, it is straightforward to obtain the following identities which hold for any u, v ∈ Vp:(
(I u)′,A−1M(I v)′

)
M = ((I u)′,(I v)′)MA−1M,

(
u,A−1M(I v)′

)
A = (u,(I v)′)M. (3.8)

Next, we use the identities in (3.8) to simplify the different terms in L (u,v) =B(u,Pv), and eventually
we obtain

L (u,v) =
∫ 1

−1

(
(I u)′,(I v)′)

)
MA−1M ds+

τ2

4

∫ 1

−1
(u,v)A ds

+
τ
2

∫ 1

−1

(
(I u)′,v

)
M +

(
u,(I v)′

)
M ds.

(3.9)
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By (2.10), we have

∫ 1

−1

(
(I u)′,v

)
M +

(
u,(I v)′

)
M ds =

∫ 1

−1

d
ds

(u,v)M ds+2(u(−1),v(−1))M

= (u(1),v(1))M +(u(−1),v(−1))M ,

which, after substitution of the last terms in (3.9), implies the equivalent form for L given in (3.5).
Next, to show (3.6), we note that first that the lower bound L (v,v) > ‖v‖2

D is immediate, whereas the
upper bound |L (v,w)| 6 2‖v‖D‖w‖D follows from the application of the Cauchy–Schwarz inequality
to (3.9). Finally, it follows that the problem (3.2) has a unique solution, momentarily denoted ũ ∈ Vp.
Moreover, it is well-known that (2.3) has a unique solution u ∈ Vp. Since the definition of L and
G in (3.3) shows that u is a solution of (3.2), we deduce from uniqueness that ũ = u. Therefore, the
problems (2.3) and (3.2) are equivalent. �

REMARK 3.1 Theorem 3.1 can be viewed as part of the inf-sup analysis of the DG time-stepping

method: defining the energy norm ‖·‖L :=
√

L (·, ·) and the norm ‖·‖X :=
√∫ 1
−1‖·‖2

Ads, we have

‖u‖L = sup
v∈Vp\{0}

B(u,v)
‖v‖X

, |B(u,v)|6 ‖u‖L ‖v‖X ∀u, v ∈ Vp, (3.10)

where the first equality is attained by choosing the optimal test function v = Pu, since ‖Pu‖X = ‖u‖L .
This observation highlights the fact that the operator P represents the operator that gives the optimal test
function in the inf-sup analysis of the DG time-stepping method. It is in this sense that our precondi-
tioning strategy is directly motivated by the inf-sup theory of the DG time-stepping method.

3.2 Spectrally equivalent norm preconditioner

As shown by Theorem 3.1, the bilinear form L is symmetric and positive definite. Therefore, the
linear system (3.4) can be solved iteratively by the preconditioned conjugate gradient (PCG) algorithm
(Hestenes & Stiefel, 1952; Málek & Strakoš, 2015; Wathen, 2015). In this section, we construct a
spectrally equivalent and easily applicable preconditioner for L, thereby leading to the robust and fast
convergence of the PCG algorithm. Recall that the bilinear form L is spectrally equivalent to the
bilinear form D defined by (3.7). The first step in our construction of a preconditioner is to choose an
advantageous temporal basis for Vp that block-diagonalizes the matrix D that represents D . In a second
step, we construct an easily applicable preconditioner, denoted by H, under this basis, and we apply
Lemma 2.1 to show robust spectral equivalence between H and L.

3.2.1 Definition of the basis. It follows from Remark 2.3 that the symmetric bilinear form (u,v)→∫ 1
−1(I u)′(I v)′ ds is positive definite and thus defines an inner-product on Pp. Therefore, there exists

a set of linearly independent polynomial eigenfunctions {ϕ j}p
j=0 ⊂Pp and corresponding real positive

eigenvalues {λ j}p
j=0 ⊂ R>0 such that

λ j

∫ 1

−1
(I ϕ j)

′ (I v)′ ds =
∫ 1

−1
ϕ j vds ∀v ∈Pp, j = 0, . . . , p. (3.11)
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We note that the eigenvalues and eigenfunctions generally depend on p, and are not necessarily hierar-
chical. The eigenfunctions are chosen to be orthonormalized:∫ 1

−1
(I ϕ j)

′ (I ϕk)
′ ds = δ jk ∀06 j, k 6 p. (3.12)

We provide a practical method for computing this basis along with the corresponding eigenvalues in
section 4.1. The following result characterizes the distribution of the eigenvalues.

THEOREM 3.2 Let p > 0 be a nonnegative integer, and let λ0 > · · · > λp be the eigenvalues of the
generalized eigenvalue problem (3.11). Then, there exists a positive constant C, independent of j and p,
such that

λ j 6C( j+1)−2 ∀ j = 0, . . . , p, ∀ p> 0. (3.13)

Moreover, there exists a constant c, independent of p, such that

λ0 > · · ·> λp > c(p+1)−4 . (3.14)

We leave the proof of Theorem 3.2 to Appendix A since it is based on some results presented in
the later section 4.1. Figure 2 shows that the orders of the bounds of Theorem 3.2 are sharp. The
eigenfunctions for p = 4 are shown in Figure 1.

