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Abstract 

Gene therapy provides hope for a cure for patients with haemophilia by establishing 

continuous endogenous expression of factor VIII or factor IX following transfer of a 

functional gene copy to replace the haemophilic patient’s own defective gene. 

Haemophilia may be considered a ‘low hanging fruit’ for gene therapy because a small 

increment in blood factor levels (≥2% of normal) significantly improves the bleeding 

tendency from severe to moderate, eliminating most spontaneous bleeds. After decades 

of research, the first trial to provide clear evidence of efficiency after gene transfer in 

patients with haemophilia B using adeno-associated viral (AAV) vectors was reported by 

our group in 2011. This has been followed by unprecedented activity in this area with the 

commencement of 7 new early Phase trials involving over 55 patients with haemophilia A 

or haemophilia B. These studies have, in large part, generated promising clinical data that 

lay a strong foundation for gene therapy to move forward rapidly to market authorisation. 

In this review, we discuss the data from our studies and emerging results from other gene 

therapy trials in both haemophilia A and B.  
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Introduction 

Haemophilia A and B are X-linked recessive disorders resulting from mutations in the gene 

for blood clotting factor VIII (FVIII) or IX (FIX) respectively. The incidence of haemophilia A 

is approximately 1 in 5,000, and that of haemophilia B is 1in 25,000 live male births. 

Collectively they are amongst the most common inherited bleeding disorders in the World. 

Despite the genetic and biochemical differences, these disorders are indistinguishable 

clinically with the severity of bleeding symptoms varying according to the residual factor 

activity in a patient’s plasma. Patients with a mild bleeding phenotype have baseline 

plasma factor levels in excess of 5% of normal and typically have few spontaneous 

bleeding episodes. However, they may have prolonged and life-threatening bleeding after 

trauma or surgery. A recent study of the haemophilic patient population at a large Dutch 

clinic 1 showed that those mildly affected patients whose residual factor level is between 

5-13% may have a significant bleeding diathesis, whilst those with a level >13% rarely or 

never experienced joint bleeding. Over half of the patients with haemophilia A or B have 

factor levels of <1% of normal.2 These individuals have a severe bleeding tendency with 

frequent spontaneous musculoskeletal and soft tissue bleeding. Amongst those patients 

who do bleed into their joints, the ankles are most commonly affected starting in early 

childhood, with knees and elbows affected later. Repeated episodes of intra-articular 

bleeding cause severe, progressive, destructive arthropathy with deformity leading to 

complete loss of joint function and attendant disability.  

In the absence of protein replacement therapy, the life expectancy of a boy with severe 

haemophilia is only about 10 years. This still applies in many less developed countries. 

Even in developed countries, until the 1960s, treatment of haemophilia was limited to 

infusion of fresh frozen plasma. In 1968 the first widely available concentrate for 

haemophilia A, cryoprecipitate, was introduced3. During the 1970s and 1980s many multi-

donor factor concentrates were developed to improve the purity, potency, stability and 

convenience of administration of factor replacement therapy. But these developments, 

depending as they did on large donor pools of often commercially sourced plasma, 

resulted in widespread transmission of HIV and hepatitis C virus. Almost a whole 

generation of haemophiliacs who were given the new products became HIV positive and 
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died of AIDS before highly effective antiretroviral therapies were developed. During the 

period 1970 to 1986 every treated patient was also exposed to hepatitis C and up to 25 

years later some are still succumbing to chronic liver failure resulting from continued 

infection.  From 1986 onward, heat treatment and then the solvent detergent method 

inactivated both HIV and Hepatitis C virus. Since then there have been no new cases of 

transmission of those lipid enveloped viruses. Transmission by blood products of other 

pathogens resistant to inactivation, such as parvovirus,3 hepatitis A4 and prions (variant 

Creutzfeldt-Jakob disease5) remain a major concern. Recombinant factor concentrates are, 

of course, free from blood borne infections, but their availability has been limited to the 

most developed countries by very high cost and production constraints. With the expiry of 

patents on recombinant factor VIII and IX, biosimilars and other variants with enhanced 

pharmacokinetic or other favourable properties are entering the market, with potential for 

wider availability than hitherto. 

