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A B S T R A C T

The ability to quantify synaptic function at the level of cortical microcircuits from non-invasive data would be
enormously useful in the study of neuronal processing in humans and the pathophysiology that attends many
neuropsychiatric disorders. Here, we provide proof of principle that one can estimate inter-and intra-laminar
interactions among specific neuronal populations using induced gamma responses in the visual cortex of human
subjects – using dynamic causal modelling based upon the canonical microcircuit (CMC; a simplistic model of a
cortical column). Using variability in induced (spectral) responses over a large cohort of normal subjects, we find
that the predominant determinants of gamma responses rest on recurrent and intrinsic connections between
superficial pyramidal cells and inhibitory interneurons. Furthermore, variations in beta responses were mediated
by inter-subject differences in the intrinsic connections between deep pyramidal cells and inhibitory interneurons.
Interestingly, we also show that increasing the self-inhibition of superficial pyramidal cells suppresses the
amplitude of gamma activity, while increasing its peak frequency. This systematic and nonlinear relationship was
only disclosed by modelling the causes of induced responses. Crucially, we were able to validate this form of
neurophysiological phenotyping by showing a selective effect of the GABA re-uptake inhibitor tiagabine on the
rate constants of inhibitory interneurons. Remarkably, we were able to recover the pharmacodynamics of this
effect over the course of several hours on a per subject basis. These findings speak to the possibility of measuring
population specific synaptic function – and its response to pharmacological intervention – to provide subject-
specific biomarkers of mesoscopic neuronal processes using non-invasive data. Finally, our results demonstrate
that, using the CMC as a proxy, the synaptic mechanisms that underlie the gain control of neuronal message
passing within and between different levels of cortical hierarchies may now be amenable to quantitative study
using non-invasive (MEG) procedures.
1. Introduction

There is increasing evidence that cortical oscillations play a crucial
role in distributed neuronal processing across a range of cognitive do-
mains and spatial-scales; from cortical columns to whole-brain networks
(Donner and Siegel, 2011). Importantly, oscillations can be specific and
sensitive markers of pathophysiology in a variety of clinical conditions
(Mathalon and Sohal, 2015) and are sensitive to pharmacological
manipulation (Muthukumaraswamy, 2014). Furthermore, evidence
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suggests that frequency-specific oscillations arise through the in-
teractions of particular neuron types in distinct neuronal circuits, with
higher-frequency (>13 Hz beta and gamma) oscillations generated within
laminar-specific regions of cortical macrocolumns, and lower-frequency
(1–12 Hz delta, theta and alpha) oscillations generated over longer
ranges, facilitating communication between brain regions (Buzs�aki and
Wang, 2012).

One simple task-driven cortical oscillation that has received much
attention is the sustained visual gamma oscillation. This is typically
17
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induced by high-contrast edge stimuli and seen in LFP recordings in
primary visual cortex of cat (Gray and Singer, 1989), monkey (Ray and
Maunsell, 2010; Gieselmann and Thiele, 2008) and human (Adjamian
et al., 2004; Hoogenboom et al., 2006; Muthukumaraswamy and Singh,
2013) magnetoencephalography (MEG). These fast stimulus-bound re-
sponses may play a crucial role in functional integration through, for
example, facilitating communication through coherence (Fries, 2005).
Sustained visual gamma oscillations emerge following an initial
stimulus-driven response (at approx. 300 msec following stimulus onset
and lasting for as long as the stimulus is present). They are thought to
arise within V1 from interactions between superficial pyramidal cells and
inhibitory interneurons (the so-called PING model) (Xing et al., 2012;
Spaak et al., 2012), where the amplitude and, particularly, frequency
reflect the balance between excitation and GABAergic inhibition of
coupled neuronal populations. In human recordings, the parameters of
the visual gamma oscillation, particularly the narrow-band peak fre-
quency, amplitude and phase stability have been shown to vary across
individuals, be robust over multiple testing sessions (Muthukumar-
aswamy et al., 2010) and be genetically determined (van Pelt
et al., 2012).

Taken together, these findings speak to the exciting possibility that
gamma oscillations could be used as sensitive biomarkers of synaptic
function and, importantly, provide a link between non-invasive human
studies and both in-vitro and in-vivo animal models. However, a simple
characterisation of the phenomenological features of visual gamma
cannot address the underlying synaptic mechanisms. For example, an
increase in the amplitude of gamma oscillations following an experi-
mental manipulation could reflect a number of synaptic or network
changes. One principled way to move beyond quantifying simple data
features (e.g. coherence) is to use mechanistic neurophysiologically-
informed models that are fit to observed data to quantify the underly-
ing microcircuitry (e.g., intrinsic connectivity between superficial pyra-
midal cells and inhibitory interneurons).

Dynamic causal modelling for steady-state responses (DCM-SSR)
(Moran et al., 2009) provides a framework for explaining spectral data
(i.e. frequency domain oscillations) in terms of network changes within a
prescribed generative model. These models are fitted to the observed
data (e.g., cross-spectral density) using standard Bayesian procedures to
furnish estimates of synaptic parameters and effective connectivity – and
the evidence for any particular model. Given a suitable model of visual
cortex, DCM affords greater mechanistic insight, relative to conventional
physiological signal analyses, potentially enhancing our ability to explain
normal variability, characterise pathophysiology and providing higher
specificity to detect pharmacological effects. DCM starts with the selec-
tion of data features, such as coherence and spectral power, which have
proven functionally relevant in several domains (Fries, 2005). These data
features are used to inform a physiologically plausible model of neural
population responses. Because population responses can be used to
generate local field potentials (LFPs) or non-invasive electrophysiological
responses (EEG or MEG), DCM provides a principled way to integrate
data from both animal and in-vitro experiments, allowing forward and
backward translation.

Pioneering work by Douglas & Martin (Rodney et al., 1991) has
demonstrated that macro-columns within visual cortex exhibit a repeated
pattern of microcircuits with intrinsic laminar-specific architecture, each
of which can be modelled in terms of ‘canonical’ interactions among a
small number of neuronal populations. This work revealed that the
ensuing canonical microcircuits could reproduce frequency-specific re-
sponses obtained through local-field recordings; demonstrating that ca-
nonical models are both biologically realistic and have the architecture
necessary to perform the computations required by visual processing.
Subsequent work demonstrated that these microcircuits are relatively
preserved across much of the cortex, leading to the development of a
canonical microcircuit (CMC) (Douglas et al., 1991). Subsequent studies
in animals have further refined and extended the architecture and
computational characteristics of the CMC (Haeusler and Maass, 2007;
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Bastos et al., 2012).
Moran et al. have provided evidence for the biological validity and

accuracy of dynamic causal modelling with the canonical microcircuit
model through pharmacological manipulation of key model parameters
using isoflurane (Moran et al., 2011a,b) and ketamine (Moran et al.,
2014) in rodents. Using pharmacological manipulations enabled a vali-
dation of DCM in this context, since inferred changes in microcircuit
properties could be corroborated by the known physiological effects of
pharmacological interventions. More recently, Muthukumaraswamy
et al., (2015). demonstrated similar effects using ketamine in humans,
while Gilbert et al., (2016). demonstrated the sensitivity of DCM models
to single-gene mutation ion channelopathies in human case studies.