3.2.2 Construction of the norm preconditioner. It is advantageous to use the basis {ϕ j}p
j=0 in com-

putations since in this basis, the dominant terms in the bilinear form L , namely those belonging to the
bilinear form D , are represented by a block-diagonal matrix. Indeed, let D denote the matrix repre-
sentation of the bilinear form D , defined in (3.7), under the basis {ϕ j}p

j=0 of Vp, where we recall the
terminology from Remark 2.1. Then, in this basis, the matrix D has a simple block-diagonal structure:

D = diag
{

MA−1M+
τ2 λ j

4
A
}p

j=0
. (3.15)

In other words, D is block-diagonal, with blocks MA−1M +λ j
τ2

4 A for j = 0, . . . , p. Keeping in mind
Lemma 2.1, it is then natural to define the norm preconditioner H by

H := diag

{(
M+

τ
√

λ j

2
A

)
A−1

(
M+

τ
√

λ j

2
A

)}p

j=0

. (3.16)

The matrix H is symmetric positive definite, and its inverse is trivially given by

H−1 = diag


(

M+
τ
√

λ j

2
A

)−1

A

(
M+

τ
√

λ j

2
A

)−1


p

j=0

.

We propose to use H as a preconditioner for the PCG algorithm applied to (3.4). Each PCG iteration
requires the application of H−1, which comprises two applications of a solver for a weighted backward
Euler step and one multiplication by A per block.

We now give the central result of this work, which shows that L and H are spectrally equivalent with
fully robust bounds.
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THEOREM 3.3 Let p> 0, and let {ϕ j}p
j=0 ⊂Pp and {λ j}p

j=0 ⊂ R>0 be the eigenfunctions and eigen-
values of (3.11). Let L be the matrix representation of L in the basis {ϕ j}p

j=0. Then, for any symmetric
positive definite matrices A and M, any τ > 0 and any p> 0, we have

1
2
6

v>Lv
v>Hv

6 2 ∀v ∈ Vp+1 \{0}. (3.17)

Proof. Theorem 3.1, in particular (3.6), shows that

16
v>Lv
v>Dv

6 2 ∀v ∈ Vp+1 \{0}. (3.18)

Lemma 2.1, applied block-wise with µ = λ jτ2/4, implies that

1
2
6

v>Dv
v>Hv

6 1 ∀v ∈ Vp+1 \{0}. (3.19)

Therefore, (3.18) and (3.19) imply (3.17). �
Theorem 3.3 immediately implies that the condition number κ of the preconditioned system, defined

as the ratio of extremal eigenvalues of H−1L, satisfies

κ 6 4. (3.20)

Therefore, we may expect very fast convergence from the PCG algorithm for Lu = g using the precon-
ditioner H. Indeed, for an initial guess u0 ∈ Vp, the iterates {uk}k>0 of the PCG algorithm satisfy the
well-known bound (Wathen, 2015)

‖u−uk‖L
‖u−u0‖L

6 2
(√

κ−1√
κ +1

)k

6
2
3k ∀k > 0, (3.21)

where we recall the energy norm ‖·‖L =
√

L (·, ·). The fact that the condition number κ 6 4 shows
that the left preconditioner P> and the norm preconditioner H are very effective at preconditioning the
original system matrix B, despite B being nonsymmetric and poorly conditioned. This is a key aspect of
the efficiency of the proposed preconditioners. Furthermore, we highlight that (3.20) and (3.21) are valid
for any time-step size τ , any polynomial degree p, and any symmetric positive definite matrices M and
A. Thus the preconditioners are fully robust with respect to all discretization and problem parameters.

REMARK 3.2 The fact that the energy norm ‖·‖L appears in the bound (3.21) is advantageous in
practice. Since the endpoint value of the solution at s = 1 serves as initial datum for the next time-step,
it is beneficial to be able to control the accuracy to which it is computed. For example, (3.5) shows that
the energy norm controls the value at s = 1 in the M-norm, which is the natural norm for this quantity
of interest. We note that the factor of τ appearing alongside ‖v(1)‖2

M in the energy norm can be scaled
out as it appears in both the numerator and denominator of (3.21). Therefore (3.21) is a guaranteed
convergence rate for this quantity of interest in the physically relevant norm.

