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Abstract

This dissertation will be focused on the phenomenon of interference in wireless net-

works. On one hand, interference will be viewed as a negative factor that one should

mitigate in order to improve the performance of a wireless network in terms of achiev-

able rate, and on the other hand as an asset to increase the performance of a network

in terms of security. The problems that will be investigated are, first, the character-

isation of the performance of a communication network modelled as an interference

channel (IC) when interference alignment (IA) is used to mitigate the interference with

imperfect knowledge of the channel state, second, the characterisation of the secrecy in

the Internet-of-Things (IoT) framework where some devices may use artificial noise to

generate interference to potential eavesdroppers.

Different scenarios will be studied in the case where interference is unwanted; the first

one is when the channel error is bounded. A lower bound on the capacity achievable

in this case is provided and a new performance metric namely the saturating SNR is

derived. The derived lower bound is studied with respect to some parameters of the

estimation strategy when using Least-Square estimation to estimate the channel ma-

trices. The second scenario deals with unbounded Gaussian estimation errors, here the

statistical distribution of the achievable rate is given along with a new performance

metric called outage probability that simplifies the study of the IC with IA under im-

perfect CSI. The results are used to optimise the network parameters and extend the

analysis further to the case of cellular networks. In the wanted interference situation,

the secrecy of the worst-case communication is studied and the conditions for secrecy

are provided. Furthermore the average number of secure links achievable in the network

is studied according to a theoretical model that is developed for the IoT case.
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Chapter 1

Introduction

The 21st century is undoubtedly the era of ubiquitous connectivity for people and

objects. Technology is evolving at a tremendous speed to meet this objective. The

terms ”Smart cities”, ”Smart homes”, ”Smart grids” are all denominations of this same

trend - The increasing interconnectivity of things, people and services [1] - they reveal

the emergence of new kinds of networks of interconnected things, called the Internet of

Things (IoT) [2]. Thanks to this, many types of applications will be made possible in

the near future, such as remote health monitoring, efficient electric power management

and distribution, self-driving cars and more [3]. It’s needless to say, a tremendous

amount of new devices will require access to the communication infrastructure, which

will have to be at least, fast [4], reliable [5], secure [6] and of course, able to handle

so many new devices at the same time [7]. Leading experts such as the IT company

Gartner forecast that by 2020 more than 20 billion IoT devices will be connected to the

cloud.

In this dissertation, the focus is on two key aspects that will enable these future networks

to come true, namely, security and accessibility.

• The accessibility in this context is the ability of a device to connect to the net-

work. Here and throughout this dissertation, communications are only considered

to occur via wireless links. Therefore, the issue at hand for this aspect is inter-

ference mitigation, since interference will certainly be a limiting factor in terms

of achievable throughput in an overcrowded network of devices.

15



1.1 Motivation and Scope

• Security here means the ability of a device to conceal its transmissions to unin-

tended receivers. This aspect will be studied here from a Physical Layer point of

view in the particular case of IoT networks.

Both aspects will be more rigorously developed in the following sections and chapters

of this dissertation.

1.1 Motivation and Scope

1.1.1 Accessibility

A key component of multi-user wireless networks is the interference management strat-

egy in use in order to allow multiple users to access the same spectrum. In today’s net-

works, interference mitigation mostly means avoiding interference in the first place [8].

For example, techniques such as TDMA or FDMA are used to orthogonalise the differ-

ent users of a network across time or frequency. In a TDMA system it means that the

devices will transmit their signals in different non-overlapping time slots, whereas in

FDMA systems non-overlapping frequency slots are used instead. It is easy to see that

with such techniques, the total available resource is shared evenly amongst the users

and that, the more users there are the less resources are available per user.

Recently, a new technique has been proposed in [9, 10], called Interference Alignment

(IA) this technique promises in some cases that all users can get half of the total avail-

able resource regardless of their number.

IA is a linear precoding technique, it requires cooperation amongst the users in order

to structure every transmitted signal in the network so that, each receiver receives the

interference from the unintended transmitters in a reduced subspace, namely the inter-

ference subspace, whereas, the desired signal is received in a vector space orthogonal

to the interference subspace called interference-free subspace or desired signal space.

The orthogonality of these spaces makes it very simple to remove the interference and

keep only the desired signal. Understand that in this case, all the users can transmit

over overlapping time and frequency slots, the orthogonal entities in this case are the

16



1.1 Motivation and Scope

desired signal and the interference viewed relatively to each receiver. Cadambe and

Jafar in [11] have shown that under some assumptions the sum rate of the network

would increase linearly with the number of user when IA is used. This is in sharp

contrast with other interference mitigation techniques such as TDMA or FDMA where

the sum-rate is inversely proportional to the number of users. IA was also shown to

achieve the degree-of-freedom (DoF) capacity of the interference channel [12,13].

In order to achieve the result mentioned above, the authors assumed infinite time or fre-

quency diversity and perfect channel knowledge, which is not practical in a real setting.

A great deal of efforts have been spent on operating IA in more realistic settings [14],

some papers are investigating the extreme case where there is almost no channel knowl-

edge, for example in [15], IA was considered without CSI but using only the knowledge

of the network topology. Blind IA was also investigated in [16] without any knowledge

of the channel coefficients. In the middle, other researchers have considered IA in a

MIMO setting with constant and perfectly known channels and no time nor frequency

diversity. In this case, IA does not promise a tremendous improvement on the sum

rate but still doubles what’s possible with techniques relying on orthogonalisation [17].

Then imperfect Channel State Information (CSI) has been considered e.g [18–20]. In an

attempt to reduce the overhead for sharing CSI globally, opportunistic IA was studied

in [21, 22]. Another issue that has been studied extensively is the feasibility of IA for

different number of streams and antennas per user, e.g., [23–25].

In this dissertation, IA is considered in the K-user MIMO interference channel and the

impact of channel estimation errors on the performance of interference alignment is

investigated in different cases :

1. The impact of a bounded channel estimation error on the rate per user is studied.

This type of errors can be linked to quantisation errors when the CSI is measured

at the user end then quantised and fed back at the transmitter. Some interesting

results will be shown in this case, including the lower bound of the maximum

achievable rate with bounded CSI error.

2. The CSI error is then linked to the estimation method, in this case, the Least

Square (LS) method is considered. The evolution of the capacity lower bound

will be studied according to the parameters of the estimation phase, namely the

17



1.1 Motivation and Scope

training Signal-to-Noise Ratio (SNR) and number of pilot symbols.

3. The case where the estimation error is not bounded but follows a Gaussian distri-

bution is investigated and the PDF of the capacity per user is derived in this case.

This PDF is then used to derive a new metric called Outage Probability which

simplifies the study of the K-user MIMO interference channel with IA. Using the

outage probability, the performance of IA will be investigated in a block fading

environment and also in cellular networks for inter-cell interference mitigation.

1.1.2 Security

Security is a very important aspect of communication networks, especially in wireless

networks, where the communicating parties have less control over who can listen in to

their communications. Numerous applications and services require perfect security, for

example, online financial transactions, remote health monitoring, remote surveillance

of sensitive sites, self-driving cars and more... Recently, security has become an even

greater concern for the broad public following the release of confidential documents by

Edward Snowden which revealed the extent to which the US intelligence could eaves-

drop on personal communications. Following that, point-to-point encryption has begun

a democratisation process on messaging apps. However, security in today’s networks

are mostly based on cryptographic techniques [26, 27] which rely upon mathematical

principles that are yet to be proven, the most popular being the RSA encryption algo-

rithm [28, 29] but there are also other methods based on elliptic curves [30–33]. These

techniques often require the sharing of a common key to encrypt or decrypt the mes-

sages being sent, which increases the implementation complexity.

Wireless networks are moving towards the integration of more and more devices and

sensors, these devices, if not careful can represent weak links in an otherwise secure

network. A survey made by the company Hewlett Packard in 2014 has found that there

is on average 25 security vulnerabilities on the IoT devices then available on the market.

Securing these devices using existing cryptographic techniques is difficult or impossible

in some case because of their limited processing power or battery life [34, 35]. This

will be even more true in the case of sensor networks where each sensor is designed to
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1.2 Contributions and organisation

function on a battery for an extended period of time, over 10 years for some devices

as in the specification of LTE release 13 [36]. This shows that different techniques are

needed to insure the security of tomorrow’s networks.

The solution that is considered in this dissertation is coming from the area of Physical

Layer Security (PLS), the techniques employed by PLS utilise properties of the com-

munication medium to enhance the security of the transmissions. The advantage of

PLS is that less constraints can be put on the communicating devices. This property

makes it a perfect fit for IoT networks. There has not been a lot of research so far on

the application of PLS in IoT networks. In [37] the authors consider a game theoretic

approach in order to mitigate the effects of malicious jamming in IoT networks. In this

case the idea is to leverage the capabilities of the IoT controller in order to protect

the IoT devices against a physical layer attack. The reference [38] published in 2015

contains a comprehensive survey of the advances and remaining challenges to that date

to applying PLS to resource constrained IoT networks.

The problem of security in IoT networks is tackled in this dissertation by considering

the capabilities of the different devices populating these networks. The strategy will be

to create strong interference at the eavesdroppers while ensuring that the IoT controller

can always decode the signal it receives from the IoT devices. The focus here is solely

on the uplink transmission, i.e. from the IoT devices to the IoT controller.

1.2 Contributions and organisation

In this dissertation, the performance of IA is analysed in the K-user MIMO interference

channel when IA is applied to the network with an imperfect knowledge of the channels

between the transmitters and receivers. Different applications of the results developed

in that context are considered. Furthermore, the problem of protecting IoT uplink data

is considered using physical layer security techniques. The rest of this dissertation will

be organised as follows :

Chapter 2 : Background on IA and PLS, In this chapter, communication channel

models will be introduced to set the context for further work on interference manage-

ment and security, then, the mathematical aspects and state of the art of Interference
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1.2 Contributions and organisation

Alignment and Physical Layer Security will be presented.

Chapter 3 : IA with Bounded CSI Error, In this chapter, the case of imperfect

CSI with bounded errors is considered and a lower bound of the channel capacity using

IA is derived. It’s shown that this lower bound is within 1 bps/Hz of the capacity of

the perfect CSI case, up to a certain signal-to-noise ratio (SNR) which is referred to as

the saturating SNR. Further, a new metric called modified DoF (mDoF) is introduced

in order to characterise the multiplexing performance of IA with imperfect CSI at finite

SNR. The results obtained are then applied to the case where the CSI is obtained using

LS estimation. Simulation results for the 3-user case are provided.

The contributions in this chapter were published in Wireless Communications Letters :

• R. Guiazon, K.-K. Wong, and D. Wisely, Capacity analysis of interference align-

ment with bounded CSI uncertainty, Wireless Communications Letters, IEEE,

vol. 3, no. 5, pp. 505-508, Oct 2014.

• Guiazon, R.F.; Kai-Kit Wong; Fitch, M., ”Evolution of capacity lower bound

of interference alignment with least-square channel estimation,” in Signal and

Information Processing (ChinaSIP), 2015 IEEE China Summit and International

Conference on , vol., no., pp.582-585, 12-15 July 2015

Chapter 4 : Distribution of the Capacity with Gaussian CSI error. In this

chapter, achievable performance of the interference channel is studied when perfect IA

techniques are used based on imperfect CSI. In particular, the statistical distribution

of the maximum achievable rate per stream of the channel is obtained. Utilising this

analytical results, new non-asymptotic performance metrics are derived then used to

1) optimise the number of streams per user for maximising the network sum-rate and

2) assess the performance of IA in the time-varying block fading channel. Numerical

results are provided to reveal the accuracy of these analytical results.

The contributions of this chapter were published in the journal Transaction on Wireless

Communications.

• Guiazon, R.F.; Wong, Kai-Kit; Fitch, M., ”Capacity Distribution for Interfer-

ence Alignment with CSI Errors and Its Applications,” in Wireless Communica-
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tions, IEEE Transactions on , vol.PP, no.99, pp.1-1

Chapter 5 : Coverage probability. In this chapter, the application of IA in cellular

networks is considered. The issue here is the reduction of inter-cell interference between

neighbouring cells especially for the mobile devices located near the cell edges. An

expression of the coverage probability is given and compared with the results given by

the simulation model.

The contribution of this chapter were published in the special issue on Next Generation

Wireless Communications.

• R. Guiazon, K. K. Wong, and M. Fitch, ”Coverage probability of cellular networks

using interference alignment under imperfect CSI,” Digital Commun., SI on Next

Generation Wireless Commun. Tech.

Chapter 6 : PLS in IoT Networks. In this chapter, the problem of securing IoT

uplink data is considered. Full-duplex, jamming techniques and helper nodes are used

together to help low-power IoT devices secure their communications. The concept of

neutralisation region is also utilised in order to characterise the performance of an ab-

stract model where some regions of the network are protected against eavesdroppers by

helper nodes.

Chapter 7 : Conclusion and Future work. This chapter will summarise the main

achievements of this work and introduce a new system model for future work.
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Chapter 2

Background on IA and PLS

The objective of this chapter, is to provide the reader with the tools and information

necessary to understand the development that will follow in the subsequent chapters of

this dissertation. References will be provided for the interested readers to gain a deeper

understanding of the notions introduced throughout.

General information about communication channels will be provided at first then, the

focus will shift onto the Interference Channel (IC) it will be the main framework for the

study of IA in following chapters. Subsequently, the basics of Interference Alignment

will be introduced as well as Physical Layer Security.

2.1 Introduction

In the late 1940s, Claude Shannon invented the first systematic framework to describe

and analyse communication channels [39]. Originally his intention was to characterise

the amount of information that could be transmitted through telephone lines and cor-

rect for distortions. The ideas presented in his paper, ”A mathematical theory of

communication” were groundbreaking and still form as of today, the foundations of

Information Theory.

Shannon’s communication channel consists of a transmitter that sends information

through a transmission medium -with noise and distortion- and a receiver that wants

to decode all information sent by the transmitter free of distortion. This first com-
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2.1 Introduction

munication channel is called Point to Point channel, since the information flows from

a single transmitter to a single receiver. Shannon’s analysis of this channel was quite

extensive, defining rigorously the notion of channel capacity that would guide engineers

for many years throughout the optimisation of communication networks.

Today’s networks are made of multiple transmitters and receivers with various commu-

nication scenarios. Ultimately, the Graal of Information Theory would be the character-

isation of the capacity region of a general communication channel where, all the nodes

are allowed to communicate with whichever other node inside the network. However due

to possible interference between the nodes, this characterisation has eluded researchers

ever since Shannon formalised his theory. Even in the case of two transmitter-receiver

pairs with each transmitter creating interference at the other receiver, the complete

characterisation of the capacity region has not been found yet. The characterisation

of the capacity region of the 2-user interference channel has been done in very spe-

cial cases [40–42], where counter-intuitively it is shown that strong interference doesn’t

harm the capacity. A tight approximation within half a bit of the capacity region was

given in [43] in 1981 and for nearly 3 decades not much happened in this area.

The study of the general communication channel mentioned above being too complex,

researchers have focused on simplified models that still provide insights into how to opti-

mise modern communication networks. Examples of such models and their applications

are listed below.

• The Gaussian point-to-point channel, this channel is one of the simplest that

one could imagine, it consists of one transmitter and one receiver transmitting

messages through a channel that is corrupted by additive white Gaussian noise.

As simple as it seems, finding the capacity of this channel had to wait for Claude

Shannon in 1948. Circuit switched networks are typical examples.

• The broadcast channel (BC) is a type of communication channel where one trans-

mitter wishes to send information to several receivers, for example the downlink of

cellular networks or the Digital television (DTV) network are broadcast channels.

The set of simultaneously achievable rate by all user is the relevant metric in this

case [44]. The capacity region of this type of channel is not known in general but

23



2.2 More on the Interference Channel

several inner bounds and outer bounds have been derived that coincide in specific

cases with the capacity region [44–48].

• The Multiple Access Channel (MAC) consists of many users trying to send in-

formation to the same receiver. This corresponds for example to the case where

several devices send information to the same base station. This will be the frame-

work of chapter 6 when IoT networks are considered.

• The Interference Channel (IC) is the model that we’ll be focusing on in the next

chapters, it is formed of K pairs of transmitters and receivers where each trans-

mitter wishes to communicate with a single receiver but at the receiver side the

reception is impaired by all the signals coming from the unwanted transmitters.

This channel includes all previous channels as special cases. A cellular network

can be studied under this model. For example, the transmitters could be adja-

cent base stations and the receivers would the users belonging to different cells

but that are scheduled on the same time/frequency.

2.2 More on the Interference Channel

An example of interference channel can be seen on figure 2.1 for the K=3 user case.

The received signal at any receiver (say k) is given by the following expression

yk = Hk,kxk︸ ︷︷ ︸
Desired signal

+
K∑
i=1,
i6=k

Hk,ixi

︸ ︷︷ ︸
Interference

+ ηk︸︷︷︸
Noise

(2.1)

Where K is the number of user pair, Hk,i is the channel matrix between the ith trans-

mitter and the kth receiver, ηk is the noise, xi is the signal from transmitter i and yk

is the received signal at the kth receiver.

In the interference channel, the performance of the network is limited by the inter-

ference received from the other users, that’s because the interference signal produced by

the unintended transmitters can be of power comparable to that of the desired signal.
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2.2 More on the Interference Channel

Figure 2.1: Interference Channel with 3 users, transmitters on the left and receivers on the right. Dotted lines represent
interference whereas plain lines are the desired links

This is the case for example in the downlink of cellular networks when users are located

at the cell edges. Therefore it is very important to find efficient ways to mitigate this

interference.