Here we use a canonical microcircuit model of V1 macro-columns to
explain individual variability in MEG data obtained from a normative
sample of 97 subjects, obtained during a visual grating paradigm. Model
inversion or fitting demonstrated stability of model parameters across
subjects and identified a key role for inhibitory gain control parameters
in determining gamma frequency and amplitude. Moreover, we demon-
strate that the inhibitory interneuron time constant – also identified as a
key determinant of gamma frequency – was sensitive to the GABA re-
uptake inhibitor tiagabine.

2. Materials and methods

In Experiment 1, the normative cohort study, Participants were 97
healthy control volunteers (mean age ¼ 24.0 years, sd ¼ 4.5 years, 35
male, 62 female) and were scanned as part of a larger study involving
several MR scan protocols and MEG experiments. Only the visual gamma
experiment and anatomical MRI are presented in this study.

In Experiment 2, the tiagabine study, data were analysed from a
previously published (Muthukumaraswamy et al., 2013; Magazzini et al.,
2016), pharmacological manipulation study using the GAT-1 reuptake
inhibitor, tiagabine, an anti-epileptic drug that is known to raise the
synaptic availability of GABA. The full details of the participants and
experimental protocol are reported in Muthukumaraswamy et al.,
(2013). Fifteen healthy volunteers took part in a single-blind, placebo--
controlled, crossover study. The study was divided into two days, each
comprising four sessions: First a “pre” MEG measurement session, fol-
lowed by oral administration of either placebo or 15 mg of tiagabine.
Three subsequent ‘post’MEGmeasurements were then performed at 1, 3,
and 5 h post administration.

In all cases, informed consent was obtained and the studies were
performed under ethical approval from the School of Psychology Ethics
Committee at Cardiff University for Experiment 1 and the UK National
Research Ethics Service (South East Wales) for Experiment 2.

The MEG data for both experiments were recorded using a 275-
channel CTF axial gradiometer system (VSM MedTech), located inside a
magnetically shielded room. An additional 29 reference channels were
recorded for noise cancellation purposes and the primary sensors were
analysed as synthetic third-order gradiometers (Vrba, 2001). The sam-
pling rate was 1 200 Hz (0–300 Hz bandwidth). Three electromagnetic
coils were placed at set fiducial locations (nasion, left and right
pre-auricular) and their position relative to the MEG sensors was local-
ised before and after the session. For source-localization purposes, the
MEG data were co-registered to the individual anatomical MRI of each
participant by marking the MRI voxels corresponding to the position of
the three fiducial coils. The individual anatomical MRIs (1-mm isotropic,
T1-weighted FSPGR) were acquired using a 3.0 T MRI scanner (Gen-
eral Electric).

In both experiments, MEG data were collected while participants
performed a visual paradigm known to induce strong gamma responses
in occipital cortex (Muthukumaraswamy and Singh, 2009). The visual
stimulus comprised vertical, stationary, maximum contrast, square-wave
gratings with a spatial frequency of 3 cycles per degree, covering 8 � 8�

of visual angle and presented on a mean luminance background. In
Experiment 1, the grating was presented centrally, with a central red
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fixation dot, for a randomised duration between 1.5 and 2 s and was
followed by an interval of 2 s. In Experiment 2 the stimulus was identical
in spatial form, but was presented in the lower-left visual field with a red
fixation dot in the top right corner and was presented for a randomised
duration of between 1 and 1.5 s and an inter-trial interval of 1.5 s.

Participants were instructed to fixate the red fixation dot and to press
a button once the grating disappeared. A warning would be presented if
no response was detected within 750 ms. The paradigm consisted of 100
trials in Experiment 1 and 120 trials in Experiment 2, for a total duration
of ~10 min. The stimulus presentations were programmed in Matlab
(The MathWorks) using the Psychophysics Toolbox (Kleiner et al., 2007).
Stimuli were displayed on a Mitsubishi Diamond Pro 2070 monitor
operating at a refresh rate of 100 Hz.

For each dataset, the individual trial epochs were visually inspected
and trials containing large artefacts (e.g., head movements, muscle
clenching and eye blinks) were excluded. In Experiment 1 an average of
10% of epochs were rejected. In Experiment 2, as the design involves a
repeated measures pharmacological study, the number of trials included
in the analysis of each session was equalised by removing trials from the
end of each recording. This resulted in an average number of trials for
analysis of 105.5 per participant (range 82–117).

Beamformer source localization was performed using the Synthetic
Aperture Magnetometry (SAM) beamformer approach (Robinson and
Vrba, 1999). The difference in gamma power (30–80 Hz) between
stimulus and baseline was calculated with a paired t-statistic at each
voxel location and virtual sensors were generated at the peak voxel
location in the occipital lobe, for each participant and each session
separately. It is these estimated time courses that are then taken forward
for DCM analysis.

2.1. Spectral estimation and modelling using DCM-SSR

Neurophysiologically informed modelling was performed using Dy-
namic Causal Modelling for steady-state responses (DCM-SSR), as
instantiated in the SPM8 package (Moran et al., 2009). DCM uses a
generative model approach, coupling a simplistic model of the proposed
neuronal activities underlying a signal (f), with an observation model (g)
such as a leadfield weighting (equation (1)).

�
y ¼ gðx;φÞ þ ε
_x ¼ f ðx; u; θÞ (1)

We chose a variation on the canonical microcircuit (CMC) as a neural
model (see Fig. 2), which contains 4 layer-resolved interacting pop-
ulations of cells. The CMC estimates the membrane potentials (xv) and
postsynaptic currents (xi) of cell populations through (parameterised)
time differential equations of the form:

_xv ¼ xi
_xi ¼ TU � 2Txi � T2xv
U ¼ ðS⋅dÞ þ Gþ E

(2)

The parameters of these equations include population time-constants
(T), local (G) and extrinsic (A) synaptic connectivity strengths, exogenous
input (C) strength, delay (D) and presynaptic firing (S). Both the intrinsic
connection strengths and population time-constants are of particular
interest in the current study, given the importance of excitation-
inhibition interactions in generating oscillatory activity at specific
frequencies.