4. Implementation

4.1 Computation of eigenfunctions and eigenvalues

The algorithm requires the computation of the eigenfunctions {ϕ j}p
j=0 and eigenvalues {λ j}p

j=0 defined
in (3.11), which involves solving a symmetric positive definite eigenvalue problem of dimension p+1.
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FIG. 1. Eigenfunctions {ϕ j}p
j=0 defined by (3.11) and (3.12), computed for p = 4 by the method of section 4.1 and ordered by

decreasing eigenvalue λ j > λ j+1. Note that the j-th eigenfunction ϕ j need not be of degree at most j. Furthermore, the set of
eigenfunctions generally depends on p, although they are independent of A, M and τ .
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FIG. 2. Eigenvalues {λ j}p
j=0 computed by the method of section 4.1 and arranged in decreasing order, for p = 5, 10, 100 and

100. All plots are on a logarithmic scale, except for p = 5 which is given on a semilogarithmic scale. It appears that the bounds
of Theorem 3.2 are sharp.
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This poses little difficulty, as in practice p is usually small, especially in comparison to dimV. Since
this step only depends on p and is fully independent of A, M and τ , it can be pre-computed to very
high accuracy. We now show how to assemble this eigenvalue problem in a form where it can be solved
numerically. Since the cases p = 0 and p = 1 can be easily computed by hand, we present a general
method for p > 2. In the following, we will use the following identity for the Legendre polynomials
{Lk}p

k=0, see (Gradshteyn & Ryzhik, 2015, Sec. 8.914):

Lk =
L′k+1−L′k−1

2k+1
∀k > 0. (4.1)

LEMMA 4.1 Let p> 2 be a nonnegative integer. Define the polynomials

ψ0 :=
1√
2
(L1 +L0) ψp :=

Lp−Lp−1√
4p+2

,

ψk :=
Lk+1−Lk−1√

4k+2
, k = 1, . . . , p−1.

(4.2)

Then, there holds

(I ψk)
′ =
√

k+ 1
2 Lk ∀k = 0, . . . , p. (4.3)

Therefore, we have, for each 06 k, j 6 p,∫ 1

−1
(I ψk)

′(I ψ j)
′ ds = δk j. (4.4)

Proof. Consider the case k = 0: ψ0(−1) = 0, and L′1 = L0. Therefore I ψ0 = ψ0, and thus (I ψ0)
′ =

L0/
√

2, which is (4.3) for k = 0. Now consider the general case k = 1, . . . , p−1. Since L j(−1) = (−1) j

for all j > 0, we have ψk(−1) = 0 and thus I ψk = ψk. Now, the identity (4.1) implies that

(I ψk)
′ =

2k+1√
4k+2

Lk =
√

k+ 1
2 Lk, (4.5)

thus verifying (4.3) for k = 1, . . . , p−1. For the case k = p, we use the fact that Lp(−1)−Lp−1(−1) =
2(−1)p to compute

I (Lp−Lp−1) = Lp−Lp−1−
2(−1)p(−1)p

2
(Lp−Lp+1) = Lp+1−Lp−1. (4.6)

Therefore, similarly to (4.5), the identity (4.3) for k = p follows from (4.1). �
Define the matrix Z ∈ R(p+1)×(p+1) such that ψk = ∑

p
j=0 Zk jL j as in (4.2). Define the diagonal

matrix D := diag{2/(2 j + 1)}p
j=0, which represents the L2-inner product in the Legendre polynomial

basis. Define the matrix T ∈ R(p+1)×(p+1) by

Tk j :=
∫ 1

−1
ψk ψ j ds, k, j = 0, . . . , p. (4.7)

Note that T = ZDZ>. It follows from (4.4) that the eigenvalue problem (3.11) can be expressed as: find
V ∈ R(p+1)×(p+1) and {λ j}p

j=0 such that

TV =V diag{λ j}p
j=0, VV> =V>V = Id. (4.8)
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The eigenvalue problem (4.8) can thus be solved numerically by standard eigenvalue solvers. The
eigenfunctions {ϕ j}p

j=0 can then be recovered as

ϕ j(s) =
p

∑
k=0

Vk j ψk(s) =
p

∑
k=0

Qk j Lk(s), Q := Z>V. (4.9)

4.2 Implementation of preconditioners

In order to compute the action of the left-preconditioner P>, we use the matrix representation of the
mapping v 7→ (I v)′ in the basis given by {ϕ j}p

j=0. Thus we need to find the matrix K such that
(I ϕk)

′ = ∑
p
j=0 Kk j ϕ j for all k = 0, . . . , p. We show below that this is easily computed. Inverting

(4.1) by induction yields

L′k =
k−1

∑
j=0

(
1− (−1)k− j

)(
j+ 1

2

)
L j ∀k > 0. (4.10)

Therefore, we have

(I Lk)
′ =

p

∑
j=0

K∗k j L j ∀k = 0, . . . , p, (4.11)

where, after some calculation, it is found that the matrix K∗ ∈ R(p+1)×(p+1) can be defined in terms of
K̃ ∈ R(p+1)×(p+1), x ∈ Rp+1, and y ∈ Rp+1 by

K∗ := K̃− xy>, K̃k j :=

{(
1− (−1)k− j

)(
j+ 1

2

)
if j 6 k,

0 otherwise,

x j := (−1) j, yk := (−1)1−k (k+ 1
2

)
.