In developed countries standard haemophilia care for severely affected patients now 

consists of home administered prophylaxis with safe concentrates intended to maintain 

factor level above 1% of normal. This is a compromise based on cost and practical 

considerations which reduces but does not eliminate bleeding. If started in early childhood 

after the first joint bleed, arthropathy can be largely prevented 6. When continued 

throughout life, prophylaxis leads to near normalisation of life expectancy7. The relatively 

short half-life of FVIII and FIX in the circulation necessitates frequent intravenous 

administration of factor concentrates (at least 2-3 times a week) which is demanding and 

extremely expensive; annualised costs of prophylaxis for an adult equal or exceed 

£120,000 for patients with haemophilia B. Even with prophylaxis, significant limitations 

remain as normal plasma clotting factor levels are not consistently restored; the short half-

life of existing clotting factors results in peaks and troughs of circulating clotting factor 

associated with break-through bleeding. The “saw tooth” pattern of factor level, high 

immediately after infusion, falling rapidly to near base line, mandates careful planning of 

physical activities such as sport, which people living without haemophilia can hardly 

imagine. New modified synthetic formulations of factor VIII and IX that are pegylated or 

fused to proteins with long half-life such as albumin or Fcγ have greatly improved the 

stability profile for factor IX but have been less impressive for factor VIII due to the 
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dominant role of Von Willebrand factor in determining its half-life. In any case, these 

products do not remove the problems of lifelong intravenous administration, break-

through bleeding and ever mounting cost. The cumulative effect of lifelong administration 

of pegylated proteins are unknown, as is the potential of fusion proteins to induce an 

immune response.6 Two other entirely novel approaches to normalising haemostasis in 

haemophilia A patients are undergoing extensive trials. The first is a synthetic factor VIII 

mimic consisting of linked antibodies, one of which binds factor IXa and the other factor X 

(Emicizumab)7. Although restoring haemostasis to a degree comparable to factor VIII level 

of about 15% in patients with or without inhibitory antibody, there is a major difference 

from wild type factor VIII. The mimic is under no control of its activity, being permanently 

active throughout the circulation, whereas native factor VIII has very strictly controlled 

activity in both time and site of action. It circulates as a procofactor tightly bound to a 

carrier, it is activated only at sites of clot propagation and it has a very short half-life after 

activation. The consequences of these differences have recently emerged in thrombotic 

events occurring in patients treated with Emicizumab and another clotting agent.8 The 

second alternative approach is to lower the natural antithrombin level with antisense RNA 

technology9, which will also work in patients with haemophilia B. Both approaches have 

shown efficacy in reducing the rate of bleeding, but their use may be limited by risk of 

thrombogenicity and both still require lifelong injections without restoring normal 

haemostasis. 

Rationale for gene therapy for haemophilia 

Even set against this scenario of widening therapeutic choice, gene therapy offers a 

strikingly attractive potential for cure by means of the endogenous production of FVIII or 

FIX following transfer of a normal copy of the respective gene. The haemophilias were 

recognised in the 1980s as good candidates for gene therapy because all their clinical 

manifestations are due to lack of a single protein that circulates in minute amounts in the 

blood stream. Years of clinical experience and the experience of patients with moderate 

haemophilia prove that a small increase to 1-2% in circulating levels of the deficient 

clotting factor significantly modifies the bleeding diathesis; so even a modest response to 

gene therapy can be effective. Regulation of transgene expression is unnecessary since a 
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wide range of FIX or FVIII levels is without toxicity and effective at reducing bleeding. 

Animal models such as FVIII- and FIX-knockout mice10,11,12 and dogs with haemophilia A or 

B13,14, have facilitated extensive preclinical evaluation of gene therapy strategies. The 

efficiency of therapy can be assessed easily just by measuring plasma levels of FVIII or FIX. 

The cDNA for the gene encoding FIX is small and adaptable to gene transfer in many viral 

systems. In addition, its expression pathway is significantly less complex than that of FVIII 

and it is normally expressed at higher levels. Consequently, more gene transfer studies 

have focused on haemophilia B than haemophilia A, but this is rapidly changing as the 

technology evolves. 