There are several methods used to mitigate interference in the interference channel :

• Consider interference as noise [49–51] : This solution works when the desired

signal power is greater than the aggregated interference. In [51] this assumption

was used in order to obtain tractable inner bound of the capacity region of the

IC.

• Decode the interference first [40] : This can be applied when the interference

power is stronger than the signal power. It becomes more and more impractical

when the number of user increases.

• Use orthogonalisation across time (TDMA), frequency (FDMA) or code (CDMA)

[52] : That’s the most commonly used method however the drawback is that the

available resource per user decreases when more users join the network.

• Code over the interference (Dirty paper coding) [53] : This technique requires

knowledge of the other user data in a non causal way which makes it more suited

for use in the broadcast channel model.
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2.3 Interference Alignment

Recently IA was added to this list as a new method to mitigate the interference in

wireless networks. This happened when Jafar and Shamai in [9] showed that by doing

some smart precoding it was possible to achieve the Degree-Of-Freedom (DoF) of the

MIMO X channel. The DoF being defined as the pre-log factor in the expression of the

sum-Rate of the network which can also be expressed as

DoF = lim
ρ→∞

RΣ(ρ)

log(ρ)
(2.2)

Where ρ represents the Signal-to-Noise Ratio (SNR) and RΣ is the sum-rate of the

network.

2.3 Interference Alignment

Interference Alignment is a linear precoding technique, it is implemented in the K-user

interference channel by designing precoding matrices at the transmitters and decoding

matrices at the receivers which are able to confine the interference at each receiver

in a reduced dimension space and keep the desired signals in a space orthogonal to

the interference space. The principles of IA were introduced in [9, 54] and further

developed in [10] where the authors considered a K-user frequency selective or time

varying interference channel with global channel state information (CSI) - Knowledge

of the channel matrices at every node of the network. With this setting they have

shown that using interference alignment would enable each user to access half of the

total available resource (time or frequency) at high SNR regardless of the number of user

in the network. This approach was thus called the half the cake approach in analogy to

a way of slicing a cake such that everyone could get half of it regardless of the number

of people. This is in sharp contrast with the orthogonalisation techniques where the

total available resource is divided equally amongst the different users, meaning that

they all get 1
K

of the total resource if K is the total number of user.

The principle of interference alignment is illustrated on the figure 2.2 and 2.3 where it

is shown how by aligning the interference on the same time slot, the users manage to
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TX1

TX2

TX3

RX1

RX2

RX3

Figure 2.2: Illustration of the TDMA transmission scheme where every user transmits its signal at a given time slot that
does not overlap with the other user’s time slots.

recover the desired information free from interference using only 2 time slots instead

of 3 as is the case in a TDMA system. In this toy example the trick is that the signal

travels faster on the direct links by one time slot compared to the cross-links.

Even though interference alignment can be applied using time or frequency diversity, it

is limited by the assumption about full channel knowledge especially in the case of time

varying channels where it’s impractical to know the channel coefficients in advance or

instantly at all transmitting and receiving nodes. Because of this, a lot of research has

been produced on IA in the K-user MIMO interference channel with constant channel

coefficients over time [23, 55, 56]. In this case, IA is implemented using the spatial

dimensions offered by MIMO systems.

The aim of interference Alignment when using spatial dimensions is the same -

confine the interference in a reduced dimension space and transmit the desired signal

into a space orthogonal to the interference space (Figure 2.4).

The drawback is that with only finite spatial dimensions it’s been shown [57] that the

total DoF achievable by the network is at most 2
K

which is far from the 1
2

initially

promised by IA.

A mathematical definition of IA will given below. But first, let’s take a look at the
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TX1

TX2

TX3

RX1

RX2

RX3

Figure 2.3: Illustration of the Interference Alignment scheme where the interference are aligned at the receivers so that
only 2 times slots are needed instead of 3.

Figure 2.4: Illustration of IA in a 3-dimension space
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expression (2.1) of the signal received by the kth user of the network.

yk = Hk,kxk︸ ︷︷ ︸
Desired signal

+
K∑
i=1,
i6=k

Hk,ixi

︸ ︷︷ ︸
Interference

+ ηk︸︷︷︸
Noise

Each receiver wants to get rid of the interference term and keep only the desired signal,

therefore with the knowledge of the channel matrices Hi,j ∀(i, j) the users will generate

precoders Vk to separate the desired signal and the interference into orthogonal vector

spaces at every receiver and will also generate interference cancelling matrices Uk that

will be applied at each receiver to suppress the interference and leave the desired signal

interference free.

The matrices Vk and Uk are defined after the following conditions :{
rank(UkHk,kVk) = dk

UkHk,jVj = 0 ∀(k, j)
(2.3)

Where dk is the number of streams that the kth user wants to transmit.

The conditions above are not always achievable, therefore there’s been a large body of

literature dealing with the feasibility conditions of interference alignment [23–25].

2.4 Interference Alignment with Imperfect CSI

The IA method presented so far involved only perfect channel knowledge at all the

nodes of the network, however in a practical scenario the channel state will have to

be estimated and therefore will be imperfect. Different kinds of phenomena influence

the quality of the CSI, from mobility to rain. Even with high estimation accuracy, the

CSI becomes naturally outdated because of slow variations of the channel. Moreover,

assuming that the CSI is known globally implies that some information has to be fed

back between the nodes of the network and will cause some quatization error and

overhead [19]. Motivated by this, some algorithms have been designed in [11, 58] to
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2.4 Interference Alignment with Imperfect CSI

Figure 2.5: Illustration of imperfect IA in a 3-dimension space

perform Interference Alignment with local knowledge only. But these algorithms require

channel reciprocity between the transmitters and the receivers which is not always

guaranteed in practice.

If imperfect CSI is considered, then the interference created at each receiver will not be

perfectly aligned and some of the interference power will end up in the desired signal

space and corrupt the desired message, in the same way some of the desired signal power

will leak into the interference vector space and will be cancelled out by the interference

cancelling matrix (Figure 2.5). It’s been shown in [18, 19] how the average sum-rate

of the network is affected by the channel estimation error, the performance of IA with

imperfect CSI in the Interference Broadcast channel has also been investigated in [20]

where an IA algorithm robust to CSI uncertainty is provided.
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2.5 Physical Layer Security

At the early age of communication security, secret keys known only to the transmitter

and receiver were the only way to ensure confidentiality. For example, the Vernam’s

one-time pad cipher [59] is an excellent illustration of this, where the message being

transmitted is XORed with a random key of the same length.

The mathematical foundations for modern information-theoretical security were laid

by Shannon [60] in 1949. In his work, was considered a model where a secret key is

used only once to encrypt the message. The notion of perfect secrecy was introduced

to say that the cryptogram generated by encrypting the message with the secret key

does not provide any information about the original message. This implies that the a

posteriori probability of the transmitted message computed at the eavesdropper using

the received signal is equal to its a priori probability. Intuitively this means that from

an eavesdropper point of view, receiving the cryptogram and trying to recover the

original message based on that, is equivalent to guessing it at random from the same

distribution as the source. It also implies [61, 62] perfect secrecy is achievable if the

secret key has at least as much entropy as the message to be encrypted.

Physical layer security has really taken momentum after the work of Wyner [63] in 1975,

where the degraded wire-tap channel model was introduced. In this model shown on

figure 2.6, a message S is generated by a random source then encoded into a signal X by

the transmitter, that signal is sent through a channel where it’s degraded and received

by the receiver as Y , then Y is further degraded passing through a wire-tap channel

to the eavesdropper and received as Z by the latter. This model has been further

developed by Carleial and Hellman in [64, 65]. Wyner’s objective was to maximise the

transmission rate to the receiver whilst minimising the amount of information leaked

to the eavesdropper. However, the definition of security used by Wyner is weaker

than the perfect secrecy introduced by Shannon. For a single message S uniformly

distributed over {1, · · · , 2nR} (where R is the transmission rate) that the transmitter

wants to send, Wyner’s secrecy requires that ∀ε > 0, Re− ε ≤ 1
n
H(S|Zn). Where Re is

the equivocation rate or the uncertainty of the wire-tapper on the message S and H()̇

represents the entropy function.

PLS can be subdivided into two main area of research. The first is secret key generation
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2.5 Physical Layer Security

Figure 2.6: The wire-tap channel introduced by Wyner

based on the channel variations and the second consists in using directly the channel

properties to hide the transmitted message.

2.5.1 Secret key generation

Secret key generation dates back to Maurer, Ahlswede and Csiszar [66, 67] in 1993.

The strategy is to use the variations of the channel between a transmitter and the

intended receiver to generate a secret key that will later on be used to encrypt their

transmissions. The main advantage of this technique is that a positive secrecy rate can

be achieved even when the main channel to the intended receiver is of worst quality

than that of the eavesdropper.

The figure 2.7 shows how the signal received at two different receivers experience

different channel conditions. The secret key generation method consists in taking ad-

vantage of the difference in the channel condition to generate an encryption key that

will be unique to a communication pair.

However, the quality of the keys being generated depends on multiple factors such as

the channel variability, the correlation of the channel to the intended receiver with that

of the eavesdropper [68–72] and channel reciprocity [73,74].
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2.5 Physical Layer Security

Figure 2.7: Signal taking different path form the transmitter to the intended receiver and eavesdropper

2.5.2 Channel based secrecy

This second category of PLS techniques will be considered in this dissertation to improve

secrecy in IoT networks. The fundamental principle is to arrange for the intended

receiver to achieve a better channel than the eavesdropper. This strategy comes from

the result published in [65] which states that for a degraded wire-tap channel with

additive Gaussian noise, the secrecy capacity CS is given by

CS = CU − CE (2.4)

Where CU denotes the capacity of the channel to the intended receiver and CE repre-

sents the capacity of the channel to the eavesdropper. Therefore, in order to increase

the secrecy capacity one must increase the channel capacity of the main channel rela-

tively to that of the eavesdropper’s channel.

The principal method to achieve this objective is to somehow modify the SINR expe-

rienced at both receivers. Several techniques have been developed for that purpose:

• Jamming the eavesdroppers with artificially generated noise (AN). This method

was introduced by Goel and Negi in [75,76].

• Employing directional antennas to limit the signal received by the eavesdroppers

[77–79].

33



2.5 Physical Layer Security

• Using beamforming and AN conjointly to increase the SINR at the intended

receiver while decreasing it at the eavesdropper [80–83].

The techniques listed above can also be used with other methods such as Interference

alignment in the case of artificial noise alignment [84–87].

For a more detailed literature on PLS the reader is referred to the survey paper [88]

and the references therein.
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Chapter 3

IA with Bounded CSI Error

3.1 Introduction

One major setback for the application of IA in a practical scenario is the need for perfect

global channel state information (CSI) at each transmitter.1 Motivated by this, [11,58]

designed algorithms to perform IA given only local CSI while [18, 19, 89, 90] took into

account the errors due to channel estimation and feedback. For example, [19] presented

the average achievable rate under a given measurement error power, and [18] established

bounds on the average achievable rate with Gaussian CSI errors. Although the results

in [18,19] are indicative, the average rates are operationally unachievable.

In contrast to the previous work, I will derive in this chapter an achievable capacity

lower bound for IA with imperfect CSI under the model that the CSI errors are bounded.

My result reveals several properties that provide guidance in the design of interference

networks, and is applicable to any perfect IA methods operating on the imperfect

CSI [24, 25]. For example, the case where the Least Square (LS) channel estimation

method [91] is used to obtain the CSI will be considered.

1Every transmitter needs to possess the CSI for every link in the entire interference network,
including those not linking to the transmitter.
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3.2 The system Model

Consider an interference channel with K pairs of transmitters and receivers. Each

pair is regarded as a user. It is assumed that user i has mi transmit antennas and

ni receive antennas. Every transmitter is assumed to possess the estimated channel

matrices between transmitter j to receiver i, Ĥi,j, for all i, j. As in [24, 25], consider

that perfect IA is adopted based on the estimated CSI, {Ĥi,j}, that permits the ith

user to transmit di data streams. This means that for each user i, the perfect precoder

Vi and interference cancelling matrix Ui are provided so that to perform IA over all

Ĥi,j.

In reality, the estimated channels are imperfect and the real channels, Hi,j, can be

written as

Hi,j = Ĥi,j + ∆Hi,j, (3.1)

where ∆Hi,j denotes the channel measurement errors. In this model the errors are

considered bounded [92] such that

δ2
i,j = max

k
‖(∆Hi,j)k‖2

2, for some given δi,j ≥ 0, (3.2)

where (∆Hi,j)k denotes the kth row of ∆Hi,j.

The received signals in vector form at user i are given by

yi = Hi,iVixi + H−iV−ix−i + ηi, (3.3)

where H−i , [Hi,1 · · ·Hi,i−1 Hi,i+1 · · ·Hi,K ],

V−i ,



V1 0 · · · · · · 0

0
. . .

...
...

0 Vi−1 0 · · ·
· · · 0 Vi+1 0

...
...

. . . 0

0 · · · · · · 0 VK


, (3.4)
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x−i , [xT1 · · ·xTi−1 xTi+1 · · ·xTK ]T in which xj is the transmitted data stream vector by

user j and ηi denotes the additive zero-mean N0-variance Gaussian noise vector at user

i.

For convenience, all users are assumed to have the same average power constraint,

E(‖xi‖2
2) =

∑di
k=1 E(|(xi)k|2) ≤ E where E(·) returns the expectation of the input

random entity.

3.3 Definition and derivation of new metrics

This section will carry out the study of the model defined above with the purpose of

defining new and insightful metrics to analyse the performance of IA in the bounded

CSI case.

3.3.1 Capacity Lower Bound

The first important metric that will be derived is the capacity lower bound of any

stream of a given user i in the IA model with imperfect CSI. Ĥ−i is defined similarly

to H−i but for the estimated CSI matrix and ∆H−i for the CSI error matrix, excluding

the direct channel for user i. Hence, H−i = Ĥ−i + ∆H−i.

Accordingly, the signal model, (3.3) becomes

yi = Ĥi,iVixi + Ĥ−iV−ix−i + ∆Hi,iVixi + ∆H−iV−ix−i + ηi. (3.5)

Applying the interference canceling matrix on (3.5) gives

U∗iyi = U∗i Ĥi,iVixi︸ ︷︷ ︸
Desired Signal

+ U∗i Ĥ−iV−ix−i︸ ︷︷ ︸
=0

+ U∗i∆Hi,iVixi + U∗i∆H−iV−ix−i︸ ︷︷ ︸
Interference

+ U∗iηi︸ ︷︷ ︸
Noise

.

(3.6)

Being able to bound the powers of the different terms in the expression above will help

to derive the capacity lower bound.

First, focus on the interference caused by other users at the ith receiver. The matrix

∆H−iV−i is responsible for that interference. In the general case, span(∆H−iV−i)
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overlaps with the space designed for the desired signal and also that designed for the

interference signal meaning that

∆H−iV−i = U∗i∆H−iV−i︸ ︷︷ ︸
span ⊂ desired space

+ (I−U∗i )∆H−iV−i︸ ︷︷ ︸
span ⊂ interference space

. (3.7)

The worst case arises if all the interference goes to the signal space, i.e., ∆H−iV−i =

U∗i∆H−iV−i. Thus, the interference power caused by other users can be upper bounded

by

Ii ≤ E
(
‖∆H−iV−ix−i‖2

2

)
, (3.8)

where the expectation is taken over the data stream x−i.

Proposition 1. The upper bound for the received interference power caused by other

users at user i is given by:

Ii ≤ niδ
2
maxD(K − 1)E , (3.9)

where D , maxi
∑K

k=1
k 6=i

dk and δmax , maxi,j δi,j.

Proof. Let ∆h̃1 denote the first column of ∆H−iV−i and v
(1)
1 be the first column of

V1. Then we have

∆h̃1 =


(∆Hi,1)1v

(1)
1

(∆Hi,1)2v
(1)
1

...

 . (3.10)

Clearly,

|(∆Hi,1)kv
(1)
1 |2 ≤ ‖(∆Hi,1)k‖2

2︸ ︷︷ ︸
≤δ2

i,1

‖v(1)
1 ‖2

2︸ ︷︷ ︸
≤1

≤ δ2
i,1 ≤ δ2

max. (3.11)

As a result, we get ‖∆h̃k‖2
2 ≤ niδ

2
max because the same upper bound is valid for any

column (say kth column) of ∆H−iV−i.

Furthermore, we can write

∆H−iV−ix−i =
∑
j

(x−i)j∆h̃j. (3.12)
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Now consider ∥∥∥∥∑
j

(x−i)j∆h̃j

∥∥∥∥
2

≤
∑
j

|(x−i)j|‖∆h̃j‖2,

≤
√
niδmax

∑
j

|(x−i)j|. (3.13)

Note that
∑

j |(x−i)j| = ‖x−i‖1 and since ‖a‖1 ≤
√
N‖a‖2 (with N being the length of

vector a), we have

E
(
‖∆H−iV−ix−i‖2

2

)
≤ niδ

2
maxDE(‖x−i‖2

2),

≤ niδ
2
maxD(K − 1)E , (3.14)

which completes the proof.