LEMMA 4.2 Let p> 2 be an integer, and let {ϕ j}p
j=0 be the eigenfunctions defined by (4.9). Then, for

each k = 0, . . . , p, there holds

(I ϕk)
′ =

p

∑
j=0

Kk j ϕ j, K :=V>D−1/2K∗D1/2V, (4.12)

where V is as in (4.8), the matrix K∗ is as in (4.11), and where D = diag{2/(2 j+1)}p
j=0.

Proof. The orthogonality of the matrix V in (4.8) implies that ψk = ∑
p
m=0 Vkmϕm. Since the basis

{ψk}p
k=0 is orthonormal in the inner product of (4.4), there holds

L j =
p

∑
r=0

(∫ 1

−1
(I L j)

′(I ψr)
′ ds
)

ψr =
p

∑
r=0

p

∑
m=0

(
K∗jm(r+

1
2 )

1/2
∫ 1

−1
Lm Lr ds

)
ψr

=
p

∑
r=0

K∗jr
(
r+ 1

2

)−1/2 ψr =
p

∑
r=0

(K∗D1/2) jrψr =
p

∑
m=0

(K∗D1/2V ) jmϕm,

where we have used (4.3) and (4.11) in the first line. Therefore, we compute

(I ϕk)
′ =

p

∑
j=0

Vjk(I ψ j)
′ =

p

∑
j=0

Vjk( j+ 1
2 )

1/2L j =
p

∑
j=0

p

∑
m=0

Vjk(D−1/2K∗D1/2V ) jmϕm,
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which completes the proof. �
We now show how the matrix K is used in applying the preconditioner P>. For v = ∑

p
k=0 vk ϕk, there

holds

Pv =
p

∑
j=0

(
A−1Mw j +

τ
2
v j

)
ϕ j, w j :=

p

∑
k=0

Kk jvk,

F (Pv) =
p

∑
j=0

f>j
(

A−1Mw j +
τ
2
v j

)
=

p

∑
k=0

(
MA−1

(
p

∑
j=0

Kk j f j

)
+

τ
2
fk

)>
vk.

Therefore, g := P>f, where g = (g0, . . . ,gp), can be computed componentwise by

gk = MA−1

(
p

∑
j=0

Kk j f j

)
+

τ
2
fk, k = 0, . . . , p. (4.13)

The action of P> requires the solution of p + 1 independent systems with matrix A, which can be
performed in parallel. If we ignore communication costs, then the cost of computing g is independent
of the polynomial degree p on a parallel machine with sufficiently many computing nodes.

After application of the preconditioner P>, the linear system has the form

Lu = g,

where L = P>B, which can be solved by the PCG algorithm with preconditioner H, as suggested in
section 3. The PCG algorithm requires the action of the matrices L and H−1 at each iteration. There
are two ways to implement the action of L, the first being the application of B followed by P>. The
downside of this approach is that it leads to greater communication costs on a distributed memory
parallel machine where each node holds in memory only a few coefficients of u: the matrices B and
P> are generally block-dense, so all vector components must be exchanged between all computational
nodes for both steps. The second approach is to use (3.5), which shows that L can be expressed as a
diagonal matrix plus a “rank-two” term: in the basis {ϕ j}p

j=0, we have

L = diag
{

MA−1M+
τ2λ j

4
A
}p

j=0
+

τ
2

q1q>1 ⊗M+
τ
2

q−1q>−1⊗M, (4.14)

where q±1 := (q0(±1), . . . ,qp(±1)) are the vectors of endpoint values of the ϕ j. Therefore, we may
compute Lu, with u = (u0, . . . ,up), as follows:

w j := Mu j, j = 0, . . . , p, z±1 :=
p

∑
j=0

ϕ j(±1)w j, (4.15a)

(Lu) j = MA−1w j +
τ2λ j

4
Au j +

τ
2

ϕ j(1)z1 +
τ
2

ϕ j(−1)z−1. (4.15b)

This approach requires the same number of matrix-vector products as the first approach outlined above,
but the communication costs are greatly reduced. Indeed, it is seen that the above procedure requires the
parallel computation of the w j, which are then gathered and reduced by one or two nodes tasked with
computing z±1. The results are then broadcast back to all nodes, after which all subsequent computations
can be performed in parallel.
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Finally, the application of H−1 is trivially parallel, as it requires only that each node solves two
linear systems involving the matrix M + τ

√
λ j/2A, and one application of A. Theorem 3.2 shows that

the eigenvalues remain uniformly bounded from above, and that the smaller eigenvalues approach zero
as p increases. Therefore, for large p and j, the matrix M+ τ

√
λ j/2A becomes increasingly similar to

M, implying that these systems will become increasingly easy to solve in many applications.