Previous gene therapy trials in haemophilia 

Ten phase I clinical trials have been conducted in subjects with haemophilia using a variety 

of different approaches. The first study involved ex-vivo gene transfer of DNA encoding a 

B-domain–deleted factor VIII gene (BDD-hFVIII) into autologous fibroblasts prior to their 

implantation into the omentum of subjects with severe haemophilia A. This procedure was 

well tolerated with no major side effects but resulted in poor efficacy in part due to the 

silencing of the transgene by DNA methylation. 15, 16 Onco-retroviral vector-mediated gene 

transfer of the FIX gene into ex-vivo expanded autologous fibroblasts prior to their 

implantation into skin of patients with severe haemophilia B was similarly safe but 

ineffective with no long-term maintenance of expression.17 In-vivo, systemic, 

administration of onco-retroviral vectors encoding the BDD-hFVIII gene with vector doses 

as high as 9 × 108 transduction units/kg was well tolerated but plasma FVIII activity of ~1% 

of normal was only transiently detected in 6 of 13 subjects. Systemic administration of 

“gutless” adenoviral vectors, encoding full length FVIII gene resulted in a transient increase 

in FVIII activity to ~3%. However, this study was closed early because of elevation of liver 

enzymes associated with thrombocytopenia.18 

Attention then moved onto recombinant adeno-associated viral vectors (AAV) because of 

their favourable safety profile and an ability to mediate long term expression of transgene 

following transduction of post-mitotic tissues such as the liver or muscle (Table 1).19, 20  The 

first study was a dose escalation phase I/II study entailing multiple intramuscular injections 

of AAV vector encoding the FIX gene. Vector administration was not associated with 
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serious adverse events but sustained increase in plasma FIX at levels >1% was not 

observed in any of the seven subjects recruited to this study, despite 

immunohistochemical evidence of FIX expression at the site of injection for over 10 

years.19  

In the second study, an AAV2 vector containing a liver-specific expression cassette was 

infused into the hepatic artery. In one subject treated at the high dose level (2x1012vg/kg) 

FIX levels increased to around 10% of normal levels at 4 weeks after vector administration 

and then unexpectedly declined to baseline values. This decline coincided with a transient 

10-fold rise in liver transaminases, which spontaneously returned to baseline values over 

the subsequent weeks, consistent with a self-limiting process. Further studies have led to 

the hypothesis that the decline in FIX expression and the liver toxicity were likely due to a 

capsid-specific cytotoxic T cell attack directed against the transduced hepatocytes 

following presentation of AAV2 capsid peptide in the context of MHC I molecules.20  

The first long term success in a clinical trial of gene transfer in haemophilia  

Building on the studies discussed above, an approach for gene therapy of haemophilia B 

was developed using a codon optimised version of the human FIX (hFIXco) gene under the 

control of a compact synthetic liver-specific promoter (LP1) packaged into self-

complementary AAV vectors (scAAV).21 Preclinical studies in mice and non-human 

primates (NHP) showed that scAAV vectors were more potent than comparable single 

stranded AAV (ssAAV) vectors, raising the possibility of achieving therapeutic levels of FIX 

using lower and potentially safer doses of vector.21, 22  

An important aspect of this study was to use a vector pseudotyped with AAV serotype 8 

capsid. This had the advantage over AAV2 vectors used previously of a lower 

seroprevalence rate in humans of ~25% compared to >60% with AAV2 23, thus enabling 

exclusion of fewer subjects with pre-existing humoral immunity from participating in the 

clinical trials. Another advantage was the high tropism of AAV8 towards hepatocytes 

enabling the vector to be delivered into the peripheral circulation, unlike AAV2 which had 

to be delivered directly into the hepatic artery. 

