
Human Motion Modelling for 
Simulation Testing of GNSS Equipment 

 
 
 
 
 
 
 
 
 
 
 

Kimon Voutsis 
 
 

Department of Civil, Environmental and Geomatic Engineering 
University College London 

 
  
 

July 2017 
 
 

Supervisors: 
Dr. Paul GROVES 
Dr. Jan BOEHM 

 
Thesis submitted for the degree of Doctor of Philosophy  



2 

 

  



3 

 

Author’s Declaration 

 

I, Kimon Voutsis confirm that the work presented in this thesis is my own. Where information has 

been derived from other sources, I confirm that this has been indicated in the thesis. The code which 

was developed to analyse the data for this thesis, as well as referenced but unpublished technical 

reports, may be copyrighted both to UCL and Spirent Communications plc.  

 

 

………………………………………… 

 



4 

 

  



5 

 

Abstract 

Pedestrian motion-induced dynamics along the line-of-sight (LOS) between a GNSS receiver and a 

satellite, may disrupt the nominal operation of GNSS carrier-tracking loops, by introducing cycle slips 

and/or false frequency locks. In combination with other factors, e.g. multipath interference, weak 

signal conditions or limited availability of GNSS signals, the receiver could provide a degraded 

navigation solution or even lose signal lock. This thesis researches firstly how pedestrian motion 

affects the operation of carrier phase lock loops (PLLs), used by some GNSS receivers, and frequency 

lock loops (FLLs), used by all GNSS receivers; and secondly, what is the best way to model pedestrian 

motion in order to simulate the error effects of pedestrian motion-induced dynamics on a GNSS 

antenna, via a simulated GNSS carrier phase lock loop (PLL).  

The thesis reviews the relevant literature on human biomechanical modelling, path-finding and 

inertial/GNSS navigation, to design a custom pedestrian motion model (PMM). The PMM validation 

is supported by motion capture (MoCap) experiments using an inertial/GNSS sensor held by, or 

attached, on a pedestrian. The thesis also describes an implementation of simulated GNSS carrier-

tracking loops (SGCTLs) in Matlab, to assess the effect of human MoCap profiles and synthetic 

human motion profiles (from the PMM) on the performance of the SGCTLs. 

The testing results suggest that GNSS antenna motion dynamics due to typical pedestrian 

motion can induce excessive cycle slips due to dynamics stress on the simulated PLL and FLL. 

Therefore, antenna dynamics should be considered when designing GNSS tracking loops and 

navigation algorithms for pedestrian applications to allow the GNSS receiver track human motion-

induced dynamics effectively. The thesis concludes with carrier-tracking bandwidth 

recommendations for GNSS receiver design, based on the presented evidence. Under good signal 

conditions (above 40dB-Hz), the minimum recommended bandwidths for PLLs and FLLs are 15Hz 

and 5Hz, respectively, in order to respond effectively to the dynamic stress induced by typical 

pedestrian movements. Finally, the results indicate that the PMM can represent the LOS dynamics 

stress on the SGPLL within an acceptable tolerance. Future work encompasses the analysis of the 

pedestrian motion effects on real GNSS receivers. 
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Nomenclature 

This list contains symbols used to denote matrices, vectors, scalars, subscripts and superscripts and 

qualifiers throughout this thesis. Wherever physical quantities are mentioned, SI (Système 

international d’ unités) units are implied or explicitly used. Quantities noted with bold small letters 

represent vectors, capital bold letters represent matrices, small letters represent scalars and small 

letters in subscript or superscript italicised text denote frames of reference or indices (e.g. current 

epoch). 

Matrices (upper case bold typeface font) 

C  Coordinate Transformation Matrix (3x3) (unitless) 

3I  Identity matrix (3x3) (unitless) 

Ω  Skew-symmetric matrix (3x3) of angular rate vector (rad/s) 

ΔC  Attitude update matrix C (3x3) (unitless) 

  

Vectors (lower case bold typeface font) 

r   Position vector (3x1) in Cartesian coordinates (m) 

p   Position vector (3x1) in Latitude, Longitude, Height (rad, rad, m) 

d   Position vector normalised in some length unit (3x1) (unitless) 

v   Velocity vector (3x1) (m.s-1) 

a   Acceleration vector (3x1) (m.s-2) 

j   Jerk vector (3x1) (m.s-3) 

f   Specific force (m.s-2) 

α   Attitude increment vector (3x1) (rad) 

ω   Angular rate 

ψ   Attitude vector (3x1) in Euler angles (rad) 

  

Scalars (lower case italicised font) 

   Range (m) 

   Phase (rad) 

   Roll (rad) 

   Pitch (rad) 

   Yaw (rad) 

   Time interval (s) 

f  Frequency (Hz) 

B   Bandwidth (Hz) 



14 

 

t   Time (s) 

0c n  Carrier power to noise density ratio (unitless) 

0C N  Carrier power to noise density ratio (dB-Hz) 

  

Subscripts and superscripts 

+ Denotes an updated attitude of a frame 

- Denotes an attitude of a frame before being updated 

  Reference frame 

  Body frame 

  Resolving frame 

i  Inertial frame 

e  ECEF frame 

n  Local navigation frame 

l  Local tangent plane 

  

Qualifiers 

exp( )x  Exponential of variable x, i.e. xe  

x  Absolute value of variable x 

x  Magnitude of vector x 

dx  Differential of variable (or vector) x 

x  Error in variable (or vector) x 

x  Correction or Difference of (variable or vector) x 

x  Observed variable (or vector) x 

x̂  Estimated/Predicted variable (or vector) x  

x  Average of variable x 

x  First derivative of x variable (or vector) 

x  Second derivative of x variable (or vector) 

x  Third derivative of x variable (or vector) 

( )x   Updated variable (or vector) x 

( )x   Variable (or vector) x before being updated  

 


C  Transpose of matrix C 

  x  Skew-symmetric matrix (3x3) of 3D vector x (3x1) 
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 Introduction 

This chapter provides an introductory overview of this thesis and is divided in four sections. The 

first, Section 1.1, introduces the background and motivation of this thesis, the second, Section 1.2, 

discusses the thesis’ aims and objectives, and the third, Section 1.3, briefly discusses a publication 

resulted from this research work. The chapter concludes with the presentation of the thesis’ structure 

in Section 1.4. 

1.1 Background and Motivation 

Global Navigation Satellite Systems’ (GNSS) signal simulation is important as it allows a GNSS-

enabled device under test (DUT) to be validated against specific application positioning, velocity and 

timing (PVT) requirements. Validation testing is essential to ensure that a GNSS DUT behaves as 

expected and can be relied upon within its operational limits. DUTs which are within the research 

scope of this thesis encompass all GNSS equipment used for pedestrian applications, e.g. 

smartphones and wearable equipment, like those used for athletic activity monitoring. It is worth 

noting that all GNSS receivers use carrier frequency tracking, but only some of them carrier phase 

tracking, for a more precise determination of the DUT position. 

GNSS-enabled devices are used in a wide range of different applications. This range spans 

from consumer day-to-day applications, such as aided-navigation using a GNSS-enabled smartphone, 

or location based services (LBS), to military, e.g. ballistic missiles guidance systems; utilities, e.g. time-

synchronisation of data networks and electrical power grids; and as life-critical applications, e.g. 

emergency and rescue services. Knowing the position of a pedestrian with an acceptable degree of 

accuracy is essential as, naturally, when using or testing positioning, navigation and timing (PNT) 

equipment, the first question which a user might ask is “can I trust” that PVT navigation solution or, 

in other words, how accurate is the obtained navigation solution against the specific application 

requirements. From an engineering point of view, it is also worth knowing how, if possible, the PVT 

solution can be improved, with respect to (w.r.t.) an external reference, assumed to be true, e.g. by 

being at least one order of magnitude more accurate than the DUT test results.  

The errors introduced by the motion of the GNSS antenna propagate to the navigation 

solution and may degrade the PVT solution accuracy. In extreme cases, if the errors due to GNSS 

antenna motion dynamics are combined with other GNSS vulnerabilities, e.g. multipath interference 

in urban canyons, then the GNSS equipment can stop tracking satellite signals. This in turn could 

cause an outage in providing a navigation solution, if the number of available satellite signals is 

limited.  
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In this context, suitable pedestrian motion generation for simulation testing is important, 

because it can replicate the motion dynamics’ environment of the GNSS DUT, and assess the DUT’s 

performance under these conditions, in a controlled and repeatable way. This reduces the need to 

conduct field experiments to assess the GNSS DUT’s performance in the presence of a specific 

motion dynamics’ profile. The cost of field experiments may far exceed the cost of a simulation 

system, despite the typically higher upfront cost of the latter, depending how many different motion 

profiles need to be captured, and considering the great variation in human activities and specific 

experimental conditions, e.g. weather, external sources of vibration, interference etc.  

Pedestrian motion generation for simulation testing is of interest to Spirent Communications, 

as it has the potential to increase their product offering in simulation-based testing of (GNSS-

enabled) PNT equipment for pedestrian applications. In addition, the outcomes of this thesis, aim to 

enable Spirent’s customer-base, i.e. PNT equipment manufacturers, integrators and/or testers, to 

validate and/or improve, as appropriate, the robustness of their GNSS-enabled PNT equipment in 

the presence of pedestrian-induced motion dynamics. This Ph.D. project was sponsored by an 

EPSRC Industrial CASE studentship and Spirent Communications plc., noting that the aim of the 

CASE scheme is to allow UK businesses, to take the lead in arranging projects with an academic 

partner of their choice, so they can mutually benefit from this research collaboration [1].  

 This thesis shows how real pedestrian motion profiles can degrade the performance of GNSS 

receivers’ carrier-tracking loops, noting that motion dynamics can also affect GNSS receiver 

oscillators which can be sensitive to vibration, causing phase noise [2], although analysis of vibration 

effects is out of scope of the thesis. It also shows how a pedestrian motion model (PMM) can be 

developed in order to recreate the 3D motion dynamics’ environment within which the PNT 

equipment operates, when either held by hand or attached on the human body, e.g. with an arm-band 

or inside a back-pack. The aim of generating a synthetic motion dynamics’ profile is to compare it 

against real motion (captured by field experiments), and assess whether they have, or not, a similar 

impact on the performance of GNSS receivers’ carrier-tracking loops. It must be underlined that the 

modelling of pedestrian motion in this thesis aims at creating a test platform for GNSS receivers (in 

a simulation environment), so it is not intended to generate a complete pedestrian navigation system, 

which could be used e.g. for validation testing of pedestrian dead-reckoning (PDR) or zero-velocity 

update (ZVU) algorithms. Also, it is worth noting that human body effects on GNSS antennas, such 

as signal shadowing (body-masking), diffraction and signal attenuation due to the dielectric properties 

of human body are not within the scope of this thesis, due to time limitations, but rather form part 

of a longer-term aspiration for this research. 

Generally, PNT equipment can be tested by means of the following four ways [3]: 

• Field trials, whereby data are collected for a range of representative operational scenarios of the 

device under test (DUT).  The advantage of field trials collection is that the collected data 



 

25 

 

represent very realistically the DUT behaviour under the specific experimental conditions in 

the field. However, a disadvantage of this method is the difficulty in collecting data for extreme 

case scenarios, e.g. the effect of radio interference on GNSS signals without disrupting publicly 

available signals, or if data under adverse weather conditions had to be collected. 

• Recorded (and re-played) data methods provide advantages compared to field trials, as testing using 

recorded data can be repeated accurately, allowing different algorithms, e.g. embedded in a 

device’s firmware, and sensors to be tested in bulk under the same conditions and to be 

compared in terms of relative performance, minimising the testing costs per DUT. Also, this 

can be beneficial to optimise the design of the hardware or software algorithms, e.g. by 

detecting data synchronisation issues between hardware and software components, or by 

monitoring the response of the DUT under specific fault conditions, e.g. when the incoming 

GNSS RF signal is attenuated/blocked in order to simulate a DUT inside a car which passes 

under a tunnel. 

• Laboratory testing enables performance analysis of PNT equipment under controlled physical 

conditions, e.g. using static or vibration tables to recreate specific vibration conditions, or 

when capturing pedestrian walking data using a treadmill. Although laboratory testing provides 

controlled experimental conditions and repeatability of results, a drawback is the limited 

complexity of conditions which can be recreated compared to reality, i.e. by employing field-

trials or recorded and replayed data which can capture, e.g. multipath and blocking/attenuation 

in GNSS signals while a pedestrian walks in an urban environment. The cost of laboratory 

testing depends on how many times the laboratory equipment can be re-used, to reduce the 

cost per experiment. 

• Hardware and software simulation. This type of simulation can be used to predict the performance 

of a DUT over a range of conditions which are difficult to recreate in field-trials or even in 

laboratory testing, e.g. specific characteristics of GNSS signals or interference. Using a 

simulation environment, we can have an exact knowledge of the simulated input and output 

can be achieved, noting that the reliability of simulation results depends on how reliable are 

the input values and the underlying real world model, irrespective of how sophisticated is the 

results’ analysis. Another consideration along these lines has to do with the depth of detail that 

the underlying model has to represent in order to avoid adding unnecessary information with 

ensuing time and financial costs; therefore, it is essential to know which parameters impact 

significantly the performance of the DUT, within the application requirements. Spirent 

Communications specialise in this type of simulation which is also the focus of this thesis. 

After an initial cost of installing the necessary testing equipment and training staff, the cost of 

performing a hardware/software simulation can be less than all other types of testing. 



 

26 

 

Table 1.1 summarises the four testing approaches. As a degree of uncertainty is always 

contained in any measurement, the term “truth reference” means a more accurate (or less uncertain) 

reference than the DUT, against which it can be compared, following the above mentioned methods. 

In PNT simulation testing, a truth model is called “realistic” when it can recreate the properties of 

interest of a physical system in question, within the tolerance of the application requirements that it 

has been designed for.  

 

 Field trials Recorded data Laboratory Simulation 

Repeatable No No Yes Yes 

Testing scenarios availability No No Limited Yes 

Realistic Yes Yes Yes Limited 

Cost for single experiment Low Medium Medium High 

Table 1.1. Navigation systems’ testing methods comparison. 
 

The advantage of real-world data recording is the realistic representation of the parameters we 

want to capture, e.g. linear acceleration, GNSS PVT etc. However, this approach can only provide 

ad-hoc results, i.e. for the scenario that the data were captured for. Practically, there are many occasions 

where we would like to generalise the results of our testing to cover a wider range of scenarios. The 

wide range of possibilities we need to account for renders it difficult, if not impossible, the design of 

a planned experiment, e.g. to measure GNSS position solution accuracy under specific atmospheric 

conditions and GNSS satellites’ constellation geometry.  

In cases like these, the simulation approach can provide us with a timely and cost-effective 

solution allowing repeatable and controlled experimental conditions. Also, it can provide 

benchmarking of the results with a pre-defined truth reference. E.g. for a static GNSS receiver, a 

displacement in the positioning solution would indicate an error in the receiver, therefore we have a 

performance metric to improve the design of the receiver and reduce the positioning uncertainty. 

