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Developing a case mix classification for child and adolescent mental health 

services: the influence of presenting problems, complexity factors, and 

service providers on number of appointments 

 

Abstract  

Background: Case-mix classification is a focus of international attention in considering how best to 

manage and fund services, by providing a basis for fairer comparison of resource utilization. Yet 

there is little evidence of the best ways to establish case mix for child and adolescent mental health 

services (CAMHS). 

Aims: To develop a case mix classification for CAMHS that is clinically meaningful and predictive of 

number of appointments attended, and to investigate the influence of presenting problems, context 

and complexity factors, and provider variation. 

Method: We analysed 4573 completed episodes of outpatient care from 11 English CAMHS. Cluster 

analysis, regression trees, and a conceptual classification based on clinical best practice guidelines 

were compared regarding their ability to predict number of appointments, using mixed effects 

negative binomial regression.  

Results: The conceptual classification is clinically meaningful and did as well as data-driven 

classifications in accounting for number of appointments. There was little evidence for effects of 

complexity or context factors, with the possible exception of school attendance problems. Substantial 

variation in resource provision between providers was not explained well by case mix. 

Conclusions: The conceptually-derived classification merits further testing and development in the 

context of collaborative decision making. 
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Introduction  

 

Determining what characteristics of patients and services best predict resource use 

is crucial for developing efficient financial allocations across service providers and for 

informing clinical care.  Case-mix classification underpins considerations  how best to 

manage, compare and pay health care services (Costa, Poss, & McKillop, 2015; Halsteinli, 

Kittelsen, & Magnussen, 2010; Hornbrook, 1980; Ogles, Carlson, Hatfield, & Karpenko, 

2008; Phillips, Kramer, Compton, Burns, & Robbins, 2003). 

 

Previous studies indicate that for children and young people, age, functioning 

(including school attendance) and symptom severity (including hallucinations, 

emotional and behavioural) affect the cost of mental health service use in the 

community setting (Buckingham et al. 1998, Gaines et al. 2003). These factors 

appear within a list of a dozen or so patient-level factors suggested to be associated 

with mental health service cost, in a recent literature review that looked across 

settings and ages (Harris et al., 2013). The review noted the relative paucity of 

research into children and community mental health care (in contrast to working age 

adults and inpatient care). Studies that have included the community setting report 

difficulty in predicting costs from assessment information about service-user 

characteristics (Buckingham, Burgess, Solomon, Pirkis, & Eagar, 1998; Health and 

Social Care Information Centre, 2006). 

 

It is therefore unsurprising that where countries have tried to develop innovative 

systems to apply case-mix measurement to the funding of mental health service 

providers, implementation has been challenging and/or slow, particularly in the 

community context (Independent Hospital Pricing Authority, 2015b; Mason, 
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Goddard, Myers, & Verzulli, 2011). In England, the implementation of a clustering 

approach to underpin payment for adult mental health services has attracted a 

mixture of optimism and criticism (Care Pathways and Packages Project, 2015; 

Denham-Vaughan & Clark, 2012; Jones et al., 2013; Royal College of Psychiatrists, 

2014; Yeomans, 2014). There is a lack of evidence about the relationship between 

cluster membership and resource use among adult patients. Consideration of this 

relationship is crucial for upholding the principle of fairness of provider payment 

(Vostanis et al., 2015).  

 

This paper presents the development of a classification to inform the processes of 

contracting with and paying providers of child and adolescent mental health services 

(CAMHS), focusing on outpatient treatment, and specifically modelling the 

relationship between cluster membership and number of appointments. The 

principles of our approach were explained in Vostanis et al. (2015). Extensive 

stakeholder consultation identified factors that CAMHS clinicians, service managers 

and commissioners thought most likely to be relevant to clinical decision making and 

number of appointments. These factors included the nature and severity of 

presenting problems, a range of contextual and complexity factors, and education, 

employment and training issues (Jones, et al., 2013; Vostanis, et al., 2015).  Our 

aim was to develop a classification of children and young people accessing CAMHS 

that satisfied four criteria derived from the case-mix literature and stakeholder 

requirements: (i) ability to account for variation in episode costs, (ii) clinical 

meaningfulness, (iii) assignment of service users to groupings at the beginning of 

episodes, and (iv) reliability of assignment (Fetter, Shin, Freeman, Averill, & 

Thompson, 1980; NHS England, 2015). Since previous evidence suggested large 
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variability in resource provision between providers (Vostanis, et al., 2015), we also 

investigated whether this can be explained by casemix. In contrast to studies in 

Australia (Buckingham, et al., 1998) and New Zealand (Gaines et al., 2003), we 

focus exclusively on CAMHS outpatient episodes. 