5. Numerical experiments

5.1 Condition numbers

In this experiment, we study the dependence of the condition numbers κ of the preconditioned system
H−1L on the problem and discretization parameters. In order to compute accurately the condition
numbers, we consider first a one-dimensional problem. Let M and A be the mass and stiffness matrices
obtained by applying piecewise-linear continuous finite elements on a uniform subdivision of the domain
Ω = (0,1) into elements of size h= 2−k, k = 5, . . . ,10. We note that M and A thus depend on h, although
this is left implicit in our notation. For this experiment, we use direct solvers to implement the action of
A−1 and (M+ τ

√
λ j/2A)−1.

Table 1 shows the condition numbers κ as a function of τ for a wide range of parameters. For this
experiment, we set p = 2 and h = 2−5. It is found that for either very large or very small τ , κ→ 1. This
is easily explained by the fact that

lim
τ→∞

v>Lv
v>Hv

= lim
τ→0

v>Lv
v>Hv

= 1. (5.1)

Therefore the condition number κ→ 1 as τ→ 0 or τ→∞. Thus the maximal condition number is found
for intermediate values of the time-step size τ , although in all cases it satisfies the theoretical bound
κ 6 4 as shown in (3.20). Table 2 shows that the condition number has little to no dependence on
mesh refinement, i.e. variation of M and A. As p becomes very large, the condition number approaches
an asymptotic value of around 2.686 6 4, as shown by Table 3; our goal in testing our preconditioners
here with very high polynomial degrees is merely to ascertain the asymptotic behaviour of the condition
number. The proposed preconditioners are thus fully robust with respect to the parameters, in agreement
with the theoretical bound κ 6 4 from (3.20). Furthermore, this experiment suggests that the efficiency
of the preconditioners can exceed theoretical expectations, as shown by condition numbers κ 6 2.686
throughout these tests.

5.2 Iteration counts and multigrid preconditioning

The condition number bound (3.20) holds for the preconditioner H, which assumes that exact solvers
are used to apply the inverses of the matrices M+τ

√
λ j/2A. However, in practice, it is desirable to use

τ 10−6 10−5 10−4 10−3 10−2 10−1 1 10
κ 1.011 1.103 1.749 2.031 2.028 2.019 1.693 1.089

Table 1. Dependence of the condition number κ of H−1L on a wide range of values for the time-step size τ . Observe that for
either very large or very small τ , the condition number is asymptotically 1, in agreement with (5.1). This explains the observation
that the maximum condition number is observed for intermediate values.
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κ h = 2−5 h = 2−6 h = 2−7 h = 2−8 h = 2−9 h = 2−10

p = 1 1.318 1.319 1.319 1.319 1.319 1.319
p = 2 2.019 2.019 2.019 2.019 2.019 2.019
p = 3 2.243 2.243 2.243 2.243 2.243 2.243
p = 4 2.353 2.353 2.353 2.353 2.353 2.353
p = 5 2.416 2.417 2.417 2.417 2.417 2.417
p = 6 2.493 2.493 2.493 2.493 2.493 2.493

Table 2. Dependence of the condition number κ for p = 1, . . . ,6 and h = 2−5, . . . ,2−10, with τ = 0.1. For fixed p, the condition
number is insensitive to the mesh size h, i.e. variation of M and A. The condition number slowly increases with p towards its
asymptotic value of approximately 2.686, see Table 3.

p 8 16 32 64 128 256
κ 2.558 2.643 2.674 2.684 2.686 2.686

Table 3. Asymptotic behaviour of the condition number with respect to the polynomial degree p = 2m, m = 3, . . . ,8, with fixed
h = 2−5 and τ = 0.1. The asymptotic value of κ appears to be κ ≈ 2.686. This suggests that the theoretical bound κ 6 4 of (3.20)
may not be quantitatively sharp in all cases, although it is nevertheless very close.

a cheap approximation, such as a small number of iterations from an iterative solver for M+τ
√

λ j/2A,
which leads to an approximation of the ideal preconditioner H−1.

In this experiment, we study the effect of this approximation, in particular when the inverse of
M + τ

√
λ j/2A is approximated by a small number of multigrid V-cycles. Let M and A be defined

as the mass and stiffness matrices of the piecewise-linear finite element space defined on a uniform
triangulation of size h = 2−k, k = 6, . . . ,10 in the two-dimensional domain Ω = (0,1)2. The finest mesh
thus leads to more than one million degrees of freedom (DoF) for V. We consider the system Lu = g,
with a chosen exact solution u. We approximate solvers for M + τ

√
λ j/2A by applying n V-cycles,

n ∈ {1,2,3}, with symmetric Gauss–Seidel smoothers. Thus each application of the preconditioner
requires 2n V-cycles per block. To obtain a fair comparison of all the preconditioners, a relative tolerance
of 10−6 of the true error in the energy norm was used to determine convergence of PCG, and zero initial
guesses were used for all computations.