Other advantages of simulation testing in the case of GNSS applications is that it might be the only 

available testing solution if we want to simulate GNSS signals which are not operational yet, or in the 

case of certain events which occur rarely e.g. the insertion of a leap second every couple of years to 

Coordinated Universal Time (UTC) time, in order to account for the Earth’s rotation variability [4], 

i.e. UTC lags GPS time by a specific offset, equal to the sum of the inserted leap seconds. 

An important issue which arises at this point is the definition of what constitutes a realistic 

result of a simulation. Having clear testing requirements is essential in this respect, to decide how to 

simulate real world phenomena, and select an appropriate testing approach in terms of accuracy and 

precision. On a similar note, as an analytical model is a simplification of a real-world phenomenon, a 
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simulation can typically only test special cases of that analytical model. Therefore, caution needs to 

be exercised when interpreting the simulation testing results, in order to avoid extrapolating them 

beyond the scope of the simulated parameters [5]. 

With respect to simulation testing of PNT equipment used for pedestrian applications, due to 

the human motion variation depending on individual characteristics and spatio-temporal context, it 

is more practical to focus first on finding those aspects of human motion that have the most 

significant effect on PNT equipment performance and then try to model this behaviour. The chapter 

continues with the discussion of the aims and objectives of the thesis. 

1.2 Aims and Objectives 

The general aim of this thesis is to identify those aspects of pedestrian motion and sensor location 

that most affect the performance of GNSS equipment, in terms of disrupting the nominal operation 

of carrier-tracking functions within the GNSS device under test (DUT). The thesis’ aims are to answer 

these two main questions: 

• Which are the key aspects of pedestrian motion that affect the performance of GNSS DUT?   

• Which is the best way to generate a pedestrian motion model for simulation testing of GNSS 

DUT? 

The answer to the first research question is examined from a human biomechanics perspective, 

i.e. by analysing human motion and how it can create an adverse (or not) dynamics’ environment for 

the GNSS antenna, as well as how the GNSS DUT responds to the presence of human-induced 

antenna motion dynamics. To address the second research question, the thesis discusses different 

approaches to model human motion and then describes a custom pedestrian motion model (PMM), 

which is used to simulate the 3D motion dynamics induced to the GNSS antenna, held by hand or 

attached on the human body. The validation of the PMM (synthetic) output is performed by 

comparing the effects of the real motion on GNSS sensors’ performance (analysed to address 

research question one) to the effects caused by the synthetic motion. 

The following points summarise the specific aims of this project, which are: 

• To identify which types of pedestrian motion are relevant to this research in terms of affecting 

the performance of GNSS receivers. This work supports the design of the thesis’ experiments 

in order to capture real pedestrian motion data in the field. The definition of which pedestrian 

motion scenarios to capture, is done in collaboration with Spirent within the aims of the thesis. 

• To determine how the dynamics induced by pedestrian motion affects the performance of 

GNSS receiver’s tracking loops. 

• To find what is the best approach to capture pedestrian motion using IMU/GNSS equipment 

for examining the effect it has on GNSS receiver’s performance.  
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• To investigate what is the best method to model pedestrian motion for the purposes of 

recreating a realistic error profile on GNSS carrier-tracking loops.  

• An implicit aim of the thesis is to publish the results of this research to appropriate 

conferences, e.g. the annual Institute of Navigation GNSS conference, or relevant journals. A 

summary of proposed future research work is provided in Chapter 8. 

The results of this research work aim at demonstrating the essential tools needed in order to 

develop a software tool that generating the GNSS antenna motion dynamics’ profile. This motion 

profile can then be input to Spirent software packages in order to drive the GNSS RF signal 

generation through Spirent’s GNSS RF simulators. This software tool could also assess the impact 

of the antenna dynamics on the GNSS sensor’s performance for the purposes of testing 

representative GNSS and other signals at the user antenna, as well as simulate IMU outputs. 

1.3 Publications 

As part of this project, the paper “The Importance of Human Motion for GNSS Simulation Testing” 

was published in ION GNSS+ 2014 conference proceedings. It also received a best presentation 

award in Session A6 “Simulation and Testing”, among 8 presentations in total. 

1.4 Thesis Structure 

As discussed in Section 1.2, the thesis aims to address which human movements most affect the 

performance of GNSS carrier-tracking loops and which is the best way to simulate human motion in 

order to recreate the same error behaviour that real motion has in GNSS carrier-tracking loops. To 

address these two research questions, the thesis progresses as follows.  

Chapter 2 reviews the relevant literature, providing the background knowledge required to 

address the aims of this thesis, discussed in Section 1.2, and is divided into three sections: Section 2.1 

introduces some fundamental concepts of pedestrian motion analysis, Section 2.2 provides the reader 

with the basic principles of inertial and GNSS navigation sensors’ operation. Finally, Section 2.3 

details methods of human motion capture and modelling, including routing (pathfinding) between 

two locations. The literature review presented in Chapter 2, provides insight on how different areas 

of the literature, such as human biomechanics, navigation sensors/systems and pedestrian motion 

capture/modelling, link together in order to develop a workflow for addressing the thesis’ research 

questions, as shown in Figure 1.1. In particular, Chapter 2 details different ways to capture human 

motion, which informs the motion capture (MoCap) experiments described in Chapter 3, how to 

model human motion and develop a pedestrian motion model (PMM) to output synthetic (simulated) 

human motion (see Chapter 5). Also, Chapter 2 provides the background knowledge of GNSS 

receivers’ operation, used to conduct and analyse the results of MoCap experiments (see Chapter 3), 
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as well as to develop the simulated GNSS carrier-tracking loops (SGCLTs), described in Chapter 4, 

in order to analyse the effects of real (MoCap) and synthetic (PMM) human motion on the SGCTLs 

(with the results presented in Chapter 6). 

Chapter 3 describes the thesis’ human motion capture (MoCap) experiments. The human 

MoCap experiments provide the real human motion profiles, used to assess the impact of real motion 

on the performance of GNSS equipment and also, for validating the synthetic output of the 

pedestrian motion model (PMM). Chapter 3 comprises three sections, the first, Section 3.1, describes 

the experimental equipment used in the human motion capture experiments, the second, Section 3.2, 

details the pilot experiments and the last, Section 3.3, presents the main thesis’ experiment of human 

MoCap. The motion capture described in Chapter 3 was essential in order to analyse the effects of 

real human motion on the performance of SGCTLs (see results in Section 6.2); to validate the 

synthetic motion output of the PMM (see results in Section 6.3); and also to make recommendations 

on GNSS carrier tacking loops design (see results in Section 6.4). It must be noted that human MoCap 

data was not used for human biomechanical modelling, as this was based on other studies in the 

human biomechanical literature (see Section 5.3). 

Chapter 4 details the method of simulating GNSS carrier-tracking loops in Matlab, based on 

the literature review presented in Chapter 2. Chapter 4 is divided into four sections, the first, Section 

4.1, introduces the assumptions made in order to implement the GNSS carrier-tracking loops in 

Matlab, the second, Section 4.2, explains the simulation of a GNSS carrier phase lock loop and the 

third, Section 4.3, details the simulation of a GNSS carrier frequency lock loop. Chapter 4 concludes 

with Section 4.4, which presents the validation results for the simulated GNSS carrier-tracking loops 

based on a static test case scenario. The work presented in Chapter 4 provides the testbed for testing 

the effects of real (MoCap) human motion (whose capture process is described in Chapter 3) and the 

effects of synthetic motion output from the pedestrian motion model (described in Chapter 5) on 

the simulated GNSS carrier-tracking loops (SGCTLs) developed for this thesis.  

Chapter 5 explains the development method of a custom pedestrian motion model (PMM) 

which simulates the 3D motion dynamics of positioning and navigation equipment held by or 

attached to a pedestrian. The discussion in Chapter 5 is based on the literature review of human 

motion analysis, capture and modelling introduced in Chapter 2. Chapter 5 is divided into four 

sections. The first, Section 5.1, describes the candidate pedestrian motion methods considered in this 

thesis, justifying why the current approach was selected, the second, Section 5.2, details the 

implementation of the pedestrian routing model (PRM), which models the movement of human body 

between two given locations, and the third, Section 5.3, explains the development of a human 

biomechanical model (HBM), which simulates rotations of human body segments, given an 

underlying motion (walking) and overlaid gestures on the top of the underlying motion. Chapter 5 

concludes with Section 5.4, which explains the synthesis of the HBM and the PRM into the pedestrian 
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motion model (PMM), which outputs the simulated 3D motion dynamics of the positioning and 

navigation equipment (PNE), when attached on or held by a pedestrian.  

The work presented in Chapter 5 is important for the purposes of the thesis, as a custom-

made PMM can be manipulated (by means of rotating constituent body segments) to represent 

human motion, without the need to conduct new MoCap experiments when a new motion profile is 

required. Although that work was a major time commitment for the thesis, it also facilitated the future 

productisation of the thesis’ outcomes. This is firstly in terms of licensing, i.e. avoiding commercial 

issues which may arise when using third-party functionality, and secondly, future support and/or 

tailored enhancements of the PMM, since the PMM code is fully available and understood.  

Furthermore, Chapter 5 explains how a tailored human biomechanical model can be controlled 

using MoCap data in order to produce realistic human motion. This was considered appropriate for 

the thesis as although modelling human motion using MoCap techniques produces realistic, human-

like results, the process can be involved in terms of conducting the experiments end processing the 

results, e.g. by weighting and smoothing measurements. In addition, combining MoCap segments to 

synthesise a complete trajectory may involve additional smoothing in order to avoid discontinuities 

(especially when higher-order quantities, e.g. velocity or acceleration are of interest). Other methods 

involve imposing physical constrains on human movement, and generate motion without requiring 

prior MoCap and equipment calibration. However, the result may be unrealistic, due to the high 

dimensionality of human movement, i.e. there are several ways for human body segments to move 

and rotate in order to reach from a specific posture to another one. Therefore, these methods have 

not been considered suitable for this thesis. 

Chapter 6 provides the results from the analysis of real human MoCap profiles’ effect on the 

simulated GNSS carrier tracking loops (SGCTLs) and the effect of the synthetic motion from the 

PMM. Chapter 6 presents the evidence to address the research questions discussed in Section 1.2, 

and is divided into four sections. The first, Section 6.1, presents the method of (pre)processing the 

MoCap data from the thesis’ main experiment (Section 3.3) and the method of analysing the SGCTLs’ 

results, both for the (input) real and synthetic motion profiles. The second, Section 6.2, addresses the 

first research question by showing the effect of real MoCap scenarios on the performance of the 

SGCTLs and the third, Section 6.3, addresses the second research question, by analysing the effect 

of synthetic motion on the simulated GNSS phase lock loop and comparing this to the real motion 

effect. Chapter 6 concludes with Section 6.4, which provides a summary of the results presented in 

this chapter and recommendations on carrier tracking loop bandwidths, for GNSS receiver design in 

the presence of typical pedestrian motion. 

The thesis continues with Chapter 7, which provides a summary of the conducted research 

work, and draws conclusions based on the results presented in Chapter 6. The thesis concludes with 

Chapter 8, which discusses the future work deriving from this research and the productisation of the 
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thesis’ outcomes to improve Spirent’s product offering in the area of simulation-based testing of 

positioning, navigation and timing (PNT) equipment for pedestrian applications.  Figure 1.1 illustrates 

how the thesis’ (main body) chapters are linked in a workflow chart, in order to address the research 

questions discussed in Section 1.2.  

 

Start
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(Section 3.3)
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Conclusions
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Future work
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Pilot human motion 

capture experiments

(Section 3.2)

End

 

Figure 1.1. Thesis' workflow chart in order to address the research questions 
 

In addition, the thesis includes the following appendices which support the discussion in the 

thesis’ main body chapters. Appendix A presents a method for calculating the human body centre of 

mass (CoM), based on the 3D coordinates of human segments (which define a specific human body 

posture). Appendix B supports the discussion about the identified methods for pre-processing the 
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experimental motion capture (MoCap) data in Section 6.1.1. The data pre-processing stage aims at 

removing any significant artefacts from the MoCap data before they enter the SGCTLs to assess their 

impact. Appendix B also describes one of the proposed pre-processing methods, i.e. an algorithm for 

detecting and smoothing transients (see Section 3.2) from the MoCap data.  

Appendix C summarises the experimental equipment (Xsens MTI-G IMU/GPS) 

specifications, while Appendix D presents the frame transformation from Xsens MTi-G default 

“Forward, Left, Up” body-frame to a “Forward, Right, Down” body-frame, as required by the inertial 

navigation equations described in Section 6.1.1. Appendix E presents a custom method of deriving 

acceleration from velocity, constraining the mean velocity and mean acceleration between the input 

and output datasets to be preserved. Finally, Appendix F contains the Matlab code used in this thesis, 

which is included in the accompanying CD. 

The thesis continues with the literature review in Chapter 2. 
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 State of the Art 

This chapter reviews the relevant literature, providing the background knowledge required to address 

the aims of this thesis, discussed in Section 1.2. This chapter is divided into three sections, with 

Section 2.1 introducing the reader to the fundamental concepts of pedestrian motion analysis. Section 

2.2 provides the reader with the basic principles of inertial and GNSS navigation and sensors’ 

operation. Finally, Section 2.3 details methods used to capture and model human motion, including 

routing (pathfinding) between two locations. This chapter supports the design, development and 

implementation of methods in the remainder of the thesis, i.e. the design of an appropriate human 

motion data capture protocol (including usage of the experimental equipment) and pre-processing of 

the captured data in order to remove artefacts in Section 6.1.1; the development of the simulated 

GNSS carrier-tracking loops (see Chapter 4) to assess the effect of the real captured motion and the 

synthetic motion output of the proposed pedestrian motion model (described in Chapter 5). In 

addition, this chapter aims to provide an overall understanding of the thesis’ research area which will 

support the interpretation of the results (in Chapter 6), as well as the identification of research gaps 

and longer-term aspirations for this thesis, discussed as part of future work in Chapter 8.  

This Chapter provides the justification of the selected methods of analysis in the thesis. In 

particular, it provides the evidence as to why it was necessary to capture real human motion (see 

Chapter 3) in order to assess the impact on GNSS carrier-tracking loops and validate the output of 

the pedestrian motion model (PMM) developed for this thesis (see Chapter 5); and finally, why this 

tailored PMM for this thesis was the most appropriate method for modelling human motion, instead 

of combining captured motion sequences or using human biomechanical models with physical 

movement constraints. 

2.1 Pedestrian Motion 

This section introduces some basic concepts used for the description and analysis of human motion, 

which supports the discussion of human motion capture and modelling in Section 2.3. 

 Overview 

The study of pedestrian (human) motion supports the development of a pedestrian motion model, 

discussed in Chapter 5. Pedestrian motion is twofold for the purposes of this project; it encompasses 

routing, i.e. locomotion between two locations and human body movements, e.g. walking, running, 

and gestures such as arm movements, which fall into the field of human biomechanics. Human 

biomechanics (or “kinesiology”, according to some authors [6]) deals with studying the mechanical 
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properties of human body segments, mainly for performance, injury and rehabilitation analyses [7]. 