Next, consider the effects of the uncertainty on the kth stream of the ith user when

the transmit power is E
(i)
k . Denote v

(i)
k and u

(i)
k as the kth column of Vi and Ui,

respectively. The signal component of the kth stream of user i is√
E

(i)
k Hi,iv

(i)
k =

√
E

(i)
k Ĥi,iv

(i)
k +

√
E

(i)
k ∆Hi,iv

(i)
k . (3.15)

The worst case occurs if ∆Hi,iv
(i)
k is orthogonal to Hi,iv

(i)
k . In this case, the signal

power in the kth stream at user i is

P
(i)
k = |

√
E

(i)
k u

(i)∗
k Ĥi,iv

(i)
k |

2 − |
√
E

(i)
k u

(i)∗
k ∆Hi,iv

(i)
k |

2. (3.16)

Also, |
√
E

(i)
k u

(i)∗
k ∆Hi,iv

(i)
k |2 ≤ niδ

2
maxE

(i)
k . Define σ

(i)
k , u

(i)∗
k Ĥi,iv

(i)
k . Therefore, we

have

P
(i)
k ≥

(
(σ

(i)
k )2 − niδ2

max

)
E

(i)
k , (3.17)

Where it’s assumed that (σ
(i)
k )2 ≥ niδ

2
max. This means that the contribution of the error

in the channel estimates is less than that of the actual channels.

Proposition 2. The inter-stream interference power on the kth stream of user i is
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upper bounded by

S(i)
k ≤ niδ

2
max(E − E(i)

k ). (3.18)

Proof. Let V
(−k)
i be the precoding matrix Vi excluding the kth column and x

(−k)
i be the

data vector xi excluding the kth stream of the ith user. Then the worst case happens

if all the power lost by other streams creates interference. That is,

S(i)
k = ‖∆Hi,iV

(−k)
i x

(−k)
i ‖2

2 =

ni∑
l=1

|(∆Hi,i)lV
(−k)
i x

(−k)
i |2, (3.19)

which can be upper bounded by

S(i)
k ≤

ni∑
l=1

‖(∆Hi,i)l‖2
2‖V

(−k)
i x

(−k)
i ‖2

2 (3.20)

≤ niδ
2
i,i‖V

(−k)
i x

(−k)
i ‖2

2 (3.21)

= niδ
2
i,i‖x

(−k)
i ‖2

2 (3.22)

≤ niδ
2
max‖x

(−k)
i ‖2

2 = niδ
2
max(E − E(i)

k ), (3.23)

which is the desired result and the proof is completed.

Theorem 1. A capacity lower bound for the kth stream of the ith user is given by

C
(i)
k ≥ log2

1 +

(
(σ

(i)
k )2 − niδ2

max

)
E

(i)
k

N0 + niδ2
max

(
(D(K − 1) + 1)E − E(i)

k

)
 . (3.24)

Proof. Using (3.9), (3.17) and (3.18) gives the result.

Corollary 1. If each user has only one stream, the capacity lower bound in (3.24)

becomes

Ci(ρ) = log2

(
1 +

(σ2
i − niδ2

max)ρ

1 + niδ2
max(K − 1)2ρ

)
, (3.25)

where ρ , E
N0

and σ
(i)
k in (3.24) is replaced by σi.

Proof. In this case, (3.18) is not used and D = K − 1.
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Figure 3.1: The capacity lower bound in the single-stream case.

3.3.2 Saturating SNR and mDoF

In Fig. 3.1, the capacity lower bound Ci is plotted for the cases δ2
max = 0 and δ2

max =

0.001 assuming that σi = 1. A saturation point in SNR can be seen and one can observe

that after this point any further increase in SNR will not lead to a useful increase in

the achievable rate due to the CSI errors. This point is referred to as the saturating

SNR and will be studied in the following paragraphs.

Theorem 2. The saturating SNR, ρs, is given by

ρs =
1

σ2
i

+
1− niδ

2
max

σ2
i

niδ2
max(K − 1)2

(a)
' 1

σ2
i

+
1

niδ2
max(K − 1)2

, (3.26)
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where (a) is due to the fact that typically niδ
2
max � σ2

i .

Proof. Let A = σ2
i − niδ2

max and B = niδ
2
max(K − 1)2. Hence, we have Ci(ρ) = log2(1 +

Aρ
1+Bρ

). Further, define the SNR in dB as ρdB = 10 log10 ρ. When δmax = 0 and at high

SNR, the capacity lower bound becomes

Ci(ρdB)|δmax=0 ' log2(σ2
i 10

ρdB
10 )

= log2 σ
2
i +

log2 10

10
ρdB. (3.27)

The saturating SNR occurs when

Ci(ρs,dB)|δmax=0 = Ci(∞)|δmax 6=0 , (3.28)

which implies that

log2 σ
2
i +

log2 10

10
ρs,dB

(a)
= log2(1 +

A

B
)

ρs,dB = 10 log10(
1

σ2
i

+
A

Bσ2
i

),

where (a) is due to high SNR approximation and (3.27). The desired result in the linear

scale is immediately obtained.

Corollary 2. At ρ = ρs, if niδ
2
max � σ2

i , the capacity lower bound is within 1bps/Hz

of the rate without CSI errors, i.e.,

G(ρs) = Ci(ρs)|δmax=0 − Ci(ρs)|δmax 6=0 ≤ 1bps/Hz. (3.29)
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Proof. At the saturating SNR,

G(ρs)
(a)
= log2

(
1 + σ2

i ρs
)
− log2

(
1 +

Aρs
1 +Bρs

)
,

(b)
= log2

(
2 +

A

B

)
− log2

(
1 +

A
σ2
i
(1 + A

B
)

1 + B
σ2
i

+ A
σ2
i

)
,

= log2

(
2 +

A

B

)
− log2

(
1 +

1 + A
B

σ2
i

A
+ B

A
+ 1

)
, (3.30)

where (b) uses ρs = 1
σ2
i

(
1 + A

B

)
due to (3.26). Now, consider

A

σ2
i

' 1, as niδ
2
max � σ2

i . (3.31)

Substituting this result back into (3.30) gives

G(ρs) ' log2

(
2 +

A

B

)
− log2

(
1 +

1 + A
B

2 + B
A

)
︸ ︷︷ ︸

∈[log2( 9
5

),1] for A
B
∈[0,+∞)

(3.32)

Therefore, G(ρs) ≤ 1 and we complete the proof.

In Fig. 3.1, we can see that IA with no CSI errors achieves the same rate of the

capacity lower bound if δmax = 0. In other words, the capacity lower bound is tight

and that the saturating SNR, ρs, tells exactly where the capacity of IA can be achieved

within one bit in the presence of CSI errors.

Corollary 3. The rate ceiling for Ci is given by

lim
ρ→∞

Ci(ρ) = log2(σ2
i ρs). (3.33)

Proof. Taking the limit for Ci(ρ) gives the result.

Corollary 4. At high SNR (≥ ρs), the gap between the rate achievable by IA with no
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CSI errors and the capacity lower bound can be approximated by

G(ρ) ≈ log2 ρ− log2 ρs. (3.34)

Proof. This result can be shown by

G(ρ)
(a)
= Ci(ρ)|δmax=0 − lim

ρ→∞
Ci(ρ)

∣∣
δmax 6=0

,

(b)
= log2

(
σ2
i ρ
)
− log2

(
σ2
i ρs
)
, (3.35)

where (b) uses the high SNR approximation and the result in Corollary 3 to reach the

desired result.

Conventionally, the DoF is defined as [12]

DoF = lim
ρ→∞

CΣ(ρ)

log10 ρ
. (3.36)

This metric represents the total number of streams achievable by the network but it is

only defined at infinite SNR and will be zero with CSI errors. Thus a different metric

is defined here, called the modified DoF (mDoF), it is more meaningful in the case of

CSI errors and is defined as a function of SNR. The mDoF for user i is defined as

mDoFi(ρ) =
Ci(ρ)

min{mi, ni} × log2(1 + α2
i ρ)

, (3.37)

where αi is the maximum singular value of Hi,i. This quantity is the ratio of the

capacity lower bound Ci derived here and the capacity upper bound for a single-user

multiple-input multiple-output (MIMO) channel with the same direct channel Hi,i with

no CSI errors. It is defined for any SNR value and characterises the performance of a

given user in comparison to the case where this user sees no incoming interference. In

a sense the mDoF can be regarded as a lower bound for the DoF when the SNR goes

to infinity. Based on this definition, clearly, if δmax 6= 0, then

lim
ρ→∞

mDoFi(ρ) = 0. (3.38)
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3.4 Effects of LS channel estimation

That is, with CSI errors, all DoF is lost at high SNR, as is expected because of the

inevitable interference. A network centric metric representing the network mDoF can

be defined as, mDoF(ρ) =
∑
∀i mDoFi(ρ) as for the DoF.

3.3.3 Simulation Results

In this section, the capacity lower bound (3.25) is compared to the capacity IA achieves

without CSI errors in the 3-user case with mi = 3, ni = 2, di = 1, and δi = δmax ∀i. In

the simulations, all the matrices (including the CSI errors) have random entries drawn

from a complex Gaussian distribution with zero mean and unit variance, but the error

matrices are normalised to fulfil the δ2
i constraint on their norm.

Fig. 3.2shows the achievable rate results including the capacity lower bounds with

δmax = 0 and δ2
max = 10−3, the rates achievable by IA with perfect CSI and that by

IA with 500 different CSI error realisations. As pointed out earlier, the capacity lower

bound stays very close to the rate of IA with perfect CSI initially but they depart as

SNR keeps increasing. Also, the actual achievable rate of IA with CSI errors can go

anywhere between the bound and the perfect CSI case.

Fig. 3.3 shows the results for the mDoF for a given user of the channel under the cases

δ2
max = 0 and δ2

max = 10−3. Again, the mDoF of the perfect CSI case and that based on

the bound, provide a region within which the actual IA with CSI errors achieve. Also,

as expected the mDoF approaches 0 at high SNR which is the DoF.

3.4 Effects of LS channel estimation

This section deals with the application of the previous results to the case where the CSI

is obtained through the use of the LS estimation method. The influence of the different

parameters of the model such as the number of antennas, the length and power of the

training signals in the performance of IA will be made more obvious. A single stream

per user is assumed throughout.

On the figure 3.4 the system model is shown, one important information in this repre-

sentation is that the same CSI is available to all the nodes of the network.
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Figure 3.2: Achievable rates for δ2
max = 0 and 10−3.

3.4.1 LS channel estimation

Assume that during the channel acquisition phase, there is no interference. That is, for

a user (say k), the signal at the receiver can be written as

yCE
i,k = Hk,ix

CE
i + ηCE

k , (3.39)

where yCE
i,k denotes the symbol received at the kth receiver from the ith transmitter,

and the superscript “CE” specifies the respective parameters in the channel estimation

phase.

Hk,i is estimated following the process given in [91]. Consider transmitting L ≥
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mi training signal vectors, p1
i , . . . ,p

L
i from the ith transmitter. The collection of the

received symbols at the kth receiver from the ith transmitter is given by

YCE
i,k = Hk,iPi + Nk, (3.40)

where Pi = [p1
i , . . . ,p

L
i ] and Nk is the matrix of size nk×L containing the noise vectors

ηCE
k for each transmission. The power constraint during the estimation phase is defined

as E{‖pji‖2
2} = Ee,∀(i, j).

It’s assumed that there is no error in feeding back the channel knowledge to all

the users [19]. In the next section, the uncertainty δ2
max will be referred to as δ2 for

simplicity, and will be linked to the error of the LS channel estimation method.
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Figure 3.4: The interference channel with K pairs of transmitters and receivers. The channels Hi,j are estimated with

a training SNR of ρt and the channel estimates Ĥi,j are fed back to all the users to compute the precoders Vk and the
combiners Uk. The transmitted symbols at the ith transmitter are denoted as si, while s̃i are their estimates at the ith
receiver.
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3.4.2 δ2 with LS channel estimation

For notational convenience, all the subscripts and superscripts are dropped in this

section since the method is the same for all users and channels. With the knowledge of

YCE and P, the channel matrix H can be estimated using the LS method by

Ĥ = YP∗(PP∗)−1. (3.41)

The goal is to find P such that

min
P

E
{
‖H− ĤLS‖2

F

}
subject to ‖P‖2

F = LEe. (3.42)

It is shown in [91] that under optimal training,

min
P

E
{
‖H− ĤLS‖2

F

}
=
N0m

2n

LEe
. (3.43)

Now, recalling that ∆H = H− ĤLS, the follow upper bound is obtained

δ2 = max
i
‖(∆H)i‖2

2 ≤ ‖H− ĤLS‖2
F, (3.44)

and then

min
P

E{δ2} ≤ min
P

E
{
‖H− ĤLS‖2

F

}
=
N0m

2n

LEe
=
m2n

Lρt
, (3.45)

where the training SNR is given by definition as ρt , Ee
N0

.

3.4.3 Capacity lower bound and saturating SNR

Now that the relationship between the channel estimation method and the uncertainty

on the channel estimates is characterised, this section will be focused on studying the

effects of the parameters used during the estimation phase on the capacity lower bound.

Even though, the expression obtained in (3.45) provides an upper bound on the average

uncertainty yielded by the LS method, It will be used as the actual expression for the
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uncertainty. This means

δ2 ,
m2n

Lρt
. (3.46)

With this definition, the parameters of the estimation phase are obvious and the trend

of the different metrics considered remain the same. For example, with this definition

of δ2, equation (3.25) becomes

C(ρ) = log2

(
1 +

(σ2 − n2m2

Lρt
)ρ

1 + n2m2(K−1)2ρ
Lρt

)
. (3.47)

If the ratio between the transmit SNR and the training SNR is constant, say ρ
ρt

= µ,

then then the expression above can be rewritten as

Cµ(ρ) = log2

(
1 +

σ2ρ− n2m2µ
L

1 + n2m2(K−1)2µ
L

)
. (3.48)

Sometimes it would be useful to express the training SNR in the form of ρt = ρα.

In this case, the same expression becomes

Cα(ρ) = log2

(
1 +

σ2ρ− n2m2(ρ)1−α

L

1 + n2m2(K−1)2(ρ)1−α

L

)
. (3.49)

The analysis in section 3.3.2 showed that, up to the saturating SNR, the capacity of

IA with channel uncertainty is within 1bps/Hz of that of the perfect CSI case. Keeping

that in mind, one may want to set a desired saturating SNR that enables to reach a

certain rate and then find the training SNR that corresponds to it. To this purpose,

use equation (3.26) given by

ρs =
1

σ2
+

1− nδ2

σ2

nδ2(K − 1)2
. (3.50)

This allows to write the training SNR as a function of the saturating SNR by replacing
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δ2 by its expression,

ρt =

[(
ρs −

1

σ2

)
(K − 1)2 +

1

σ2

]
m2n2

L
. (3.51)

If 1
σ2 is negligible against ρs (i.e., the channel fading is not too bad), then (3.51) becomes

ρt = ρs(K − 1)2m
2n2

L
. (3.52)

On this last equation, it is obvious that the saturating SNR is directly proportional to

the training SNR, which means that the two quantities will vary at the same time and in

the same way. Moreover, the more antennas and users there are, the higher the training

SNR or training time (L) needs to be in order to maintain the same performance. In

other words, if one were to increase the number of users, they would also need to acquire

the CSI with a better accuracy.

3.4.4 mDoF with LS estimation

In this section aim is to investigate the behaviour of the system at high SNR using the

mDoF. First of all, let’s recall the definition of the DoF of a user

η , lim
ρ→∞

Cuser(ρ)

log2 ρ
, (3.53)

where Cuser is the capacity expression for the user against the SNR ρ. In the perfect

CSI case with IA, this expression becomes

η = lim
ρ→∞

log2(1 + σ2ρ)

log2 ρ
= 1. (3.54)

Now in the imperfect CSI case and using the mDoF, the lower bound of the DoF is

defined as

η , lim
ρ→∞

mDoF(ρ) = lim
ρ→∞

C(ρ)

log2 ρ
. (3.55)
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In itself, η only provides information on the slope of the capacity when the SNR is high,

but no information is given on the performance gap between the capacity in the perfect

CSI and ICSI case. Therefore, it becomes difficult to assess the actual impact of ICSI.

To obtain more information about that, a new quantity γ is defined that represents the

gap between the capacity in the perfect CSI case and the capacity lower bound. It’s

given as

γ , log2(1 + σ2ρ)− C(ρ). (3.56)

This value γ is also the upper bound of the difference between the capacity in the perfect

CSI case and the capacity achievable with erroneous CSI. It can also characterise the

system at all SNR while η is an asymptotic performance metric. However, here the

focus will mostly be on its behaviour at infinite SNR since it provides supplementary

information over the DoF lower bound η.

Let’s examine η in the case where the training SNR is a fixed value. In this case, it is

easily shown that

η = lim
ρ→∞

log2

(
1 +

(σ2−n
2m2

Lρt
)ρ

1+
n2m2(K−1)2ρ

Lρt

)
log2 ρ

= 0. (3.57)

This shows that in this case, the DoF vanishes and the capacity of a user may no longer

be proportional to the transmit SNR. The gap at infinite SNR is γ∞ =∞.

Now, consider the case where ρt and ρ are proportional, or µ is some positive

constant. As a consequence,

η = lim
ρ→∞

Cµ(ρ)

log2(ρ)
= 1. (3.58)

Thus, the DoF is equal to one, meaning that even if the CSI is not perfect one can still

achieve the full DoF of the network. What is important to note here is that there is

no saturating SNR in this case. Note that this result is similar to that in [93] but the

main difference is that here the lower bound is used in the analysis and not the average

value of the rate.

Even if η = η in this case, there is a constant gap between the capacity in the perfect

CSI case and that of the imperfect CSI case. At high SNR, this gap is upper bounded
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by

γ∞µ = lim
ρ→∞

(
log2(1 + σ2ρ)− Cµρ

)
(3.59)

= log2

(
1 +

n2m2(K − 1)2µ

L

)
. (3.60)

This means that the capacity with imperfect CSI at high SNR is within γ∞µ bps/Hz of

the capacity in the perfect CSI case.

