UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

On the parallelism between the mechanisms behind chromatography and drug delivery: the role of interactions with a stationary phase

Rossi, F; Castiglione, F; Salvalaglio, M; Ferro, M; Moioli, M; Mauri, E; Masi, M; (2017) On the parallelism between the mechanisms behind chromatography and drug delivery: the role of interactions with a stationary phase. Physical Chemistry Chemical Physics , 19 (18) pp. 11518-11528. 10.1039/C7CP00832E. Green open access

[thumbnail of Salvalaglio_rossi et al - accepted.pdf]
Preview
Text
Salvalaglio_rossi et al - accepted.pdf - Accepted Version

Download (10MB) | Preview

Abstract

A huge number of studies and work in the drug delivery literature are focused on understanding and modeling transport phenomena, the pivotal point for a good device design. The rationalization of all phenomena involved is fundamental, but several concerns arise leaving many issues unsolved. In order to change the point of view we decided to focus our attention on the parallelisms between two fields that seem to be very far from each other: chromatography and drug release. Taking advantages of the studies conducted by many researchers using chromatographic columns we decided to explain all the phenomena involved in drug delivery considering sodium ibuprofen (IP) molecules as analytes and hydrogel as a stationary phase. In particular, we considered not only diffusion, but also drug–polymer interactions as adsorption on the stationary phase and drug–drug interactions as aggregation of analytes. The hydrogel investigated is a promising formulation made of agarose and carbomer 974p (AC) loaded with IP, a non-steroidal common anti-inflammatory drug. The self-diffusion coefficient of IP in AC formulations was measured by using an innovative method based on a magic angle spinning NMR spectroscopic technique to produce high resolution (liquid-like) spectra. This method (HR-MAS NMR) is used in combination with pulsed field gradient spin echo (PGSE) liquid-state techniques. The model predictions satisfactorily match with the experimental data obtained in water and the gel environment, indicating that the model presented here, despite its simplicity, is able to describe the key phenomena governing the device behavior and could be used to rationalize the experimental activity.

Type: Article
Title: On the parallelism between the mechanisms behind chromatography and drug delivery: the role of interactions with a stationary phase
Open access status: An open access version is available from UCL Discovery
DOI: 10.1039/C7CP00832E
Publisher version: http://doi.org/10.1039/C7CP00832E
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/1571855
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item