 

Method 

 

Sample 

 

The CAMHS Payment System Project collected clinical records from 20 CAMH 

service providers that responded to an open call for participation. Information about 

children and young people seen between 1 September 2012 and 30 June 2014 was 

recorded in compliance with the Children and Young People’s Improving Access to 

Psychological Therapies data set (Version 3) (CYP IAPT, 2013). We performed data 

quality checks on each of the 20 providers, using a combination of data inspection 

and communication with provider representatives. Eleven providers had sufficiently 

high data quality to be included in the analysis. These came from a variety of 

English regions, both urban and rural. All were outpatient services, ranging from uni-

disciplinary community services to multidisciplinary teams dealing with complex 

problems. Specialist teams within one or more providers included: learning disability, 

neurodevelopmental disorders, looked after and vulnerable children, outreach and 

intensive community engagement, eating disorders, and substance misuse. 

 

The eleven providers submitted 11352 outpatient periods of contact that included 

information on presenting problems at assessment, and that had at least one 
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appointment recorded as having been attended by the child or young person. We 

call this the Full Sample. Of these, 4573 cases were closed or dormant (without 

activity for at least six months), so that number of appointments until case closure 

could be established. These 4573 cases constitute our Analysis Sample, which was 

used for development of the classification.  

 

Measures 

 

Presenting Information 

The Current View Tool (Jones, et al., 2013), a one-page form completed at 

assessment, was used to capture clinician view at the start of treatment. It records 

30 presenting problems, 14 complexity factors, as well as six contextual problems 

and issues in education, employment or training (EET). Lists of the problems 

measured are given in Figures 1b – 1d. Ratings need not imply a diagnosis. 

 

Complexity factors are rated on a three-point scale with response categories “Yes” 

(= present), “No”, and “Not known”. All other problems are on a five-point scale with 

the response categories “None”, “Mild”, “Moderate”, “Severe”, and “Not known”. In 

all measures, ratings of “None” and “Not known” were combined with missing ratings 

to form a common category that indicates no evidence for the presence of a problem 

or factor. In contextual problems and EET issues, ratings were coded into a numeric 

scale as follows: “None/Not Known” = 0, Mild = .33, Moderate = 0.67, Severe = 1. 

For complexity factors, ratings were coded “No/Not known” = 0, “Yes” = 1.  

 

Number of appointments. Our primary indicator of resource use was “Number of 
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Appointments”, i.e. the number of direct contacts (face-to-face or telephone) that the 

service user (child or young person) had with the provider. Recording of indirect 

activity – work other than direct contact carried out to benefit the service user – was 

not of sufficient quality in our data set to be usable for analysis. 

 

Demographic information. We used age (in years) and gender (male/female) to 

investigate the demographic composition of our sample. We did not have access to 

information on socio-economic status. 

 

Data analysis 

 

The rationale underlying our analysis is to compare data-driven approaches, which 

explicitly maximize the fit of the classification to the data (without consideration of 

clinical plausibility), with a conceptually guided approach based on our interpretation 

of best practice guidelines. We compared three methods of classification: k-medoids 

cluster analysis (Kaufman & Rousseeuw, 2009), regression trees (specifically, the 

recursive partitioning algorithm; Hothorn, Hornik, & Zeileis, 2006), and a conceptual 

approach. We considered mixture models such as latent class analysis. However, 

when using a large number of latent class indicators (in our case, 30 presenting 

problems), a mixture model requires many parameters per latent class. Given our 

sample size, as the number of latent classes rises, the estimation quickly becomes 

unstable, and eventually the model becomes unidentified. 