In addition, if ρt = ρα, the DoF lower bound is given by

η = lim
ρ→∞

Cα(ρ)

log2 ρ
. (3.61)

There are two different behaviours depending on the value of α, which can be seen by

η =

{
α for 0 < α < 1,

1 for 1 ≤ α.
(3.62)

Remark that as in [93] we find that fractional numbers of DoF can be achieved.

Let’s have a look at the behaviour of the gap for different values of α. Note that

γ∞α = lim
ρ→∞

(
log2(1 + σ2ρ)− Cα(ρ)

)
. (3.63)

It can be easily shown that

γ∞α =


∞ for 0 < α < 1,

log2

(
1 + n2m2(K−1)2

L

)
for α = 1,

0 for 1 < α.

(3.64)

Note that the case α = 1 is the same as if ρt is proportional to ρ with µ = 1. The

case α > 1 is interesting because the capacity tends to the capacity in the perfect CSI

scenario. This can be explained by the fact that the interference power caused by the

estimation errors will increase at a much slower pace than the signal power.
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3.4.5 Numerical Results

In this section, numerical results are provided to show the behaviour of the capacity

lower bound for various ρt, µ and α with m = 2, n = 2, L = 2, K = 3 and σ2 = 1.
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Figure 3.5: Capacity lower bound against SNR for various training SNR ρt. The saturating SNR ρs is also shown if
ρt = 40dB.

Fig. 3.5, shows the evolution of the capacity lower bound when the training SNR ρt

is increased. For comparison, the capacity in the perfect CSI case is also added to the

plot. One can see that when ρt increases, the lower bound stays close to the perfect CSI

case for a wider range of transmit SNR ρ and then the rate saturates. This is consistent

with the increase of the saturating SNR ρs with the training SNR ρt. On that figure,

the saturating SNR is also indicated for the case ρt = 40.
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Fig. 3.6 shows that when the training SNR ρt is proportional to the transmit SNR ρ

then the capacity lower bound shows no sign of saturation and increases linearly with

the transmit SNR. The gap between the capacity with perfect CSI and the lower bound

with corrupted CSI depends on the value for µ and also the numbers of users and

antennas as given by (3.60).

3.5 Conclusion

In this chapter, a capacity lower bound is derived for the MIMO interference channel

using IA in the presence of bounded CSI errors, a new metric called saturating SNR
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is introduced to measure the performance of IA given the CSI quality. It’s shown that

the performance of IA with CSI errors is within 1bps/Hz of the perfect case for a range

of SNR less than the saturating SNR. Following this, the special case where the CSI is

acquired using LS estimation is investigated. It’s also revealed how the capacity lower

bound for each user varies according to the system parameters such as the training

signal-to-noise ratio. It’s shown that the gap between the performance in the perfect

CSI case and the imperfect CSI case is constant when the transmit SNR, is proportional

to the training SNR. In addition, the saturating SNR is derived as a function of the

training SNR. An interesting result is that one can achieve the full DoF with imperfect

CSI and also get very close the capacity of the perfect CSI case using IA. However, it’s

shown that asymptotically perfect CSI does not guarantee that the capacity achievable

at infinite SNR is the same as the capacity achievable in the perfect CSI case.
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Chapter 4

Distribution of the Capacity with

Gaussian CSI error

4.1 Introduction

In the previous chapter, I have studied the performance of IA in the IC when the CSI of

all the channels is affected by some bounded error. In practice, the CSI of the crosstalk

channels is likely to be far from perfect, although the CSI of the direct links may be

estimated rather accurately. Moreover, the error affecting the channel estimates may

follow some probability distribution. For these reasons, there is strong desire to char-

acterise the statistics of the achievable performance limit for IA under such practical

scenarios. In this chapter, the main interest is to analyse the performance of the IA

methods designed for global perfect CSI in the presence of CSI uncertainties. My em-

phasis is again on the “achievable” performance, rather than the average performance.1

Note that there exist robust IA techniques exploiting imperfect CSI, e.g., [18,19,89,94]

but in that case, analysing the achievable performance is usually not possible. Further

to chapter 3 which provides the capacity lower bound for IA with CSI errors, this chap-

ter’s aim is to provide a complete statistical characterisation for the achievable rate.

1Achievable performance is the performance that has an operational meaning but average perfor-
mance is only an average indicator for the performance. For example, an average rate is not achievable
because the actual channel rate for a given error instantiation may not meet the average rate.
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4.2 IA with Imperfect Crosstalk CSI

Specifically, the main contribution is the statistical distribution for the rate per stream

achievable by perfect IA based on imperfect CSI. I will also derive metrics such as

outage probability and the saturating signal-to-noise ratio (SNR) that can be useful in

the design of a practical system using perfect IA with imperfect CSI. Two applications

are then presented to demonstrate that the results can be applied to (i) optimise the

number of streams per user in the interference network for maximising the sum-rate,

and (ii) analyse the outage performance of IA in block-fading channels with degrading

CSI over time.

4.2 IA with Imperfect Crosstalk CSI

The system model considered here is theK-user multiple-input multiple-output (MIMO)

interference channel where each user k consists of a transmitter equipped with nk an-

tennas communicating with a receiver equipped with mk antennas. Hence, at a given

time instant, the signal received at the kth user is given by

yk = Hk,kxk +
K∑
`=1
` 6=k

Hk,`x` + ηk, (4.1)

where η` denotes the additive white Gaussian noise (AWGN) vector with elements

distributed as CN (0, σ2
η), Hk,` denotes the deterministic MIMO channel between the

`th transmitter and the kth receiver and x` is the message sent by the `th transmitter

with the power constraint E{‖x`‖2
2} = P0 ∀`.

In practice, IA will operate under imperfect knowledge of the channel state, since

CSI is estimated and will change over time [19]. Although the main channel CSI can

be accurately estimated, the estimation of crosstalk CSI involves other user receivers,

and will be less accurate and updated less frequently. Also, the bound in chapter 3

demonstrates that the uncertainty in the main channel CSI tends to have less effect

on the capacity performance than that in the crosstalk CSI. For this reason, in this

chapter, the scenario where the only main channel CSI is perfect but the crosstalk CSI

is in errors will be considered.
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4.2 IA with Imperfect Crosstalk CSI

The error on the channel knowledge is still modelled as an additive term to the

channel measurement, i.e.,

Hk,` = Ĥk,` + ∆Hk,`, (4.2)

where Ĥk,` represents the measurement or the estimate of the channel matrix and

∆Hk,` is the difference between the real channel and the channel estimate and will be

referred to as the measurement error. It is assumed that each entry of ∆Hk,` is complex

Gaussian distributed as CN (0, σ2
e).

If the uncertainty on the CSI is taken into account, then (4.1) can be rewritten as

yk = Hk,kxk +
K∑
`=1
6̀=k

Ĥk,`x` +
K∑
`=1
` 6=k

∆Hk,`x` + ηk, (4.3)

where I have separated the interference due to the channel estimates and those due to

the measurement errors.

Using the channel estimates to design the IA precoders, the conditions on the precoders

can then be expressed as{
rank(U∗kHk,kVk) = dk, for k = 1, 2, . . . , K,

U∗`Ĥ`,kVk = 0, for all ` 6= k.
(4.4)

Note that the second condition is now on the channel estimates instead of the real

channels because of the measurement errors. The first condition remains the same as

the main channel CSI is assumed to be perfect. I consider that V∗kVk = Idk ∀k, and

that Vk is given by an IA solution that does not take into account the direct links Hk,k

as in [10,95,96].

With these new IA conditions reflecting the practical scenarios, I apply the interference

cancelling matrix to the receive signal and get

U∗kyk = U∗kHk,kVkxk +
K∑
`=1
` 6=k

U∗k∆Hk,`V`x` + U∗kηk. (4.5)
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4.3 Probability Distribution of the Rates

From the above, the term
∑K

`=1
6̀=k

U∗k∆Hk,`V`x` can be identified as being the interference

from the other users to user k due to the imperfect knowledge of the channel.

In the next section, I focus on the effects of this term on the maximum rate achievable

per stream of each user.

4.3 Probability Distribution of the Rates

In this section, I provide the statistical description of the achievable rate per stream

in relation to the distribution of the CSI error. Thus, the focus is on the interference

created by the CSI error on the received signal. I will investigate this interference term

prior to applying the interference cancelling matrix. I denote this term at the kth

receiver by

ik =
K∑
`=1
6̀=k

∆Hk,`V`x`. (4.6)

Let us consider only the jth component of ik given by

(ik)j =
K∑
`=1
` 6=k

(∆Hk,`)jV`x`, (4.7)

where (·)j returns the jth row of the input matrix.

(4.7) can be adapted to compute the instantaneous interference power contained in

the jth component of ik as

|(ik)j|2 =

 K∑
`=1
` 6=k

(∆Hk,`)jV`x`


 K∑

l=1
l 6=k

x∗lV
∗
l (∆Hk,l)

∗
j

 (4.8)

=
K∑
`=1
` 6=k

K∑
l=1
l 6=k

(∆Hk,`)jV`x`x
∗
lV
∗
l (∆Hk,l)

∗
j . (4.9)

I now take the ensemble average of |(ik)j|2 over all possible transmit messages (x1,x2, . . . ,xK)
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4.3 Probability Distribution of the Rates

under the assumption that they can be treated as uncorrelated sources of multivariate

Gaussian random variables with mean 0 and covariance matrix P0Idk , where dk denotes

the number of streams of the kth user. In other words, the transmit messages are

independent and all the users have the same power constraint. That average value will

be denoted Ik,j and can be evaluated as

Ik,j = Ex1,...,xk

[
|(ik)j|2

]
= Ex1...,xk

 K∑
`=1
6̀=k

K∑
l=1
l 6=k

(∆Hk,`)jV`x`x
∗
lV
∗
l (∆Hk,l)

∗
j

 , (4.10)

where the expectation is conditioned on ∆Hk,` ∀(k, `).
The expression above can be further found as

Ik,j = P0

K∑
`=1
` 6=k

(∆Hk,`)jV`V
∗
` (∆Hk,`)

∗
j . (4.11)

The aim is to investigate the distribution of Ik,j but since the summation in the

expression (4.11) contains lots of similar terms, I will focus on only one element, and

for simplicity of notation I drop all the subscripts and we replace any term such as

(∆Hk,`)j by h. Furthermore, let’s define

δ , hVV∗h∗. (4.12)

For this, I denote the number of streams as d, the number of transmit antennas n and

the number of receive antennas m.

The matrix VV∗ is hermitian by definition. Therefore, using the spectral theorem

it can be decomposed into

VV∗ = UDU∗, (4.13)

where U is a unitary matrix and D is a diagonal matrix with real entries. Using the
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4.3 Probability Distribution of the Rates

spectral decomposition of VV∗, I can then rewrite (4.12) as

δ = hUDU∗h∗. (4.14)

Now, if I define

h̃ , U∗h∗, (4.15)

then h̃ has a multivariate complex Gaussian distribution with covariance matrix σ2
eIn,

where σ2
e is the variance of each entry of h. Recalling from (4.14), I now have

δ = h̃∗Dh̃. (4.16)

Obviously, δ is random because of the random CSI uncertainties and if I consider this

as a random variable ∆, then the structure in (4.16) illustrates that ∆ is drawn from a

generalised Chi-square distribution [97]. In the following section, the aim is to determine

precisely the parameters of that distribution.

4.3.1 DoF of the χ2 Distribution

I will now focus on the matrix D as this matrix determines the parameters of the

distribution I am looking for.

Theorem 3. The matrix D is diagonal with exactly d ones and n − d zeros on its

diagonal, where d is the number of transmit streams and n is the number of transmit

antennas.

Proof. VV∗ and V∗V have the same non-zero eigenvalues and since V∗V = Id we

deduce that VV∗ has d non-zero eigenvalues all equal to 1, which shows the desired

result and completes the proof.

Corollary 5. The random variable 2
σ2
e
∆ is Chi-square distributed with 2d DoFs, i.e.,

2
σ2
e
∆ ∼ χ2

2d.
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4.3 Probability Distribution of the Rates

Proof. From (4.16), we can rewrite δ as

δ = σ2
e

(
h̃∗

σe

)
D

(
h̃

σe

)
, (4.17)

so that h̃∗

σe
has unit variance. Now, using (4.17) and Theorem 3 gives the desired result.

Note that the factor 2 in 2
σ2
e
∆ comes from the fact that I am using complex valued

numbers.

Corollary 6. The probability density function (pdf) of ∆ is given by

f∆(δ, d) =

 1
σ2
eΓ(d)

(
δ
σ2
e

)d−1

e
− δ

σ2
e for δ ≥ 0,

0 for δ < 0.
(4.18)

Proof. We recall that the pdf of a random variable X following a χ2
k distribution is

given by

fX(x, k) =


1

2
k
2 Γ( k2 )

x
k
2
−1e−

x
2 for x ≥ 0,

0 for x < 0.
(4.19)

Since ∆ = σ2
e

2
X, we can give the pdf of ∆ as

f∆(δ, d) =
2

σ2
e

fX

(
2

σ2
e

δ, 2d

)
. (4.20)

Therefore, we obtain (4.18) and complete the proof.

4.3.2 Probability Distribution of the Achievable Rate per Stream

In this subsection, I will link the probability distribution of the interference, to that of

the maximum achievable rate, for any stream of any given user. Putting the subscripts

back in the notations, δ becomes

δjk,` = (∆Hk,`)jV`V
∗
` (∆Hk,`)

∗
j (4.21)

and the random variable associated is ∆j
k,`.

63



4.3 Probability Distribution of the Rates

With this notation, (4.11) can be written as

Ik,j = P0

K∑
`=1
` 6=k

δjk,`. (4.22)

Now, I define the following random variable

∆j
k ,

K∑
`=1
` 6=k

∆j
k,`. (4.23)

Therefore, if Ik,j is considered as a random variable, then

Ik,j = P0∆j
k. (4.24)

At this stage, it should be reminded that I have not specified a precise vector space

basis at the receiver side. Thus, every result obtained is true in any given basis. Let’s

then choose a basis in which d of the basis vectors are independent unitary vectors from

the desired signal space and the remaining basis vectors are any unitary vectors that

can complete the set to form a basis.

I define the basis in this manner so that the interference cancelling matrices Wk can

be found to simply zero-force the inter-user and inter-stream interference and that the

interference power received along any stream is given by Ik,j. Note that statistically

∆j
k and therefore Ik,j are the same ∀j. Henceforth, I denote them, respectively, ∆k and

Ik.
The achievable rate for the lth stream of the kth user is given by

Rk,l(P0, Ik) = log2

1 +

(
P0

dk

)
|(U∗k)lHk,k[Vk]l|2

Ik + σ2
n

 . (4.25)

From now on, I define zk,l = |(U∗k)lHk,k[Vk]l|2 and write the achievable rate of the lth
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stream of the kth user as

Rk,l(P0, Ik) = log2

1 +

(
P0

dk

)
zk,l

Ik + σ2
n

 . (4.26)

This rate expression will be used in the following form:

Rk,l(ρ,∆k) = log2

1 +
zk,l

dk

(
∆k + 1

ρ

)
 , (4.27)

where ρ = P0

σ2
n

and I have used (4.24).

In order to obtain the pdf of Rk,l, I first express ∆k as a function of Rk,l with ρ fixed

so that

∆k(ρ,Rk,l) =
zk,l

dk(2Rk,l − 1)
− 1

ρ
. (4.28)

From this, I get
∂∆k(ρ,Rk,l)

∂Rk,l

= −zk,l(loge 2)2Rk,l

dk(2Rk,l − 1)2
. (4.29)

I can therefore write the pdf, fRk,l , of the rate as

fRk,l(ρ, rk,l) =
zk,l(loge 2)2rk,l

dk(2rk,l − 1)2
× f∆k

(
zk,l

dk(2rk,l − 1)
− 1

ρ

)
. (4.30)

Based on this, the pdf of Rk,l can be characterised given that of ∆k. To do so, I

recall that ∆k =
∑K

`=1
` 6=k

∆k,` (I omit the superscripts since the expression is the same

for all streams of the same user) and therefore, since 2
σ2
e
∆k,` ∀(k, `) are independent

and χ2(2d`) distributed, I have that 2
σ2
e
∆k is χ2 distributed with 2(D− dk) DoFs where

D =
∑K

`=1 d` denotes the total number of streams in the network.

Therefore,

f∆k
(δ) =

 1
σ2
eΓ(D−dk)

(
δ
σ2
e

)D−dk−1

e
− δ

σ2
e for δ ≥ 0,

0 for δ < 0.
(4.31)
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If every user has the same number of streams d, then this expression can be written as

f∆k
(δ) =

 1
σ2
eΓ(d(K−1))

(
δ
σ2
e

)d(K−1)−1

e
− δ

σ2
e for δ ≥ 0,

0 for δ < 0.
(4.32)

4.4 Saturating SNR and Outage Probability

In this section, I study two performance metrics, namely, saturating SNR and outage

probability. Saturating SNR was first introduced in chapter 3 for worst-case scenarios

(with bounded CSI errors). Here, I emphasise on its statistics. On the other hand, the

outage probability is defined to be a metric that will allow to assess the performance

of each user despite the randomness of the channel estimates.

4.4.1 PDF of the Saturating SNR

The saturating SNR can be seen as a non-asymptotic performance metric that accounts

for estimation errors. It is defined as the SNR where the rate in the perfect CSI case

is equal to that of the imperfect CSI case at infinite SNR. Here the saturating SNR is

defined for each stream of any given user.