The anatomy of the CMC sees excitatory pyramidal populations in
superficial and deep cortical layers, separated by excitatory stellate cells
in granular layer 4. Finally, a single inhibitory interneuron population
resides across the layers. While this may be a simplification of the true
cytoarchitecture, the model strikes a balance between biological veracity
and model estimability. Adding additional populations (as per Haueslaer
and Maess 2007), the model parameter space would expand such that it
would be hard to get a robust solution. This balance between complexity
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and estimability was guided by the extant DCM literature using canonical
microcircuits (Muthukumaraswamy et al., 2015; Bhatt et al., 2016;
Pinotsis et al., 2013; Auksztulewicz and Friston 2015; Giltbert and Moran
2016; Moran et al 2011a,b).

The local synaptic connectivity between the 4 populations (Fig. 2)
includes reciprocal connections between the interneuron population and
each of the 3 excitatory populations. Two non-reciprocal connections
exist, both of which are excitatory; one from the L4 stellates to L2/3
pyramidal cells and the other from L2/3 pyramidal to L5/6 pyramidal
cells. Finally, each population has its own inhibitory, self-modulatory
(gain) connection (G1, 4, 7, 10). Due to this complex coupling, predict-
ing the effect of one parameter on another is non-trivial. The reciprocal
L2/3 pyramidal-interneuron parameters (G11, G12) correspond, physi-
ologically, to the generators of the gamma rhythm under the PING model
(Tiesinga and Sejnowski 2009; Bartos et al., 2007).

DCM-SSR extends the time differential equations of the CMC (which
essentially generate a time course of voltages and postsynaptic currents)
with the addition of a transfer function to the frequency domain. Briefly,
this entails linearising the equations and calculating a transfer function
using the Laplace transform (see Friston 2004).

This frequency-domain model output can be compared with the real
spectral density obtained from the virtual sensor data, and the parame-
ters of the model optimized to best fit the model spectral output to the
data spectra. This fitting is performed using standard Bayesian inference
procedures (variational Laplace) within DCM, allowing both the prior
specification of precision on the parameters and an assessment of the
covariance of the posterior estimates of the parameters. One of the key
strengths of this DCM approach is that each fit of the model generates an
estimate of the log-evidence of the model, allowing a principled approach
to model comparison. Here, we do not perform model comparison
because our primary interest was in intersubject and pharmacological
variations in model parameters under the canonical microcircuit model
of a single source.

Fig. 1 shows a schematic of the analysis approach we have used for
both experiments, which is a modified version of the standard approach
in SPM8. Each V1 virtual sensor estimate has its spectral density esti-
mated using a standard Fourier approach using the smoothed periodo-
gram. In order to optimize the fitting algorithm, we then transform this
spectral density to remove the strong power-law that dominates brain
signals. This ‘pre-whitening’ procedure was done using the approach in
Manning et al., 2009; in which a straight-line is fitted, using robust
fitting, to the spectral density after transform to log-log space. This
power-law is removed from the spectral density to pre-whiten or ‘flatten’
the spectrum, disclosing the presence of alpha, beta and gamma peaks.
Interestingly, in invasive LFP recordings, Manning et al., 2009 found that
the parameters of this noise function (intercept and gradient) appear to
contain neurophysiologically relevant information and were correlated
with spiking rates of neurons in the same region (Spaak et al., 2012). We
have found that this pre-whitening procedure allows the DCM-SSR
approach to robustly fit the spectral density across the 1–100 Hz range
we are interested in, presumably because they are more clearly separated
from the underlying noise function. In the default version of the
DCM-SSR procedure in SPM8, this noise power-law function is estimated
at the same time as the model parameters and we retain this model
component during fitting, albeit with a prior-specification of a flat ‘white’
noise floor. In one sense, therefore, our pre-whitening approach can be
seen simply as helping the inference stage of the DCM-SSR by making
sure the true values of non-specific (noisy) fluctuations are approximate
prior assumptions.

Our approach to amplitude scaling of the spectral density also differs
from the default scheme in SPM8 (Moran et al., 2009). Amplitude scaling
is necessary as real neurophysiological data can be generated with any
arbitrary scale, depending on the measurement technique used, and we
need to ensure that the CMC model output is in the same range. In our
procedure, we wish to preserve the relative differences in spectral
amplitude between participants and/or conditions, so we scale each



Fig. 1. Flowchart demonstrating the analysis pathway for both Experiments. SAM beamforming is used to identify the peak location of gamma responses for each participant and each
session (a). This allows a virtual sensor recording to be estimated at this location, and spectral density estimates constructed for the stimulation time (green columns). These spectral
density functions are pre-whitened and then normalised so that the global mean spectra have an area-under-the-curve of 1, but individual relative differences in amplitude are preserved.
Model spectra are then generated by the canonical microcircuit model (CMC) shown in (b) and the DCM fitting procedure generates model spectra (shown in red) that best fit the true
spectral density for each participant/session, shown in blue.
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individual spectral density such that the mean spectral density has a sum
(or ‘area under the curve’) of 1. This insures that the spectral densities are
in a reasonable range that can be matched to the CMC model output, but
across-participant and across-condition differences are preserved and,
hence, have to be explained by the parameters of the model.

We derive initial starting values for each of the model parameters by
first fitting the CMC model to the mean spectral density across partici-
pants/conditions. These priors are used in the individual DCM-SSR fits
for each of the individual datasets. An initial analysis of the stability of
the parameters, performed by fitting the DCM to the model spectra
revealed that several of the model parameters had little or no effect on
the fitted spectral density. These were G1, G3, G10 and G13. In order to
reduce model complexity, these parameters were therefore fixed to their
prior means for subsequent analyses. In addition, we found that small
changes in T1, the time-constant for the layer-4 excitatory interneurons;
i.e., the spiny stellates, had a profound impact on model stability, with
small changes in the time-constant inducing phase transitions in spectral
output. This parameter was fixed in subsequent analyses.