Table 4 shows the PCG iteration counts for both ideal and approximate preconditioners; in this ex-

Mesh size DoF Direct 1 V-cycle 2 V-cycles 3 V-cycles
h = 2−6 11 907 7 8 7 7
h = 2−7 48 387 7 8 7 7
h = 2−8 195 075 7 8 7 7
h = 2−9 783 363 7 8 7 7
h = 2−10 3 139 587 7 8 7 7

Table 4. Number of PCG iterations required for convergence of the PCG algorithm in the experiment of section 5.2, for various
mesh sizes and corresponding number of degrees of freedom. Fast convergence of PCG is observed in all cases, with the iteration
counts being mesh-independent. The method using 1 V-cycle appears as the most efficient in this experiment.
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h = 2−9 h = 2−10

Order Iterations DoF Iterations DoF
p = 4 8 1 305 605 8 5 232 645
p = 6 9 1 827 847 9 7 325 703
p = 8 9 2 350 089 9 9 418 761

p = 10 9 2 872 331 9 11 511 819
p = 12 9 3 394 573 10 13 604 877
p = 14 9 3 916 815 9 15 697 935

Table 5. Dependence of the PCG iteration counts on the polynomial degrees p = 4, . . . ,14 in the experiment of section 5.2,
with approximate solvers using 1 multigrid V-cycle. The number of PCG iterations remains uniformly bounded, showing full
robustness with respect to the polynomial degree, even up to 15 million DoF. The additional iteration for the case p = 12, h = 2−10

is explained by the fact that the error on the 9-th iteration was very close to, but above, the convergence criterion.

periment, we set p = 2 and τ = 0.1, and thus there are more than 3 million degrees of freedom for Vp on
the finest mesh. Fast and robust convergence of PCG is observed in all cases, showing the effectiveness
of these preconditioners. For this experiment, the method using 1 V-cycle appears as the most efficient,
as the reduction in cost per iteration outweighs the additional PCG iteration required. In Table 5, we
study the dependence of the iteration counts on the polynomial degree. It is found that the use multigrid
preconditioners retains the robustness of the preconditioner with respect to the approximation order p.
This is indeed the expected result, since Theorem 3.2 shows that as p is increased, for large j the matri-
ces M+ τ

√
λ j/2A are spectrally closer to M and thus the efficiency of the multigrid V-cycle increases.

Our main goal in this experiment is to check the robustness of our preconditioners with respect to the
polynomial degree, rather than to actually propose employing high-order approximations in time cou-
pled with low-order approximations in space. Nevertheless, such high-order temporal approximations
are encountered in the context of hp-version methods (Schötzau & Schwab, 2000; von Petersdorff &
Schwab, 2004; Schötzau & Wihler, 2010; Werder et al., 2001). We have also computed the results of
this experiment using smaller time-step sizes τ , and we observed a decrease in the iteration counts, as
predicted by (5.1). The conclusion drawn from these results is that in practice, standard approximate
solvers can be used while retaining the key properties of the ideal preconditioner H, namely the fast
convergence of the PCG algorithm and the robustness with respect to the discretization parameters.

5.3 Parabolic problems with inexact solvers

The action of L as given in (4.15) requires the action of A−1. In many practical applications, it is desir-
able to approximate this step by using an inexact solver, such as a fixed number of multigrid V-cycles,
leading to an approximation L̂ ≈ L. This raises the question of whether this can be performed without
affecting firstly the accuracy of the solution, and secondly the performance of the preconditioning strat-
egy. This experiment provides evidence that inexact solvers can indeed be used without compromising
these important objectives.

Consider the piecewise-linear simplicial conforming finite element approximation of the heat equa-
tion in the unit square Ω = (0,1)2, final time T = 0.1, imposed with initial datum u0(x,y) = x(1−
x)sin(πy) and with homogeneous Dirichlet lateral boundary conditions. This initial datum is chosen as
it leads to a solution with decreased temporal regularity, see (Schötzau & Schwab, 2000). To compare
near-exact and inexact solvers, we consider two approaches:
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τ/T Error (BE) Error (D) Error (MG) (D)–(MG)
1 2.546×10−2 3.078×10−3 3.078×10−3 1.303×10−8

1/2 1.475×10−2 3.934×10−4 3.934×10−4 2.129×10−8

1/4 8.008×10−3 5.444×10−5 5.441×10−5 3.219×10−8

1/8 4.178×10−3 8.718×10−6 8.641×10−6 8.126×10−8

Table 6. Final time errors ‖u(T )− uτ (T )‖L2(Ω) obtained by the DG time-stepping method for the problem of section 5.3, for
p = 0 (the backward Euler method) and for p = 1 with direct solvers (D) and inexact multigrid (MG) solvers. The last column
gives ‖uτ (T )− ûτ (T )‖L2(Ω), where uτ , respectively ûτ , denotes the solution obtained by (D), respectively (MG).

Iterations τ = T τ = T/2 τ = T/4 τ = T/8
(D) 4 3.5 3 3

(MG) 6 5 5 5

Table 7. Average number of PCG iterations per time-step for the problem of section 5.3, with p = 1 and with either direct (D) or
inexact multigrid (MG) solvers.