I will first give the pdf of the saturating SNR then, show that up to the saturating SNR,

the achievable rate of the IA with corrupted CSI is within 1bps/Hz of the achievable

rate of the IA in the perfect CSI case.

From equation (4.27) I deduce that the rate at ρ =∞ is given by

Rk,l(∞,∆k) = log2

(
1 +

zk,l
dk∆k

)
. (4.33)

By definition, at the saturating SNR ρk,ls ,

log2

(
1 +

ρk,ls zk,l
dk

)
= Rk,l(∞, δ(l)

k ) (4.34)

= log2

(
1 +

zk,l

dkδ
(l)
k

)
, (4.35)
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which gives

ρk,ls =
1

δ
(l)
k

. (4.36)

The superscript (l) in δ
(l)
k is there to remind that δ

(l)
k is one realisation of ∆k for the lth

stream of the kth user.

As a result, the saturating SNR is a random variable ℘ks = 1
∆k

(note that I drop the

superscript l because it is the same distribution for all the streams of the kth user) and

the pdf of the saturating SNR can be derived as

f℘ks (ρ
k
s) =

1

(ρks)
2
f∆k

(
1

ρks

)
. (4.37)

Theorem 4. Given the saturating SNR ρk,ls , the achievable rate can be approximated

within 1bps/Hz by

R̃k,l(ρ) =

 log2

(
1 +

ρzk,l
dk

)
for 0 ≤ ρ ≤ ρk,ls ,

log2

(
1 +

ρk,ls zk,l
dk

)
for ρk,ls ≤ ρ,

(4.38)

where log2(1 +
ρzk,l
dk

) is the rate in the perfect CSI case.

Proof. Define the function G(ρ) , R̃k,l(ρ)−Rk,l(ρ, δ
(l)
k ) that represents the gap between

Rk,l and R̃k,l. For 0 ≤ ρ ≤ ρk,ls , I have that

G(ρ) = log2

 1 + ρ
dk
zk,l

1 + ρ

dk(δ
(l)
k ρ+1)

zk,l

 . (4.39)

One can notice that G(0) = 0 and G is an increasing function of ρ. I can now evaluate
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G at the saturating SNR, i.e., ρk,ls = 1

δ
(l)
k

. Then,

G(ρs) = G

(
1

δ
(l)
k

)
(4.40)

= log2

1 +

1

δ
(l)
k

dk
zk,l

1 +

1

δ
(l)
k

2dk
zk,l

 (4.41)

= log2

(
δ

(l)
k +

zk,l
dk

δ
(l)
k +

zk,l
2dk

)
. (4.42)

The expression
δ
(l)
k +

zk,l
dk

δ
(l)
k +

zk,l
2dk

is a decreasing function of δ
(l)
k that goes from 2 to 1 therefore

G(ρk,ls ) ∈ [0, 1] and finally ∀ρ ∈ [0, ρk,ls ] G(ρ) ∈ [0, 1].

On the other hand, for ρ > ρk,ls , by definition of the saturating SNR, Rk,l(ρ, δ
(l)
k )→

R̃k,l(ρ). This concludes that R̃k,l(ρ) is an approximation ofRk,l(ρ, δ
(l)
k ) within 1bps/Hz ∀ρ.

4.4.2 Outage Probability

In the case of fading channels, one often uses outage capacity as a metric to assess the

performance of the communication system. Outage capacity is linked to a parameter

called “outage probability”, Pout, which represents the probability that error-free com-

munications cannot be achieved at a given rate. This can be translated to a minimum

SNR ρmin below which the information rate is not supported, or Pout = P(ρ < ρmin).

Define the outage probability of the `th stream of a user k as the probability that

that stream cannot support any rate equal or above Ck,l
out at infinite SNR, i.e., Pk,lout =

P(R∞k,l < Ck,l
out), with R∞k,l(∆k) , Rk,l(∆k,∞), and Ck,l

out being the outage capacity for

the `th stream of the kth user. Then

P(R∞k,l < Ck,l
out) =

zk,l(loge 2)

dk
×
∫ Ck,lout

0

2r

(2r − 1)2
f∆k

(
zk,l

dk(2r − 1)
, dk

)
dr, (4.43)
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which can be further expressed as

P(R∞k,l < Ck,l
out) =

∫ ∞
zk,l

dk(2
C
k,l
out−1)

f∆k
(x, dk)dx. (4.44)

If I define the outage SNR ρk,lout so that Ck,l
out = log2(1 +

ρk,loutzk,l
dk

), then

Pk,lout =

∫ ∞
1

ρ
k,l
out

f∆k
(x, dk)dx = P(ρk,ls < ρk,lout). (4.45)

This indicates that the outage probability equals the probability that the saturating

SNR is lower than the outage SNR.

I can use (4.31) and (4.45) to give the outage probability as

Pk,lout =
1

Γ (D − dk)
Γ

(
D − dk,

1

ρk,loutσ2
e

)
(4.46)

= Γ̃

(
D − dk,

1

ρk,loutσ2
e

)
, (4.47)

where

Γ̃(a, x) =
Γ(a, x)

Γ(a)
(4.48)

is the regularised upper incomplete Gamma function.

Note that the relation between Pk,lout and ρk,lout does not involve zk,l but does involve

dk. Hence, that relation is the same for all the streams of the same user in accordance

with the fact that all those streams transmit the same power. I can therefore define

the outage probability (respectively outage SNR) of the user (say k) as Pkout = Pk,lout

(respectively ρkout = ρk,lout ).

In (4.47), the effect of the other users on the performance of user k manifests itself

through the total number of streams D in the network. The outage probability will

decrease if the contribution of user k in the total number of streams is high, because

D − dk in this case is smaller and also because there is no interference between the

streams of the same user.
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4.5 Applications

In this section, I give two application examples for utilising the previous analytical

results in the MIMO interference channel.

4.5.1 Degrading CSI in Block Fading Channels

For block fading channels, the channels are often considered as constant for a period

of time, say TD, but vary from one block to another. Moreover, the transmit power

is normalised such that 1
TD

E{‖x`‖2
2} = P0 ∀`. A typical scenario is that the channels

are estimated at the first block only and all the IA matrices are obtained from the

estimated channels. The direct link channels vary from one block to the next but are

tracked perfectly while the crosstalk channels are not tracked (due to high overheads),

so the crosstalk CSI degrades over time.

Let us denote H(t0) as the actual state of a channel matrix at time t0. The estimated

channel is denoted by Ĥ(t0), which is modelled as

H(t0) = Ĥ(t0) + ∆H(t0), (4.49)

where ∆H(t0) is the deviation of the estimate from the actual channel at time t0. For

the block fading channels, I have

H(t0 + k × TD) 6= H(t0), for k = 1, 2, . . . , (4.50)

with probability one. I define a new matrix E that represents the variation of the

channel between two different times as

E(k) , H(t0 + k × TD)−H(t0) (4.51)

= H(t0 + k × TD)− Ĥ(t0)−∆H(t0). (4.52)

Hence,

E(k) + ∆H(t0)︸ ︷︷ ︸
,∆H(k)

= H(t0 + k × TD)− Ĥ(t0) (4.53)
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represents the deviation from the channel estimate to the actual channel at the (k+1)th

block for the crosstalk.

I assume that ∆H(k) ∼ CN (0, σ2
e(k)) with σ2

e(0) = σ2
e being the power of the

measurement. Based on this model, if I consider one stream of a user transmitting d0

streams, and provided that the user is transmitting at the same outage SNR over each

block, I can express the evolution of the outage probability in each block as

Pout(k) = Γ̃

(
D − d0,

1

ρoutσ2
e(k)

)
. (4.54)

Instead of transmitting at a fixed SNR the user may want to insure a preset outage

probability over each block in which case the SNR at which it should transmit over

that stream is given by

ρout(k) =
1

σ2
e(k)Γ̃−1 (D − d0,Pout)

(4.55)

=
σ2
e

σ2
e(k)

ρout, (4.56)

where

ρout ,
1

σ2
e Γ̃
−1 (D − d0,Pout)

, (4.57)

and Γ̃−1 is the inverse of function Γ̃.

Employing the result of Theorem 4, the maximum achievable rate per stream for

the MIMO interference channel using IA under the block fading channel at outage

probability of Pout can be given within 1bps/Hz by

R̃(k) = log2

(
1 +

ρout(k)

d0

z(k)

)
(4.58)

= log2

(
1 +

σ2
e

σ2
e(k)

ρout
d0

z(k)

)
, (4.59)

where z(k) is the effect that the channel has on that stream over the kth block. The
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achievable rate for that stream over B consecutive blocks can therefore be found as

RB =
B−1∑
k=0

log2

(
1 +

σ2
e

σ2
e(k)

ρout
d0

z(k)

)
. (4.60)

Under the conditions σ2
e

σ2
e(k)

ρout
d0
z(k) � 1 ∀k, e.g., if the power of the channel variations

over the measurement noise power is very small or if the outage SNR is sufficiently big

or also if there is no overly deep fading over any block, then that rate becomes

RB ≈
B−1∑
k=0

log2

σ2
e

σ2
e(k)

ρout
d0

z(k) (4.61)

= B log2

ρout
d0︸ ︷︷ ︸

(a)

+ log2

B−1∏
k=0

z(k)︸ ︷︷ ︸
(b)

− log2

B−1∏
k=0

σ2
e(k)

σ2
e︸ ︷︷ ︸

(c)

. (4.62)

In the equation above,

• (a) represents the rate achievable per stream with perfect IA and no fading at

SNR = ρout over B blocks.

• (b) represents the effect that the channel variations of the direct link has on the

rate; it could be positive or negative depending on the fading coefficients.

• (c) represents the effect of the crosstalk CSI uncertainty on the rate; this effect is

negative because there is at least the uncertainty from the measurement.

Let us have a look at the following example.

Recall from the definition of E(k) in (4.51), if we say E(k) ∼ CN (0, σ2) ∀k, then

we can get

σ2
e(k) =

{
σ2
e + σ2 for k > 0,

σ2
e for k = 0,

(4.63)
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and

RB = B log2

ρout
d0

+ log2

B−1∏
k=0

z(k)− log2

(
1 +

σ2

σ2
e

)B−1

,

for B ≥ 1 (4.64)

In the above, we see that if the power of the channel variation is smaller than the

measurement noise power (i.e., σ2

σ2
e
� 1), the channel variations have little effect on the

IA performance.

4.5.2 Optimising the Number of Streams

In an IA system with K users and imperfect crosstalk CSI, unsurprisingly, every user

would want to increase the number of signal streams for enhancing its achievable rate

but doing so may harm the sum-rate because of the additional interference due to imper-

fect IA resulting from imperfect CSI. If all users are assumed to have the same number

of streams d, it would be important to determine the optimal number of streams per

user of the interference network for maximising the sum-rate, for a given measurement

noise power σ2
e .

To do so, I first set an outage probability of Pout that must remain the same for every

user. Then I obtain the required outage SNR for all users as

ρout =
1

σ2
e Γ̃
−1(d(K − 1),Pout)

. (4.65)

I define the outage SNR per stream as ρ̄out = ρout
d

.

For most applications, the outage probability is chosen to be a very small value, and

thus the probability of the saturating SNR being lower than the outage SNR is equally

small (see (4.45)). In that case, I can use Theorem 4 and the function R̃ defined in

Section 4.4.1 to approximate the rate per stream at SNR = ρout with a confidence given

by the choice of Pout as

R̃k,l(ρ̄out) = log2 (1 + ρ̄outzk,l) , (4.66)
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where zk,l has the same meaning as in the previous section.

Hence, the sum-rate for the network is found as

R̄(ρ̄out) =
K∑
k=1

d∑
l=1

R̃k,l(ρ̄out). (4.67)

The optimal number of streams per user can be found by

max
d
R̄(ρ̄out). (4.68)

One may also want to optimise the number of streams per user in average over

all possible realisations of zk,l. This means multiple realisations of IA with different

channel gains must be considered and averaged over all possible achievable sum-rates.

To do so, assume that the direct channels Hk,k are independent across users and have

their entries independent and identically distributed (i.i.d.) from CN (0, 1). Also, the

crosstalk channels do not matter since their effects are cancelled out by IA. Under that

condition Lemma 1 in [19] can be applied to derive the average sum-rate as

R(ρ̄out) =
K∑
k=1

d∑
l=1

E
[
R̃k,l(ρ̄out)

]
(4.69)

= Kd log2(e)e
1
ρ̄outE1

(
1

ρ̄out

)
, (4.70)

where E1(x) =
∫∞

1
t−1e−xtdt is an exponential integral.

Since the approximation of the rate given by Theorem 2 was used, the expectation

does not involve the measurement error matrices. The price to pay for that is however

that the result is given within 1bps/Hz precision.

Now the optimal number of streams is found by solving

max
d
R(ρ̄out). (4.71)

This second expression depends only on the number of users, the measurement noise

power and the outage probability.
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Figure 4.1: The sum-rate R against the number of streams per user, with its maximum achieved when d = 5 for 10 users
and d = 4 for 15 users.

In Figure 4.1, I provide the numerical results for the sum-rate R against the number

of signal streams, when K = 10 and K = 15, σ2
e = 10−3 and Pout = 10−3. The results

demonstrate the concavity of the sum-rate so the optimal number of streams can be

easily identified to be d = 5 with K = 10 and d = 4 with K = 15. The results also

imply that it is counter-productive to increase the number of streams further due to

excessive interference. In addition, note that there is a significant gain in the total

rate to go from one signal stream to the optimal number of streams (up 35bps/Hz for

K = 10). This figure also demonstrates that the number of streams allowed per user

decreases with the number of user due to CSI uncertainty.
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(a) Top view (b) Side view

Figure 4.2: The pdf of the achievable rate per stream with K = 3, d = 1, and σ2
e = 10−3. The white line represents the

limiting case where there is no CSI uncertainty.

4.6 Simulations versus Theory

In this section, I present the predictions of the model and compare these predictions

to the results obtained from the simulations. In these simulations, I focus on the 3-

user case as it allows to compute the perfect precoders for IA. The parameters for the

simulations are set to K = 3 and d = 1.

First adapt (4.32) to the parameters above which yields

f∆k
(δk, 1) =

 1
σ4
e
δke
− δk
σ2
e for δk ≥ 0,

0 for δk < 0.
(4.72)

Figure 4.2 shows the pdf of the achievable rate per stream for the case σ2
e = 10−3

based on the theory. It is a three-dimensional plot with the x-axis showing the SNR in

dB, the y-axis the rate in bps/Hz and the z-axis the pdf value.

To compare the theoretical predictions to the simulations, I ran the simulations,

in which channel matrices were drawn randomly from CN (0, 1) which represent the

perfect CSI, and the erroneous channel matrices were set to be the sum of the channel

matrices and the error matrices drawn randomly from CN (0, σ2
e). Moreover, all the

users were assumed to have n = 3 transmit antennas and m = 2 receive antennas, and

76



4.6 Simulations versus Theory

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

R
a
te

 i
n
 b

p
s
/H

z

SNR in dB

 

 

Figure 4.3: The achievable rates with IA for a given MIMO interference channel with 500 independent measurement
errors.

these matrices were used to perform IA at various SNR. I also set the fading coefficients

on the direct links (zk,l) to 1 so that only the effects of the measurement error can be

seen and not that of the fast fading.

In Figure 4.3, I provide the results for the rates achievable by IA for a given MIMO

channel for 500 independent error realisations. As can be seen, the rates appear to

saturate at high SNR as predicted by the theory. To compare theory and simulations

further, I also provide the results for the case at SNR = 80dB, as shown in Figure 4.4,

where the theoretical pdf and the simulations fit almost perfectly.
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Figure 4.4: The pdfs of the achievable rates when K = 3, d = 1, σ2
e = 10−3 at SNR = 80dB from the simulations and

the theory.
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4.7 Conclusion

This chapter presents a full statistical characterisation for the maximum achievable rate

per user using IA in the interference channel, when cross-talk CSI are imperfect. I’ve

proposed two metrics to evaluate the performance of the interference network despite

the randomness of CSI errors. The first metric is the saturating SNR that was already

introduced in chapter 3, in this case it is stochastic. However, it allows the definition

of a powerful new metric namely, the outage probability. With this new tool, the study

of the performance of IA with random CSI errors is greatly simplified.

In order to show the relevance of the newly defined metric, two different examples are

shown. The first one shows how to investigate the performance of IA in block fading

channels with degrading CSI, while the second one shows how to use the results on the

outage probability in order to optimise the number of streams per user and maximise

the sum-rate using IA in the presence of CSI errors. Simulation results are provided to

confirm the accuracy of the analysis.
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Chapter 5

Coverage probability

5.1 Introduction

This chapter considers the use of IA in cellular networks under imperfect CSI conditions.

While similar objectives have been pursued in [18, 98, 99], the novelty of this work lies

in that the analysis includes the randomness of base station (BS) deployment and that

the coverage probability of such IA-assisted cellular network is derived. Note that

although coverage probability analysis has been addressed in [100] where the authors

developed new general models for the multi-cell signal-to-interference-plus-noise ratio

(SINR) using stochastic geometry, no ways of mitigating the inter-cell interference was

considered in the analysis except by changing the frequency reuse factor in the network.

To the best of my knowledge there is no such study including IA with imperfect CSI in

their analysis.

5.2 System Model

Let’s consider a cellular network model that consists of BSs located randomly in a Eu-

clidean plane according to some point process. Also consider multiple user equipments

(UE) distributed randomly in the network according to an independent point process.