Finally, we explicitly model the presence of an alpha frequency peak
within each spectral response. For the visual experiments analysed here,
inspections of the spectral density reveal clear alpha, beta and gamma
peaks during the stimulation period, superimposed on a strong noise
power-law that we model explicitly (see Fig. 3). The CMC model can
generate clear gamma and beta response peaks, consistent with animal
evidence that shows that gamma arises in the superficial layers of V1 (2/
3), while beta occurs in the deeper layers (5/6) (Roopun, 2010; Haen-
schel et al., 2000; Buffalo et al., 2011; Kramer et al., 2008; Roopun,
2008). However, a single source model cannot simultaneously generate
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an alpha peak. This is consistent with evidence that alpha is generated
over more extended (multiple source) neuronal networks, including
thalamo-cortical ‘loops’ (Vijayan and Kopell, 2012; Bastos et al., 2014).
In further work, it may be possible to build extended networks to fully
explain the data, but here we take a more pragmatic approach – and add a
Gaussian function to the SPM8 noise function to model the alpha peak.
The mean of this Gaussian is constrained to be between 8 and 13 Hz. The
use of our pre-whitening procedure, coupled with this explicit alpha peak
modelling allows us to generate clear separated estimates of the alpha,
beta and gamma peaks within our data and hence explore which pa-
rameters of the CMC determine the parameters of the beta and gamma
peaks for each participant and condition.

3. Results

3.1. The synaptic determinants of induced responses

For each of the 97 datasets, the peak visual response to a passive
grating-patch stimulus was localised using a SAM beamformer (Robinson
and Vrba, 1999). The spectral density of a virtual sensor time series,
calculated at the best-performing voxel in visual cortex, was estimated
for the stimulation period (i.e. 0.3–1.5 s). The temporal evolution of re-
sponses in this paradigm is well-characterised (Hoogenboom et al.,
2006), comprising theta and gamma frequency phase-locked responses
(<300 ms) followed by an induced gamma frequency response
(300–1500 ms), with only the latter response analysed here.

Fig. 3a demonstrates all spectra after pre-whiting of the data to
remove 1/f noise, demonstrating that most participants show clear alpha,



Fig. 2. Description of the canonical microcircuit (CMC) used in the DCM procedure. The diagram on the left shows the three-layer model, with excitatory connections shown in blue and
the inhibitory (i.e. GABAergic) connections shown in red. Grey arrows represent self-inhibition within each of the excitatory cell populations. On the right are described all of the pa-
rameters that define the model, including their prior values (PI) and their precisions (sigma).

Fig. 3. The data features extracted from primary visual cortex beamformer (panel c) virtual electrodes in Experiment 1, the cohort study. Plot (a) shows the whitened spectral amplitude
for each of the 97 participants. The response is localised to posterior medial visual cortex (c). For spectra extracted from these peak locations, clear alpha, beta and gamma peaks are present
for most participants and are more clearly revealed after the pre-whitening procedure. In the inset (b) the average spectra across all participants is plotted, with dotted lines indicating the
standard error on the mean. Note how individual variability in the peak frequency of alpha and beta leads to a merging of these responses in the mean-average spectrum. Finally, in (d) the
distribution of peak alpha, beta and gamma frequencies are plotted as separate histograms. Note that the alpha peak is calculated from the DCM fitting procedure in which alpha is
explicitly modelled as a Gaussian (see methods), whereas the beta and gamma peaks are extracted from the search for the peak spectral amplitude in their respective ranges.

A.D. Shaw et al. NeuroImage 161 (2017) 19–31
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beta and gamma peaks at appropriate frequencies. These spectral re-
sponses are also evident in the average spectra across participants
(Fig. 3b), although the separation of alpha and beta is obscured by in-
dividual variability in the peak frequencies of these responses. The dis-
tributions of peak frequencies are shown in the histograms in Fig. 3d.

Fig. 4 a–d shows the across-trial spectral covariance map and the
associated correlation graphs (after z-transforming and averaging over
subjects) for alpha, beta and gamma amplitudes versus all frequencies.
Similarly, Fig. 4 e–h demonstrates the across-subject covariance map and
associated correlation graphs for alpha, beta and gamma amplitude for
spectra that are averaged across trials. In both these evaluations of
spectral correlation, the strongest correlations are within-band with
limited overlap with other frequency bands. In both cases, although there
is some evident overlap of significant correlations at the boundaries be-
tween alpha/beta and beta/gamma, this appears of modest magnitude
and, in the case of cross-subject correlation, does not extend to a signif-
icant correlation between alpha and gamma.

The relative lack of correlation/covariance in Fig. 4 suggests a
possible distinct and independent generating mechanism for sustained
gamma, compared to alpha/beta, in the visual cortex of our participants.
This is shown explicitly in the scatter plots in Fig. 5, in which it is clear
that alpha and beta peak amplitudes/frequencies do not correlate with
those of gamma across participants: The only significant correlation
found was between alpha and beta peak amplitudes [r ¼ 0.77, N ¼ 97
p < 10�6] (Fig. 5d).
Fig. 4. (a) and (e) shows the covariance of the spectral amplitudes, during visual stimulation
looking at how the spectral estimates, averaged over trials, co-vary across participants, (e). In
frequencies, whereas the induced gamma response at 40–60 Hz appears less correlated, sugges
show the cross-correlation of the spectra for alpha, beta and gamma, either across trials (top
corrected for multiple comparisons). Note how correlations are strongest within frequency ban
over subjects for the same frequency bands. The shaded bars represent the standard deviation
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In order to characterise the neurophysiological basis of individual
variability generating these data features, the whitened spectral esti-
mates for each of the 97 participants was analysed using the DCM pro-
cedure outlined in Fig. 1. In this analysis, the spectral profile of
endogenous neuronal fluctuations and alpha peak were modelled
explicitly using mono-exponential and Gaussian functions, respectively.
In contrast, the beta and gamma peaks were generated by the synaptic
rate constants and intrinsic connectivity of the cortical microcircuit
shown in Fig. 2.
3.2. Model dependencies

After fitting the DCM to grand averaged data, we identified the most
likely value of the model parameters (i.e., synaptic rate constants and
intrinsic connectivity). Using these posterior expectations, we then
examined the effects of small variations in each parameter on steady-
state responses. This is known as a sensitivity or contribution analysis.

This analysis revealed the effects that each model parameter had on
the spectral features of the model output (beta and gamma frequency and
amplitude, see Table 2). Notably, only parameter G7 (SP→SP) increased
gamma frequency while G6 (DP→II) and T4 (DP) increased beta fre-
quency. Parameters increasing gamma amplitude included G4 (II→II), G5
(SS→II), G8 (SS→SP), G11 (II→SP), G12 (SP→II) and T3 (II) while T2
(SP) decreased gamma amplitude. Parameters increasing beta amplitude
included G5, G6, G8, G9 (II→DP), G12 and T2, while parameters
, calculated either by averaging the mean inter-trial covariance across participants (a) or
both cases the amplitude of the lower frequencies (0–30 Hz) appears correlated across

ting separate generative mechanisms. For each of these two analyses, panels b–d and f–h
row) or subjects (bottom row). Red dots demonstrate significant correlations (p < 0.05
ds. Panels f–h demonstrate the across-trials correlation after z-transforming and averaging
of the Z-score across subjects.