 

K-medoids cluster analysis 

K-medoids cluster analysis aims to cluster cases on the basis of a given set of 
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characteristics, without reference to a dependent variable. Clusters are developed so 

as to maximize between-cluster differences and minimize within-cluster differences. 

We used the Gower distance measure (Gower, 1971) to define a distance between 

all pairs of cases based on the 30 presenting problems, and analysed the distance 

matrix using the k-medoids algorithm. Well-fitting clusters consist of individuals who 

are more similar to each other than to individuals in other clusters. Fit is assessed by 

the average silhouette statistic (Rousseeuw, 1987).  

 

Regression Trees 

Regression trees cluster cases on the basis of the relationship between a set of 

characteristics (in our case, the Current View information) and a dependent variable 

(number of appointments). The aim is to find subsets of a sample that can be 

identified by their presenting information, so that the members within each subset 

attend a similar number of appointments. All presenting information from the Current 

View Tool was used, as well as the following summary indicators: the maximum 

problem rating, the number of problems rated moderate or above, and the number of 

problems rated severe.  

 

Regression trees can lead to overfitting, i.e. the optimisation of a model on the data 

set at hand, which may not generalise to the population. To avoid overfitting, we 

employed the cross-validation strategy suggested by Kuhn & Johnson (2013). We 

took ten random “development” samples (stratified by age and gender), each 

comprising 50% of cases. Each time, the remaining 50% of cases were designated 

the “test sample”. A set of nested trees of varying sizes was grown on each 

development sample, using a range of stopping criteria. Two candidates for “best” 
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tree were then chosen for each development sample by testing the trees’ predictive 

power on the associated test sample, using (1) a traditional R-square, and (2) an 

outlier-resistant R-square based on medians rather than means (respectively, 𝑅1
2 

and 𝑅9
2 as defined in Kvalseth (1985)).  

 

Conceptual classification 

We defined a conceptual classification of children coming to CAMHS based on our 

review of best practice guidelines from the UK National Institute for Health and Care 

Excellence (NICE). We reviewed 19 existing NICE guidelines, which were either 

written specifically for, or made reference to, children (Vostanis, et al., 2015). Since 

the guidelines judged treatment intensity to be influenced by symptom severity and 

impairment, but not by contextual factors, we designed our categories to account 

only for presenting problems. Each relevant NICE guideline (e.g. NICE guideline 

CG31 “Obsessive-Compulsive Disorder”) is represented by one cluster (“Getting 

Help: OCD”). All categories are mutually exclusive, with the exception of the 

grouping “Neurodevelopmental Assessment”, which implies a recommendation of 

specialist assessment and may co-exist with other groupings.1 The groups that 

make up the conceptual classification are displayed in Table 1. 

 

A period of contact is assigned to a particular cluster based on presenting problem 

ratings. Clinical judgement was used to define assignment rules. A period of contact 

was assigned to a NICE group if the problem rating corresponding to the associated 

                                                 
1 The NICE guideline CG78 (“Borderline Personality Disorder”) is represented in our conceptualisa-

tion, but was not included in the algorithmic allocation, as we judged that presenting information was 
not sufficient to identify personality disorder. In practice, allocation to this grouping would be matter of 
clinical judgement using additional information from case histories not captured by the Current View 
form. 
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diagnosis was either moderate or severe (e.g., in the case of “Getting Help: OCD”, 

this applies to the presenting problem “Compelled to do or think things (OCD)”). 

Some level of comorbidity was deemed acceptable within a NICE guidance category 

(e.g. mild depression within OCD), as long as there was a clear primary problem. 

Where comorbidity suggested the inapplicability of a purely delivered treatment 

according to NICE guidance (e.g. when severe OCD was comorbid with severe 

depression), the case was allocated to one of several mixed presentation groups. 

These groups also collect cases whose Current View ratings suggested that none of 

the presenting problems associated with any particular NICE guideline was present.  