Six subjects with severe haemophilia B were enrolled to the initial phase of this study with 

two subjects recruited sequentially at one of three vector doses (low [2x1011 vg/kg], 

H
um

an
 G

en
e 

T
he

ra
py

A
dv

an
ce

s 
in

 G
en

e 
T

he
ra

py
 f

or
 H

ae
m

op
hi

lia
 (

do
i: 

10
.1

08
9/

hu
m

.2
01

7.
16

7)
T

hi
s 

ar
tic

le
 h

as
 b

ee
n 

pe
er

-r
ev

ie
w

ed
 a

nd
 a

cc
ep

te
d 

fo
r 

pu
bl

ic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 c

op
ye

di
tin

g 
an

d 
pr

oo
f 

co
rr

ec
tio

n.
 T

he
 f

in
al

 p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

if
fe

r 
fr

om
 th

is
 p

ro
of

.
D

ow
nl

oa
de

d 
by

 U
C

L
 /S

W
E

T
S/

28
90

80
77

 f
ro

m
 o

nl
in

e.
lie

be
rt

pu
b.

co
m

 a
t 0

8/
29

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



Page 8 of 27 
 
 
 

8 

Hu
m

an
 G

en
e 

Th
er

ap
y 

Ad
va

nc
es

 in
 G

en
e 

Th
er

ap
y 

fo
r H

ae
m

op
hi

lia
 (D

OI
: 1

0.
10

89
/h

um
.2

01
7.

16
7)

 
Th

is 
pa

pe
r h

as
 b

ee
n 

pe
er

-re
vi

ew
ed

 a
nd

 a
cc

ep
te

d 
fo

r p
ub

lic
at

io
n,

 b
ut

 h
as

 y
et

 to
 u

nd
er

go
 co

py
ed

iti
ng

 a
nd

 p
ro

of
 co

rr
ec

tio
n.

 T
he

 fi
na

l p
ub

lis
he

d 
ve

rs
io

n 
m

ay
 d

iff
er

 fr
om

 th
is 

pr
oo

f. 

intermediate [6x1011 vg/kg], or high dose [2x1012 vg/kg]) of scAAV2/8-LP1-hFIXco. Factor IX 

expression at 1-6% of normal was established in all six subjects with an initial follow-up of 

between 6-14 months following gene transfer. Asymptomatic, transient elevation of serum 

liver enzymes, perhaps a result of a cellular immune response to the AAV8 capsid, was 

observed in both subjects recruited to the high dose level between 7-10 weeks after gene 

transfer. Treatment of each with a short course of prednisolone led to rapid normalisation 

of liver enzymes and maintenance of FIX levels in the 2-4% range. Four of the 6 subjects, 

have been able to discontinue routine prophylaxis without suffering spontaneous 

haemorrhage, even when they undertook activities that previously had provoked bleeds. 

The other two have increased the interval between FIX prophylaxes. This is consistent with 

the natural bleeding tendency in mild haemophilia patients (FIX levels of between 5-40%) 

where bleeding episodes generally only occur after trauma or surgery with very few or no 

spontaneous bleeds.24  

Longer follow-up of these individuals shows that AAV mediated FIX expression has 

remained relatively stable over a period of at least 6 years.25. One of the four subjects who 

discontinued prophylaxis has subsequently commenced a once a week prophylaxis 

regimen to avert trauma-related bleeding that might be incurred in the course of his work 

as a geologist. The others remain off prophylaxis and free of spontaneous haemorrhage. 

The overall reduction in FIX usage in these 6 subjects over the duration of the study is 

several million units so far and a resulting financial savings that exceed £5M. Subsequently, 

a further four subjects were recruited for treatment at the higher dose. Two of these 

subjects had no evidence of immune mediated liver inflammation and achieved a level of 

stable factor IX expression between 5 and 8%. Both have stopped prophylaxis and report 

no bleeding. One subject had a mild episode of immune hepatitis that responded promptly 

to steroids. His factor IX level has been maintained at 5% and he has no need for 

prophylaxis and does not experience spontaneous bleeding since gene transfer. The 

remaining subject experienced a more marked elevation of transaminase which, despite 

responding to a course of oral steroid, was accompanied by a fall in steady state factor IX 

to 2%. He has less bleeding than prior to gene transfer. In an on-going extension of the 

trial, the vector preparation has been further purified to remove empty capsids and the 
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optimum dose is being explored in dose escalation to determine if the immune hepatitis 

can be abrogated whilst attaining a therapeutically favourable factor IX level. 