Another implication areas of human biomechanics is studies on the safety of special pedestrian 

groups against slips and falls [8],[9]. 

In terms of representing the motion of human body segments, human biomechanics comprise 

two branches: kinetics and kinematics. Kinetics investigate what causes a segment/joint to move, so the 

focus is on forces and torques, e.g. exerted by groups of muscles, while kinematics describe and 

analyse the resulting movement of a segment/joint, so they employ linear or angular quantities e.g. 

position, velocity, acceleration etc. for this purpose [10]. In this project, emphasis is given to the 

results of human motion and not to the causes of that motion; therefore, the kinematic representation 

of human movement is considered more appropriate. 

Any movement of a human segment (or the body as a whole) may encompass up to 6 degrees 

of freedom (DOF), three for translational (or linear) motion and three for rotational (or angular) 

motion. As far as the whole human body motion is concerned, the translation and rotation 

components are referenced along and about, respectively, a right-hand system of three orthogonal 

axes which comprise the pedestrian body frame (PBF), as shown in Figure 2.4. The three orthogonal axes 

of the PBF are: a. Anteroposterior axis denoted with “X” pointing forward, b. Mediolateral axis denoted 

with “Y” pointing right and c. Longitudinal (vertical) axis denoted with “Z” pointing down. In turn, 

these axes form a system of three orthogonal cardinal planes: a. the sagittal plane which divides the 

PBF into right and left, b. the frontal (or coronal) plane which divides the PBF into front and back, 

and c. the transverse (or longitudinal) plane which divides the PBF into up and down. It follows that 

segment rotations about the anteroposterior (X) axis are within the frontal plane, rotations about the 

mediolateral (Y) axis are within the sagittal plane and rotations about the vertical (Z) axis are within 

the transverse plane. Individual body joints and segments have their own frames of reference and 

specific motion definitions, as discussed in the next Section, 2.1.2.  

The initial posture of the humanoid illustrated in Figure 2.4 is called the fundamental starting 

position, or fundamental posture/position in biomechanical studies [6], noting that these terms are 

used interchangeably in this thesis. The three orthogonal axes of the PBF intersecting at the human 

centre of mass (CoM), while at this fundamental position, as illustrated in Figure 2.1. 

 

 



 

35 

 

Frontal plane

X

Z

Y

Antero-

posterior
Vertical 

(Longitudinal)

Medio-

lateral

Forward

Down

Right

 

Figure 2.1. Pedestrian body frame (PBF) axes and planes 

 Human body segments rotation 

Human kinematics deals with the motion analysis of human body segments in terms of translation 

and rotation in 3D space using kinematic quantities, e.g. position, velocity, angular velocity etc. 

Rotational movements of human segments can occur about axes which intersect at a joint, or about 

external axes to the human body. The ability of a human body segment to rotate about a reference 

axis constitutes one DOF (degree of freedom). Some joints may have three DOFs of rotation, e.g. a 

shoulder, while other joints only one DOF, e.g. a knee. Similarly, when a segmental movement 

involves linear movement, one DOF involves translation of that segment which is registered in one 

of the cardinal planes (or the local joint planes).  

Generally, a segment rotation about the antero-posterior axis of the PBF is called abduction or 

adduction, depending on whether the segment moves away or towards, respectively, w.r.t the human 

body, noting that two segments located in the right and left side of the human body who abduct (or 

adduct) rotate in opposite directions wr.t. the PBF’s antero-posterior (X) axis, i.e. if the right arm 

abduction is negative about the PBF X-axis, then the abduction of the left arm will be positive about 

the PBF X-axis. A segment rotation about the mediolateral (Y) axis of the PBF is generally called 

flexion or extension, depending on whether the adjacent joint segments’ angle decreases or increases, 

respectively, noting that segments which flex or extend rotate in the same direction w.r.t. PBF, no 

matter which side of the human body they are located. However, these are only general rules applying 

to rotational movements w.r.t. the cardinal planes. The naming of motions should be learned on 

individual joint-by-joint basis due to the fact that in most of the cases the motion of a segment 

involves both rotational and translational elements which change the axis of rotation; therefore the 



 

36 

 

assigned “axis of rotation” is usually a midpoint between the many instantaneous centres of rotation, 

i.e. the points around which the segment appears to move in any elementary part of its trajectory [10], 

although for the purposes of this thesis this translational component is assumed to be negligible.  

Each human body segment or joint exhibits between one and three DOFs of angular 

movement, depending on which direction it can rotate (w.r.t. the PBF or a local segment/joint 3D 

reference frame). The remainder of this section discusses the angular DOFs for each human body 

segment, starting from the top of human body.  

Head 

The human skull is connected with the spine through the topmost cervical vertebra (C1 in Figure 

2.2) and its rotation exhibits three DOFs. 

Thorax (or spine) 

The human spine comprises 7 cervical, 12 thoracic and 5 lumbar vertebrae, as illustrated in Figure 

2.2. All thoracic vertebrae are connected to their respective thoracic ribs. In the front of the human 

thorax, 7 of the ribs are connected directly to the sternum (called ‘true’ ribs) and 5 are not (called 

‘false’ ribs). On its lower part, the human spine is connected with the sacrum and then with the pelvis 

through the two sacroiliac joints. Thoracic (or spine) rotation exhibits three DOFs. 



 

37 

 

C1

C7

T1

T12

L1

L5

Sacrum

and 

Coccyx

Lumbar

vertebrae

Thoracic

vertebrae

Cervical

vertebrae

 

Figure 2.2. Human spine vertebrae 

Arms 

An arm comprises the upper arm segment which is connected with the thorax through the 

shoulder joint exhibiting three DOFs of rotation; the forearm segment which is connected with the 

upper arm through the elbow joint exhibiting one DOF of rotation; and the hand which is connected 

with the forearm through the wrist joint exhibiting three DOFs of rotation. For further details on 

the hand structure, the reader may refer to [10]. 

Pelvis 

The pelvis exhibits three DOFs of angular movement during human gait, which are listed 

below with their respective names:  

• Tilt or list which occurs about the mediolateral (Y) axis. 

• Obliquity which occurs about the antero-posterior (X) axis. 

• Rotation which occurs about the vertical (Z) axis. 

According to [11], pelvic list does not decrease the trunk translation along the vertical axis, but 

it rather increases it. Pelvis rotation amplitude varies with gait speed (i.e. walking or jogging or running 

speed), while its phase is more coherent with the legs (rotation) phase at higher gait speeds [12]. Also, 
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it is worth noting that the human CoM lies within the pelvis, assuming body is in fundamental 

position/posture. 

Legs 

A leg comprises the thigh (femur) segment which is connected with the pelvis through the hip 

joint and exhibits three DOFs of rotation, the shank segment which is connected with the femur 

through the knee joint exhibiting one DOF of rotation and the foot which is connected with the 

shank through the ankle joint exhibiting three DOFs of rotation. For further details on the foot 

structure, the reader may refer to [10]. 

Following the discussion on human body segments’ and joints’ angular DOFs, Table 2.1. 

summarises the number of DOFs for each of the above items.  

 

Segment 
Angular  

Degrees of Freedom (DOF) 

Head 3 

Thorax (spine) 3 

Arms 

Shoulder joint: 3 

Elbow: 1 (Roll w.r.t. PBF) 

Wrist: 3 

Pelvis 3 

Legs 3 

Table 2.1. Angular DOFs of human body segments and joints 

 Human gait cycle 

Human locomotion is the process by which a human subject moves itself from one location to 

another [13]. From the perspective of functional anatomy, human locomotion comprises nervous 

stimuli, transferred to groups of muscle fibres which generate tensions to the bones causing the 

respective human segments to move. More detailed analysis as to which muscle groups are active 

during the human gait cycle, can be provided by electro-myography (EMG); however, since EMG is 

an indirect way of detecting muscular activity, the results are difficult to be quantified in terms of 

muscular contraction and force [6]. EMG has been considered by researchers as and aid to personal 

navigation algorithms by investigating how muscular activity relates to pedestrian movement [14], or 

as a part of a pedestrian dead-reckoning algorithm, estimating walking speed [15], or heading [16]. 

EMG techniques are not readily available to provide accurate quantified results in terms of human 

motion kinematics, therefore have been considered out of the scope of the present thesis.  

Human gait encompasses walking and running and is probably the most common type of 

human locomotion. In biomechanical terms, human gait is a complex process which could be 

described as the human body movement where the erect, moving human body is supported first by 



 

39 

 

one leg and then the other. Human gait comprises periodic events, e.g. heel strikes, repeated in a 

certain pattern, which enable the study of the whole movement through a representative movement 

section, i.e. one gait cycle, which is equivalent to one period of the whole (periodic) movement. It 

follows that human gait encompasses walking, jogging and running. A human gait cycle (or stride) is 

defined as the movement of the human body between the moment that the heel of a reference leg 

touches the ground, and the moment that the heel of the reference leg touches the ground again, to 

initiate a new gait cycle. According to [17], human gait is a function of principal motion patterns, 

which involve pelvic rotation, tilt and lateral displacement, as well as knee and foot mechanisms. 

Therefore, the human gait pattern depends almost entirely on the motion of the locomotor unit, which 

encompasses the pelvis and the legs, while the remaining segments of the human body (head, arms 

and trunk) comprise the passenger unit.  

Human gait analysis uses some basic spatio-temporal factors [18], such as step/stride length, 

step width (shown in Figure 2.3), gait speed, cadence (or step rate/frequency), stance and swing times, 

which form the pedestrian’s stride characteristics [19]. One step is defined as the movement of the 

human body between the moment that the heel of the reference (or ipsilateral) leg touches the ground, 

and the moment that the heel of the opposite (or contralateral) leg touches the ground. Stride length is the 

distance covered in one gait cycle, i.e. over two steps. Step width is the projected distance along the 

mediolateral Y axis on the horizontal plane between the point where the right and left leg heels touch 

when they hit the ground, illustrated in Figure 2.3.  

 

Figure 2.3. Spatio-temporal components of human gait cycle (after [20]). 
 

Gait speed is the distance covered over the time unit measured in m/s (or some authors use 

non-SI units in m/min). A concept commonly used among biomechanical studies is comfortable (or 

free) walking speed (CWS), i.e. gait speed which is selected freely by the subject during the 

experiment. The CWS varies about 10% (1σ) between individuals, depending on their gender, age 

and limb length [19]. Cadence is the number of steps per time unit (measured in steps/s or 

steps/min).  

 

 

Walking speed is a function of the stride length and cadence, following the equation [19]: 

1 gait cycle/ stride

1 step

step width
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,
2

Lc
v   (2.1) 

where v is the gait speed (m/s), L is the stride length (m) which comprises two steps, and c is the 

cadence (steps/s). The relation between step length and gait speed is studied in [21], indicating that 

walking speed has a non-linear relation with the step length even when the step length is normalised 

w.r.t. the subjects’ height (stature). Another finding of the same study was that the CWS was about 

1.5m/s for all subjects. Differences in the gait pattern encompass female subjects who tend to 

increase their cadence (steps over the time unit – or step frequency) as walking speed increases 

compared to male subjects who tend to increase their step length, and also, that step length and 

cadence variability was significantly higher among female subjects. However, to generalise the results 

from gait analysis studies it is essential to sample randomly among groups of different 

geodemographic characteristics (e.g. gender, nationality) [18]. In [22], the authors found, based on a 

sample of 800 measurements, that people tend to walk at different speeds depending on the context 

of the motion, e.g. faster on floors in shopping centres (2Hz cadence, 1.4m/s gait speed) than 

footbridges (1.8Hz cadence, 1.3m/s gait speed) and confirm that women tend to walk at higher 

cadence and men walk at higher speed, although they found that the relationship between cadence 

and walking speed is linear, as shown in Eq. (2.1). 

The relationship between subject height, walking speed and step length has been investigated, 

e.g. in [19] and [21]. These studies suggests that it is preferable to measure experimentally the step 

length, as the relationship between walking speed and step length is non-linear, even when the step 

length is normalised in height. Another study [23] suggests that a human trajectory is not planned as 

a series of successive steps, but there is a common underlying strategy that controls the whole human 

trajectory w.r.t. the final (target) location. This study showed that different pedestrians walk in 

variable step lengths, given the same start and end locations and obstacles along their path, although 

their 2D trajectories look similar. Also, pedestrian behaviour and route choices also depend on 

interactions with other pedestrians [24][25]. These lines of enquiry could form part of future work, 

in order to expand the scope of this thesis by comparing the pedestrian motion between different 

subjects, discussed in Chapter 8.  

The events and phases of a human gait cycle are illustrated in Figure 2.4, with the right leg 

coloured in green and the left leg coloured in red. The motion of the reference leg during one gait 

cycle can be divided into two phases: stance and swing, depending on whether the reference leg is in 

contact with the ground or not, respectively.  
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Figure 2.4. Events and phases during one human gait cycle (after [20]) 
 

The stance phase begins when the heel of the reference leg touches the ground and ends when 

the toe of the reference leg leaves the ground. This toe-off event marks the beginning of the swing 

phase, with the reference leg swinging over the ground and it ends when the heel of the reference leg 

touches the ground again, which marks the beginning of a new gait cycle. A gait cycle can be divided 

in 7 phases, which are marked by 8 biomechanical events [13], [20], explained in Table 2.2 and 

graphically represented in Figure 2.4. The first column of Table 2.2 shows the gait cycle events of the 

reference leg, the second column the respective gait cycle phases of the reference leg and the third 

column, the gait cycle phase of the opposite leg. 

The stance phase comprises about 60% of one walking gait cycle, while swing the rest 40%, 

noting that there is no uniform agreement on the exact duration of stance and swing [20] over one 

gait cycle, as it depends on the particular pedestrian physio-anatomical characteristics and the type of 

activity. When both legs are in touch with the ground, this is called double support, or double stance phase, 

which typically comprises about 20% of the gait cycle. When a pedestrian is jogging or running the 

phases and their duration change significantly, i.e. the stance phase duration is reduced from about 

60% while walking to 30% while running, and 22% when sprinting [26], since the double support 

phase, decreases as walking speed increases, until it becomes zero. It follows that the distinction 

between walking and other forms of gait, is that while walking, one leg (either the reference or 

contralateral one) is always in contact with the ground [7], in other words there is no “flight” phase, 

i.e. when none of the legs is in touch with the ground.  

This brief introduction on the gait cycle phases and events, provides the analytical background 

to characterise and model human walking in this thesis, as it provides a reference upon which 

additional pedestrian movements (gestures) can be modelled, as discussed in Section 5.3.   
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Gait cycle event Phase of reference leg during the gait cycle 

Reference leg 

– heel contact 

Loading response (Stance) 

Body weight transferred onto the reference leg. Heel used as a rocker. Knee 

flexed to absorb the shock. 