(D) direct solvers are used in the application of P>, H−1 and L,

(MG) 5 multigrid V-cycles are used to approximate the application of A−1 in L and P>, and 1 multigrid
V-cycle is used to approximate (M+ τ

√
λ j/2A)−1 in H−1, as in section 5.2.

We point out that the method (MG) does not use any direct solvers throughout the entire computation,
and that each PCG iteration costs 7 V-cycles per block.

Table 6 shows the final time errors ‖u(T )− uτ(T )‖L2(Ω), for varying τ , where u denotes the exact
solution of the PDE, and where uτ denotes the discrete solution. Here, we used h = 2−8 and p = 1.
For comparison, we also show the errors attained for p = 0, i.e. the backward Euler (BE) method. The
inexact solvers for (MG) retain the accuracy of the method, as the difference in solutions between (D)
and (MG) is several orders of magnitude smaller than the difference to the exact solution. For p = 1,
the expected third order super-convergence rate is observed.

Table 7 shows the average number of PCG iterations per time-step required by both approaches in
order to obtain a residual tolerance of 10−6, as well as the final time error between the approximate
solution uτ for (D) and ûτ for (MG). This shows that the number of PCG remains robust with respect
to the approximation of L entailed by (MG). This experiment shows that the use of inexact solvers
can retain both the accuracy of the DG time-stepping method as well as the efficiency of the proposed
preconditioners.

Conclusion

We have developed efficient and robust preconditioners enabling the fast solution of the DG time-
stepping method by the preconditioned conjugate gradient algorithm. The analysis and numerical exper-
iments show that the ideal and approximate preconditioners are robust with respect to all discretization
parameters and lead to low condition numbers for the preconditioned system. Thus the high-order solu-
tion of large problems by the DG time-stepping method is tractable under the proposed approach.
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A. Analysis of eigenvalues

In this section, we present the proof of Theorem 3.2. Without loss of generality, it is sufficient to consider
only p> 2 throughout this section. We will make use of Weyl’s Theorem from eigenvalue perturbation
theory (Demmel, 1997).

THEOREM A.1 (Weyl) For a positive integer n, let T and T̂ denote symmetric n× n matrices. Let
α1 > · · ·> αn denote the eigenvalues of T and let α̂1 > · · ·> α̂n denote the eigenvalues of T̂ . Then, for
each j = 1, . . . ,n, we have

|α j− α̂ j|6 ‖T − T̂‖2, (A.1)

where ‖·‖2 denotes the matrix 2-norm.

We are now ready to prove Theorem 3.2.
Proof of Theorem 3.2. Recall that the matrix T is defined by (4.7). We start by noting that the

matrix T is pentadiagonal, i.e. Tk j = 0 if |k− j|> 2. Moreover, it is easy to show from the properties of
Legendre polynomials that there exists a constant C independent of p such that

‖ψk‖2
L2 = Tkk 6C(k+1)−2 ∀k = 0, . . . , p. (A.2)

The Cauchy–Schwarz inequality implies that |Tjk| 6
√

TkkTj j, and thus all entries of T are uniformly
bounded. Since T has at most 5 nonzero entries per row, and all entries are uniformly bounded, the
Gershgorin discs of T are bounded independently of p. The Gershgorin Disc Theorem therefore implies
that there is a constant C, independent of p, such that λ0, the maximal eigenvalue of T , satisfies λ0 6C.
This corresponds to (3.13) for the case j = 0. We consider now j > 1, and without loss of generality,
we may assume that p> 2. For 06 q6 p−1, we define the orthogonal projector πq : Pp→Pq by

πq :
p

∑
j=0

v j ψ j 7→
q

∑
j=0

v j ψ j, (A.3)

where the polynomials ψ j are defined by (4.2), and v = (v0, . . . ,vp) ∈ Rp+1. Define the matrix T̂q ∈
R(p+1)×(p+1) by (T̂q)k j := (πqψk,πqψ j)L2 . Note that (T̂q)k j is zero if either k or j is greater than q, and
equals Tk j otherwise. Thus, the matrix T̂q has the general form

T̂q =

[
T̃ 0
0 0

]
, (A.4)

where T̃ denotes the (q+ 1)× (q+ 1) principal submatrix of T . The main step of the proof is to use
(A.2) repeatedly to find an upper bound for

‖T − T̂q‖2 = sup
u∈Rp+1\{0}

sup
v∈Rp+1\{0}

v>(T − T̂q)u
‖u‖2‖v‖2

.

For arbitrary u and v ∈Rp+1 \{0}, define the polynomials u := ∑
p
j=0 u jψ j and v = ∑

p
j=0 v jψ j. Then, we

have

v>(T − T̂q)u = (u,v)L2 − (πqu,πqv)L2

= (u−πqu,v−πqv)L2 +(πqu,v−πqv)L2 +(u−πqu,πqv)L2 .
(A.5)
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It follows from the definition of πq in (A.3) that

‖u−πqu‖2
L2 =

p

∑
k=q+1

p

∑
j=q+1

uk (ψk,ψ j)L2 u j.