Fig. 5. Scatter plots examining the relationships, if any, between peak frequency (top row, a–c) and peak amplitude (lower row, d–f) for the alpha, beta and gamma peaks in the stimulus
response. The only apparent relationship is between the alpha and beta amplitudes, consistent with the covariance spectra shown in Fig. 3c/d.

Table 1
Pearson correlation coefficients between the gamma/beta data features and model parameter estimates. All correlations shown are at least p < 0.05, Bonferroni corrected for multiple tests.
Most significant correlations are indicated by a number of asterisks i.e. *: p < 10–3, **: p < 10–4, ***: p < 10–5.

Parameter G4: ii > ii G7 sp > sp G11 ii→sp G12 sp→ii G8 ss→sp G5 ss→ii G6 dp→ii G9: ii→dp T2 sp time T3 ii time T4 dp time

Beta Frequency 0.59*** �0.54***
Beta Amplitude 0.55*** �0.38 0.68*** 0.36 0.63*** �0.44* 0.82*** �0.35 0.36
Gamma Frequency 0.64*** 0.44* �0.55***
Gamma Amplitude 0.80*** 0.47** 0.36 0.37 �0.38

Table 2
Coupling parameter and time-constant parameter contribution analysis. Arrows represent
increase or decrease in given spectral property with increase in parameter value (by 0.1 on
log scaling parameter).

Parameter Description Beta
Frequency

Beta
Amplitude

Gamma
Frequency

Gamma
Amplitude

Effect of increasing coupling parameter on output spectra
G4 II → II (I/

gain)
↓ ↑

G5 SS → II (E) ↑ ↑
G6 DP → II (E) ↑ ↑
G7 SP→ SP (I/

gain)
↓ ↑

G8 SS→ SP (E) ↑ ↑
G9 II → DP (I) ↑
G11 II → SP (I) ↓ ↑
G12 SP → II (E) ↑ ↑
Effect of increasing time-constant on output spectra
T1 SS Model unstable to even moderate changes in parameter

value
T2 SP ↑ ↓
T3 II ↓ ↑
T4 DP ↑

A.D. Shaw et al. NeuroImage 161 (2017) 19–31
decreasing beta amplitude included G4, G7, G11 and T3.
Parameters affecting both beta and gamma amplitude in the same

direction included G5 (increase), G8 (increase) and G12 (increase), while
parameters demonstrating opposite effects in these bands included G4,
G11, T2 and T3.
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3.3. Key determinants of beta and gamma oscillations in the visual cortex

The four parameters with the greatest influence on beta and gamma
peak amplitude and frequencies are shown in Fig. 6. Consistent with
invasive animal neurophysiology, gamma frequency and amplitude were
affected most by connections in the superficial layers of the visual cortex:
The self-inhibition parameter (G7) that controls the gain of superficial
pyramidal cells was the predominant determinant of variability in peak
visual gamma frequency (Fig. 6a), with higher values of self-inhibition
leading to a higher gamma frequency. The key parameter determining
gamma amplitude (Fig. 6b) was the strength of the inhibitory connection
(G11) between the inhibitory interneuron population and the superficial
pyramidal cell population, with stronger inhibition leading to higher
gamma amplitude. In contrast, beta amplitude and frequency were linked
to connections with the deep pyramidal cell population, again consistent
with animal LFP recordings: beta frequency was related to the excitatory
drive from the deep pyramidal cells on to the inhibitory interneurons
(Fig. 6c, G6), while peak beta amplitude was positively correlated with
the strength of the inhibitory connection from the inhibitory interneuron
population to deep pyramidals (Fig. 6d, G9). This pattern of influences
reflects a similar role of same inhibitory connection to the superficial
pyramidals (G11) that are a predominant determinant of
gamma amplitude.

In addition to the parameters described above, gamma amplitude was
also correlated with the strength of the excitatory drive from the layer 4
spiny stellate cells to both superficial pyramidal cells (G8) and inhibitory
interneurons (G5). This may reflect the fact that stimulus input from the



Fig. 6. An illustration of how the CMC model parameters explain gamma and beta stimulus responses in primary visual cortex for Experiment 1. Four connection strength parameters were
the key determinants of beta/gamma features and are presented here. In the top row (a–d) The black line shows the mean CMC output and demonstrates that the model can generate clear
beta and gamma peaks in its spectral output. A contribution analysis shows how small changes in each parameter affect the spectral output of the CMC (here the mean across participants).
The red curves show how a small additive perturbation (þ0.1) affects this spectral output and the blue lines show the spectral modulation to a small reduction (�0.1). In (a) it can be seen
that gamma peak frequency is shifted upwards and downwards by increasing and decreasing the strength of the inhibitory gain control parameter on the superficial pyramidal cells. Note
how peak gamma amplitude is also modified by this parameter. In (b) the gamma peak amplitude can be seen to be dependent on the inhibitory drive from the inhibitory interneurons onto
the superficial pyramidal cells. Beta frequency is determined by the connection from deep pyramidals onto the inhibitory interneurons (c), whereas beta amplitude is strongly related to the
inhibitory drive from the inhibitory interneurons on to the deep pyramidals. In the bottom row (e–h), the relationship between these same model parameters and peak gamma frequency
(e), peak gamma amplitude (f), peak beta frequency (g) and peak beta amplitude (h) are shown. Each dot represents one of the 97 participants. Significant correlations are demonstrated
(see text in each plot) that are consistent with the contribution analysis shown in the top row.
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LGN mostly arrives in layer 4 stellate cells and so these connections
reflect coupling of stimulus drive to oscillatory responses.

The key CMC model parameters include excitatory (þ), inhibitory
(�), and gain/self-modulatory intrinsic connectivity between pop-
ulations as well as synaptic rate or time-constants (TC) for each popu-
lation. Bonferroni corrected correlational analyses of the posterior CMC
model parameters (Fig. 6) and beta and gamma spectral features revealed
significant predictors (Table 1). The significant correlations are not sur-
prising, because these data features inform posterior estimates. However,
their specificity illustrates the distinct synaptic mechanisms that are
responsible for the genesis of different frequency responses.

Peak gamma amplitude was predicted by glutamatergic afferents
from layer 4 spiny stellate (SS) populations to both superficial pyramidal
(SP) and inhibitory interneuron (II) populations as well as by GABAergic
afferents from II to SP populations. Gamma frequency was predicted by
the TC of SP and II populations as well as by the GABAergic self-
modulation of SP populations. Beta amplitude was predicted by all
intrinsic connectivity and time constants with the exception of SP self-
modulation and deep-pyramidal (DP) population time-constants. Beta
frequency was predicted by the glutamatergic connection from DP to II
populations and the time-constant of DP populations.