Opposite leg 

– toe off 

Mid-stance (Stance) 

Reference leg advances over the stationary foot by ankle extension. Knee and hip 

extend. 

Reference leg 

– heel rise 

Terminal stance (Stance) 

Heel rises and reference leg advances over the forefoot rocker. Knee increases its 

extension and then just begins to flex slightly. Increased hip extension puts the 

reference leg in a more trailing position. 

Opposite leg 

– heel contact 

Pre-swing (Stance) 

Reference leg responds to opposite leg’s heel strike with increased ankle plantar-

flexion, greater knee flexion and loss of hip extension. 

Reference leg 

– toe off 

Initial swing (Swing) 

Reference leg lifted and advanced by hip flexion and increased knee flexion. Ankle 

partial extension. 

Both legs 

– feet adjacent 

Mid-swing (Swing) 

Reference leg advancement anterior to the body weight line by further hip flexion. 

Knee is allowed to extend in response to gravity while the ankle continues extending 

to neutral position. 

Reference leg 

– tibia vertical 

Terminal swing (Swing) 

Reference leg advancement completed by knee extension. The hip maintains its 

earlier flexion and the ankle remains extended to neutral position. 

Reference leg 

– heel contact 
End of previous gait cycle and beginning of a new one. 

Table 2.2. Human walking - gait cycle events and phases. 

 Human CoM motion during a gait cycle 

The referencing and rotation of human body segments along with the description of the human gait 

cycle leads to the discussion of a significant characteristic of human gait: the human CoM motion 

during gait. The CoM is equivalent to CoG and represents the mean average point of mass 

distribution of the human body particles. During a gait cycle, the human CoM exhibits linear 

displacement in 3D (usually resolved along the three axes of the PBF, see Section 2.1.1), reflecting 

the variable change of support of the passenger unit by the locomotor unit. 

An interesting property of CoM movement during gait, is that it oscillates in a sinusoidal 

manner along all three axes of the PBF, as illustrated in Figure 2.5.  
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Figure 2.5. Example of 3D sinusoidal motion of the human CoM, expressed in PBF axes 
 

This finding is common in many studies of human biomechanics [13], [27], [28], [29], [30], 

[31]. More specifically, the CoM describes two vertical and one mediolateral oscillations per gait cycle 

independently of the gait type, e.g. walking or running [32]. The CoM movement during gait can be 

modelled by a simple mechanical model of two massless legs in [33]. In this study, the energy cost 

(calculated as the kinetic energy of the modelled human body CoM) was associated with gait spatio-

temporal parameters (speed and step length) and minimised using optimisation techniques. This study 

[33] found that for lower gait speeds (i.e. walking) the work done by each leg in order to move the 

(modelled) human body CoM forward, say C, is minimised using an inverted walking pendulum 

model, illustrated in Figure 2.6, which encompasses two moving (massless) legs, with the CoM 

modelled at the point that they are connected. At higher speeds (where the flight phase is dominant), 

C can be minimised by a bouncing/ impulsive run model, which can bounce between running flight 

phases, as a response to the force exerted to the leg when the heel touches the ground; and at 

intermediate speeds, C can be minimised by a hybrid model of a pendulum run, which follows the 

inverted walking pendulum at stance phase and the impulsive run model at flight phase. This model 

is similar to [30], which models the difference in compression of the CoM during heel strike to the 

ground between walking and running gaits. This study found that the touch-down angle of the heel 

striking to the ground and the leg compression during the stance phase of the gait cycle (as the leg in 

question is the single support of the human body weight), should be taken into account to determine 

the CoM trajectory and whether the gait refers to walking or running. 
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Figure 2.6. Example of an inverted pendulum model for a single leg walking (after [33]) 
 

In practice, human gait is far more complex than simple mechanical models can represent, 

since joints and segments present additional translational and rotational DOFs during gait, e.g. the 

relative linear motion between the pelvis (encompassing the CoM) and the trunk [29]. During one 

gait cycle, the pelvis tilts about 4° in the sagittal plane, drops/rises about 4° in the frontal (coronal) 

plane and rotates about 10° in the transverse plane [19]. Trunk relative translational and rotational 

movements with respect to (w.r.t.) the CoM are investigated in [32], during walking and running over 

consecutive gait cycles. The results are consistent with [34], which also found that the sagittal rotation 

(inclination) of the trunk depends on the walking speed. Also, evidence suggests that swing of the 

arms does not affect gait, but it helps a human subject to recover more effectively from external 

perturbation during walking [35]. The evidence from another paper [23], suggests that the head 

rotation (towards a target location) precedes the rotation of the trunk and pelvis as the human subjects 

walk along a curved trajectory, especially on paths with higher curvature, showing that the head 

anticipates the change of the instantaneous walking direction, in order to drive the whole-body 

movement in space. This paper [23] also studies the spatial variability between steps and whole 

trajectories among different subjects trying to reach a range of targets, and suggests that the formation 

of the trajectory (pathfinding between two locations) is not planned as a series of successive steps, 

but there is rather a common underlying strategy to plan the whole trajectory, as the paths among 

different subjects were very similar, while the feet positions (as a result the step lengths) showed 

significant variability.  

Various methods have been employed to calculate accurately the displacement of CoM during 

walking or running [36]. In [37], three methods of CoM calculation were compared, namely: optical 

tracking of a reflective marker placed above the tail-bone (sacrum); segmental analysis; and double 

integration of acceleration derived from force platform data. The authors of this study found that the 

sacral reflective marker method did not produce consistent results for walking speeds higher than 0.8 

m/s, which was attributed to the relative dynamics between the pelvis, which was tracked by the fixed 

sacral reflective marker, and head, arms and trunk. Force platforms have also been used for human 
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motion analysis, e.g. in [38], in order to measure ground reaction forces in 3D, although simple 

designs measure along the vertical axis only. Typically, they are placed on the floor as tiles, above 

which a human subject stands or moves. In [28], the authors found that the CoM displacement along 

the vertical axis is proportional to the gait speed, with an average CoM vertical excursion 2.7cm and 

4.8cm at 0.7m/s and 1.6m/s walking speeds, respectively. The CoM displacement along the 

mediolateral axis was found to be inversely proportional to gait speed, with an average CoM 

mediolateral excursion of 3.8cm and 7cm at 0.7m/s and 1.6ms gait speeds, respectively. Another 

finding of this study [28] is that that stride and step lengths increase with gait speed but stride width 

decreases, although in a non-linear manner.  

Other papers study the pelvic rotation about the vertical axis of the PBF, because it reduces 

significantly the vertical displacement of the CoM [7], although other authors reported that it is 

minimal and only about 10-12% of the total CoM vertical displacement [9],[11].  

A proposed test to show how well the human body CoM motion follows a sinusoidal motion 

in 3D, about a nominal centre of oscillation, is now described. The human body CoM coordinates, 

p
pCoMr , were calculated as part of the PMM using the method explained in Appendix A. A model of 

three sinusoids can be used to fit the calculated CoM from the PMM and the calculate the relevant 

statistics describing how good is the fitting, e.g. by calculating the root mean square error (RMSE) 

between the model and the underlying CoM coordinates form the PMM. The proposed model of 

calculating the CoM coordinates analytically is:  
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  (2.2)  

where τ is the epoch time interval (s), assuming discrete sampling, m is the number of epochs within 

one full gait cycle, fgait is the gait frequency (Hz) i.e. how many gait cycles are contained within one 

second, Α is the amplitude (m) of the CoM displacement along each of the three PBF axes w.r.t. the 

initial CoM coordinates at the first epoch (k = 1) of the gait cycle,  and   is the phase (rad) of the 

CoM w.r.t. a full gait cycle (2π rad). It is worth noting that the period of lateral displacement of the 

CoM (along the y PBF axis) is half the period of the CoM displacement along the other two PBF axes 

(x and z), since the body weight oscillates once per gait cycle swaying once to the right side and once 

to the left (or vice versa), while the oscillation of the CoM along e.g. the vertical z axis occurs twice 

per gait cycle [19], once per each leg at stance phase (see Section 2.1.3). The underlying assumption 
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is that due to the repetitive pattern of the gait cycle, the last epoch (k = m) of a previous gait cycle is 

the first epoch of the next one.  

The chapter continues with the discussion of navigation sensor and systems’ fundamental 

concepts and operational principles. 

2.2 Navigation Sensors and Systems 

This section introduces briefly the operation of positioning and navigation sensors and systems, their 

error sources and sensor integration. The reader may refer to detailed navigation textbooks for further 

information, e.g. [3], [39], [40], [41], [42], [43]. This section supports the simulation of GNSS tracking 

loops in Matlab (see Chapter 4), which forms the testing and validation platform of analysing the 

effects of human motion on the SGCTLs, as well as the validation of the pedestrian motion model 

discussed in Chapter 5. 

 Frames of reference 

A navigation solution typically provides the user with position, velocity and attitude information of a 

body frame w.r.t a reference frame. The navigation solution may be expressed in a third frame’s axes, 

called the resolving frame. All frames comprise a right-hand set of three orthogonal axes. In geodesic 

texts, a frame (term used in this thesis, as well as navigation textbooks) is equivalent to the realisation 

of a coordinate reference system, i.e. a coordinate reference frame. Throughout this thesis, the 

following definitions of frames are used:  

• An Earth-Centred Earth-Fixed (ECEF) frame, is based on a coordinate system of three orthogonal 

axes (X, Y and Z – following the right-hand rule) with an origin at the Earth's centre of mass 

with its Z axis pointing along the Earth's axis of rotation to the geodetic North pole and its X 

axis X pointing to the 0° longitude prime meridian and Y axis to the 90° East meridian. In this 

thesis, the origin and Z axis are defined using the current realisation of the WGS84, which 

follows closely (at centimetre-level accuracy) the International Terrestrial Reference Frame 

(ITRF) current realisation of the International Terrestrial Reference System (ITRS) [44]. For 

further information on how the ITRS is defined, the reader may refer to geodesic texts, e.g. 

[44], [45]. 

• A Local tangent plane (LTP) is based on a coordinate system of three orthogonal axes (X, Y and 

Z – following the right-hand rule), with an origin at the Earth's surface, modelled as an ellipsoid 

defined by the current realisation of WGS84. The X and Y axes intersect at the origin and 

form a plane tangential to the current realisation of WGS84 ellipsoid at the origin point. The 

X axis points towards the geodetic North pole and the Y axis towards West (orthogonal to X 

axis). The Z axis is vertical to the X-Y plane and intersects with X and Y axes at the origin 
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pointing upwards, forming a North, West, Up (NWU) system of axes, following the right-

hand rule. The LTP is a convenient frame to express the navigation solution of a body frame, 

e.g. a landing aircraft (body frame) on an airway (LTP). 

• A Body frame, is based on a coordinate system of three orthogonal axes (X, Y and Z – 

following the right-hand rule), with an origin fixed w.r.t. the object whose navigation solution 

is described. The origin can be, e.g. the proximal joint of a human body segment (see Chapter 

5 for examples on how the human biomechanical body segments and the pedestrian body 

frames are defined), or for an inertial measurement unit (IMU) the point in space at which it 

measures motion. The IMU axes point along which direction specific force is measured and 

about which direction rotation is measured. 

 Inertial Navigation Systems 

An inertial navigation system (INS) provide an inertial solution, i.e. a solution based on the 

output (measurements) from inertial sensors only, i.e. accelerometers and gyros as a minimum. The 

inertial solution typically encompasses position, velocity and attitude information. INS are self-

sufficient as they do not require external infrastructure to operate e.g. satellites transmitting signals, 

but they have to be initialised in terms of position, velocity and attitude from external sources, e.g. 

GNSS, magnetometers, pre-surveyed position etc. Also, an INS requires initial calibration and regular 

correction. An INS typically comprises an inertial measurement unit (IMU), an inertial navigation 

processor and a power supply unit. IMUs are platforms containing inertial sensors, typically a triad 

of accelerometers and a triad of gyroscopes (gyros), along with a temperature sensor used for their 

temperature-dependent calibration. In this thesis, emphasis is given on IMUs which are based on 

MEMS (Micro Electronic Mechanical Systems) technology, which contain electromechanical parts 

whose dimension is at the micro-meter level (as opposed to other inertial technologies employing 

large mechanical parts, e.g. gimbals) and can be produced cheaply in large quantities, which is the 

reason that they can be found in many daily-used electronic devices, such as smartphones. IMUs 

measure specific force (accelerometers) and angular rate (gyros). The position, velocity and attitude 

solutions are obtained by processing inertial sensors’ outputs, without the need of any other external 

sources of information, e.g. radio signals.  

IMUs’ range of applications spans from everyday use, e.g. inside car navigation systems or 

smartphones, to advanced military applications, e.g. part of the navigation system of ballistic missiles. 

IMUs are used for the study and analysis of human motion, with their suitability depending on the 

particular application, e.g. clinical applications involving walking [46]. For a more detailed review of 

accelerometer and gyros technologies the reader may refer to [42]. Due to the wide range of 

applications that employ IMUs with different performance requirements, IMU performance grades 
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may be categorised into consumer or automotive, tactical, intermediate, aviation, and marine grades, 

as detailed in [3], although there is no uniform definition of these categories among authors.  

The minimum number of sensors required to obtain a 3D inertial position solution is a triad 

of accelerometers and a triad of gyros, provided that the initial position and orientation of the sensor 

w.r.t. a reference frame are known. A temperature sensor is used for calibration of the inertial sensors’ 

raw/analog-to-digital (A/D) outputs. An IMU processor converts the raw sensor readings to physical 

units using the device’s calibration parameters, usually embedded by the manufacturer in the non-

volatile memory of the IMU, although they can be applied during the post-processing. The IMU 

processor also synchronises the inertial sensors’ outputs using an internal clock as time reference 

(typically a crystal oscillator), as illustrated in Figure 2.7. Some IMU configurations employ additional 

sensors, such as a triad of magnetometers to initialise the attitude of the device w.r.t. ECEF, or a 

barometer to aid the height calculation. Details about how integrated navigation systems work are 

discussed in Section 2.2.4. 

 

Figure 2.7. Generic IMU diagram (after [3]). 
 