Since (ψk,ψ j)L2 = Tk j = 0 if |k− j|> 2, the strengthened Cauchy–Schwarz inequality yields

p

∑
k=q+1

p

∑
j=q+1

uk(ψk,ψ j)L2u j 6 5

(
p

∑
k=q+1

‖ψk‖2
L2 |u j|2

)
6

C
(q+1)2 ‖u‖

2
2. (A.6)

Note that this implies the following a priori estimate for the orthogonal projector:

‖u−πqu‖L2 6C(q+1)−1‖(I u)′‖L2 ∀u ∈Pp. (A.7)

Thus (A.6) and the Cauchy–Schwarz inequality imply that

|(u−πqu,v−πqv)L2 |6C(q+1)−2‖u‖2‖v‖2. (A.8)

For k 6 q and j > q+1, we have (ψk,ψ j) = 0 if k < q−1 and j > q+2, and thus

(πqu,v−πqv)L2 =
q

∑
k=0

p

∑
j=q+1

uk(ψk,ψ j)v j =
q

∑
k=max(q−1,0)

min(p,q+2)

∑
j=q+1

uk(ψk,ψ j)v j.

The Cauchy–Schwarz inequality thus implies that

|(πqu,v−πqv)L2 |6 2

(
q

∑
k=max(q−1,0)

|uk|2‖ψk‖2
L2

) 1
2
(

min(p,q+2)

∑
j=q+1

|v j|2‖ψ j‖2
L2

) 1
2

6C(q+1)−2‖u‖2‖v‖2.

(A.9)

An identical argument shows that

|(u−πqu,πqv)L2 |6C(q+1)−2‖u‖2‖v‖2. (A.10)

Combining (A.8), (A.9) and (A.10) implies that there exists a constant C, independent of p and q, such
that

‖T − T̂q‖2 6C(q+1)−2. (A.11)

Therefore, Weyl’s Theorem implies that the eigenvalues λ j of T and λ̂ j of T̂q satisfy

|λ j− λ̂ j|6C(q+1)−2 ∀ j = 0, . . . , p, (A.12)

where the constant C is independent of j, q and p. However, it is clear from (A.4) that λ̂ j = 0 for
j > q+1, and thus there exists a constant C independent of p and q such that

λ j = |λ j− λ̂ j|6C(q+1)−2 ∀ j > q+1. (A.13)

The left-hand side of this inequality is independent of q while the right-hand side is valid of all q6 j−1.
Therefore, the choice q = j−1 yields (3.13) for j = 1, . . . , p.
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The lower bound (3.14) follows from inverse inequalities. Indeed, λp satisfies

λp = min
v∈Pp\{0}

‖v‖2
L2

‖(I v)′‖2
L2

.

To obtain (3.14), it is therefore enough to show the inverse inequality

‖(I v)′‖L2 6C(p+1)2‖v‖L2 ∀v ∈Pp. (A.14)

For any v ∈Pp, standard inverse inequalities (Schwab, 1998) imply that

‖(I v)′‖L2 6 ‖v′‖L2 +‖v‖L∞

1
2‖(Lp−Lp+1)

′‖L2

.
(
(p+1)2 +(p+1)‖(Lp−Lp+1)

′‖L2
)
‖v‖L2 .

(A.15)

It follows from (4.10) that

‖(Lp−Lp+1)
′‖2

L2 =
p

∑
j=0

8( j+ 1
2 )

2

2 j+1
= 2(p+1)2 . (A.16)

Substituting (A.16) into (A.15) yields (A.14).
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GAUTSCHI, W. (1997) Numerical analysis. Birkhäuser Boston, Inc., Boston, MA, pp. xiv+506. An introduction.
GRADSHTEYN, I. S. & RYZHIK, I. M. (2015) Table of integrals, series, and products, eighth edition, Else-

vier/Academic Press, Amsterdam, pp. xlvi+1133. Translated from the Russian, Translation edited and with a
preface by Daniel Zwillinger and Victor Moll, Revised from the seventh edition.

HAIRER, E. & WANNER, G. (2010) Solving ordinary differential equations. II. Springer Series in Computational
Mathematics, vol. 14. Berlin: Springer-Verlag, pp. xvi+614. Stiff and differential-algebraic problems, Second
revised edition, paperback.

HESTENES, M. R. & STIEFEL, E. (1952) Methods of conjugate gradients for solving linear systems. J. Research
Nat. Bur. Standards, 49, 409–436 (1953).

HIPTMAIR, R. (2006) Operator preconditioning. Comput. Math. Appl., 52, 699–706.
HULME, B. L. (1972) Discrete Galerkin and related one-step methods for ordinary differential equations. Math.

Comp., 26, 881–891.
JAMET, P. (1978) Galerkin-type approximations which are discontinuous in time for parabolic equations in a

variable domain. SIAM J. Numer. Anal., 15, 912–928.
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