The absolute value of the intrinsic connections (G) can be interpreted
in terms of rate constants (i.e., the units are in hertz). In other words,
effective connectivity in dynamic causal modelling quantifies the influ-
ence of one neuronal state on the rate of change of another. Note that the
free parameters used in DCM are log scale parameters that enable the
connection strength to be scaled up or down from its prior expectation
(these are the values reported in the figures). Similarly, synaptic decay
time constants represent temporal dynamics of each population (i.e., the
units are in milliseconds). The priors for the superficial pyramidal cells,
spiny stellate, inhibitory interneurons and deep pyramidals had prior
values of 2, 2, 10 and 20 ms respectively. After DCM fitting, the posterior
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mean across the population of 97 healthy controls was 0.8, 1.5, 3.1 and
14.3 ms respectively. In general, therefore, the resultant dynamics were
faster than their prior expectations based on the literature and previous
DCM studies. The biggest difference was in the time-constant of the
inhibitory interneurons. However, a study of fast-spiking parvalbumin
interneurons in slices taken from adult rat neocortex found that these had
time constants that were more rapid than juvenile animals, with specific
time constants of 2.6 and 5.9 ms for postsynaptic currents and potentials
respectively (Galarreta and Hestrin, 2002). These are close to themean of
3.1 ms we obtained for the DCM modelling of this human cohort.

3.4. Pharmacological intervention

In Experiment 2, 15 healthy volunteers completed a similar MEG
visual stimulation protocol before and at 1, 3 and 5 h post oral admin-
istration of placebo and the GABA transaminase inhibitor tiagabine
(totalling 8 scans each subject). The same DCM-SSR modelling proced-
ure, using the same CMC as the cohort study described above, was
applied separately to all (4 � 2) sessions for each of the 15 participants.
Drug effects were analysed using a repeated measures ANOVA (imple-
mented in JASP, https://jasp-stats.org) with two within-subject factors,
namely Drug (two levels: Placebo and Tiagabine) and Time (four levels:
Pre, 1hr, 3hr and 5hr). A drug effect in this analysis is therefore repre-
sented by a significant Drug x Time interaction. All the data features
relating to alpha, beta, and gamma were subject to this analysis, as were
all of the DCM-SSR intrinsic connection strengths and synaptic
time constants.

Seven parameters demonstrated an apparent Drug x Time interaction
when assessed at the p < 0.05 level (uncorrected for multiple compari-
sons). These were the three parameters specifying the Gaussian model of
the alpha peak (peak frequency, peak amplitude and Gaussian width),
peak beta frequency and peak gamma frequency (Fig. 7). In terms of the

https://jasp-stats.org


Fig. 7. Graphs showing the session/time evolution of the 5 parameters, averaged across all participants, showing a significant Drug � Time interaction in the ANOVA shown in Table 2.
Blue dots/symbols show the temporal evolution within the Placebo session, whilst red dots/symbols show the same four time points for the tiagabine (i.e. drug) session. Dotted lines
shown ± one standard error on the mean across participants. In (a–c) it is apparent that all three frequencies (alpha, beta, gamma) show a pronounced slowing of the peak frequency, with
the biggest effect occurring 3 h post tiagabine administration.

Table 3
Results of the repeated measures ANOVA demonstrating the three data features and two
model parameters that showed a significant Drug � Time interaction after Greenhouse-
Geisser correction. Alpha, Beta and Gamma frequencies all showed an effect, as did two
of the CMC model parameters. Note that, for some parameters, there are a reduced number
of participants because the parameter could not always be successfully identified in all 8
sessions for all 15 participants (a prerequisite for repeated measures ANOVA).

Parameter Number of
participants

F df
(Greenhouse-
Geisser)

p

Peak Alpha Frequency/Hz 15 14.35 2.396 <0.001
Peak Beta Frequency/Hz 14 2.940 2.806 0.045
Peak Gamma Frequency/Hz 8 5.74 1.992 0.015
G8, excitatory connection from
layer 4 stellates to layer 2
superficial pyramidals

15 3.319 2.291 0.043

T3, inhibitory interneuron
decay constant/ms

15 4.671 2.28 0.013
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model parameters, the excitatory connection (G8) from the spiny stel-
lates to the superficial pyramidals showed a drug-related reduction and
the time-constant of the inhibitory interneurons showed an increase.
However, once a correction for non-sphericity (Greenhouse-Geisser) was
applied only five parameters demonstrated a significant Drug x Time
interaction effect. These are reported in Table 3.

The results of the modelling analysis showed that tiagabine had a
pronounced effect in slowing alpha, beta and gamma oscillations. In
terms of model parameters, the excitatory drive from the stellates in layer
4 (i.e. input) layer to the superficial pyramidal cells (G8) showed a sig-
nificant interaction, as did the inhibitory interneuron time constant (T3),
which demonstrated an increase in decay time during the tiagabine
session. These results are consistent with the cohort modelling in
Experiment 1, in which G8 was positively correlated with beta frequency
and T3 was negatively correlated with gamma frequency.

Table 4 shows the magnitude of drug-induced changes for those pa-
rameters showing a significant Drug x Time interaction. In most cases, the
biggest effects were seen 3-h after administration of tiagabine.
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Table 4
Quantification of the magnitude of drug effects. Mean and standard error on the mean (SE)
are shown for each session. At 1 h, 3 h and 5 h, the values quoted are changes from the pre-
tiagabine session. The significance of these pairwise changes is indicated by * p < 0.05 and
**p < 0.0001.

Parameter Mean (SE)
before
tiagabine
administration

Mean (SE)
change at
1-hr post
tiagabine

Mean (SE)
change at
3-hr post
tiagabine

Mean (SE)
change at
5-hr post
tiagabine

Peak Alpha
Frequency/Hz

11.0 (0.4) �0.7 (0.3)
*

�1.7 (0.3)
**

�1.6 (0.3)
**

Peak Beta
Frequency/Hz

17.3 (0.4) �0.6 (0.3) �1.0 (0.4)
*

�1.0 (0.4)
*

Peak Gamma
Frequency/Hz

53.4 (1.7) �4.0 (1.5)
*

�5.9 (0.8)
**

�4.3 (1.2)
*

G8, excitatory
connection from
layer 4 stellates to
layer 2 superficial
pyramidals

2.8 (0.2) �0.2 (0.1)
*

�0.1 (0.1) �0.1 (0.2)

T3, inhibitory
interneuron decay
constant/ms

3.1 (0.1) 0.2 (0.1)* 0.3 (0.1)* 0.3 (0.1)*
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4. Discussion

Using neurophysiologically informed modelling we have identified
key synaptic parameters accounting for inter-subject variability in peak
beta and gamma. These findings replicate preclinical findings, spatially,
in terms of their laminar resolved generators, and in terms of the intrinsic
connectivity assumed to underlie frequency specific oscillations.
Furthermore, we have validated this model against a pharmacological
agent with known mechanism of action – demonstrating specificity and
sensitivity of the model to subtle perturbations. Crucially, the roles of
specific intrinsic connections and population-specific synaptic time
constants in generating frequency-specific induced responses was
established in the context of empirically optimized values using dynamic
causal modelling.