Accelerometers measure specific force (units in m/s2), which is the force per unit mass exerted 

on a body mass without any gravitational components, e.g. for a free-falling object in vacuum, specific 

force is zero as only gravitational forces act on it. For a static body on a desk near the Earth’s surface, 

the specific force acting on the object is the reaction force from the desk which acts against gravity; 

therefore, specific force will have equal magnitude and opposite direction to the gravity vector of that 

object, noting that the gravity vector encompasses the centrifugal force due to the Earths’ rotation.  
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To understand better the way accelerometers measure specific force, let’s imagine a typical 

accelerometer that comprises a fixed chassis (i.e. the body frame) with an enclosed proof mass (of 

known mass) inside an electromagnetic (E-M) field. The chassis movement (along the accelerometer’s 

sensitive axis) and the proof mass inertia result to a relative movement between them (the proof mass 

will appear to be moving at an opposite direction w.r.t. the chassis), so the E-M field changes (the 

proof mass material has specifically been chosen by the manufacturer to affect the E-M field). Pick-

off sensors sense this E-M field change, which is translated into voltage, measured by the 

accelerometer’s pick-offs. A feedback loop compensates the proof mass displacement within the 

chassis by applying a restoring voltage to keep the proof mass in the centre of the chassis. A triad of 

accelerometers is needed to measure specific force in 3D. The additional voltage required to offset 

the movement of the proof mass (which is the output of the feedback loop), is integrated and dumped 

over a specific time interval and the analog output is then digitised by an analog-to-digital converter 

(ADC), typically as an integer value. This digital reading will then be fed into the IMU processor for 

calibration and conversion to physical units of specific force or integrated specific force (or “ delta-

v’s ”, units in m/s), depending on the IMU design. A single accelerometer typically senses the 

displacement of a proof mass along one direction, so three accelerometers, with their sensitive axes 

placed perpendicularly w.r.t. each other are needed to sense linear (translational) motion in 3D.  

Early gyros using MEMS technology, measure angular rate (units in rad/s) about a sensitive 

axis using a vibratory element under applied voltage, e.g. a string, a tuning fork or cylinder [47], 

mounted along the sensitive axis. The vibration of the mounted element takes place in the plane 

defined by the sensitive axis and the perpendicular drive axis, i.e. the axis along which it vibrates. This 

is like a guitar string vibrating on a specific plane. If the vibratory element oscillates on the XZ plane, 

then a rotation of the gyroscope chassis (w.r.t. inertial frame) causes a position displacement of the 

vibratory element along the Y axis due to Coriolis acceleration, typically sensed by the gyroscope 

pick-offs and a feedback loop applying an opposite voltage to eliminate that displacement and restore 

the vibration on the XZ plane. This additional voltage is measured over a time interval and the analog 

value is input to the ADC for digitisation. This digital reading it is then fed to the IMU processor for 

calibration and conversion to physical units, e.g. angular rate or accumulated angular rate (attitude 

increment or “delta-θ”s, measured in rad), depending on the IMU design. A single gyro typically 

senses the rotation of a vibratory element about a single sensitive axis, so three gyros placed 

orthogonally w.r.t. each other are needed to sense rotations in 3D.  

Errors 

Inertial sensors’ measurements contain deterministic (or systematic) errors and noise. The systematic 

errors are due to the physical limitations of inertial sensors and can be calibrated. Noise can only be 

identified and characterised, e.g. using Allan variance analysis [48]. This type of analysis represents in 

a diagram the root mean square error (RMSE) in the vertical axis and the averaging time intervals on 
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the horizontal axis (also called Sigma-Tau diagrams). The inverse of the averaged time interval is 

frequency, so these diagrams provide valuable information about what type of noise dominates a 

specific frequency band, e.g. quantisation noise may be the dominant underlying noise process over 

a specific frequency band, while bias instability or random walk dominate over another. The main 

types of errors which inertial sensors may exhibit, are listed below [3]: 

• Bias errors are deterministic encompassing a static and a dynamic component and are 

independent of the underlying specific force or angular rate (in other words they are “g-

independent”). The static component is constant throughout the IMU operating period and 

varies from run to run. The dynamic component (which is typically about 10% of the static 

one) varies over periods of a few minutes and is temperature-dependent. Some manufacturers 

use the term bias stability to characterise the variation of bias over time of the calibrated 

analog-to-digital (A/D) readings from the IMU processor [49]. 

• Scale factor errors (deterministic), which incorporate the deviation of the input-output gradient 

of the sensor from unity. These errors are proportional to the true underlying specific force or 

angular rate. It is worth mentioning that scale factor errors are non-linear and asymmetrical 

around zero point, although for simplicity the scale factor error can be approximated by a 

linear equation between input and output measured quantities. 

• Cross-coupling errors (deterministic), are errors proportional to the specific force and angular 

rate, from axes orthogonal to the sensitive axis of an accelerometer or gyro, respectively, so 

they are also called cross-axis sensitivity. This could be caused due to e.g. vibration in vibratory 

inertial sensors; however, one major factor that causes cross-coupling errors is that the 

mounting of the sensors is not exactly orthogonal w.r.t. the IMU frame, due to manufacturing 

limitations. It follows that misalignment errors create additional scale factor errors, which are 

typically two to four orders of magnitude lower than misalignment errors. These misalignment 

errors are deterministic, since the misalignment is measurable and known through the 

manufacturer’s calibration parameters; therefore, misalignments can be compensated through 

calibration. 

• Random noise (stochastic), e.g. electrical noise in the IMU circuit which limits the resolution of 

the inertial sensor. The random noise standard deviation (SD), is usually represented by the 

square root of the noise power spectrum density multiplied by the IMU output rate; therefore, 

the noise SD, is proportional to the square root of the output rate of the IMU [49]. 

• Vibration-induced errors, as a result of external sources (e.g. pedestrian motion) at high 

frequencies near the resonant frequencies of the inertial sensors. Due to the non-linearity and 

asymmetry of the scale factor and misalignment errors, vibration-induced errors leave a 

remaining component called vibration rectification error. 
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Another source of error for accelerometers is the size effect, which can be easily calibrated 

through. The size effect is due to the fact that their origin points cannot be collocated at the nominal 

reference point for the whole triad. This causes centripetal accelerations to be sensed, which are a 

function of the distance between each accelerometer’s origin and the nominal point of reference. The 

size effect is deterministic and can be calibrated, since the origin positions of the accelerometers w.r.t. 

the nominal point of reference are known by the manufacturer. The size effect does not constitute a 

problem for gyros as the angular rate they sense is invariant to their origin point’s position along the 

sensitive axis [3], similar to a rotating rod whose points exhibit different linear but the same angular 

velocity.  

Gyros are affected, however, by g-dependent deterministic errors, since their vibratory elements 

are sensitive to the underlying specific force due to imbalances of their masses. Other types of errors 

affecting both accelerometers and gyros stem from the quantisation process (stochastic in nature) 

during converting the analog outputs to digital, as well as externally-induced vibration near the 

internal resonant frequencies of the inertial sensors. It is worth noting that all inertial sensor errors 

are referenced to an inertial frame and resolved in body-frame axes. 

Inertial navigation equations and error propagation 

The inertial navigation processor applies the inertial navigation equations using information from the 

calibrated specific force and angular rate measurements of the IMU (and any other aiding information 

from other sensors), and the initial conditions of the navigation solution, e.g. position, velocity and 

attitude of the body-frame w.r.t. the reference frame. The execution of the inertial navigation 

equations is an iterative process applied at discrete time instants (epochs), with next epoch’s solution 

depending on the previous one for first-order systems. It follows that the accuracy with which the 

navigation solution is known at initialisation is crucial. Due to the iterative nature of inertial navigation 

equations implementation, any errors from previous epochs can propagate over the next epochs. This 

error propagation is known as drift of the inertial navigation solution with its magnitude depending 

on the INS design and quality of internal sensors used. For best results, other sensors which are not 

subject to similar types of errors at the same experimental conditions need to be employed by means 

of a fusion algorithm, e.g. Kalman Filter, which is discussed in Section 2.2.4. 

Depending on the design of the INS, the inertial navigation solution may only use new 

information from the inertial sensors for each epoch (and weight appropriately information from 

previous measurements). In that case, the update rate of the navigation solution will be equal to the 

lowest sampling rate fout (Hz) employed by any of the used inertial sensors, depending on their 

integration time interval. If the navigation solution is meant to provide outputs at a lower rate than 

fout, if the required processing power is not available. 

Inertial navigation equations are updated by the following four steps [3]: 
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• Attitude update of the body-frame w.r.t. a preferred reference frame, by integrating the angular 

rate. 

• Specific force obtained from the accelerometers transformed from body-frame resolving axes 

into a preferred resolving frame, using the attitude solution. 

• Velocity update which involves calculating the true acceleration of the body-frame, by adding 

any gravitation or gravity to the specific force measured by the accelerometers. This uses a 

gravitation model if the navigation solution is referenced to inertial frame, or a gravity model 

(including gravitational and centrifugal acceleration on components) if the navigation solution 

is referenced to a rotating frame, such as the Earth frame. The true acceleration is then 

integrated over the update step time interval to obtain an updated velocity solution.  

• Position update, by integrating the velocity solution over the update step time interval. 

The implementation of inertial navigation equations in the discrete time domains, implies that 

prior and updated position, velocity and orientation are valid at specific time instants, while angular 

rate (or “delta-θ”s), specific force (or “delta-v”s) and acceleration represent the average values over 

the time interval for each inertial navigation equations’ iteration. The time validity of these quantities 

is illustrated in Figure 2.8. It is worth noting that the Xsens MTi-G IMU/GPS used to capture human 

motion in this thesis (see Chapter 3), outputs angular rate, specific force and magnetometer outputs 

in a time-stamped data packet, along with position, velocity and attitude for consistency, so the time 

of validity for all these quantities, refers to the timestamp (i.e. a time instant) of that data packet.  
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Figure 2.8. Time of validity of inertial navigation parameters (from [3]). 
 

The calculated inertial navigation solution contains errors as a result of inertial sensors’ 

measurement errors, initialisation errors and processing approximations. The latter category 

encompasses errors due to quantisation, internal clock errors and time referencing between hardware 

components, as well as coning and sculling errors due to undetected out-of-phase high-frequency 

vibration along orthogonal axes between two gyros or a gyro and an accelerometer, respectively [3], 

[42]. Un-calibrated errors occurring in one step of the update process can have an effect on other 
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steps, e.g. attitude drift will result in inaccurate application of the gravitation/gravity model to 

transform specific force and, as a result, velocity and position drift. 

As an example, assume a body-frame (XYZ) travelling towards north along a straight line at a 

constant speed with its attitude constantly aligned with the NED frame and that the gravity vector 

remains unchanged for the duration of this motion. Assuming also perfect accelerometers, specific 

force should be sensed only along the down axis, opposite to the vector of gravity. However, if the 

actual and assumed attitude differs, e.g. due to tilt errors (roll and pitch errors), the inertial navigation 

equations will apply the gravity correction using the incorrectly observed attitude, i.e. coupling the 

gravity correction along the North and East axes, which will manifest as a constant acceleration bias 

along these axes. In turn, this acceleration bias will propagate to the next steps causing a linear velocity 

error which grows as a linear function of time and a position error which grows as a quadratic 

function of time. If the gyros measuring roll and pitch in the above example are also subject to a 

linear attitude drift, then they will cause a quadratic velocity error and a cubic position error. It follows 

that in the case of the gyros’ errors, more sophisticated calibration is required in order to compensate 

for those higher-order errors in the position and velocity solutions. 

 Global Navigation Satellite Systems (GNSS) 

GNSS encompass three segments: space, ground and user/receiver equipment. GNSS receivers 

depend on existing infrastructure to receive signals transmitted from satellite constellations, e.g. the 

US GPS, the Russian GLONASS, European GALILEO, Chinese BEIDOU, Japanese QZSS and 

Indian IRNSS. The different GNSS space segments (constellations) are operated by ground control 

stations, who upload the satellites with updated information enabling them to broadcast it in their 

navigation messages (called ephemeris) which are modulated on specific carrier frequencies, e.g. L1, L2, 

L5. The user equipment receives and decodes these messages to obtain information about the 

satellites’ motion (e.g. position) and status. By combining this information with (at least) four pseudo-

range measurements, obtained from the receiver’s code-tracking function (see Section 2.2.3.4), the 

receiver can calculate its position, velocity and timing (PVT) solution. GNSS navigation messages 

can be unencrypted (civilian) and available to all users, or encrypted so only authorised users can 

decode them, e.g. military. GNSS signals may also be assisted by additional ground-based or space-

based augmentation systems (GBAS and SBAS, respectively), to improve PVT performance in terms 

of accuracy, integrity continuity and availability. For a more detailed discussion of GBAS and SBAS 

the reader may refer to [50], [51]. 
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 Overview 

The accuracy of a GNSS PVT solution depends on many factors, e.g. satellite constellation health 

status and geometry, signal-in-space error (mainly due to satellite clocks), space weather affecting 

ionospheric propagation delays, atmospheric scintillation (more commonly around equatorial 

regions), variations in tropospheric propagation delays, multipath, signal refraction (due to 

ionosphere/troposphere or around edges of buildings), diffraction and non-line-of-sight (NLOS), as 

well as interference which may be due to unintentional interference, or intentional jamming and 

spoofing. At the user side, contributing factors to GNSS PVT errors are receiver design and relative 

motion dynamics along the line-of-sight (LOS) between the GNSS equipment and the satellites. For 

indoor environments, GNSS signal availability is more problematic, as the signals are attenuated by 

building structures, e.g. walls, with multipath and NLOS effects increased.  

The basic principle of GNSS operation is that each satellite vehicle transmits a unique PRN 

(ranging) code, and a navigation message with its orbital parameters (from which the receiver 

calculates the satellite’s coordinates), uploaded to the satellite by a ground control station, and a 

timing reference, provided by a set of atomic clocks mounted on its platform. The PRN code is 

received and processed by the GNSS receiver which then estimates the distance (pseudo-range) from 

the respective satellite by comparing the ranging code of the incoming signal with its own internal 

timing PRN code reference, typically a crystal oscillator, given that the signal propagation speed is 

known. To obtain a PVT solution or “fix”, at least four pseudo-range measurements are needed, 

three for estimating roughly the 3D position of the receiver (via trilateration) and another one to 

correct for timing discrepancy (receiver clock bias) between the receiver and satellite clocks, which is 

contained in the pseudo-ranges. More than four satellites are needed in order to provide better 

accuracy (depending on satellite geometry), redundancy and employment of advanced techniques for 

signal integrity-checking, e.g. Receiver Autonomous Integrity Monitoring (RAIM) which detects and 

excludes a satellite which degrades the navigation solution, noting that at least five satellites are 

required for detection and 6 for exclusion, in order to provide redundancy for service continuity after 

the satellite exclusion. 

Typically, the mean accuracy of GNSS equipment inside smartphones is about 5 meters [52] 

under open-sky conditions outdoors, with variable signal availability in urban areas, as well as indoors 

[53]. GNSS receivers’ typical output rate is limited to 10Hz [54], therefore, inertial sensors, or other 

technologies which exploit appropriate signals (e.g. wireless local access network – WLAN), need to 

be integrated with GNSS sensors in order to increase the navigation solution availability in more 

challenging areas. GPS uses the WGS84 coordinate reference frame which is an ECEF (rotating) 

frame, as it is easier to define a user’s position and velocity with respect to the Earth’s surface (WGS 

84 ellipsoid). Figure 2.9 illustrates how a generic GNSS receiver works, with each of these functional 

blocks explained in the remainder of this section. 
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Figure 2.9. GNSS receiver functional diagram. 