 

--- Table 1 about here --- 

 

Model comparison 

 

Using the ten test samples, we compared the classifications from regression trees, 

k-medoids cluster analysis, and conceptual grouping with respect to their ability to 

account for variation in number of appointments between CAMHS users. We used 

mixed-effects negative binomial regression with a random effect for provider. The 

dependent variable was “Number of appointments after the first session”, i.e. the 

minimum possible value was zero (indicating that the child had not returned after the 

first appointment). We used Akaike's Information Criterion (AIC) and Schwartz' 

Bayesian Information Criterion (BIC) to compare models. All analyses were carried 

out using the R software (R Core Team, 2014). Mixed effects models were 

estimated using the glmmADMB package (Fournier et al., 2012). 
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Results 

 

Description of the sample 

 

The demographic compositions of the Full and Analysis Samples are given in Table 

2. As we have shown elsewhere (Wolpert et al., 2015), these distributions were 

broadly similar to those of other large data sets of English outpatient CAMHS, 

although older teenagers may have been slightly overrepresented in our sample.  

 

--- Table 2 about here --- 

 

The distributions of presenting problems, context factors and complexity and EET 

problems in the Analysis Sample are shown in Figures 1b – 1d. Full tables are 

available in the online supplement, Tables S1 – S3. The distributions in the Full 

Sample (not shown here) are very similar to those in the Analysis Sample. 

 

--- Figure 1 about here --- 

 

The number of appointments in the Analysis Sample ranged from 0 to 101; their 

distribution is displayed in Figure 1a. The mean was 4.96, and the three quartiles 

were: Q1: 1; Median: 3; Q3: 6. Because of the relatively short observation period (22 

months), and the need to consider only cases that were open and closed within this 

period, the sample is likely to be biased towards shorter periods of contact. We 

make no claim to have calculated unbiased estimates of parameters of the 
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distribution of “number of appointments”. What we are interested in is a comparison 

of different groups within a given classification.  

 

One feature of interest in these data is the considerable variation in measured 

resource provision between providers. Table 3 shows the quartiles and means of the 

appointments distribution in each of the eleven providers. We see that this average 

varies between 2.9 in Provider E and 12.9 in Provider C.  

 

--- Table 3 about here --- 

 

K-medoids cluster analysis 

 

We now turn to an account of the results of each of our three methods of 

classification. K-medoids cluster analysis resulted in a poor fit. Average silhouette 

values above 0.51 indicate reasonable fit; we found no average silhouette above 

0.10. Inspection of the clusters revealed that many included an indeterminate mix of 

periods of contact with varying presenting problems, so that clinical meaningfulness 

was doubtful. Nonetheless, we selected the 6- and 26-cluster solutions for further 

testing, since they represented local maxima of average silhouettes values. The 

resulting clusters are illustrated in the online supplement, Figures 3 and 4a-e. 

 

Regression Trees 

 

Our analysis yielded 20 regression trees (ten pairs of nested regression trees from 

each development sample). Inspection showed that different development samples 
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led to qualitatively different classifications, suggesting that the regression tree 

method did not yield a reliable classification of our data. This is also illustrated in the 

online supplement, Figures 1 and 2. 

 

Model comparison 

 

For each of the ten test samples, we compared five classifications: the 6- and 26-

cluster solutions from the k-medoids cluster analysis, two regression trees (selected 

by traditional and outlier-resistant R-square), and the conceptual classification. 

Using the AIC, in nine out of ten samples the conceptual classification performed 

best; once the “traditional R-square” tree performed best. Using the BIC, a 

“traditional R-square” model performed best six times (but note that this is a different 

model each time), while the 6-cluster model from k-medoids cluster analysis 

performed best four times. Full results are presented in the online supplement, 

Table S4. In general, the AIC tends to select larger models, whereas BIC tends to 

select more parsimonious models. Overall, we concluded that there was little 

evidence that statistical methods outperformed our conceptual classification. 