New haemophilia B gene transfer trials  

The pace of advance in AAV gene therapy for haemophilia in the last 5 years has been so 

rapid that data from most new trials is only available from meeting presentations and/or 

company news releases. Exceptionally, therefore, we are using those sources of 

information to bring readers of this review the most current available information, with 

the understanding that further experience may change our expectations of the safety and 

efficacy of gene therapy in haemophilia (Table 1). Of note, the two studies using the Padua 

mutant are consistent with expression of a similar amount of FIX antigen as in the earlier 

St Jude/UCL trials but with 5 to 10 fold enhanced activity. Thus, FIX levels ranging from 

18% to 80% have been observed in 10 subjects in the study sponsored by Spark 

Therapeutics following a single administration of a relatively low dose of 5x1011vg/kg. Of 

note however is that 2 out 10 subjects had elevation of liver enzymes requiring that they 

treated with a course of oral steroid. Nevertheless, these studies show for the first time 

that it is possible to “normalise” FIX levels following a single administration of AAV vectors. 

This is something that was felt to be desirable but unachievable just 10 years ago. Not 

surprisingly, therefore, the average bleed rate in these patients dropped to 0.4 compared 

to 11.1 prior to gene therapy. 

Despite stable expression for >7 years, the concern with AAV gene therapy approaches 

described above is that the AAV genome, which is retained in the liver in an episomal 

form, will be lost over time with turn-over of transduced hepatocyte. This raises the 

possibility of FIX expression falling below the therapeutic threshold. To overcome this 

hypothetical obstacle, Sangamo Therapeutics are using AAV vectors to deliver zinc finger 

nuclease (ZFN) and a promoterless FIX gene in an in-vivo genome editing approach that 

targets the albumin gene locus. The ability to permanently integrate the FIX gene in this 

targeted fashion provides an opportunity for life-long stability of expression that will be 

particularly appealing when targeting children. A Phase I/II clinical trial evaluating this 

approach in adults with severe haemophilia B is open for enrolment. A major limitation of 
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this approach is the need for two AAV vectors, one encoding the ZFN and the other 

carrying the FIX cDNA. 

AAV vectors and gene therapy for Haemophilia A 

The limited packaging capacity of AAV vectors (4680 kb) and the poor expression profile of 

FVIII have hindered the use of these vectors for gene therapy of haemophilia A. Compared 

to other proteins of similar size, expression of FVIII is highly inefficient.26 Bioengineering of 

the FVIII molecule has resulted in improvement of FVIII expression. For instance, deletion 

of the FVIII B-domain, which is not required for co-factor activity, resulted in a 17-fold 

increase in mRNA levels over full-length wild-type FVIII and a 30% increase in secreted 

protein.27, 28 This has led to the development of BDD-FVIII protein concentrate, which is 

now widely used clinically (Refacto; Pfizer). Pipe and colleagues have shown that the 

inclusion of the proximal 226 amino-acid portion of the B-domain (FVIII-N6) that is rich in 

asparagine-linked oligosaccharides significantly increases expression over that achieved 

with BDD-FVIII.29 This may be due to improved secretion of FVIII facilitated by the 

interaction of six N-linked glycosylation triplets within this region with the mannose-

binding lectin, LMAN1, or a reduced tendency to evoke an unfolded protein response.30 

These six N-linked glycosylation consensus sequences (Asn-X-Thr/Ser) are highly conserved 

in B domains from different species suggesting that they play an important biological 

role.31 

Another obstacle to AAV mediated gene transfer for haemophilia A gene therapy is the 

size of the FVIII coding sequence, which at 7.0 kb far exceeds the normal packaging 

capacity of AAV vectors. Packaging of large expression cassettes into AAV vectors has been 

reported but this is a highly inconsistent process resulting in low yields of vector particles 

with reduced infectivity.32, 33 AAV vectors encoding the canine BDD-FVIII variant that is 

around 4.4kb have yielded promising results but further evaluation of this approach using 

human BDD-FVIII is required. Other approaches include the co-administration of two AAV 

vectors separately encoding the FVIII heavy- and light-chains whose intracellular 

association in-vivo leads to the formation of a functional molecule. 34 An alternative two 

AAV vector approach exploits the tendency of these vectors to form head to tail 

concatamers. Therefore, by splitting the FVIII expression cassette such that one AAV vector 
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contains a promoter and part of the coding sequence, as well as a splice donor site, 

whereas the other AAV vector contains the splice acceptor site and the remaining coding 

sequence. Following in-vivo head to tail concatemerisation a functional transcript is 

created that is capable of expressing full-length FVIII protein. 35-39 These two AAV vector 

approaches are however inefficient, cumbersome, expensive and not easily transferred to 

the clinic. 