 GNSS signals and antenna 

A generic GNSS signal comprises a ranging code and a navigation message modulated over a carrier 

signal transmitted at (approximately) 3 central frequencies per GNSS, e.g. in L1/L2/L5 frequency 

bands for GPS, L1/L2 frequency bands for GLONASS and E1/E5/E6 frequency bands for Galileo, 

to allow for better calibration of the ionospheric delay and greater robustness against interference [3]. 

A pseudo-random noise (PRN) code is modulated on GPS signals using code-division multiple access 

(CDMA) in order to allow different satellites to transmit in the same band without interfering with 

each other and also, spreading the signal spectrum to propagate better through the atmosphere. 

GNSS signals transmitted on different central frequencies exhibit different atmospheric refraction 

properties, so a GNSS receiver which operates in at least two different bands, e.g. L1 and L2, can 

compensate for most of the ionospheric delay of the signals [55]. For further reference to GNSS 

signals structure (including sub-carriers) and recently introduced GNSS signals the reader may refer 

to [3], [56], [50]. 

Reception of transmitted GNSS signals depends on the nature and density of obstructions 

along the line-of-sight (LOS) between the receiver and the satellite as well as the antenna design. Tall 

buildings in urban canyons or multiple layers of indoor walls, for example, can obstruct GNSS signals 

completely.  Attenuation and refraction of the GNSS signals crossing the atmosphere depend on the 

satellites’ elevation angle, i.e. how much above the horizon they are. With regards to pedestrian 

applications, GNSS signal observability depends on the antenna location on the user’s body, due to 

body-masking effects [57], and signal attenuation due to human body segments dielectric properties 

[58]. When GNSS E-M signals are received by the receiver’s antenna, they are converted to electrical 

current for input to the receiver’s circuitry. The antenna design therefore should allow maximum gain 

of GNSS signals at different elevation angles. 
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 Receiver hardware 

The function of the receiver’s hardware can be divided to signal conditioning, taking place in the 

analog domain and signal processing, occurring in the digital domain.  

Signal conditioning  

The main aim of signal conditioning is to prepare the GNSS signals for digital conversion allowing 

more robust signal processing. The converted GNSS electrical signals are conditioned by the front-

end receiver hardware which encompasses amplification, and at least two stages of downconversion 

to lower (intermediate) frequencies in order to reduce the processing load with the receiver. After 

downconversion, the signals are filtered to remove created harmonics and out-of-band interference 

and amplified before entering the automatic gain control (AGC) loop which adjusts the signal 

strength in order to maintain a constant level of noise. The AGC function is similar to adjusting the 

volume between tracks when listening to a music album. After the signal amplitude is adjusted by the 

AGC, the signal enters the analog-to-digital converter (ADC) to be digitised. It is worth noting that 

throughout the signal conditioning process, the spectral characteristics of the incoming signals, e.g. 

Doppler shift, do not change, but are shifted onto intermediate frequencies’ (IF) carriers [3].  

Signal processing 

The ADC samples the analog signal to convert it to digital at a specific rate. The pre-correlation 

bandwidth must be at least two times higher (Nyquist frequency) than the chipping rate of the PRN 

code modulated on the incoming signal [59], in order to contain enough information to reconstruct 

the original waveform. Higher pre-correlation bandwidths may provide better signal acquisition and 

tracking but they introduce extra processing load to the receiver; therefore, these two factors need to 

be balanced appropriately. Other considerations for ADC designers are that the sampling rate which 

needs to be asynchronous with the chipping rate of the PRN code, the rate of the navigation message 

and the IF bandwidth to cover properly the incoming signal envelope and the quantisation level 

(ADC resolution) [60]. 

The next stage of signal processing is the prompt sampling of the incoming GNSS signal in-

phase (Ip) and quadraphase (Qp), i.e. with a phase delay of π/2 from the in-phase signal, noting that 

these are components of the signal processing sampling process inside a GNSS receiver, which are 

different to the C/A and P(Y) quadrature signals (i.e. with a 90° phase difference) transmitted by 

GPS satellites. This process is similar to expressing a 2D point in x and y Cartesian coordinates. The 

Ip and Qp vector sum provides the amplitude of the sampled signal while the arctangent of their ratio 

(Qp/Ip) provides the phase of the signal [40]. The prompt I and Q signals, which are two sinusoidal 

signals with 90° phase difference between them, are correlated via correlators with replica prompt I 

and Q signals, generated locally by the receiver and controlled by the numerically controlled oscillator 

(NCO), noting that the NCO is part of the baseband signal processor, controlled by the ranging 
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processor. By changing the frequency only of the replica prompt I and Q signals, the ranging 

processor can effectively control the frequency and phase of the generated prompt replica signals in 

order to align them with the incoming ones. This stage is called Doppler-wipeoff or carrier-wipeoff, 

as the carrier signal (including the Doppler shift which is measured in the ranging processor), is 

removed from the Ip and Qp signals, leaving only the modulated PRN code and navigation message, 

along with the noise.  

The receiver also generates prompt, early and late PRN code replica signals, whose frequency 

is also driven by an NCO, different to the one driving the carrier tracking loops and noting that this 

NCO is also part of the baseband signal processor, controlled by the ranging processor. The early 

and late replica PRN code spacing may be between 0.1 and 1 chip long, i.e. narrow and standard 

correlator spacing respectively [61]. The receiver correlates the replica PRN codes with the incoming 

codes in the prompt, early and late I and Q signals, which is known as code wipeoff and takes place 

in the GNSS receiver’s signal processor over the coherent time interval [3], [40], [2]. A perfect 

alignment of the incoming and replica GNSS signals, results in a complete removal of the PRN code 

from the GNSS signal (code wipe-off). The incoming GNSS signal still contains though the 

modulated navigation message, which in the case of L1 C/A code is modulated at a rate of 50bit/s, 

using a binary phase shift keying (BPSK) modulation, i.e. a navigation bit is modulated by altering the 

signal phase by π rad. 

The outputs of the correlators are then accumulated over the coherent time interval (typically 

20ms). These correlator-accumulated outputs are, perhaps a bit ambiguously, also known as “Is and 

Qs” or “I and Q signals”. The code tracking loop acts to equalise the observed power in the early 

and late correlators, which is equal to the sum of the Is and Qs squares. Typically, an accumulation 

time interval is 20ms [3], which is the maximum time interval that can be used to avoid navigation 

data bit transitions (modulated at a 50bit/s rate). The accumulation time interval needs to be selected 

carefully by the receiver designer to ensure a good signal to noise ratio over the accumulation time 

interval and that data bit transitions are detected properly [3]. If the accumulation spans over two 

navigation bits then, if the navigation bits having opposite signs, the accumulated signal power will 

be minimised and the output Is and Qs may be too weak for further processing. 

During this stage, the signal processor also uses the Is and Qs to calculate the signal carrier 

power to noise density (C/N0) in dB-Hz, noting that it needs to be measured in advance of signal 

acquisition and tracking, in order to inform the ranging processor. This is the ratio between the 

received carrier power over the noise power density (noise power per Hz of signal bandwidth) of the 

expected received signal under optimal conditions. C/N0 describes the ratio of the signal strength 

divided by noise power per Hz of signal bandwidth (and measured in Hz), i.e. it does not depend on 

the bandwidth of the filters that the signal goes through in the receiver’s circuitry, contrary to the 
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signal carrier power to noise ratio (SNR) which changes depending on the bandwidth of the last 

filtering stage [62]. 

 Ranging processor 

To maintain a precise alignment between the incoming and replica signals and allow correct 

demodulation and time of arrival estimation of the navigation message, the receiver needs to 

continuously monitor the frequency (Doppler) and code phase of the incoming signal. The ranging 

processor aids this process by estimating the time delay (phase) between the transmission and arrival 

of the PRN code, at the satellite and GNSS receiver antennas, respectively, as well as the frequency 

shift (Doppler) of the PRN code and its carrier. For more precise positioning, the carrier phase shift 

is also estimated by dedicated carrier tracking loops. The ranging processor uses the Is and Qs of the 

conditioned signal to estimate the pseudo-range (code delay), pseudo-range rate (Doppler shift) and 

carrier phase (carrier phase shift). Alternatively, some receivers may output delta range (integral of 

pseudo-range rate since the last measurement) or accumulated delta range (also known as carrier 

phase) which is the carrier phase observable equivalent in the range domain [3]. 

Acquisition 

The ranging processor needs first to estimate roughly (initialise) the code frequency and phase delay 

and then fine-tune them for more precise alignment between the incoming and replica signals. To 

achieve this, when the receiver is switched on, it selects from an array a combination (called a cell) of 

candidate Doppler frequencies and code phases in order to generate a replica PRN code signal, which 

then correlates with the incoming (digital) signal, aiming for maximum correlation. This process is 

called acquisition and its aim is to provide the maximum correlation between the incoming code 

signal and the replica code in order to initiate properly the code and carrier frequency tracking [61].  

The ability of a receiver to acquire an incoming signal quickly and robustly depends on the 

C/N0, processing power limitations (e.g. number of correlation channels of the size of an FFT-based 

acquisition engine), as well as the travelled path of the signal, the characteristics of the receiver’s clock 

(reference oscillator) and the relative dynamics between the receiver and the satellite [3]. During 

acquisition, signal detection involves comparing the sum of the Is and Qs squares with a specific 

threshold, which can be lowered in order to ensure maximum sensitivity. 

Tracking 

Following the acquisition of a GNSS signal, the receiver needs to maintain maximum correlation 

(alignment) between the received and internally generated PRN codes, as well as compensate 

continuously for the Doppler shift in the code and carrier frequencies. This process is called tracking 

and it can be divided into code and carrier tracking. Tracking is normally implemented via loops with 

variable gain depending on C/N0 which use the accumulated correlated outputs (Is and Qs) from the 
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signal processor in order to track code, carrier frequency and phase errors between the incoming and 

replica signals, e.g. [63]. Carrier tracking can also be based on Fast Fourier Transform (FFT) algorithm 

to track carrier phase in the frequency domain in the case of static receivers [64]. Other methods 

employ a Kalman Filter instead of tracking loops [65][66][67], but they are out of the scope of this 

thesis.  

Code-tracking is an iterative process that takes place inside a delay lock loop (DLL) which tries 

to minimise the code phase error between the incoming and replica PRN codes during the correlation 

time interval, typically 20ms. A generic DLL compares early and late accumulated correlated outputs 

(Is and Qs) from the signal processor to measure the current code phase error. Then, using the code 

phase error measurement, the DLL loop filter down-weights the code phase error measurement using 

the loop gain and then used this to estimate the current code phase of the incoming signal, i.e. the 

timing of signal arrival, and also predict the code phase of the next iteration (epoch). This code phase 

prediction informs the NCO to control the frequency of the generated replica PRN code in the signal 

processor and maintain better alignment between the incoming and replica PRN codes. The DLL 

bandwidth is typically between 0.05Hz and 1Hz, which refers to the interval over which the 

commands to the NCO are statistically independent, noting that the commands (code phase 

predictions) to the NCO are typically at a rate of 50Hz (or higher) [39]. Lower bandwidths are 

typically used for geodesy and surveying applications and higher bandwidths for kinematic 

applications, e.g. pedestrian navigation or location based services (LBS).  

To explain how a DLL works, the Is and Qs from the signal processor, i.e. the part of the 

GNSS receiver between the ADC and the generation of Is and Qs feeding the ranging processor as 

shown in Figure 2.9, are input to the DLL’s code phase discriminator which then associates them 

with a code phase error measured in chips, which may be normalised taking into account the 

measurements’ standard deviation, the accumulation coherent time interval and C/N0 [3]. A typical 

coherent time interval for the accumulators is 20ms (i.e. the time interval between navigation bits 

transitions at 50bit/s), allowing for a maximum tolerable pseudo-range rate error of 4.2m/s in the L1 

band [3]. 

The time interval over which the code phase discriminator function accumulates the Is and Qs 

may be fixed, or variable – depending on the observed C/N0 by the signal processor. The estimated 

code tracking error is then used to update the current code phase estimate in the DLL loop filter, in 

order to estimate the time difference between the code NCO time and the current receiver time 

(which is used to calculate the pseudo-range) and, along with Doppler shift information from carrier 

tracking aiding, to predict the code phase for the next DLL iteration. The code phase prediction is 

differenced with the current code phase estimate and sent to the NCO of the receiver to control the 

replica code generation frequency, noting that this NCO command correction will be applied in the 

next iteration. The loop gain determines the magnitude of the response of the DLL to the code phase 
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discriminator output (code phase error estimate), which is down-weighted in order to estimate the 

current code phase. The higher the loop gain, the faster the tracking loop will respond to changes, 

but the more sensitive it will be to tracking noise, as the input Is and Qs are less smoothed. The 

adjustment of DLL bandwidth needs to be optimally balanced between noise reduction and fast 

response to dynamics.  

For a code tracking bandwidth of Bco = 1Hz, i.e. fast response of the code-tracking function 

to motion dynamics and a maximum recoverable error of x = 0.5 chip, the pseudo-range rate 

tolerance (difference between the actual and expected pseudo-range rate) along the LOS is about 

117.3m/s, using [3]: 
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(2.3) 

where   the range rate error, x the code phase tracking error in chips, fco the code frequency (1.023 

Mchip/s), c the speed of light in vacuum, and Bco the DLL bandwidth. which can be considered non-

realistic for pedestrian applications. Therefore, it can be safely assumed for the purposes of this thesis 

that typical pedestrian motion, considered for the purposes of this thesis, cannot introduce any errors 

due to dynamics stress to the code tracking loop. 

Carrier tracking of GNSS signals encompasses frequency and phase tracking by respective 

frequency lock loops (FLLs) and phase lock loops (PLLs). In this thesis, (see details in Chapter 4) 

they are used independently, i.e. the FLL does not providing any aiding information (Doppler) to the 

PLL. The aim of carrier tracking is to estimate accurately the carrier Doppler shift and, in some 

receivers, the carrier phase of the incoming signals, in order to drive more precisely the NCO and 

generate replica code and carrier signals that align better with the incoming signal. Carrier tracking is 

normally implemented via tracking loops, although other methods may encompass a Kalman Filter 

[65][66][67][68][69][70], or Fast Fourier Transform algorithm to track carrier phase and frequency in 

the frequency domain [64]. 

FLLs track carrier frequency (equivalent to pseudo-range rate in the time-domain). Typically, 

FLLs are more robust than PLLs in terms of tolerance to motion dynamics along the line-of-sight 

(LOS) between the user equipment and the GNSS satellite, as well as weak C/N0 [3], [40], [2]. 