Regression trees and cluster analysis maximize the statistical fit in a particular 

sample, and therefore ought to outperform a conceptual classification that has a 

tenuous relation to reality. This is not what we find here. In addition, the k-medoids 

clusters had doubtful clinical meaningfulness, while the regression tree method did 

not yield a reliable classification. We therefore choose to describe and investigate 

the conceptual classification more closely. 
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Conceptual classification: description 

 

We present the 18-group conceptual classification, focusing on estimates of group 

membership and the relationship to number of appointments. Table 1 presents our 

estimates of group membership proportions. The best estimates are derived from 

the Full Sample, taking into account presenting information from both open and 

closed cases. The three largest groups are not symptom-specific: “Signposting and 

Self-Management Advice” (ADV), “Difficulties Not Covered by Other Groupings” 

(DNC) and “Difficulties of Severe Impact” (DSI). Between them, these three groups 

are estimated to account for about 52% of children and young people coming to 

CAMHS. Around 9% of children are estimated to be in one of the two groups defined 

by specific co-occurring difficulties (“Co-Occurring Behavioural and Emotional 

Difficulties” [BEM] and “Co-Occurring Emotional Difficulties” [EMO]). Around 39% of 

children are estimated to belong to a grouping referring to a specific NICE guideline 

for treatment. The counts and percentages from the Analysis Sample are given here 

to enable comparison.  

 

Figure 2 shows the distributions of number of appointments by group membership. 

Children assigned to the “Signposting and Self-management advice” group attended 

on average a relatively small number of appointments (the median for this group 

was two appointments, the third quartile was four appointments). The three groups 

that belong to the “Getting More Help” supergrouping, “Eating Disorders” (EAT), 

“Psychosis” (PSY) and “Difficulties of Severe Impact” (DSI), attended on average 

more appointments than the members of most other groups. Most of the groups 

within the “Getting Help” supergrouping are somewhere in between the others. 
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There is large within-group variation, which indicates that most of the variation in the 

number of appointments is not explained by the groupings. 

 

--- Figure 2 about here ---- 

 

 

Complexity factors, contextual problems, and education/employment/training issues 

 

Next we investigated whether the prediction of number of appointments can be 

further improved by taking into account complexity factors, contextual problems and 

education/employment/training (EET) issues. We used mixed negative binomial 

regression to compare two models: Model 1 predicts the number of appointments 

using the 18-group conceptual classification and a random effect to account for 

provider-level variation. Model 2 is the same as Model 1, except that complexity 

factors, contextual problems and EET issues have been added as covariates.  

 

We observed the following model fit indices: AIC: 21704.6 for Model 1, compared to 

21690.4 for Model 2. BIC: 21833.2 for Model 1, compared to 21941.1 for Model 2. 

So Model 2 slightly outperforms Model 1 according to the AIC, but Model 1 is clearly 

preferred according to the BIC. Overall, this suggests that there is at best weak 

evidence for an additional effect of complexity factors, contextual problems or EET 

issues, above the effect captured in the conceptual grouping. We present estimates 

from Model 2 to further illustrate this point. 

 

Table 4 shows rate ratios estimated from Model 2. Rate ratios represent the ratio of 
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the predicted number of appointments for a given group over the predicted number 

of appointments for a reference group. Here, the reference group are children in 

“ADV” without any complicating factors. For example, the rate ratio of 2.01 for DEP 

indicates that a child in this group is predicted to attend twice as many sessions as a 

child in the ADV group. For contextual problems and EET issues, the coefficients 

represent the effect of having a given problem or issue rated as severe compared to 

a rating of none or not known. A rate ratio of 1 represents absence of effect. 

 

Table 4 shows that the estimated effects of all additional factors are small relative to 

the effects of the groupings. Of the 19 additional factors, only “EET attendance 

issues” has a 99% confidence interval that does not include 1.  

 

--- Table 4 about here --- 

 

Overall model fit and variation between providers 

 

We computed two types of adjusted R2 statistics: the adjusted traditional R2 and the 

adjusted outlier-resistant R2 (respectively, 𝑅𝑎1
2  and 𝑅𝑎9

2  as defined in Kvalseth 

(1985). These R2 values suggest that the models account for about 12 % of the 

variation in number of appointments, or 33 % when using the outlier-resistant 

statistic. The large difference between these two values suggests that a large 

amount of unpredictability in the number of appointments is caused by outliers with 

very large numbers of sessions.  