We have developed an AAV-based gene transfer approach that addresses both the size 

constrains and inefficient FVIII expression. Expression of human FVIII was improved 10-fold 

by re-organisation of the wild type cDNA of human FVIII according to the codon usage of 

highly expressed human genes.21, 40-42 Expression from B domain deleted codon optimised 

FVIII molecule was further enhanced by the inclusion of a 17 amino-acid peptide that 

contains the six N-linked glycosylation signals from the B domain required for efficient 

cellular processing. These changes have resulted in a novel 5.2kb AAV expression cassette 

(AAV-HLP-codop-hFVIII-V3) that is efficiently packaged into recombinant AAV vectors and 

is capable of mediating supraphysiological levels of FVIII expression in animal models over 

the same dose range of AAV8 that proved to be efficacious in subjects with haemophilia B.  

Juxtaposition of novel amino acid sequences as has been done in our AAV-HLP-codop-

hFVIII-V3 could lead to neo-antigenicity, thereby increasing the risk of provoking a 

neutralizing antibody response to the transgenic protein. This was also a concern when 

recombinant BDD-FVIII (ReFacto) was first introduced for use in man. ReFacto contains the 

“SQ” link of 14 amino acids (SFSQNPPVLKRHQR) between the A2 and A3 domains, 

generated by fusion of Ser743 in the N-terminus with Gln1638 in the C-terminus of the B-

domain, creating a neo-antigenic site. However, despite extensive clinical use of ReFacto, 

an increase in frequency of neutralizing hFVIII antibodies in patients treated with this 

product has not been observed.43-45 Additionally, antibodies to epitopes in the B-domain 

that are occasionally seen in patients with severe HA treated with hFVIII protein 

concentrates are devoid of inhibitory activity because they bind to nonfunctional FVIII 

epitopes.46 

15 patients with severe haemophilia have been recently been treated with an AAV5 vector 

containing the SQ linker codon optimised factor VIII expression cassette described above, 
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in a Biomarin sponsored Phase I/II trial. Of these seven received a dose of 6x1013 vg/kg and 

an additional six were infused at a lower dose of 4x1013 vg/kg.  The other two patients in 

the study received lower doses (6x1012vg/kg and 2x1013vg/kg) as part of dose escalation 

but did not achieve therapeutic efficacy. At one year after dosing, FVIII levels in the 

6x1013vg/kg cohort were between 20-218% of normal (Table 2). In 3 of the 6 patients in 

the 4x1013 vg/kg dose level FVIII levels are reported to be in the normal range, whilst in the 

remaining 3 patients FVIII levels are in the mild range. All were treated with prophylactic 

steroids after elevated transaminases were noted in the first subject treated at the 

6x1013vg/kg dose level.  

Preliminary data from Spark Therapeutic’s SPK-8011 Haemophilia A gene therapy trial in 

which the first cohort received 5x1011vg/kg of AAV vector pseudotyped with a hybrid 

capsid show stable expression at 11% one patient, whilst the second patient achieved a 

14% level with follow-up extending beyond 12 weeks. There were no toxicities (including 

inhibitor formation) and neither patient required treatment with steroids as there was no 

transaminitis. The investigators have dosed a 3rd patient at the next dose level of 

1x1012vg/kg. 

 

Obstacles to wider use of AAV vector technology  

A.  Safety considerations 

Thus far, the risk of liver toxicity accompanied by loss or reduction of transgene expression 

in some patients appear to be the most worrying toxicity associated with liver targeted 

delivery of AAV. Corticosteroids appear to reduce hepatocellular damage in some patients 

in the haemophilia B trials. In the haemophilia A studies corticosteroids appear to have 

questionable value in limiting the transaminitis. The precise pathophysiological basis for 

the hepatocellular toxicity remains unclear, in part because it has not been possible to 

recapitulate this toxicity in animal models.  