Each UE is assumed to be associated with a serving BS which may or may not be the

nearest one. For example, if the association policy is to pair the UE with the BS with
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the highest SNR, then this BS may or may not be the closest one because of propa-

gation issues (e.g., shadowing). The focus is on the downlink i.e. the link from the

base station to the users. Intra-cell interference is assumed is non-existent or dealt with

perfectly by orthogonalising the same cell users over time or frequency. As a result, at

each time or frequency slot, the network can be modelled as an interference channel

with multiple transmitter-receiver pairs. The inter-cell interference is then mitigated

using IA.

In particular, IA is applied in the network under the assumption that every node in

the network (BSs and UEs) has access to perfect CSI between a BS and its associated

UE but imperfect CSI between a BS and the UEs that the BS is creating interference

at. Note that a given UE in the network will not suffer interference from every BS in

the network due to the high path-loss to some BSs. Therefore, there exist a maximum

distance RM to the UE within which a non-serving BS will be considered as an interferer

and above which it is invisible to the UE. A simple example of this is when the power

received from some base station is below the noise floor.

Let us focus our attention onto a circle of radius RM in the network and denote

by G the numbers of serving BSs and UEs in each time/frequency slot in that circle.

Both the BSs and the UEs are equipped with multiple antennas for spatial IA. The

number of antennas at each node is determined so as to fulfil the feasibility conditions

for IA [23, 24]. Hi,j denotes the channel matrix related to the scattering and multi-

path effect of the environment between the jth transmitter and the ith receiver. The

estimate of Hi,j, denoted as Ĥi,j, is such that

Hi,j = Ĥi,j + ∆Hi,j, ∀i 6= j (5.1)

where ∆Hi,j is the estimation error with entries drawn from a complex Gaussian dis-

tribution CN (0, σ2
e). As in the previous chapter, the direct links are assumed to be

known perfectly since their estimation is easier than that of the interfering links and

is typically highly accurate. The path-loss and shadowing will be represented by the

quantities `i for the interfering links and `d for the direct link. The assumption that is

made here is that all the interferers have the same coefficients `i which in practice is

not true. However this case can provide some meaningful insights in the study of IA
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applied at the cell edge. The channel matrices are assumed constant for at least the

time of communication over a time or frequency slot. The precoders Vk and decoding

matrices Uk are obtained following the IA conditions below:{
rank(U∗kHk,kVk) = dk, for k = 1, 2, . . . , K,

U∗`Ĥ`,kVk = 0, for all ` 6= k,
(5.2)

where dk represents the number of streams for the kth user.

5.3 Coverage Probability Analysis

In this section, the aim is to derive the coverage probability for a user taken randomly

in the network. It is defined as the probability that a given user can achieve some

target rate. The coverage probability can be viewed as the complementary of the

outage probability given in chapter 4. In order to provide a mathematical definition

of the coverage probability, I will first need to adapt the equation (4.47) of the outage

probability to the current model.

5.3.1 Statistics of the Achievable Rate

Consider a typical user (say user o) and the set So of the BSs that create interference

at this user. The received signal at this user can be written as

yo =
√
`dHo,oVoxo +

∑
s∈So

√
`iHo,sVsxs + ηo, (5.3)

where ηo is the additive noise drawn from CN (0, σ2
n) and xk denotes the data stream

for the kth user. After applying the decoding matrix, the expression (5.3) becomes

U∗oyo =
√
`dU

∗
oHo,oVoxo + U∗o

∑
s∈So

√
`i∆Ho,sVsxs + U∗oηo, (5.4)

where the term U∗o
∑

s∈So

√
`i∆Ho,sVsxs arises from the IA conditions (5.2) and the

CSI error model (5.1).
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If the BSs are assumed to have the same transmit power Po, then according to

(4.24), the received interference at any stream of user o can be expressed as a r.v.

I = `iPo∆, (5.5)

in which 2
σ2
e
∆ is a r.v. drawn from the χ2 distribution with 2(D − do) DoFs where D

is the total number of streams sent by the interferers in So plus that of the serving BS

and do is the number of streams sent by the serving BS only.

The probability density function (pdf) of ∆ is given as

f∆(δ) =

 1
σ2
eΓ(D−do)

(
δ
σ2
e

)D−do−1

e
− δ

σ2
e for δ ≥ 0,

0 for δ < 0,
(5.6)

and the achievable rate for the lth stream of the UE is

Rl(Po, I) = log2

1 +

(
`d
Po
do

)
|(U∗o)lHo,o[Vo]l|2

I + σ2
n

 . (5.7)

As in the previous chapter, I define zl , |(U∗o)lHo,o[Vo]l|2 and write the achievable rate

of the lth stream of the UE as

Rl(Po, I) = log2

1 +

(
`d
Po
do

)
zl

I + σ2
n

 . (5.8)

This rate expression will be used in the following form:

Rl(ρ,∆) = log2

1 +
`dzl

do

(
`i∆ + 1

ρ

)
 , (5.9)

where ρ = Po
σ2
n
.

83



5.3 Coverage Probability Analysis

5.3.2 Outage Probability

Let recall and adapt the definition of the outage probability. The outage probability of

a user sending do streams is defined for each of its streams (say for the `th stream) as

the probability that that stream cannot support any rate equal or above a target rate

Rl
out at infinite SNR, i.e., P lout|D = P(R∞l < Rl

out|D), with R∞l (∆) , Rl(∞,∆) and

R∞l (∆) = log

(
1 +

βzl
do∆

)
, (5.10)

where β = `d
`i

.

I define the outage SNR ρlout so that

Rl
out = log

(
1 +

ρloutzl
do

)
. (5.11)

As I will show later on, this definition of the outage SNR allows to talk about the

outage probability without having to worry about the randomness of zl on the direct

link.

The outage probability is then given by

P lout|D,β = P(R∞l < Rl
out|D, β) (5.12)

= P
(

log

(
1 +

βzl
do∆

)
< log

(
1 +

ρloutzl
do

)∣∣∣∣D, β) (5.13)

= P
(

∆ >
β

ρlout

∣∣∣∣D, β) (5.14)

=

∫ ∞
β

ρlout

f∆(x, do)dx (5.15)

=
1

Γ (D − do)
Γ

(
D − do,

β

ρloutσ2
e

)
(5.16)

Note that zl does not appear in this expression, but of course it is needed to link the

outage SNR to the outage rate.
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5.3.3 Coverage Probability

Let’s focus on the case where all the users transmit a single stream. In [100] the coverage

probability is defined as the probability that a typical mobile user is able to achieve

some threshold SINR. Here, that definition will be modified slightly and to say that the

coverage probability is the probability that a typical user can achieve some threshold

target rate Rtar.

Define the target SNR ρtar as the SNR needed to transmit at the target rate on an

interference-free stream with fading z. That is,

Rtar = log2(1 + ρtarz). (5.17)

In the case where β and the number S of interferers at the UE are known, the coverage

probability can be expressed as

PC|S,β = P(R∞ ≥ Rtar|S, β) (5.18)

= 1− P(R∞ < Rtar|S, β) (5.19)

= 1− Pout|S,β. (5.20)

Note that here the outage probability Pout|S,β is defined with the target rate as the

outage rate. Note also that if there is no interferer (S = 0), then Pout|S,β = 0 and then

PC|S,β = 1.

However, in the current study, the number of interfering BS S is assumed random.

Therefore,

PC = ES,β[1− Pout|S] (5.21)

= ES,β
[
1− 1

Γ (S)
Γ

(
S,

β

ρtarσ2
e

)]
(5.22)

= ES,β
[

1

Γ (S)
γ

(
S,

β

ρtarσ2
e

)]
, (5.23)

where γ(a, x) is the lower incomplete gamma function and ES,β means that the average

is over β and the number of interfering BS in the vicinity of the UE.
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Figure 5.1: Local environment of a user taken randomly, with 3 interferers and 1 serving BS.

5.4 Example

Let us investigate the case where the interfering BSs are distributed according to a PPP

Ψ with intensity λ. We can imagine the vicinity of a UE as in Figure 5.1. In this case,

P(S = s|A) = e−µ
µs

s!
, (5.24)

where µ =
∫
A λ(r)dr is the mean of the Poisson process, and A is the disc of radius RM

around the UE.

The coverage probability conditioned on β is then given as

PC|β = e−µ + e−µ
∞∑
s=1

µs

s!

1

Γ(s)
γ

(
s,

β

ρtarσ2
e

)
. (5.25)
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This expression can be expressed in terms of an easy to compute integral

PC|β = e−µ + e−µ
∞∑
s=1

µs

s!

1

(s− 1)!

∫ β

ρtarσ
2
e

0

ts−1e−tdt (5.26)

= e−µ + µe−µ
∫ β

ρtarσ
2
e

0

e−t

(
∞∑
s=1

(µt)s−1

s!(s− 1)!

)
dt (5.27)

= e−µ + µe−µ
∫ β

ρtarσ
2
e

0

e−t
I1(2
√
tµ)√

tµ
dt (5.28)

= e−µ

1 +

∫ 2

√
βµ

ρtarσ
2
e

0

e
−x2

4µ I1(x)dx

 , (5.29)

where I1(·) is the modified Bessel function of the first kind. The final expression (5.29)

can be computed easily knowing only the four parameters in this expression.

Let us perform a quick analysis of the effects of the different parameters in the

expression of PC|β.

• β can be viewed as the signal-to-interference ratio (SIR) at the UE. Increasing it

means that the power of the signal at the receiver is getting higher than that of the

interference, and therefore it is normal that increasing it would also increase the

coverage probability. (5.25) shows that β increases to infinity then the coverage

probability becomes.

PC|β=∞ = e−µ + e−µ
∞∑
K=2

µK−1

(K − 1)!

= e−µ + e−µ(eµ − 1)

= 1.

• In the same way decreasing σ2
e makes PC bigger which makes sense since the

channel estimates are more accurate. In the limiting case where σ2
e = 0, PC = 1.

• Regarding ρtar, increasing its value means that we require a higher rate to be

achievable by the UE and thus the coverage probability decreases. The more the
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target requirements are decreased, the better the coverage probability.

• The last parameter µ represents the average number of interferers. As a result,

when µ is close to zero, PC|β is close to one and as the density of interferers

increases the coverage probability drops.

A closed-form approximation of the coverage probability can be given by truncating

the infinite sum in expression (5.25) after the first few terms. In practice, the number

of terms to keep will depend on the value of µ.

5.5 Numerical Results

In this section, numerical results are provided based on Monte Carlo simulations of the

model studied in this paper and the results are compared with the theory. The channel

estimation errors are generated randomly from a complex Gaussian distribution of

mean 0 and variance σ2
e = 10−1. This value corresponds to the performance of channel

estimation techniques with training SNR ' 20dB and up to 8 antennas at the UE

and the BS [91]. The number of interfering BS is drawn from a Poisson distribution

with expected value µ = 3. In order to consider the case where the user is at the cell

edge, I choose β = 1 so that the strength of the desired signal is comparable to that

of the interfering signals. The results with β = 10 are also shown for comparison. The

fading coefficient z on the direct link is assumed exponentially distributed with rate 1

according to [90, Lemma 1].

Figure 5.2 shows the evolution of the coverage probability against the target SNR.

The simulation curves are obtained by first computing the coverage probability for a

given target rate and realisation of z then the target rate is linked to the target SNR

using equation (5.17). In so doing, the effects of the randomness of z are removed.

Every point is averaged over ten thousand iterations. There’s a perfect match between

the theoretical predictions and the simulations. As expected, the coverage probability

drops faster when β = 1 than when β = 10 because the received SIR is much stronger

with β = 10. This result can be used to obtain the coverage probability for a given

target knowing the value of the fading on the communication link.
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Figure 5.2: Coverage probability of the network against the target SNR in dB with µ = 3, σ2
e = 10−1.

Figure 5.3 shows the coverage probability against the target rate. In this case, I

look at two different scenarios in order to see the effect of the fading on the coverage

probability. The first scenario is with a fixed fading coefficient z = 1 and the second

scenario is with z drawn according to the exponential distribution with rate 1. In this

second scenario I plot the average of the coverage probability over the fading coefficient.

See that the curve for the average coverage probability is lower, which means that on

average there is some performance loss due to fading.

5.6 Conclusion

This chapter presented the study of cellular networks using IA to mitigate inter-cell

interference. The structure of practical BS deployments is taken into account by con-

sidering a random point process to model the BS locations. The coverage probability

is derived and given as an easy to compute integral. Simulation results are provided
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Figure 5.3: Coverage probability of the network against the target rate in bps/Hz with µ = 3, σ2
e = 10−1 for z = 1.

and agree with the theoretical results. Throughout this analysis I assumed that the

interfering BSs had the same path-loss towards to the UE in consideration. Modifying

this assumption to consider different path-loss per BS is left for future work.
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Chapter 6

PLS in IoT Networks

6.1 Introduction

This chapter addresses the problem of protecting IoT delay-tolerant uplink data, con-

sisting of users’ private information, from eavesdropping. Because of the IoT nature of

the network considered here, it is assumed that not every device possesses the necessary

power for implementing complex cryptographic protocols such as RSA or other elliptic

curves based techniques. The methods considered in this chapter in order to secure

IoT networks are based on Physical Layer Security techniques that can be implement-

ing without relying heavily on a device own capabilities. PLS consists in utilising or

modifying the properties of the communication channel in order to give an information

advantage to the legitimate communication nodes in the network, hence enabling them

to perform secure communications. PLS techniques have been around for many years

and have been greatly advanced since the work of Wyner [101] in 1975 introducing the

degraded wiretap channel and the fundamental notion of secrecy capacity. However,

implementing PLS is made more practical today by the development and maturation

of technologies such as Full-Duplex communications and phased array antennas. In

this chapter the advantages provided by these new technologies will be put into use in

securing IoT networks. The work presented in this chapter has been done collabora-

tively with Dr. Stefano Iellamo at ICS-FORTH Greece. My contribution consists of the

section 6.4 and the related simulation results and focuses on cooperative approaches.
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6.2 Model and Problem Statement

6.2.1 Network Model

Let us first precise the notations that will be used throughout this chapter.

• The index i > 1 will be used when referring to the IoT-devices.

• k > 1 will be used when referring to helper nodes.

• e > 1 will be used when referring to the eavesdroppers.

• j is a dummy index.

• 0 is always the index of the IoT-GW

The variable x is used to represent a location or a point in the 2D plane and if followed

by a subscript it then represents the location of a specific type of device in the network.

For example xi (respectively xe, xk and x0) is the location of an IoT device (respectively

an eavesdropper, a helper and the IoT-GW).

Let’s also define B(x, ρ) to be a disk centred at node position x with radius ρ.

We define our network over a disc B(x0, R), where x0 is the location of the IoT-GW

and also corresponds to the origin of the 2D plane and R is the radius of the network.

The different devices in the network are regrouped into different sets :

• X = {xi} ⊂ B(0, R) denotes the set of IoT devices.

• E = {xe} ⊂ B(0, 2R) denotes the set of eavesdroppers.

• K = {xk} ⊂ B(0, 2R) denotes the set of helpers.

The IoT devices transmit data to the IoT-GW located at x0 and it is assumed that

the IoT-GW features IBFD (In-Band Full Duplex) technology and is therefore able to

receive and transmit on the same frequency band.

All operations occur on the same frequency band B1 centred at f1 and characterised by

background noise power N1 = N0B1. The resulting network is sketched in Fig. 6.1. The

sets E , K and X are finite with size #E , #K and #X respectively and the points they
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6.2 Model and Problem Statement

Figure 6.1: Sketch of the considered IoT network.

contain are distributed according to an independent Poisson Point Process (PPP) [102]

with intensities λE, λK and λX respectively across a disk of radius R centred at the

IoT-GW.

The Euclidean distance between two nodes x and y is denoted by dxy and the channel

gain gxy is assumed to be strictly decreasing with the distance dxy and not dependent

on the considered nodes.

All nodes are assumed to be static and independant, so there is also no collusion amongst

eavesdroppers.

6.2.2 Secure communications

In order for the data transmission from an IoT device i to be securely received at a

destination node j in the presence of an eavesdropper e, the signal to interference plus

noise ratio (SINR) ie at the eavesdropper’s location xe should be smaller than the SINR

experienced at the destination node xj, i.e., SINRie < SINRij . In particular, given

SINR ij ≥ γj and SINRie < γe , where γe < γj and γe can be arbitrarily small,
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the secrecy capacity [103, 104] of the communication between i and j at each separate

transmission can be determined by:

Cij = max{0, log2(1 + SINRij)− log2(1 + SINRie)} (6.1)

That is, i and j can achieve secure communication with secrecy rate Rij < Cij by

agreeing on a code.

Recalling that the eavesdroppers follow a PPP process E , a secure data link can be

defined as follows [105]:

Definition 1 (Secure Data Link). The data link from xi to xj is secure if and only if

SINRij ≥ γj and SINRie < γe, ∀e ≤ #E . (6.2)

In our model, the above security conditions are met thanks to jamming operations

which generate neutralisation zones.

Definition 2 (Neutralisation zone). A neutralisation zone is an area across which con-

ditions (6.2) are satisfied, i.e., where no eavesdropper is able to overhear transmissions

performed by any IoT device of the network .

We model the neutralisation zones by disks B(x, ρ), x ⊂ B(0, 2R), ρ > 0. The

jamming operation are performed by the IBFD IoT-GWs emitting artificial noise (AN)

with power P0 and/or a set of cooperative helpers which are capable of steering their

jamming signal away of the IoT-GW (by means of multiple antenna techniques such

as beamforming). The IBFD IoT-GW is then able to partially cancel the related self-

interference from its in-band receive antenna. We say partially because self-interference

cancellation is a complex operation and so far it has only been proven the possibility

to cancel up to 110dB [106].