 

If the conceptual classification was used for payment purposes or benchmarking, 
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taking the provider-level variation into account is not meaningful. When we re-

estimated Model 2 without the random effect for provider, the adjusted traditional R2 

statistic was 5 %, and the outlier-resistant R2 statistic was 13 %. This means that 

unexplained provider-level variation is large relative to the estimated effects of the 

groupings: around 7 % according to the traditional R2, and 20 % according to the 

outlier-resistant R2 The number of appointments a child is predicted to attend 

depends at least as much on which provider the child goes to, as on the presenting 

difficulties of the child. 

 

 

Discussion 

 

This paper is the first to model the relationship between presenting information and 

number of appointments attended in users of English child and adolescent mental 

health services. We compared three methods of classifying periods of contact in 

CAMHS to define clusters, or groups, of children and young people that have similar 

needs, and whose treatment requires similar amounts of resource on average. Two 

statistical methods of classification, k-medoids cluster analysis and regression trees, 

did not yield reliable or clinically meaningful systems of categories. A third approach, 

the conceptual grouping based on current NICE guidelines for the treatment of 

children and young people with mental health difficulties, is clinically meaningful and 

did at least as well as the two statistical approaches in predicting number of 

appointments.   

 

There was at best weak evidence for an influence of complexity factors, contextual 
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problems, and education/employment/training (EET) issues, after controlling for 

presenting problem information encoded in our conceptual classification. Our 

analysis suggests that only EET attendance issues may additionally increase 

average number of appointments. School attendance was also found to be a 

predictor of treatment cost in child and adolescent mental health services in 

Australia (Buckingham, et al., 1998) and New Zealand (Gaines, et al., 2003).  

 

In its current form, our classification makes only a modest contribution to the attempt 

to account for differences in resource provision between CAMHS providers. The 

question remains why presenting problems have such a weak relationship with 

number of appointments, and why provider-level variation is so large relative to 

variation between children with different presentations. We consider three sets of 

reasons: [a] data quality; [b] omission of important individual-level factors; [c] lack of 

standardization of practice. 

 

Data quality: Problems with data quality may have compromised our ability to 

accurately estimate the effect of our groupings on number of appointments 

(Vostanis, et al., 2015). Different providers may have been more or less thorough in 

recording appointments, so that some of the provider-level variation may be due to 

different recording practices, rather than actual differences in treatment provision. 

Also, we were able to look at number of appointments only at the level of an 

individual period of contact within a provider, and could not ‘follow’ cases that had 

been closed because they had been referred to another provider for further 

treatment or assessment. Thus, a child that was ‘referred on’ after a single session 

looks like a case of ‘low resource use’ in our data, but may in fact have continued 
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prolonged treatment elsewhere.  

 

Omission of important individual-level factors: We may not have measured all 

relevant variables. First, we had no indicators of case history. Second, we were 

unable to measure treatment goals or preferences held by the children or their 

parents (Independent Hospital Pricing Authority, 2015a). Third, important 

information about a child or young person may often not be discovered in the first 

few sessions, but emerge only in the course of treatment. Models such as the 

Behavioral Model of Health Services Use would usefully inform future research into 

important factors for which there is currently a lack of data (Andersen, 1995). Finally, 

we were unable to collect indirect treatment activity. This may have limited our ability 

to distinguish the effect of complexity factors on resource use, as one might surmise 

that some of the additional work required for complex cases may involve activity 

other than face-to-face interaction with the child or family. Among the direct 

activities, our main analysis uses the number of appointments only. However, 

results of sensitivity analyses suggest that our conclusions do not change if we take 

into account the duration of appointments, and the number and professions of staff 

present (Wolpert, et al., 2015). 

 

Lack of standardisation of practice: Our data may point to a lack of standardisation 

of practice: the same child, with the same presenting problems, may receive 

different treatment depending on which provider they happen to present at. Further 

research should aim to verify this observation, and, if confirmed, illuminate it. 

Current evidence is insufficient to decide which of these reasons apply, or their 

relative importance. Efforts to encourage the collection of complete, reliable and 
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high quality data about the children seen and the treatment provided in CAMHS 

should be made an issue of high importance.  