However, PLLs allow more precise estimation of the carrier phase and the time of the GNSS signal 

arrival. Due to their different design and performance characteristics, some GNSS receivers use a 

PLL aided by an FLL, in order to maintain lock of the signal [64],[71]. First-order FLLs can track 

carrier frequency error only, assuming it remains constant over two subsequent epochs and second-

order FLLs can track carrier frequency and frequency rate of change errors between received and 

internally generated signals, i.e. they can predict the frequency error in the next epoch by using the 

frequency and frequency rate measurements of the previous one, which makes them more robust 

then PLLs in terms of retaining lock of signal. 
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First-order PLLs cannot be used for GNSS as they require high C/N0 to support the 

bandwidth for tracking the phase changes between the received and internally generated signals, due 

to the relative motion dynamics between the receiver and the satellite along the LOS and the receiver 

clock jitter. Second-order PLLs can track carrier phase (range) and frequency (range rate) errors, while 

third-order PLLs can track carrier range, range rate and range acceleration (frequency rate of change) 

errors, which makes them more appropriate for GNSS signal tracking. 

The purpose of a PLL is to estimate the carrier range error and inform the code and carrier 

NCOs which control the frequency of the replica Is and Qs generation in order to achieve better 

alignment with the received signals over the coherent correlation time interval [3]. An example of a 

third-order PLL is illustrated in Figure 2.10. The way it works is that the correlator outputs (Is and 

Qs) are fed into the carrier range (phase) error discriminator that estimates the carrier range error, 

and then normalises it depending on the measurement standard deviation, the correlator 

accumulation time interval τα and the C/N0 [3], [40]. The Is and Qs accumulation interval, prior to 

enter the carrier range discriminator, defines the PLL bandwidth, i.e. the rate at which the PLL 

updates the carrier NCO.  

The carrier range error estimate is then smoothed inside the PLL filter and used to update the 

current carrier range, range rate and range acceleration estimates, noting that the range acceleration 

estimate in a third-order PLL remains unchanged between subsequent loop iterations (although being 

updated during these iterations). The carrier range error from this stage can also be fed into the 

ranging processor for the accumulated delta range (ADR) or carrier phase calculation. The carrier 

range-rate error can also be fed into the DLL to estimate the code phase and inform the pseudo-

range-rate calculation in the ranging processor. In the next processing stage, the (current) range 

estimates are used to predict the range and range rate that will inform the PLL filter in the next loop 

iteration, i.e. after a lag of a τα time interval. The range predictions are fed into the carrier NCO and 

used to generate the replica prompt, early and late I and Q signals entering the correlation function 

of the signal processor.  
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Figure 2.10. An example of a phase lock loop (after [3]). 
 

Although a PLL allows for precise estimation of the incoming GNSS signal’s carrier phase, it 

is less robust in terms of sensitivity to environmental radio-frequency (RF) noise and dynamic stress 

[3], [40], which can introduce phase and frequency steps exceeding the input range of the carrier 

phase and frequency discriminators, respectively, causing tracking slips (cycle slips and frequency 

false locks, respectively), which, in extreme cases, can cause the receiver to lose track of a satellite 

signal. The error sources of carrier tracking loops (PLL/FLL) can be summarised to the following 

three categories [72]:  

• Vibration-induced phase noise to the NCO; this can be internal noise cause by frequency 

standard instabilities of the reference oscillator. These effects are also explained in [2]. 

• Thermal noise, which is always present in electronic circuits and is independent of the carrier 

tracking loop order.  

• RF noise, which includes the other GNSS signals on the same frequency and other interference 

sources. A more detailed study of the effects of thermal noise and oscillator phase noise to the 

performance of PLLs is presented in [73].  

• Dynamic stress error due to the relative motion between the satellite and the GNSS receiver 

which tracks the signal of that satellite. This depends on the order of the PLL/FLL, with 

second-order FLLs and third-order PLLs sensitive to jerk stress (range acceleration rate of 

change over the time unit). This is because second-order FLLs and third-order PLLs, do not 

update a range jerk estimate in their loop filter, as a higher-order FLL/PLL would be required 

for that. Therefore, these carrier tracking loops cannot predict the rate of change of range 

acceleration in the next loop iteration. In other words, they only update the range acceleration 
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estimate (which is their loop filters response to the range acceleration), but they do not predict 

the range acceleration onto the next loop iteration. 

It is also worth noting that attenuation of the received signal, increases the receiver’s sensitivity 

to both RF and thermal noise, as it “buries” the signal deeper into the noise. Vibration-induced and 

multipath effects may also affect carrier tracking loops’ performance [2], but they remain out of the 

scope of this thesis, as it is not expected that for pedestrian applications requiring tracking of LOS 

motion dynamics, the receiver design would need to be set into a higher tracking bandwidth in order 

to respond fast to the changing LOS phase and frequency errors (induced due to dynamic stress). 

Typically, PLL carrier phase errors are in the order of 1.4mm (1σ) under good C/N0, e.g. above 40dB-

Hz, for a 20Hz PLL effective bandwidth and a τ=10ms correlators’ accumulation time interval [40]. 

A PLL drives the NCO with a phase (and sometimes frequency) estimate in order to aid the 

input and replica code alignment in the signal processor, noting that often the NCO command derives 

from tracking loops’ change of phase (or code). To measure the current phase error, i.e. the range 

error in the time-domain, the PLL uses a range error discriminator which compares the input and 

replica GNSS signals and estimates their range difference (error). A special case is Costas 

discriminators which have half of the typical range error input range, i.e. half of a carrier wavelength 

instead of a wavelength, so they are not sensitive to navigation bit transitions that invert the phase of 

the incoming signal by π/2, i.e. half of a wavelength. 

The gain of an arctan discriminator (slope of the phase error input-output curve) is linear over 

the carrier tracking error input range, as illustrated in Figure 2.11, therefore it can be considered more 

robust than other types of discriminators. If the carrier range tracking error exceeds the pull-in range 

of a Costas discriminator, it will cause the discriminator to “jump” an integer number of cycles, due 

to the cyclic nature of the discriminator, and incur a range error which is a multiple of half of a carrier 

wavelength for a Costas (two-quadrant) arctan discriminator, as shown in Figure 2.11, or a multiple 

of a carrier wavelength for a four-quadrant arctan PLL discriminator [3], [40]. This error at the 

discriminator output in the presence of a range error exceeding its pull-in range is called a cycle slip. 

Cycle slips may occur due to scintillation, low C/N0 conditions or antenna motion dynamics, with 

the oscillator jitter contributing as well but not causing cycle slips on its own. Cycle slips affect the 

navigation message demodulation and carrier-based ranging [3] which are critical for precise 

positioning. It is worth noting that if the receiver loses lock of a signal, then until the signal is tracked 

again, many cycle-slips will have occurred, due to the change in pseudo-range between the receiver 

and the satellite. Cycle slips may also occur due to reference oscillator errors, which are out of the 

scope of this thesis, e.g. depending on temperature variations, crystal physical characteristics and 

aging, sensitivity to specific force causing frequency variations and vibration sensitivity causing phase 

noise in the oscillator and random high-frequency phase noise [2]. 
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Figure 2.11. Example of a cycle slip in a Costas Arctan (two-quadrant) discriminator. 
 

A phase lock loop (PLL), outputs measurements typically at a rate between 5Hz and 20Hz 

effective bandwidth, noting that this is the same as the equivalent noise bandwidth up to a level where 

the amplitude response of the PLL (considered for this purpose as a low-pass filter from a digital 

signal processing perspective) drops below a level of -3dB. For applications that do not require fast 

response to high dynamics, e.g. static receivers used for surveying, then a low PLL bandwidth may 

be used [61]. For high dynamics applications such as human motion modelling, a PLL with a high 

effective bandwidth is more appropriate. The effective bandwidth of a PLL determines the tolerance 

against antenna motion jerk dynamics, over the coherent time interval (typically 0.02s) [3]: 
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where BL_CA the effective PLL bandwidth (Hz), c the speed of light (m/s2) and fca the carrier central 

frequency (Hz). From Eq. (2.4), a third-order PLL with 20Hz effective bandwidth can tolerate up to 

±657m/s3 jerk along the LOS, about ±82m/s3 with a 10Hz effective bandwidth and about ±10m/s3 

with a 5Hz effective bandwidth, i.e. slow response to motion jerk dynamics, noting that larger 

(absolute) jerk dynamics may occur over smaller time intervals (less than 0.02s) without disrupting 

carrier tracking by causing cycle slips [3]. Typically, carrier phase tracking can be maintained when 

C/N0 is above 24dB-Hz depending on the PLL bandwidth and motion dynamics [2]. A typical PLL 

bandwidth for a high-grade receiver is 15Hz (adjustable between 1Hz and 100Hz), and 0.25Hz for a 

DLL (adjustable between 0.01Hz and 5Hz) [74], noting that for the Xsens MTi-G GPS/IMU sensor 

used in this thesis (see Chapter 3) this information is not commercially available, which is typically 

the case for lower-grade receivers, such as those used in smartphones and wearables for pedestrian 

applications. 

A frequency lock loop (FLL) tracks the carrier frequency error between the true Doppler shift 

of the carrier and the observed Doppler shift obtained by the carrier tracking loop. The FLL refines 

the Doppler shift prediction (equivalent to carrier range rate error in the range domain) of the DLL, 

maintaining a more robust correlation between incoming and replica PRN code in the signal 
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processor, as well as aiding the PLL when phase lock is lost due to a low C/N0. An FLL tracks 

Doppler shift (equivalent to range rate error in the range domain) in a similar way that PLL tracks 

the carrier phase (equivalent to range) error, as illustrated in Figure 2.12.  

The operation of an FLL begins with the carrier frequency error discriminator, which detects 

the carrier range rate (frequency) error by computing the Is and Qs of the current and previous 

correlation epochs. The carrier Doppler shift error (equivalent to pseudo-range rate error in the range 

domain) is detected by the discriminator and used by the FLL to update the current pseudo-range 

rate, and pseudo-range acceleration estimates using a gain function to smooth the noise in the Is and 

Qs. It is worth mentioning that if the loop gain was unity, the noise contained in Is and Qs would 

not be smoothed and would be propagated to the frequency tracking error output of the discriminator 

function, which would be used directly to control the NCO in order to maintain alignment between 

the received and internally generated signals. The updated pseudo-range rate estimate is then used to 

predict the next epoch pseudo-range rate and feed the NCO with a refined Doppler shift estimate to 

maintain maximum correlation over the coherent time interval. 

False locks may occur in FLLs in cases where the Doppler shift estimate is not consistent with 

the DLL Doppler shift estimate. Usually a false frequency lock manifests itself as a multiple of a 

minimum frequency, e.g. 25Hz for GPS C/A code, which is equivalent to approx. -4.75m/s in the 

range domain, calculated using [3]: 

 
(2.5) 

where Δfca the Doppler shift (Hz), fca the carrier frequency (Hz), c the signal propagation speed and 

R  the range rate (m/s). This false lock of the Doppler shift could be prevented by comparing the 

FLL Doppler estimate with the DLL one [40], although usually the carrier tracking loops aid the DLL 

by providing the Doppler estimate. A false lock may also cause an incorrect frequency estimate in 

PLLs. 

If carrier frequency tracking is used by the receiver, the data-bit transitions are detected by 

observing the changes in (a 4-quadrant) arctan(Q/I) as multiples of π rad. This provides noisier data 

demodulation than phase tracking. In both cases, there is a sign ambiguity in the demodulated data-

bit stream. In frequency tracking, this occurs because the sign of the initial bit is unknown, whereas 

in phase tracking, it occurs because it is unknown whether the tracking loop is locked in-phase or π 

out-of-phase. The ambiguity is resolved using the parity check information broadcast in the message 

itself. This must be checked continuously, as phase tracking is vulnerable to cycle slips and frequency 

tracking to missed detection of the bit transitions [3]. 

Generally, carrier frequency tracking is more robust than phase tracking and can be maintained 

under lower C/N0 compared to PLL requirements, but to prevent false lock detection from PLLs 
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and FLLs, it is essential to introduce a metric of their robustness, e.g. by comparing the integral of 

the Doppler shift with the change in code phase [3]. 
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Figure 2.12. Architecture of a generic FLL using range rate estimates (after [3]). 
 

The signal strength is usually measured in terms of the signal-to-noise ratio (SNR), which 

represents the (unitless) ratio of the signal power to the noise power over a given bandwidth. Another 

common way of expressing signal strength is using the carrier power-to-noise density ratio (C/N0), 

measured in dB-Hz, and represents the ratio of the carrier power to the noise power per unit 

bandwidth. The SNR, as opposed to C/N0, depends on the bandwidth of observation. For a GNSS 

receiver, this is usually the effective noise bandwidth, once the signal has passed the last filtering stage 

in the (analog) RF front-end, which is typically about 4MHz [62]. 

 Integrated Navigation Systems 

An INS provide a self-sufficient navigation solution, typically at an output rate higher than 50Hz, but 

this solution drifts (accumulates errors) due to the constituent inertial sensors’ properties and 

initialisation errors. On the other hand, GNSS can provide a navigation solution which does not drift, 

but the output rate is limited compared to INS, typically less than 10Hz. Therefore, by integrating 

INS and GNSS it is possible to derive a navigation solution with limited drift and at a high output 

rate. For example, the Xsens MTi-G IMU/GPS, has a GPS-only output rate at 4Hz, while the IMU 

can output data up to 512Hz [49]. INS also smooths out GNSS errors due to tracking noise, dynamics 

response lag, multipath, NLOS etc.  

The integration is typically realised through a Kalman Filter (KF) algorithm, which efficiently 

fuses measurements from different sensors. A KF is a well-documented Bayesian state estimation 

algorithm, e.g. [3][61][75], which is used to fuse measurements from different sources in order to 
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estimate a real-world system modelled as a set of parameters called “state vector” or “state”, with a 

defined mathematical relationship between them. The basic principle underlying a KF is that it is 

possible to predict the state of a real-world system by knowing the initial (or previous) state vector 

and its corresponding uncertainty, along with its deterministic and statistical (stochastic) properties. 

The predicted state is then combined with the current state (coming from the actual sensor 

measurements, as well as the time evolution of other states) as a weighted average, depending on 

their uncertainties (standard deviations). The underlying assumptions of a (linear) KF are that the 

next state can be predicted by combining linearly the previous state with the system model (time 

evolution of state), while the current state can be calculated from the predicted state, the 

measurements and the measurement model, as well as that noise properties can be modelled by 

Gaussian distributions. Different versions of the KF that are not limited by all of these assumptions 

exist, e.g. the Extended KF [3], but they are out of the scope of this thesis. An example of a KF used 

to integrate GNSS and inertial measurements is given in [70]. KF may also be implemented as a 

forward filter, i.e. in order to reach the final state conditions, of backwards, in order to reach a set of 

initial state conditions from the final state (backward filter). A combination of a forward and 

backward filter, called a Kalman Smoother, is generally a robust way to smooth motion capture data 

[76]. Figure 2.13 illustrates a basic integration scheme of INS/GNSS measurements, using a Kalman 

Filter (KF) integration algorithm.  