As expected, all subjects in these trials develop long lasting AAV capsid-specific humoral 

immunity. Whilst the rise in anti-AAV IgG does not have direct clinical consequences, its 

persistence at high titres precludes subsequent successful gene transfer with vector of the 

same serotype, in the event that transgene expression should fall below therapeutic levels. 
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However, some studies report effective gene transfer with AAV5 vector in individuals with 

detectable anti-AAV5 antibodies.  

Another potential problem of systemic administration of AAV is spread of vector particles 

to non-hepatic tissues including the gonads. Vector genomes were transiently detectable 

in the semen of all subjects recruited to the AAV2 and AAV8 haemophilia B clinical trials.24, 

47, 48 Recent studies indicate that proviral DNA can be detected in mononuclear cells and 

semen of some participants for as long as a year.  

The risk of insertional mutagenesis following AAV mediated gene transfer has been judged 

to be low because proviral DNA is maintained predominantly in an episomal form. This is 

consistent with the fact that wild type AAV infection in humans, though common, is not 

associated with oncogenesis. However, deep sequencing studies show that integration of 

the AAV genome can occur in the liver.49, 50 Additionally, an increased incidence of 

hepatocellular carcinoma (HCC) has been reported in the mucopolysaccharidoses type VII 

(MPSVII) mouse model following perinatal gene transfer of AAV potentially through 

integration and disruption of an imprinted region rich in miRNAs and snoRNAs on mouse 

chromosome 12.51  Subsequent studies in other murine models have failed to recapitulate 

this finding and collectively the available data in mice as well as larger animal models 

suggest that AAV has a relatively low risk of tumourigenesis.52   

 

B. Scale-up of vector production 

Continued progression toward flexible, scalable production and purification methodologies 

is now underway to support the commercialisation AAV bio-therapeutics. The most widely 

used method for the generation of AAV entails the transient transfection of adherent HEK 

293 cells with plasmids encoding the necessary vector, helper and packaging genes. The 

appeal of this method is the flexibility and speed, which are important assets during the 

initial stages of development. Not surprisingly, therefore, almost all AAV vector 

preparations administered to humans in the last 10 years have been prepared by transient 

transfection of adherent HEK 293 cells.  However, this method is cumbersome and not 

suited for production of large quantities of clinical-grade vector required for Phase 

III/market authorisation trials of haemophilia gene therapy. Attention has recently shifted 
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to transfection of suspension culture-adapted 293 cells because they are more amenable 

to scale-up than using adherent cells.53 Another scalable method for production of AAV 

that has received much attention is one based on baculovirus.54  This method was used to 

support market authorisation of gene therapy for lipoprotein lipase deficiency, but there 

are concerns that AAV particles made using the baculovirus method have a lower potency. 

Two other viable scalable methods consist of the adenovirus infection of Rep/Cap 

integrated cell lines and recombinant HSV helper vectors that create an all-in-one 

infectious system. 55,56 Impurities commonly found in AAV vector preparations include host 

cell proteins, mammalian DNA and empty capsids, which as described above can affect 

safety. Therefore, attention needs to be paid to the downstream purification process, 

which typically consists of column chromatography, so that the purity of clinical grade AAV 

preparation can be improved without compromising scalability.  

 

Affordability of gene therapy  

Haemophilia is a ~$10B market opportunity, dominated by factor replacement therapy 

which are effective but expensive and highly invasive. This area has remained largely 

unchanged over the past 20 years, other than the introduction of extended half-life factor 

concentrates, which allow for modestly longer intervals between infusion times. In 

contrast, a single administration, gene therapy is highly effective with no long lasting 

safety concerns enabling many patients to enjoy life without fear of bleeding. It is likely 

that gene therapy will command a high price, at least initially, in order to recoup the 

development cost. The World Federation of Hemophilia estimates that 80% of 

haemophilia patients receive no or only sporadic treatment and are condemned to 

shortened lives of pain and disability. This is in large part because the cost of prophylactic 

treatment with factor concentrates is high and in excess of £120,000 for an adult per year. 