 

Notwithstanding these issues, our classification has much to recommend it. It is 

based on best practice guidelines by NICE. Assigning a CAMHS user to a particular 

group implies the applicability of guidelines for treatment, making the classification 

clinically meaningful. The classification also has an inbuilt flexibility. If best practice 

guidelines change, additional groups could be defined. The effect of changes to best 

practice guidelines (say, on resource use) in a particular category could in principle 

be investigated, if data on category allocation and other relevant variables were 

rigorously collected in CAMHS.  

 

There is no automatic read- across of the case-mix groupings suggested here to the 

clusters developed for adult mental health in the UK as part of currency 

development (Self, Rigby, Leggett, & Paxton, 2008). Children and young people are 

different to adult service users, in terms of the types of difficulty, relevant contextual 

factors and forms of service provision. This necessitated a case mix categorisation 

that did not map easily onto existing adult mental health models. If more integrated 

all age services were to be developed both classifications would need to considered 

to create an integrated all age case mix categorisation. For the moment, however, 

we consider our conceptual grouping to be a useful starting point for the 

development of a casemix classification to inform payment and quality monitoring in 

outpatient CAMHS.  

 

A follow-up study should attempt to validate our classification by comparing our 
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assignment algorithm to assignment based on clinical judgement (Self & Painter, 

2009; Self, et al., 2008). Such a study may well lead to a refinement of our method 

of assigning children to groupings. Further research should consider how to 

incorporate inpatient episodes into a casemix classification (Beecham, Green, 

Jacobs, & Dunn, 2009). 

 

 

  



A case mix classification for CAMHS 
 

22 

 

References 

 

Andersen, R. M. (1995). Revisiting the behavioural model and access to medical 

care: does it matter? Journal of Health and Social Behavior, 36(1), 1-10.  

Beecham, J., Green, J., Jacobs, B., & Dunn, G. (2009). Cost variation in child and 

adolescent psychiatric inpatient treatment. European child & adolescent 

psychiatry, 18(9), 535-542.  

Buckingham, B., Burgess, P., Solomon, S., Pirkis, J., & Eagar, K. (1998). Developing 

a Casemix Classification for Mental Health Services. Volume 1: Main Report. 

Canberra. 

Care Pathways and Packages Project. (2015). The legacy. Bradford, Leeds, 

Rotherham & Sheffield: Care Pathways and Packages Project: Developing 

Currencies for Mental Health. 

Costa, A., Poss, J. W., & McKillop, I. (2015). Contemplating case mix. A primer on 

case mix classification and management. Healthcare Management Forum, 

28(1), 12-15.  

CYP IAPT. (2013). Children and Young People's Improving Access to Psychological 

Therapies. Dataset Specification V. 3.1.2, 15.07.2013. 

Denham-Vaughan, S., & Clark, M. (2012). Transformation of payment by results in 

mental health: ensuring a recovery focused and socially inclusive system. 

Mental Health and Social Inclusion, 16(3), 155-158.  

Fetter, R. B., Shin, Y., Freeman, J. L., Averill, R. F., & Thompson, J. D. (1980). Case 

Mix Definition by Diagnosis-Related Groups. Medical Care, 18(2, 

Supplement), 1-53.  

Fournier, D. A., Skaug, H. J., Ancheta, J., Ianelli, J., Maunder, M. N., Nielsen, A., . . . 



A case mix classification for CAMHS 
 

23 

 

Magnusson, A. (2012). AD Model Builder : using automatic differentiation for 

statistical inference of highly parameterized complex nonlinear models. 

Optimization Methods and Software, 27(2), 233-249.  

Gaines, P., Bower, A., Buckingham, B., Eagar, K., Burgess, P., & Green, J. (2003). 

New Zealand Mental Health Classification Outcomes Study: Final Report. 

Auckland: Health Research Council of New Zealand. 

Gower, J. C. (1971). A General Coefficient of Similarity and Some of Its Properties. 

Biometrics, 27(4), 857-871.  

Halsteinli, V., Kittelsen, S. a., & Magnussen, J. (2010). Productivity growth in 

outpatient child and adolescent mental health services: the impact of case-mix 

adjustment. Social science & medicine (1982), 70(3), 439-446.  

Harris, M., Legge, N., Diminic, S., Carstensen, G., McKeon, G., Siskind, D., . . . 