6.2.3 Problem Formulation

We formulate the problem of minimising the IoT-GW transmit power while securing

the uplink IoT data in the case of unknown eavesdroppers location. We focus on the
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6.3 Jamming from the IoT-GW only

case where all IoT devices transmit with the same power P and all the helpers transmit

with the same power Q and set-up the following optimisation problem:

minimize P0 (6.3)

s.t. SINRi0 ≥ γ0 ∀i ≤ #X (6.4)

SINRie < γE ∀i ≤ #X ,∀e ≤ #E (6.5)

P0 ≤ Pmax
0 (6.6)

where

SINRi0 =
Pgi0

N1 + P0h0

, (6.7)

SINRie =
Pgie

N1 + P0g0e +
∑

k∈KQgke
(6.8)

where h0 denotes the IoT-GW self-interference reduction factor, Pmax
0 denote the max-

imum power the IoT-GW can use for jamming operations. Note that γE = mine{γe},
meaning that no eavesdropper is able to decode messages if the experienced SINR is

less than γE.

6.3 Jamming from the IoT-GW only

Let us firstly focus on the case where there are no cooperative jamming nodes. This is

equivalent to setting Q = 0 in (6.8). In this scenario a worst case communication can

be defined as follows:

Definition 3 (Worst case communication). The worst case communication is the one

occurring from the farthest IoT-device (from the IoT-GW) when an eavesdropper e∗ is

co-located with it.

The following proposition is straightforward.

Proposition 3. An IoT network is fully secure (i.e., all of its data links are secure)

if all IoT-devices transmit at a secrecy rate which is less than the secrecy capacity

calculated wrt to the worst case communication.
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6.3 Jamming from the IoT-GW only

From the Proposition, a solution to the optimisation problem (6.3)-(6.6) exists if

the IoT-GW can guarantee secure data links to all of its associated IoT-devices. This

is possible by generating a neutralisation zone covering the whole IoT network.

Theorem 5. Assume gxy = f(dxy) is a monotone function (strictly decreasing in Eu-

clidean distance dxy and not dependent on the position of x and y). Further, assume i∗

is the farthest IoT-device from the IoT-GW and e∗ is its co-located eavesdropper. Then:

1. The IoT-GW can guarantee a positive secrecy rate to all its associated IoT-devices

if

h0 <
γEgi∗0(Pgi∗0 −N1γ0)

γ0(P −N1γE)
(6.9)

2. When such inequality holds, there exists a solution to the optimisation problem

(6.3)-(6.6). Such solution is

P0 =
P −N1γE
gi∗0γE

+ ε (6.10)

where ε is the smallest power increasing step.

Proof. Recall that the secrecy rate capacity of IoT-device i with respect to the eaves-

dropper e is Ci0 = max{0, log2(1 + SINRi0)− log2(1 + SINRie)}, where

SINRi0 =
Pgi0

N1 + P0h0

Assuming reciprocal channel gains (i.e., e.g., gi0 = g0i) and for the worst case where an

eavesdropper e∗ is co-located with a transmitting IoT-device i (i.e., gi0 = ge∗0 = g0e∗),

SINRie∗ can be written as follows:

SINRie∗ =
P

N1 + P0gi0

According to constraints (6.4) and constraints (6.5) (which reflect conditions (6.2)) an

IoT-device experiences positive secrecy rate if SINRi0 ≥ γ0 and SINRie∗ < γE, i.e.,
Pgi0

N1+P0h0
≥ γ0

P
N1+P0gi0

< γE
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6.3 Jamming from the IoT-GW only

It is easy to verify that the system of inequalities above is solved for P−N1γE
gi0γE

< P0 ≤
Pgi0−N1γ0

h0γ0
.

Thus a finite P0 exists only if Pgi0−N1γ0

h0γ0
is strictly greater than P−N1γE

gi0γE
, which holds

for h0 <
γEgi0(Pgi0−N1γ0)
γ0(P−N1γE)

(point 1 of the Theorem). From this one can easily infer that

1) if g(.) is strictly decreasing as a function of the distance dxy between positions x

and y, the most stringent condition for h is with respect to the farthest IoT-device i∗

from the IoT-GW. Thus, if the inequality holds for such worst case, then it holds for

all the IoT devices of the network (point 1 of the Theorem 2) The minimum feasible

P0 is P−N1γE
gi0γE

+ ε, where ε is the smallest possible power increasing step (point 2 of the

Theorem).

However, as shown in the numerical section (Section 6.5) fully secure communica-

tions even in small areas come at the cost of extremely high IoT-GW AN transmit

power. This reduces drastically the business potential of the proposed technique (for

instance, it would be unrealistic to install such power-hungry IoT-GW at the users’

premises) and motivates us to seek other ways to improve the IoT network secrecy ca-

pacity while reducing the IoT-GW power consumption. Thus, we now study the cases

with protected surroundings and with helpers.

6.3.1 Protected surroundings

In some scenarios, each legitimate IoT-node may be able to physically inspect its sur-

roundings and deactivate the eavesdroppers falling inside some neutralisation region.

With each node, we associate a neutralisation region inside which all eavesdroppers

have been deactivated. This can be the case for indoor IoT nodes (e.g., within the

smart home walls).

For finite neutralisation regions, we need to define a new worst case communication

case:

Definition 4 (Worst case communication with neutralisation areas). In the presence of

finite neutralisation areas around each IoT-device the worst case communication occurs
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when an eavesdropper e∗ is located just outside the neutralisation region, on the farthest

point from the IoT-GW.

Theorem 6. Consider a neutralisation region around each IoT-node of minimum radius

dxix∗e−ε, where ε is a very small constant. Assume gxy = f(dxy) is a monotone function

(strictly decreasing in Euclidean distance dxy and not dependent on the position of x

and y). Let i∗ be the farthest IoT-device from the IoT-GW and e∗ be the eavesdropper

located on the farthest point from the IoT-GW which is just outside the neutralisation

region. Then,

1. the IoT-GW can guarantee a positive secrecy rate to all its associated IoT-devices

if

h0 <
γEg0e∗(Pgi∗0 −N1γ0)

γ0(Pgi∗e∗ −N1γE)
(6.11)

2. When such inequality holds, there exists a solution to the optimisation problem

(6.3)-(6.6). Such solution is

P0 =
Pgi∗e∗ −N1γE

gi∗0γE
+ ε (6.12)

where ε is the smallest power increasing step.

We will show in the simulation section how even a neutralisation region of limited

size allows to greatly reduce the IoT-GW power consumption.

6.4 Cooperative approaches

A simple and yet powerful strategy for lowering the IoT-GW transmit power while

guaranteeing a certain degree of secrecy is cooperative jamming [107]. In cooperative

jamming, the IoT-GW artificial noise is complemented by the jamming signal(s) emitted

by a set of of friendly jammers or helpers. We propose in the following subsections two

cooperative jamming strategies and provide a systematic study of their performance.
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6.4.1 Based on the location of eavesdroppers

In this section we consider a cooperative model where the IoT network is populated by

helpers which are able to neutralise potential eavesdroppers located within a certain

radius. The resulting IoT network is sketched in Fig. 6.2, where the white areas are the

neutralisation zones generated by the helpers.

Note that the considered model with neutralisation regions is general enough to in-

clude different sorts of physical realisations. For example, the helpers can be radio

transceivers able to sense even passive eavesdroppers from their leaked local oscillator

power as described in [108] then, using directional antennas they can send a jamming

signal towards these eavesdroppers. Using the same model, the neutralisation regions

can be viewed as trusted areas where no eavesdropper can be found, for example this

could be locations where physical security measures dissuades the eavesdroppers.

In the following, we will rate the level of confidentiality of an IoT network by its

Average number of Secure Connections (ASC) to the IoT-GW. However, due to the fact

that a practical IoT network is envisioned to comprise thousands of IoT devices, run-

ning a Monte Carlo simulation to obtain the ASC can be very daunting and could take

days. Therefore, we aim to obtain a closed-form expression of the ASC lower bound as

this can indeed provide a powerful tool to analyse IoT networks within shorter terms

and limited resources.

Let us recall that helpers, eavesdroppers and IoT devices are PPP distributed with

intensities λK , λE and λX respectively. And let us adapt a few definitions from graph

theory and from [109] to our case:

Definition 5 (Poisson iS-Graph for IoT networks). The Poisson intrinsically Secure

graph (iS − graph) for IoT networks1 is the directed graph G = {X ∪ {x0} , T } with

vertex set X ∪ {x0} and edge set

T = {−−→xix0 : Ci0 > 0} . (6.13)

1The iS-graph was defined in [109] in a setting where every node in the network could potentially
want to talk to any other node.
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Figure 6.2: Neutralisation region in IoT networks. Note that the eavesdroppers and the helpers can be in an area much
larger than the IoT network itself.

Definition 6 (IoT-GW in-degree Nin). In the Poisson iS-Graph for IoT networks, the

IoT-GW in-degree Nin is the number of edges entering the IoT-GW vertex. In other

words, it is the average number of secure connections in the IoT network.

Definition 7 (IoT-GW In-isolation). In the Poisson iS-Graph for IoT networks, the

IoT-GW In-isolation is the probability that the IoT-GW cannot receive from anyone

with positive secrecy rate.

By the definitions above, we want the IoT-GW to be the least In-isolated possible

by letting each helper generate a neutralisation zone of finite size.

We approximate the neutralisation zones as in [109] by associating to each helper

xk a neutralisation zone Θk inside of which all eavesdroppers will be neutralised. Thus

the total neutralisation region Θ is given as

Θ ≈
#K⋃
k=1

(xk + Θk) (6.14)

The area around the IoT-GW is most sensitive because, the closer an eavesdropper
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is to the IoT-GW the higher the probability of In-isolation. Therefore, we assume that

the IoT-GW is protected inside a neutralisation region of radius ρIoT . With this model,

no protection for the IoT-GW is equivalent to ρIoT = 0.

Considering generic path losses gxy, we provide a full characterisation of the proposed

cooperative model with the following theorem.

Theorem 7. The average number of secure communication connections in the Poisson

iS-Graph for IoT networks is lower bounded by

E{Nin} ≥
λx
λe

(
πλeρ̄

2
IoT +

1

pΘ̄

[
exp(−λeπpΘ̄ρ̄

2
IoT )− exp(−λeπpΘ̄R

2)
])

(6.15)

With pΘ̄ = e−λkπρ
2
k , ρ̄IoT = ρIoT

2
and Θ̄ is the complement of Θ in B(0, 2R).

Proof. In order for a device (say x) to be able to establish a secure communication link

to the IoT-GW there must not be any eavesdropper within a disc of radius dxx0 around

the device.

If there is an eavesdropper within B(x, dxx0) then to keep the link secure that eaves-

dropper must be neutralised by a helper or by the IoT-GW.

Hence, the set of users able to achieve a secure communication link to the IoT-GW is

given as

S =
{
x ; x ∈ X and

◦
B (x, dxx0) ∩ Θ̄ ∩ E = ∅

}
(6.16)

Where
◦
B (x, dxx0) = B(x, dxx0)/B(0, ρIoT ) is the disc centred on x of radius dxx0 without

the zone neutralised by the IoT-GW.

We can write the number of secure links from the IoT devices to the IoT-GW as

Nin =
∑
x∈X

1 {x ∈ S}

=

∫∫
B(0,R)

1 {x ∈ S}X (dx)
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Therefore

E {Nin} = λx

∫∫
B(0,R)

Px {x ∈ S} dx (6.17)

= λx

(
πρ̄2

IoT +

∫∫
D(ρ̄IoT ,R)

Px {x ∈ S} dx
)

(6.18)

Where D(ρ̄IoT , R) is the annulus centred at the origin with inner radius ρ̄IoT and outer

radius R with 0 ≤ ρ̄IoT ≤ R .

Now let’s find the palm probability Px {x ∈ S}

Px {x ∈ S} = PΘ,K

{ ◦
B (x, dxx0) ∩ Θ̄ ∩ E = ∅

}
(6.19)

= EΘ

{
exp(−λeA(

◦
B (x, dxx0) ∩ Θ̄)

}
(6.20)

≥ exp
(
−λeEΘ

{
A(
◦
B (x, dxx0) ∩ Θ̄)

})
(6.21)

Where (6.21) is obtained using Jensen’s inequality, EX is the average according to the

random variable X, A() gives the area of a specified random region.

EΘ

{
A(
◦
B (x, dxx0) ∩ Θ̄)

}
=

∫∫
◦
B(x,dxx0 )

P
{
y ∈ Θ̄

}
dy (6.22)

≤
∫∫
B(x,dxx0 )

P
{
y ∈ Θ̄

}
dy (6.23)

= πd2
xx0

e−λkπρ
2
k︸ ︷︷ ︸

,pΘ̄

(6.24)

Therefore

Px {x ∈ S} ≥ exp(−λeπpΘ̄d
2
xx0

) (6.25)

And finally we can obtain equation (6.15) by plugging this last result back into equation

(6.18).

This result shows how the network parameters are linked to the number of secure

connections. Compared to the result shown in [109] our result takes into account the

physical size of the network, the presence of helpers, as well as generic channel gains.
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6.4.2 Blind Jamming Strategies

We now turn our attention to the case where jamming operations are performed by

the IoT-GW in cooperation with a set of helpers in the form of multi-antenna friendly

jammers. This could model a 5G LTE small cell network (5G) where each small cell

base station additionally operates as an IoT-GW and each served multi-antenna LTE

terminal additionally operates as an IoT helper by steering the jamming beam away of

the IoT-GW.

In a first approach, we can assume that each eavesdropper is jammed only by the

closest helper node to its location. This approximation is realistic in the case where the

IoT-devices use the technique Divide-and-Conquer [105] for their data transmission,

provided that the messages are encoded across a sufficiently large number of blocks

and the helpers are sending jamming signals sporadically. The technique Divide-and-

Conquer consists in encoding a secret message into say M different blocks that are

all required to recover the original message, then sporadically send a jamming signal

at different locations of the network via some helper nodes that are located randomly

inside the network. The jamming happens while each of the M blocks are being trans-

mitted, thus increasing the chances that no eavesdropper will get all M blocks error free.

A second approach is to assume that all the eavesdroppers are receiving a jamming

signal from all the helpers at the same time. In this scenario also, we consider that the

helpers are able to steer their interference away from the IoT-GW.

The performance of the two approaches above will be shown and compared in the

numerical section (Section 6.5). A more detailed analysis of this work is left for future

work.

6.5 Numerical analysis

For the simulation we consider a NB-IoT network whose IoT devices transmit with con-

stant power P = 0dBm across a bandwidth B1 which is 200kHz wide and is centred at

900MHz. We calculate the channel gains according to 1
gxy(d)

= A log(d)+B+C log(fc)
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with A = 22, B = 28, C = 20 (typical urban LOS [110]) and we set in all simulations

γ0 = 6 and γE = 3.

In this real world scenario, we want to analyse the results presented in the form of

Theorem 5 and Theorem 6. In Fig. 6.3 and Fig. 6.4 we show the minimum required IoT-

GW performance (in terms respectively of dB to be canceled from the self-interference

signal and artificial noise transmit power) needed in order to fully secure a disk area

of radius R around the IoT-GW. From the figures it is easy to notice that the case

with co-located eavesdropper is very unrealistic in practice as a state-of-the-art self-

interference cancellation mechanism and 50 dBm of AN transmit power are required to

fully secure a disk area of only 20m radius. On the other hand, by considering even

a small neutralisation region it is possible to secure much wider areas with much less

resources. For instance a 70m radius area can be fully secured by means of a 70 dB

self-interference cancellation mechanism and 36 dBm AN transmit power for the 1m

protected surroundings case.
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Figure 6.3: Minimum self-interference cancellation (SIC) performance required at the IoT-GW in order to achieve fully
secure NB-IoT communications across a disk-shaped area of radius R around the IoT-GW.
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Figure 6.4: Minimum required IoT-GW transmit power performance to achieve fully secure NB-IoT communications
across a disk-shaped area of radius R around the IoT-GW.

Fig. 6.5 shows the ASC from the IoT devices to the IoT-GW in percentage of the

total number of IoT-devices against the size of the neutralisation regions generated by

the helpers. The neutralisation region of the IoT-GW is fixed at ρIoT = 0m and the

network size is R = 100m. The Monte Carlo simulation and theoretical curves are

shown for λx = 0.1, which corresponds to an average number of 3141 IoT devices. We

see that the simulation curves and the lower bounds are very close.

In Fig. 6.6 we show the ASC when the eavesdroppers are jammed by the closest helper

only. Three different cases are shown, first, when the IoT-GW is not sending jamming

signal in the network we see that with helpers power of -5dBm only 40% of the IoT

devices are secured in average. This number grows to almost 60% when the IoT-GW

sends a 0dBm jamming signal and 90% when the IoT-GW jamming signal power is

15dBm. However, even without IoT-GW jamming, the helpers are able to secure 90%

of the IoT-devices with a power of just 5dBm whereas the IoT-GW would need at least

15dBm to obtain the same results.

In Fig. 6.7 we compare the scenario where an eavesdropper is jammed by its closest

helper to the one where the eavesdropper is jammed by all the helpers. The first ob-
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Figure 6.5: Average number of secure connections to the IoT-GW against the size of de neutralisation regions of the
helpers. Settings: ρIoT = 0m, λx = 0.1, λk = 1.10−2m−2, R = 100m.

vious result is that the performance is higher when all the helpers are considered at

the same time. However, the gap between the two scenario is smaller if the helpers are

transmitting at higher power, and the aggregate interference created by the network to

potential neighbouring networks is much less if only one helper is jamming at one time.