It is therefore highly likely that gene therapy will not reach this disadvantaged population 

unless the cost of goods comes down significantly through innovations that improve vector 

yield and or improve manufacturing efficiency. Successful gene therapy offers the 

advantage of continuous endogenous expression of clotting factor, which will eliminate 

breakthrough bleeding and micro-haemorrhages thereby reducing comorbidities and the 
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need for frequent medical interventions whilst improving quality of life, thus yielding 

significant savings for the health care system and society in general. These factors will 

need to be considered when evaluating the health economics of gene therapy for these 

conditions.  

 

Conclusion 

The availability of convincing evidence of long-term expression of transgenic FVIII and FIX 

at therapeutic levels resulting in amelioration of the bleeding diathesis following AAV 

mediated gene transfer is an important step towards the eventual licensure of gene 

therapy for haemophilia. Whilst several obstacles remain, the current rate of progress in 

this field suggests that a licenced gene therapy product will be commercially available 

within the next 5 years. This will likely change the treatment paradigm for patients with 

severe haemophilia and, in addition, facilitate the development of gene therapy for other 

disorders affecting the liver, where the treatment options are limited or non-existent.  
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Table 1: Haemophilia B gene therapy with AAV vectors 

 

 

Sponsor Transgene Vector Method 

of vector 

delivery 

Expression (% of normal)

Toxicity 

Current 

status 

Avigen and 

CHOP 

Wild type 

FIX 
AAV2 IM 

Transient < 1.6%

No significant side effects 
Closed 

Avigen and 

CHOP 

Wild type 

FIX 
AAV2 

Bolus 

infusion 

into 

hepatic 

artery 

Transient hFIX at 12% in 1 patient and 

4% in 2nd patient at 2 x1012vg/kg 

 

Transient transaminitis at 3 weeks after 

gene transfer in 2 out 7 patients 

Closed 

St Jude/UCL Codon 

optimised 
AAV8 Bolus 

peripheral 

Persistent (>6 years) dose dependent 

expression of FIX at between 1-6% of 
Closed 
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FIX vein 

infusion 

normal level in all subjects recruited

 

Transient transaminitis at 6-10 weeks 

after gene transfer in 4 out of 10 

patients 

Shire (Baxalta; 

BAX 335) 

Codon 

optimised 

FIX 

containing 

the Padua 

mutation 

AAV8 

Bolus 

peripheral 

vein 

infusion 

Persistent (>2 years) expression of FIX at 

25% in 1 out of 7 patients recruited 

 

Transient transaminitis at 6-10 weeks 

after gene transfer in 2 out of 7 patients 

Closed 

uniQure (AMT-

060) 

Codon 

optimised 

FIX 

AAV5 

Bolus 

peripheral 

vein 

infusion 

Persistent (>1 years) expression of FIX at 

3-7% in 9 out of 10 patients recruited 

 

Transient transaminitis at 6-10 weeks 

after gene transfer in 3 out of 10 
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patients 

Spark 

Therapeutics 

(SPK-9001) 

 

Codon 

optimised 

FIX 

containing 

the Padua 

mutation 

AAV- SPK-100 

Bolus 

peripheral 

vein 

infusion 

Persistent (~>12 weeks) expression of 

FIX at average of 33% in 10 patients 

recruited 

 

Transient transaminitis at 4-8 weeks 

after gene transfer in 2 out of 10 

patients 

Open 
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FIX 

AAVrh10 
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Persistent (~1 years) expression of FIX at 
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mediated 
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(SB-FIX) FIX targeted 

integration into 

the albumin 

locus in 

hepatocytes 
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Table 2: Haemophilia A gene therapy with AAV vectors 

 

Sponsor Transgene Vector Method 

of vector 

delivery 

Expression (% of normal)

Toxicity 

Current 

status 

BioMarin 

(BMN 270) 

Codon 

optimised 

BDD-FVIII 

AAV5 

Bolus 

peripheral 

vein 

infusion 

Persistent (>20 weeks) expression of 

FVIII  20-218% 13/15 patients 

recruited  

 

Transient transaminitis starting at 4 

weeks after gene transfer in 13/15 

patients 

Open 

Spark Therapeutics 

(SPK-8011) 
BDD-FVIII Hybrid capsid 

Bolus 

peripheral 

vein 

infusion 

Persistent (>12 weeks) expression of 

FVIII  at 5x1012vg/kg between11-

14% 2/2 patients  
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