The CMC presented here was informed by electrophysiological
studies characterising local circuitry (Rodney et al., 1991; Haeusler and
Maass, 2007; Jansen and Rit, 1995). The key difference between our
CMC and the default SPM CMC is the addition of reciprocal pyr-
amidal–interneuron connectivity in superficial layers (Thomson et al.,
2002). This connection was included in the original model by Douglas
and Martin (Rodney et al., 1991; Bastos et al., 2012) and in a recent
model of primary motor cortex for modelling movement-related beta
oscillations (Bhatt et al., 2016).

The DCM (for MEG) approach has recently received construct vali-
dation using genetic (Gilbert et al., 2016) and electrocorticographic
models (Phillips et al., 2016). Here, we additionally provide a pharma-
cological validation. Our approach differed from Phillips et al., (2016),
who tested a series of model spaces using Bayesian model selection, and
from Gilbert et al. (2016), who used conductance based models for
greater (ion channel) biological detail. These differences illustrate that
DCMs are valid when using models relevant to the hypothesis at hand.
This work differs from other, similar, implementations of the CMC for
visual responses (e.g (Gilbert and Moran, 2016).) because we aim to
explore the relationship between a parameter set from a fixed (informed)
model space and features of the oscillatory response, rather than
comparing multi-node architectures underlying ERPs (Gilbert and
Moran, 2016) or cross-spectral densities (Moran et al., 2009).

Our finding of laminar separation of beta and gamma generating
parameters is consistent with theoretical (Bastos et al., 2012) and inva-
sive animal recordings (Xing et al., 2012; Maier et al., 2010), which
report gamma oscillations predominantly arising in superficial layers of
cortex through pyramidal – interneuron loops while beta oscillations
arise via similar mechanisms but in deep, sub-granular layers. This
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highlights two important conclusions that follow from our results;
namely, that the DCM-CMC framework for MEG data adequately re-
capitulates laminar-resolved population activity and, more importantly,
that induced MEG responses may reflect the output of specific cortical
layers. This laminar specificity is important from many perspectives.
From the point of view of neuropharmacology, many key neuro-
modulatory receptors have a laminar specific profile (Eickhoff et al.,
2007), which speaks to the importance of understanding the effects of
pharmacological agents on population activity within canonical micro-
circuits. From the perspective of theoretical neurobiology, the role of
laminar specific interactions is becoming increasingly important. For
example, in predictive coding, the emerging picture suggests that
ascending prediction errors may be encoded by superficial pyramidal cell
activity and broadcast to higher levels on the cortical hierarchy using
gamma frequencies (Bastos et al., 2012). Conversely, descending pre-
dictions may be conveyed by lower (e.g. alpha and beta) frequencies
from deep pyramidal cells. The (attentional) selection of ascending pre-
diction errors (and descending predictions) rests sensitively on the
respective postsynaptic gain of superficial and deep pyramidal cells,
which – as we have seen – depends sensitively on interactions with
inhibitory interneurons. In short, the synaptic mechanisms that underlie
the gain control of neuronal message passing within and between
different levels of cortical hierarchies may now be amenable to quanti-
tative study using non-invasive (MEG) procedures.

The ability of the model to explain individual variability in induced
responses, and in particular the properties of excitatory and inhibitory
sub-populations and intrinsic connections within the model, offers a
potentially powerful approach for linking individual variability in
behaviour to variability in models of neurophysiology. For example,
orientation discrimination performance has previously been linked to
variability in GABAergic inhibition (Edden et al., 2009) and it is possible
that future work using this type of DCM approach could demonstrate that
the CMC model parameters are more sensitive than the data features
themselves in terms of explaining individual variability in such tasks.

Our results from Experiment 1, the cohort study, reveal that the most
important parameter determining inter-subject variability in peak
gamma frequency is the inhibitory self-connection (G7) on superficial
pyramidal cells in visual cortex. Furthermore, a contribution analysis
shows that increasing self-inhibition suppresses the amplitude of gamma
activity, while increasing its peak frequency. This is a key observation
that has profound implications for the way we characterise induced re-
sponses. In other words, simply summarising induced gamma in terms of
their amplitude and frequency overlooks the fact that there is a system-
atic and nonlinear relationship between these two data features that is
mediated by their underlying cause; namely, recurrent inhibition of su-
perficial pyramidal cells. It is only possible to disclose this relationship
using forward or generative models of how induced responses are caused.

The fact that self-inhibition of superficial pyramidal cells is the major
determinant of observed gamma dynamics is remarkably consistent with
theoretical perspectives on neuronal computation in the canonical
cortical microcircuit: namely, communication through coherence enables
a context-sensitive communication among neuronal populations that
may underlie functions such as attention. From the perspective of pre-
dictive coding, this context sensitivity (e.g., attention) corresponds to
modulating the gain of neurons reporting prediction error, where this
gain encodes the precision or uncertainty about the prediction error
being reported. Crucially, in neuronal models of predictive coding, pre-
diction error is reported by superficial pyramidal cells. This means that
changes in the gain of superficial pyramidal cells encode precision or
uncertainty and provides a three-way link between gamma activity, the
encoding of precision in predictive coding and attention. This link is
entirely consistent with communication through coherence and gener-
alised predictive coding. Furthermore, it highlights the central role of
inhibitory control of superficial pyramidal cells in modulating the pre-
diction error (unexplained sensory information) that is passed forward to
higher hierarchical levels.
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Our finding that tiagabine increases the time constant of inhibitory
interneurons shows the remarkable sensitivity of this approach to phar-
macological manipulation. The finding is a replication of Thompson and
Gahwiler (Thompson and G€ahwiler, 1992), who demonstrated that tia-
gabine increased the decay time-constant of GABA-A receptor mediated
synaptic currents in rat hippocampal slices - emphasizing the trans-
lational power of this approach. Although the magnitude of the changes
we see here are much smaller than the changes observed by Thompson
and Gahwiler, this presumably reflects the difference between direct
application of tiagabine to the hippocampal slice, compared to relatively
modest whole-body dose administrations we performed in humans. In
addition, our finding of a mean inhibitory interneuron decay time con-
stant of around 3 ms, in both Experiment 1 and Experiment 2, is
consistent with slice recordings from fast-spiking inhibitory interneurons
in adult rat neocortex (Galarreta and Hestrin, 2002).