Whiteford, H. (2013). Mental health service cost drivers - an international 

literature review. Final report for Stage B of the Definition and Cost Drivers for 

Mental Health Services project: The University of Queensland. 

Health and Social Care Information Centre. (2006). End Stage Report - Mental 

Health Casemix Classification Development. Leeds. 

Hornbrook, M. C. (1980). Hospital case mix: its definition, measurement and use. 

Part i: the conceptual framework. Medical Care Review, 39(1), 1-43.  

Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased Recursive Partitioning: A 

Conditional Inference Framework. Journal of Computational and Graphical 

Statistics, 15(3), 651-674.  

Independent Hospital Pricing Authority. (2015a). Development of the Australian 

mental health care classification - public consultation paper 2. Sydney: 

Independent Hospital Pricing Authority. 



A case mix classification for CAMHS 
 

24 

 

Independent Hospital Pricing Authority. (2015b). Development of the Australian 

Mental Health Care Classification. Public Consultation Paper 1: Independent 

Hospital Pricing Authority. 

Jones, M., Hopkins, K., Kyrke-Smith, R., Davies, R., Vostanis, P., & Wolpert, M. 

(2013). Current View Tool Completion Guide. London. 

Kaufman, L., & Rousseeuw, P. J. (2009). Finding Groups in Data: An Introduction to 

Cluster Analysis. Hoboken: Wiley. 

Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. New York: Springer. 

Kvalseth, T. (1985). Cautionary Note About R2. The American Statistician, 39(4), 

279-285.  

Mason, A., Goddard, M., Myers, L., & Verzulli, R. (2011). Navigating uncharted 

waters? How international experience can inform the funding of mental health 

care in England. Journal of Mental Health, 20(3), 234-248.  

NHS England. (2015). Developing a new approach to palliative care funding. Leeds: 

Palliative Care Team. 

Ogles, B. M., Carlson, B., Hatfield, D., & Karpenko, V. (2008). Models of case mix 

adjustment for Ohio mental health consumer outcomes among children and 

adolescents. Administration and Policy in Mental Health and Mental Health 

Services Research, 35, 295-304.  

Phillips, S. D., Kramer, T. L., Compton, S. N., Burns, B. J., & Robbins, J. M. (2003). 

Case-mix adjustment of adolescent mental health treatment outcomes. The 

Journal of Behavioural Health Services and Research, 30(1), 125-136.  

R Core Team. (2014). R: A Language and Environment for Statistical Computing. 

Vienna, Austria: R Foundation for Statistical Computing. Retrieved from 

http://www.r-project.org/ 

http://www.r-project.org/


A case mix classification for CAMHS 
 

25 

 

Rousseeuw, P. J. (1987). Silhouettes : a graphical aid to the interpretation and 

validation of cluster analysis. Journal of Computational and Applied 

Mathematics, 20, 53-65.  

Royal College of Psychiatrists. (2014). Statement on Mental Health Payment 

Systems (formerly Payment by Results). Position Statement PS01/2014. 

London: Royal College of Psychiatrists. 

Self, R., & Painter, J. (2009). Study: To improve and demonstrate the structural 

properties of the care clusters that form the basis of the PbR currency 

development programme. Wakefield. 

Self, R., Rigby, A., Leggett, C., & Paxton, R. (2008). Clinical Decision Support Tool: 

A rational needs-based approach to making clinical decisions. Journal of 

Mental Health, 17(1), 33-48.  

Vostanis, P., Martin, P., Davies, R., De Francesco, D., Jones, M., Sweeting, R., . . . 

Wolpert, M. (2015). Development of a framework for prospective payment for 

child mental health services. Journal of Health Services Research & Policy, 

20(4), 202-209.  

Wolpert, M., Vostanis, P., Young, S., Clark, B., Davies, R., Fleming, I., . . . Whale, A. 

(2015). Child and adolescent mental health services payment system project: 

final report. London: CAMHS Press  

Yeomans, D. (2014). Clustering in mental health payment by results: a critical 

summary for the clinician. Advances in Psychiatric Treatment, 20(4), 227-234.  

 

 