6.6 Conclusion

In this chapter we have studied the confidentiality of the communications flowing from

a network of IoT devices to a reference IoT-GW when the position of the potential

eavesdropper(s) is unknown with precision. By building on the concepts of jamming by

artificial noise (AN) and In band full duplex we have proposed smart jamming strategies

aimed at minimising the IoT-GW AN power consumption while guaranteeing a positive

secrecy rate across the IoT-GW served region. To study the proposed jamming strate-

gies, we have used the concept of neutralisation regions, which are areas within the IoT
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different transmit AN power at the IoT-GW, settings: λx = 0.1, λe = 5.10−4m−2, λk = 5.10−4m−2, R = 100m,
γE = 3, γ0 = 6, h0 = 10−10.
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R = 100m, γE = 3, γ0 = 6.
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network where all eavesdroppers are deactivated (i.e., they are not able to decode in-

formation). We have shown that the solution where only the IBFD IoT-GW generates

AN is viable in the smart-home use case, i.e., when a neutralisation zone around each

IoT-device is assumed. In the case with helpers and punctual jamming instead, we

have shown that the Average number of Secure Connections (ASC) increases at least

exponentially with the density of the helpers.

A major limitation in the applicability of our results are in the case where multiple net-

works have to cohabitate on the same frequencies as for example in the unlicensed bands.

In this case jamming would disrupt communications for legitimate parties nearby. In

networks where the frequencies used are proprietary and/or managed by a central en-

tity -for example one can imagine a sensor network in a sensitive power plant- the full

potential of the techniques described here and of our analysis can be applied. More

about this issue is mentioned in the future work section.
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Chapter 7

Conclusion and future work

7.1 Conclusion

Throughout this work we have focused on analysing the performance of Interference

Alignment with imperfect channel knowledge. In comparison to the existing literature,

this work is novel because we do not only give some average performance but go further

and provide some achievable performance and complete statistical description of the

rate of the network.

In Chapter 3 we have studied IA with bounded CSI knowledge, we have seen that we

could obtain a lower bound on the capacity achievable in that case, and how this lower

bound depends on the number of user in the network the number streams and more

importantly on the uncertainty on the CSI. We have defined the saturating SNR and

showed that up to that SNR, the real performance of the network is going to be within

1bps/Hz of the lower bound.

The results of chapter 3 are then applied to the case where the channel estimation is

done using the Least-square method, we show how the capacity lower bound varies ac-

cording to different parameters of the estimation method especially the training SNR.

We show the variation of the DoF with the parameters.

Chapter 4 gives a statistical description of the rate given that the channel matrices

entries are Complex Gaussian random variables, with this statistical description we are

able to define a parameter called outage probability and which gives the probability
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of not achieving a certain rate with a certain channel uncertainty. Using the outage

probability we were also able optimise the number of streams in the network and to

extend our analysis to block fading channel and not only constant channels.

Chapter 5 Introduces IA in cellular networks in order to mitigate the inter-cell interfer-

ence. The main objective is to analyse the performance of users locate at the cell-edge

where the desired signal and the interference are received at the mobile user with sim-

ilar intensities. The base stations locations are modelled after a Poisson point process.

Using stochastic geometry and the results developed in the previous chapters, the cov-

erage probability of the networks is derived.

Chapter 6 considers physical layer security in IoT network, smart jamming is utilised

to prevent eavesdroppers from listening in on communications and the concept of neu-

tralisation regions is used to study the performance of helpers in securing IoT net-

works. The work presented throughout this dissertation was published in the ChinaSIP

conference in Chengdu China, in Wireless Communications letters, in Transaction on

Wireless Communications and in a special issue of the Journal of Communications and

Networks.

7.2 Future Work

Different aspects of the work presented in this thesis can be improved. The aim of

this section is to point out where these improvements can be made and provide some

guidance as to how to approach them and which techniques might be appropriate to

use in such and such context.

7.2.1 Coverage probability with IA

The model presented in chapter 5 depicts a scenario where the interference and the

desired signal strength at the mobile user are equivalent. While this model provides a

good representation of what happens at the cell edge, it is not accurate over the entire

network. A better system model would consider heterogeneous path-loss coefficients for

every signal received by the mobile user.
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Using similar notation as in chapter 5 this means that the received signal at a given

user (say o) can be written as

yo =
√
`dHo,oVoxo +

∑
s∈So

√
`sHo,sVsxs + ηo, (7.1)

Where `s is the signal attenuation from the interfering BS s to the user o due to the

path-loss and shadowing.

In order to adopt the same approach used in chapter 5, the expression of the outage

probability needs to be updated. This means that the derivations of chapter 4 must be

modified. To do so, one must consider IA with heterogeneous path-loss coefficients [111].

The literature on this topic is very slim and appears indirectly when IA and power

allocation are considered together [112–114] in this case there is never an analytical

solution to characterise the performance of IA but different forms of iterative algorithms

are proposed to design the precoders that optimise the performance of the system. It

appears more directly in clustering approaches [115–117] where clusters of users to

which to apply IA are defined based on the strength of the interference they generate

or receive from their neighbours. This latter case the effects of heterogeneous path-loss

matters more for the clustering than for analysis of IA itself. This lack of literature

can be explained by the fact that initial developments of IA where focus on the infinite

SNR case where the path-loss has no effect on the performance. However this is an

important result to get because obviously practical networks operate at finite SNR.

Obtaining the coverage probability of cellular network in a more general setting that

that of chapter 5 would allow for a better comparison between the performance of IA

and other existing techniques for interference mitigation.

7.2.2 Jamming in the unlicensed spectrum

In chapter 6 the issue of securing IoT networks is raised, the main problem with IoT

networks is that they are populated with a wide variety of devices some of which might

not have the resources necessary for complex encryption protocols. The solution that

was proposed consisted in using jamming to protect vulnerable devices from eavesdrop-

pers.
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While this solution can be implemented to successfully reduce the eavesdropper’s capa-

bilities to overhear transmission, it is not attractive for application in public networks

especially on the unlicensed spectrum. Indeed, jamming the frequencies might be effi-

cient to protect the secrecy of the messages in one subnetwork, However the neighbour-

ing networks might suffer from the same jamming signal.

An interesting result would be to measure the effect of different sort of jamming proto-

col in the unlicensed spectrum to see how different devices and transmission standards

respond. This sort of tests have been done for example in [118]. Note that the jamming

strategy can be to sporadically jam some parts of the network for very short period of

time using a technique such as divide and conquer [105, 119] leaving enough room for

other devices to transmit, therefore it’s not obvious that jamming is not a viable option

in the unlicensed spectrum. The goal here is then to devise a jamming protocol that is

efficient to provide security to one network while leaving the neighbours unaffected.

7.2.3 Securing the backhaul of an IoT network

In order to completely secure IoT networks, one must not only insure that the uplink

from the IoT devices is secure but also the downlink and the backhaul link from the

gateway to the data processing part of the network. In the following section the focus

is on the latter. It’s assumed that the backhaul consists of a wireless link to an access

point to the cloud that is denoted cloud receiver (C-Rx). It’s also assumed that the IoT-

GW is equipped with M ≥ 2 antennas and the C-Rx with N ≥ 2. Moreover, Maximum

Ratio Transmission (MRT) and Maximum Ration Combining (MRC) are used as the

transmission and reception strategy for the link. In order to secure this communication

link, artificial noise can be transmitted along with the desired signal from the IoT-GW.

This idea is not novel and was investigated in 2010 in [120], however, as we will see

later there’s no complete analysis of the performance of such system especially in the

case of imperfect CSI.

With this model, the strategy of the IoT-GW is to transmit the useful signal along

the strongest stream available while sending AN along all other weaker streams and

because the eavesdropper doesn’t know the channel between the IoT-GW and the C-
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Rx it cannot remove the AN from the desired signal efficiently.

In the following sections we will consider different scenarios of communication between

the IoT network and the C-Rx building gradually towards more and more realistic and

perhaps more secure scenarios.

Single IoT-Gateway

In this subsection I assume that the IoT devices transmit their data to a single IoT-

Gateway that forwards it to the C-Rx. We’ll look at two cases, first let’s assume that

perfect knowledge of the CSI is available to both IoT-GW and C-Rx and second that

only imperfect CSI is available to them. The eavesdropper has no access to that CSI

and both the IoT-GW and the C-Rx are unaware of the presence of the eavesdropper.

Case 1 : Perfect CSI.

We denote H the channel matrix between the IoT-GW and the C-Rx whose entries are

iid CN (0, 1) and x the data vector sent by the IoT-GW so that the received vector y

at the C-Rx writes as

y = Hx + n. (7.2)

With n the noise vector with entries iid CN (0, σ2
n).

The IoT-GW wants to design x so as to send a useful signal to the C-Rx and at the

same time jam eventual eavesdroppers. Therefore it designs three vectors v, w and r

such that 
r∗Hv = λM

r∗Hw = 0

‖v‖2 = 1

(7.3)

Where λM is the highest eigenvalue of H∗H.

To fulfil the conditions above it suffices to take for v the eigen-vector of H∗H corre-

sponding to the eigen-value λM , r = Hv and w =

√
PANS
M−1

Pf , where P is the matrix

containing the eigen-vectors of H∗H except v and f ∈ CN (0, I). PAN
S is the artificial

noise power send by the IoT-GW.

The received signal at the C-Rx can be written as

y = H(vs+ w) + n. (7.4)
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Where s is the desired signal and |s|2 = PS is the signal power.

The estimate of the signal at the C-Rx is given by

ŝ = r∗y = r∗Hvs︸ ︷︷ ︸
=λMs

+ r∗Hw︸ ︷︷ ︸
=0

+r∗n. (7.5)

Therefore the SINR at the C-Rx is given by

γC =
E {|λMs|2}
E {|r∗n|2}

=
E {λ2

M}PS
Nσ2

n

(7.6)

There’s one important term that appears here E {|λMs|2} that limits the complete

characterisation of γC , to my knowledge, there is not yet a closed form expression for

that term even though its statistical properties have been very well studied as can

be seen in [121] and the references therein. Finding an analytical solution to this

problem would be a very good contribution in different fields of research from pure

mathematics to telecommunications and atomic physics. Luckily, for a given small

number of antennas, the value of E {|λMs|2} can be approximated very accurately by

simple methods such as Monte Carlo simulations. For very large values there are also

good analytical approximations [122].

Let’s now consider the eavesdropper side. Denote by He the channel matrix between

the IoT-GW and the eavesdropper, which is equipped with K antennas. the received

signal at the eavesdropper is given by

z = He(vs+ w) + ne. (7.7)

Where ne is the noise vector at the eavesdropper with entries iid CN (0, σ2
ne).

Because the eavesdropper doesn’t know H the CSI between the IoT-GW and C-Rx it

uses equal gain combining to decode the message with the decoder r∗e = 1
K

[1, 1, ...1].

ŝe = r∗eHevs+ r∗eHew + r∗ene (7.8)
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Hence, the SINR at the eavesdropper can be expressed as

γE =
E {|r∗eHev|2}PS

E {|r∗eHew|2}+ σ2
ne

(7.9)

E {|r∗eHev|2} = 1 and E {|r∗eHew|2} = PAN
S therefore

γE =
PS

PAN
S + σ2

ne

(7.10)

And finally the secrecy capacity is given by

Cs = [log(1 + γC)− log(1 + γE)]+ (7.11)

Where [·]+ means the maximum between 0 and the value in the brackets.

The equations (7.11) and (7.10) together show that increasing the artificial noise power

increases the secrecy capacity of the communication link.

Remark : This does not take into account the distance related path-loss or any form

of self-interference.

Case 2 : Imperfect CSI

Let’s now assume that the channel knowledge is imperfect. That’s represented as [123]

H = ρĤ + ∆H (7.12)

With ρ = 1
1+σ2

e
, Ĥ is the channel estimate whose entries are i.i.d drawn from CN (0, 1 +

σ2
e), ∆H is the error matrix with entries i.i.d drawn from CN (0, σ2

e

1+σ2
e
).

In this case the precoding vector v̂ is the eigenvector of Ĥ corresponding to the highest

eigenvalue λ̂M and the artificial noise vector is ŵ. The received vector at the C-Rx is

now

y = (ρĤ + ∆H)(v̂s+ ŵ) + n. (7.13)

and the estimated signal

ŝ = ρλ̂Ms+ r̂∗∆Hv̂s+ r̂∗∆Hŵ + r̂∗n. (7.14)
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Therefore the SINR at the C-Rx is given as

γ̂C =
ρ2E

{
λ̂2
M

}
PS

E {|r̂∗∆Hv̂s|2}+ E {|r̂∗∆Hŵ|2}+Nσ2
n

(7.15)

=
ρ2E

{
λ̂2
M

}
PS

N(σ2
ePS + 1

M−1
PAN
S σ2

e + σ2
n)

(7.16)

In order to obtain (7.16) the terms representing averaging on the denominator have

been simplified. I show below how this is done on one of the terms. Let’s show that

E {|r̂∗∆Hŵ|2} = N
M−1

PAN
S σ2

e .

Proof. First, rewrite the left-hand side term E {|r̂∗∆Hŵ|2} = E {ŵ∗∆H∗r̂r̂∗∆Hŵ}
By construction E {r̂r̂∗} = (1 + σ2

e)IM

Because ŵ =

√
PANS
M−1

P̂f with ‖f‖ = 1 and P̂ is a matrix of unitary vectors, ∆Hŵ en-

tries are drawn from CN (0,
PANS
M−1

σ2
e

1+σ2
e
) that means E {ŵ∗∆H∗∆Hŵ} = Nσ2

e

(M−1)(1+σ2
e)
PAN
S .

Therefore, E {ŵ∗∆H∗r̂r̂∗∆Hŵ} = Nσ2
e

M−1
PAN
S .

On the eavesdropper side, the expression of the SINR remains the same

γE =
E {|r∗eHev̂|2}PS

E {|r∗eHeŵ|2}+ σ2
ne

=
PS

PAN
S + σ2

ne

(7.17)

The secrecy capacity in this case is similar with γC replaced with γ̂C .

Ĉs = [log(1 + γ̂C)− log(1 + γE)]+ (7.18)

In this case, the artificial noise decreases the reception quality at the eavesdropper but

also at the C-Rx. Equation (7.16) shows how the SINR at the C-Rx is affected by the

AN sent by the IoT-GW. We see that the number of transmit and receive antennas

count as well as the CSI quality.
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Single IoT-GW + C-Rx jamming

In this section I will expand the results developed in the case 2 of the previous section.

We are going to consider that the C-Rx helps to increase the secrecy rate by sending

artificial noise in the network. Let’s also assume that the self-interference cancellation

is not perfect at the C-Rx then add the effects of path-loss in the analysis.

Let’s denote HSI the self-interference channel at the C-Rx after imperfect self-interference

cancellation it’s entries are drawn from CN (0, σ2
SI), HCE the channel from the C-Rx to

the eavesdropper with entries drawn from CN (0, 1) and PAN
D the artificial noise power

sent by the C-Rx.

The received signal at the C-Rx is now

y = (ρĤ + ∆H)(v̂s+ ŵ) + HSIe + n. (7.19)

Where e is the artificial noise vector sent by C-Rx, e is drawn from CN (0, PC
N

I).

Following the same derivation as in the previous section, the SINR is given as

γ̂Cs =
ρ2E

{
λ̂2
M

}
PS

E {|r̂∗∆Hv̂s|2}+ E {|r̂∗∆Hŵ|2}+ E {|r̂∗HSIe|2}+Nσ2
n

(7.20)

=
ρ2E

{
λ̂2
M

}
PS

N(σ2
ePS + 1

M−1
PAN
S σ2

e + σ2
n) + (1 + σ2

e)σ
2
SIP

AN
D

(7.21)

On this new expression for the SINR at the C-Rx we see that quality of the signal at the

C-Rx now depends on the performance of the self-interference cancellation technique.

At the eavesdropper side the received signal can be written as

z = He(vs+ w) + HCEe + ne. (7.22)

In this case the SINR of the eavesdropper is

γE =
E {|r∗eHev̂|2}PS

E {|r∗eHeŵ|2}+ E {|r∗eHCEe|2}+ σ2
ne

=
PS

PAN
S + PAN

D + σ2
ne

(7.23)
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The C-Rx successfully decreases the reception quality of the eavesdropper. But this is

a double edge sword since the AN also affect its own decoding performance.

However, this picture is not complete since in a real system, signal attenuation play an

important role. For example if the signal getting to the C-Rx is very weak it is not

advisable to transmit AN as the self-interference will probably cover the signal. In the

next paragraph, the path-loss is added to form a more complete picture.

With path-loss : The expressions above can be easily modified to take into account

the path-loss.

Let’s first define the gains on the different links.

gDe is the channel gain between the C-Rx and the eavesdropper, gSe is the channel

gain between the IoT-GW and the eavesdropper, gSD is the channel gain between the

IoT-GW and the C-Rx.

With that the SINR expression of the C-Rx and the eavesdropper can be given as

γ̂Cs =
ρ2E

{
λ̂2
M

}
gSDPS

N(σ2
egSDPS + 1

M−1
σ2
egSDP

AN
S + σ2

n) + (1 + σ2
e)σ

2
SIP

AN
D

(7.24)

And

γE =
gSePS

gSePAN
S + gDePAN

D + σ2
ne

(7.25)

The parameter E
{
λ̂2
M

}
can be approximated numerically once the number of trans-

mit and receive antennas and σe are specified.

With the expression of the SINR at the C-Rx and at the eavesdropper, the secrecy

capacity of the backhaul link can be analysed for different sets of parameters. An in-

teresting direction would be to find the optimal transmit power for the signal and AN

to maximise the secrecy capacity in realistic scenarios.
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