The modelled increase in the inhibitory interneuron time-constant
(T3) is also a plausible mechanism for the reduction seen in peak
gamma frequency with tiagabine. Peak gamma frequency has been
shown in several animal models to be dependent on the time constants of
GABAergic inhibition (Xing et al., 2012; Faulkner et al., 1998; Oke et al.,
2010; Traub et al., 1996; Whittington et al., 1995). By blocking the re-
uptake of GABA by GAT-1, tiagabine elevates the synaptic concentrations
of GABA (Dalby, 2000; Fink-Jensen et al., 1992) and increases the
duration of the GABAA receptor-induced IPSCs (Thompson and G€ahwiler,
1992; Roepstorff and Lambert, 1994). These slower IPSCs then result in
synchronization of neuronal firing at slower rhythms, which in turn
translates to LFP oscillations at lower gamma frequencies. When pooled
across participants and post-drug sessions, our results seem to support
this model, at least in terms of correlative measures (Fig. 8).

More generally, the demonstrable sensitivity to pharmacological
GAT-1 blockade suggests that the use of CMC-based modelling of robust
and repeatable oscillatory measures is a powerful new approach for
exploring the action of pharmacological agents, including novel com-
pounds, and yields specific information about which synaptic parameters
are affected by the drug, together with their pharmacodynamic profile.
This could be extremely helpful as part of a drug discovery and evalua-
tion pipeline, helping to reduce the current cost burden of developing
new treatments for neurological disease.

In a similar vein, the approach shown here could yield new robust
Fig. 8. Tiagabine-induced changes in peak gamma frequency are correlated with changes
in the modelled inhibitory interneuron time-constant (T3), when pooled across partici-
pants and the three post-drug administration sessions. Note one data point (shown in red)
is an excluded outlier.
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biomarkers for clinical applications within psychiatry, where proposed
pathologies are often functional neurochemical deficits in specific net-
works, which are undetectable with most imaging methodologies
(Adams et al., 2013). As such, this method could be crucial, not only for
helping to understand the pathology of psychiatric disorders, but in
developing pre symptom-onset biomarkers for prevention. Moreover, it
holds promise for the stratification of individuals to particular pharma-
cological treatment groups, since neurotransmitter function can be
(DCM) assayed to determine where deficits or targets may exist and
appropriate (personalised) medication can then be selected.

5. Key limitations

A key limitation of studies employing DCM is that mean-field neural
models are, by nature, simplistic compared with the cytoarchitecture of
real cortical columns. In the present study, we are guided regarding the
trade-off between biological veracity and model estimability by existing
work in this field. Indeed the CMC used here is based upon the model and
populations in (Muthukumaraswamy et al., 2015; Gilbert et al., 2016;
Bhatt et al., 2016; Auksztulewicz and Friston, 2015; Moran et al., 2011b;
Pinotsis et al., 2014), differing only in the local coupling among pop-
ulations. Alterations to the local coupling were implemented in accor-
dance with extant literature (cf. methods). However, it must be noted
that this model does represent a likely over-simplification of the true
underlying neurophysiology, particularly in the use of a single pooled
population of inhibitory interneurons.

Future work may wish to extend the parameter space of these models
(at a computational expense and possible lack of stability) to include
additional populations in line with specific preclinical findings or hy-
potheses of regional differences in cortex (e.g. motor cortex (Bhatt et al.,
2016)). Similarly, future studies may also wish to extend the model space
(and modality of the output) using multi-node models. Indeed this
approach has proven useful in modelling network phenomena such as
ERPs (see (Garrido et al., 2008)). Extending the model space to include
multiple nodes would also preclude the need to explicitly fit alpha as
noise, since the number of components in the resulting spectra would be
sufficient to fit alpha, beta and gamma simultaneously. Alternatively, the
development of more detailed models, which model parameters of cells
in more detail than the mesoscopic mean-field approach employed here,
would allow greater translation of findings between cellular and imaging
neuroscience. Careful consideration of the parameterisation and
constraint of such models would be crucial in avoiding over-specification
and redundancy. The balance between complexity and estimability can
be resolved through validation studies demonstrating that a model has
sufficient complexity to accurately recapitulate perturbations. This has
been done in preclinical (Moran et al., 2011a, 2014), pharmacological
(Muthukumaraswamy et al., 2015) and genetic (identified channelo-
pathies (Gilbert et al., 2016)) studies using 4-population, mean-field
CMCs, as used in the present study. Our study adds to this body of
work by showing that the GABAergic agent tiagabine, which has a known
mechanism of action (from in-vitro studies) changes the parameter cor-
responding to that previously identified in-vitro (T3; inhibitory inter-
neuron decay time-constant). Thus, we conclude that the CMC employed
here is suitably complex for addressing our study aims.

While the equations of motion underlying the CMC employed here
are the DCM defaults, we have made changes to the local coupling among
populations in line with reports from invasive anatomical studies in the
literature. As such, we have not employed a formal model selection
routine (e.g. Bayesian model selection) because we wanted the model to
be primarily anatomically- and neurophysiologically-informed. Future
studied may wish to statistically compare the performance of the CMC
given changes in local coupling – however this was outside the remit of
the current analysis.

It should be noted that the use of a correlational investigation of the
relationship between model parameters and spectral features means that
our results are valid only within the context of the model. Furthermore, a
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formal analysis of the posterior parameter covariances (e.g. principal
component analysis) may increase the specificity of parameter-feature
correlations, deriving further insight into the generating mechanisms of
spectral features.

Significance statement

Hitherto, most inferences about synaptic function and the effects of
pharmacological interventions have been limited to in-vivo and in vitro
recordings. In this study, we show that it is possible to assess synaptic
function in terms of rate constants and intrinsic (intra-and inter-laminar)
connectivity using non-invasive MEG data from human subjects. This
rests upon a careful modelling of how induced or spectral responses are
generated. Here we use a canonical microcircuit model to parameterise
observed beta and gamma responses in terms of underlying synaptic
parameters. This allows one to model, in an empirically constrained
fashion, how changing synaptic connections changes observed responses
(e.g., gamma). Furthermore, we show how one can track changes in
synaptic function over time following pharmacological intervention.
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