Rowczenio, DM;
Trojer, H;
Omoyinmi, E;
Arostegui, JI;
Arakelov, G;
Mensa-Vilaro, A;
Baginska, A;
... Lachmann, HJ; + view all
(2016)
Brief Report: Association of Tumor Necrosis Factor Receptor–Associated Periodic Syndrome With Gonosomal Mosaicism of a Novel 24-Nucleotide TNFRSF1A Deletion.
Arthritis & Rheumatology
, 68
(8)
pp. 2044-2049.
10.1002/art.39683.
Preview |
Text
Rowczenio_et_al-2016-Arthritis_%26_Rheumatology.pdf - Accepted Version Download (983kB) | Preview |
Abstract
Objective: To investigate the molecular cause of persistent fevers in a patient returning from working overseas, in whom investigations for tropical diseases yielded negative results. / Methods: DNA was extracted from the patient's whole blood, leukocyte subpopulations, saliva, hair root, and sperm. The TNFRSF1A gene was analyzed by polymerase chain reaction (PCR), allele-specific PCR, Sanger sequencing, and next-generation sequencing. In silico molecular modeling was performed to predict the structural and functional consequences of the tumor necrosis factor receptor (TNFR) type I protein mutation in the extracellular domain. / Results: Sanger sequencing corroborated by allele-specific PCR detected a novel in-frame deletion of 24 nucleotides (c.255_278del) in the TNFRSF1A gene, and this was subsequently confirmed using next-generation sequencing methods (targeted sequencing and amplicon-based deep sequencing). Results of amplicon-based deep sequencing revealed variable frequency of the mutant allele among different cell lines, including sperm, thus supporting the presence of gonosomal TNFRSF1A mosaicism. The patient had a complete response to treatment with interleukin-1 (IL-1) blockade, with resolution of symptoms and normalization of acute-phase protein levels. / Conclusion: We describe the first case of gonosomal TNFRSF1A mosaicism in a patient with TNFR-associated periodic syndrome (TRAPS), which was attributable to a novel, somatic 24-nucleotide in-frame deletion. The clinical picture in this patient, including the complete response to IL-1 blockade, was typical of that found in TRAPS. This case adds TRAPS to the list of dominantly inherited autoinflammatory diseases reported to be caused by somatic (or postzygotic) mutation.
Archive Staff Only
View Item |