An INS/GNSS integration architecture may be uncoupled, i.e. the GNSS measurements 

simply update (or re-initialise) the inertial navigation solution at specific time intervals. In a loosely-

coupled integration, GNSS provides position and velocity measurements to update the inertial 

navigation solution and compensate some inertial sensors biases and orientation errors. The Xsens 

MTi-G IMU/GPS employs a loosely-coupled KF [49], in order to correct the inertial position, 

velocity and orientation solutions using GPS updates. The inertial and GNSS navigation solutions 

(position and velocity) are fed into the integration algorithm which calculates the error states, e.g. 

accelerometers, gyros and orientation (attitude and heading) biases, and not the original quantities 

themselves (e.g. specific force or angular rate). These errors are then used in a correction stage to 

update the inertial navigation solution and provide the integrated navigation solution (position, 

velocity and orientation), noting that the actual KF implementation for the Xsens MTi-G is 

proprietary so the end user cannot amend it, neither feed the GPS-only and intertial solutions 

separately to their own integration algorithm. 

The KF implementation in the Xsens MTi-G can calibrate the accelerometers’ biases, provided 

that a GPS fix is available and the IMU is subject to significant horizontal acceleration, in order to 

allow the accelerometers to sense specific force and create linear velocity and quadratic position errors 

which can be observed by the KF. Note that in the vertical direction the accelerometers sense 

significant specific force anyway due to the internal proof mass’s reaction to gravity (due to the 
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chassis’s walls that do not let the proof mass exhibit free fall), therefore the KF will compensate for 

these biases. The KF can then correct the accelerometers’ biases using GPS updates (as external 

absolute position information is required), and observe the heading error of the IMU, in other words, 

it integrates the accelerometers’ measurements in the correct direction to derive the position and 

velocity solutions. Once the heading error has been observed, the KF stabilises and the attitude of 

the IMU can be calculated, considering the gyros’ measurements and an initial attitude solution, 

obtained by the 3D magnetometers. It must be noted that roll and pitch attitude components do not 

require heading error to be observed and that the IMU heading drift can be corrected by the 

magnetometers’ readings, if they are accurate enough. The KF heading error observability disappears 

when the IMU stops experiencing horizontal acceleration (and no magnetometer heading 

measurements are available). For pedestrian applications, this implies regular horizontal motion while 

conducting an experiment. A calibration procedure, as part of the experimental protocol before 

starting  pedestrian motion capture, ensures that the KF has stabilised and the final state can be stored 

for future use [49], in order to speed the calibration process for the next experiments. A potential 

issue that requires attention while using a KF, is discontinuities when the GNSS measurements are 

fused with the inertial solution, e.g. sudden peaks when the GPS measurements update the inertial 

position solution. Further details on this observed issue during the thesis’ experiments are given in 

Section 3.2, with an implemented mitigation technique detailed in Appendix B.  

 

Figure 2.13. GNSS corrections for INS (after [3]) 
 

Different levels of integrated INS/GNSS architectures, which are out of the scope of this 

thesis, encompass tightly coupled integration, which fuses GNSS pseudo-range and pseudo-range rate 

measurements with the inertial navigation solution, and deeply coupled integration, which integrates Is 

and Qs from a GNSS signal processor with inertial sensors’ measurements. Inertial sensors’ 

measurements may also be used to aid GNSS tracking loops in tightly or deeply coupled integration, 

also called ultra-tight integration [3].  
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2.3 Pedestrian Motion Capture and Modelling 

This section discusses the methods used to capture and model human motion, in order to inform the 

development of an experimental protocol for capturing human motion, as well as the development 

of a pedestrian motion model (detailed in Chapter 5), which simulates the performance behaviour of 

GNSS carrier-tracking loops under the presence of real pedestrian motion. 

 Human motion capture and modelling 

Human motion can be captured using a range of different sensors or their combinations. The capture, 

analysis and modelling of human motion supports the development of a pedestrian motion model 

(PMM) for the purposes of this thesis. Clinical applications of human gait analysis may employ 

optoelectronic systems using active or passive markers, which are considered standard techniques 

[18], inertial measurement units (IMUs), which typically encompass accelerometers and gyros, 

discussed in Section 2.2.2. In [46], the authors assess how suitable inertial sensors are for the study 

and analysis of human motion, concluding that they have the potential to be employed in clinical 

applications involving walking. For example, in [77] a shank-mounted IMU was placed on 8 subjects 

to estimate their walking speed (with a root mean square error - RMSE 7%) and their travelled 

distance on the ground (with a RMSE 4%), although the algorithm failed to give accurate results on 

inclined surfaces due to a wrong estimated initial angle between the shank and the IMU. In [9], a 

trunk-placed tri-axial accelerometer was used to study the gait spatio-temporal parameters for a group 

of elderly people. A review of how accelerometry has been used to study human gait patterns is given 

in [78]. Also, an experiment with a head-mounted GPS receiver, aided by real-time kinematic 

corrections to achieve better accuracy, was used in [79] to monitor gait spatio-temporal parameters 

(walking speed, step length and step frequency) of human subjects walking on a level surface for 

about 30 minutes; however, the results showed that the inter-subject variation for the observed 

parameters was not consistent to other similar studies in the literature, therefore, further this method 

is recommended by the authors of this study alternative to standard technologies, e.g. vision-based 

systems, used in biomechanical studies. Other MoCap techniques may employ magnetic transmitters 

(human body markers) and a sensor(s) to measure joints’ position and attitude [80], noting that due 

to the free space loss in a magnetic field’s strength, this method would not be suitable for this thesis, 

i.e. in order to capture a walking pedestrian away from the sensor. 

A prerequisite of using IMU sensors for human motion capture (MoCap) is the static bias 

calibration of their constituent inertial sensors. The Xsens MTi-G IMU/GPS used for the human 

MoCap experiments of this thesis is described in Section 3.3. The GNSS antenna design, e.g. gain 

pattern, may also affect the precision of MoCap as, typically, the antenna attitude will changes 

following the human body movement, where it is attached to. Another important element when using 
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an IMU/GNSS device for human MoCap, is the GNSS antenna placement on the human body. 

Ideally, the selected device locations should allow for good GNSS satellite visibility during a MoCap 

experiment. The sensor location must therefore be carefully selected depending on the application 

requirements and considering that the human body may block GNSS signals or induce relative 

motion dynamics between the GNSS antenna and the IMU, which may render the integrated 

navigation solution unreliable. 

Pedestrian motion capture involves the tracking of the 3D coordinates of human body 

segments and joints which may involve a combination of inertial sensors and optoelectronic systems. 

Optoelectronic equipment can be used for MoCap in order to track the 3D motion of passive markers 

placed on the human body [18], which have a retroreflective coating to reflect the light from sources 

near the MoCap system sensors, typically high-speed cameras. MoCap systems may also use active 

markers, i.e. markers which emit light (in white or various colours). Examples of commercial MoCap 

solutions are: Qualisys [81] using active or passive markers, CODA [82] using active markers and 

Vicon [83] using passive markers, which can be used for (high-end) professional MoCap applications, 

e.g. in the film or sports industry. Also, commercial markerless motion capture systems exist, for the 

lower-end of the market, e.g. [84],[85],[86] and [87]. MoCap systems offer various performance 

specifications in terms of field-of-view, resolution and accuracy, so extended research is 

recommended before committing into purchasing/hiring a MoCap system solution.  

With respect to the used technologies in this thesis, it must be noted that the original scope of 

this thesis also included investigating how pedestrian motion affects inertial sensors, so the project 

budget for equipment purchase was committed to the Xsens MTi-G IMU/GPS solution in order to 

provide data both from inertial and GPS sensors. However, as the project progressed the scope had 

to be focused on investigating the pedestrian motion effects on GNSS carrier-tracking loops, so the 

option to hire or purchase a high-end vision-based system for very accurate human MoCap was not 

an available option.   

Methods employing active or passive markers need to be calibrated or different experimental 

subjects, as the locations of markers may differ between subjects, while the skin upon which markers 

are placed introduces additional relative motion artefacts w.r.t. the body segments/joints in question. 

For both marker-based and markerless systems, calibration of the models w.r.t. the actual anatomical 

points (e.g. joint centres) in the human body is challenging as these are not physically accessible. A 

typical implementation of a vision-based system may involve at least body 15 markers, with at least 

two cameras for body-tracking applications and at least three cameras if body modelling 

(reconstructions) is sought. A common problem using vision-based systems is markers’ occlusion 

from human body segments the human body moves [88], noting that redundancy cameras, may be 

used in order to mitigate that effect. 



 

71 

 

For the modelling of MoCap data using optoelectronic means tracking active or passive 

markers, the following three steps may be applied [18]: 

• The markers are attached to the subject and their motion is tracked, e.g. by video cameras in 

3D. The 3D kinematics of the markers are then calculated using techniques of 

stereophotogrammetry. 

• The human body model (segments and joints) are best fitted to the markers trajectories for 

each frame of their captured motion, using an appropriate algorithm, e.g. one that minimises 

the RMSE between the human body model segments and the tracked markers position. The 

human body model may be a skeleton comprising linear segments and joints or a set of 

cylinders and spheres which also represent the volume of human body segments and joints.  

Human body constraints may also be used to avoid unrealistic postures when fitting the human 

body model to the tracked markers. The human body model parameters are obtained by 

anthropometric studies [88],[89].  

• The kinematic quantities of human segments and joints are then calculated, e.g. the position, 

velocity and acceleration of a segment’s or joint’s CoM. 

In the case that specific motion dynamics need to be recreated by the model, a fourth step 

needs to be applied using inverse kinematics’ methods that “force” a particular segment or joint to 

follow a specific motion dynamics profile. Due to the many combinations of joint rotations that 

could result to the same motion profile, this problem is typically overdetermined as more than one 

solutions exist. Therefore, motion constraints may be applied to reduce the possible solutions to one 

that is the most “human-like”. The results can then be validated by comparing the model output with 

the captured motion dynamics. 

Inertial sensors typically provide a high output rate e.g. above 100Hz, which is required for 

tracking pedestrian motion, especially when it involves high dynamics, e.g. running. Also, inertial 

sensors can also be integrated with non-optical systems, e.g. magnetometers [89], barometers, and 

GNSS [90], ultrasonic [91] or ultra-wide band (UWB) [92] devices. Inertial sensors are typically fixed 

on specific anatomic locations of the human body [93], e.g. on the head, shoulder upper arm, forearm, 

hand, above the chest-bone or the tail-bone and on the foot. The inertial sensors cannot be fixed at 

the exact anatomical point in question, e.g. for COM movement analysis while walking, the CoM lies 

inside the pelvis. Therefore, a correction of has to be applied, e.g. by smoothing measurements or 

applying lever arm corrections, in order to compensate for the relative position difference. Other 

experimental effects, e.g. such as clothes or skin movement, where the sensor is attached to, should 

also be taken into account when processing/interpreting the results. If the IMU is placed above the 

tail-bone it can be generally approximated as fixed w.r.t. the CoM for most pedestrian applications, 

e.g. in [94]. A review of non-optical commercial systems in use for pedestrian motion tracking and 

gait analysis is presented in [95]. Multiple inertial sensors may also be used as part of a full-body 



 

72 

 

wearable system [96]. This thesis falls within this category as it uses an Xsens MTi-G IMU with GPS, 

magnetometers and barometers aiding. The candidate sensor locations for modelling in this thesis, 

i.e. head, arm, hand, foot and inside a bag, are discussed in Section 3.2. 

MoCap data interpretation needs to take into account the experimental conditions. The 

differences between capturing data on a treadmill and on the ground are examined in [97], where the 

authors found that the subjects were habituated to the use of a treadmill after 10 minutes. In another 

study, the differences between treadmill and walking on ground were not found to be statistically 

insignificant although data captured at experiments conducted on the ground implied a slightly wider 

range of motion compared to those carried out on a treadmill [98]. Therefore, this study suggests that 

a pedestrian MoCap experimental protocol that involves a treadmill should take into consideration 

the habituation of the subjects with the equipment.  

The human body movement can be modelled using appropriate biomechanical models; 

examples can be found in [7],[99],[100], [101]. These models contain a simplified version of human 

body segments, e.g. modelled as cylinders or spheres, and motion constraints between these 

segments, which represent the mechanical properties and DOF of human joints. Using a human 

biomechanical model (HBM), it is possible to simulate particular type of activity, e.g. walking, jogging, 

and/or gestures. Human gesture examples may include moving arms back and forth, answering a 

phone, turning the head, kicking with a foot etc.   

The processing of captured pedestrian motion data can be a quite involved process. A 

comparison study of 6 smoothing methods for biomechanical data provides evidence that there is no 

optimum standard technique and that if a method is efficient in smoothing biomechanical data (e.g. 

in the position domain), this is not necessarily the case for higher derivatives (e.g. velocity and 

acceleration domains) [102], which are important for testing GNSS equipment, as they can cause 

disruptions to the nominal carrier-tracking operation, as discussed in Sections 4.2 and 4.3. 

In a human animated motion generation study [103], a collection of motion clips was captured 

(sequences of frames represented as graphs) and then combined using a weighting and smoothing 

function to produce smooth, human-like synthetic motion, based on some hard or soft spatial and 

posture constraints, i.e. specific points/postures that the robot should reach or come close to 

respectively. This method is suggested for animation applications and not for re-creating pedestrian 

motion using inverse kinematics, due to the high number of constraints that would be required to 

control the motion and posture of each human segment over the time of the movement duration. 

Other methods of human motion modelling may be physics-based and aim to optimise the 

movement of a HBM in terms of minimising the energy required to move the HBM during the whole 

movement. Although using this method the HBM segments’ movement are constrained using a set 

of rules [104], various human gestures and movements can be generated automatically without 

requiring prior motion capture and calibration. However, this method does not generate realistic 
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human motion due to introduced artefacts, e.g. exaggerated hip movement while walking. Therefore, 

it has not been considered further for analysis in this thesis. Examples of applications using human 

body modelling encompass ergonomic product design (taking into account human factors) and 

workers’ health risk assessment in industrial settings, e.g. the automobile, aerospace and 

manufacturing industries; and also, clinical applications, which may focus on specific parts/activities 

of the human body, e.g. muscular activity modelling for athletes’ fatigue/injury risk assessment [105], 

[106]. 

 Pedestrian routing 

Human locomotion is goal-oriented, therefore encompasses inherently a navigational element along 

with the biomechanical activity itself. Pedestrian navigation encompasses two basic actions, 

wayfinding and positioning [3]. Positioning encompasses the process of finding the current pedestrian 

position and a target position, referenced to and resolved along a known reference frame axes, i.e. an 

Earth-fixed frame for pedestrian applications, such as a local tangent plane. Pedestrian wayfinding 

(or routing) implies a target position which the pedestrian aims to reach by moving its body in 3D 

space, i.e. locomotion. In this thesis, a pedestrian routing model is meant to be an algorithm used to 

plan a route (or path) between two pre-defined geographic points in 3D space.  

Generally, pedestrian models can be viewed from two perspectives [107]: macroscopic pedestrian 

models, which are used to represent groups of pedestrians (or pedestrian flows) using principles of 

fluid dynamics, and microscopic pedestrian models, which focus on the level of individual pedestrians 

and are more relevant to the scope of this thesis. A pedestrian model also, may be deterministic, stochastic 

or a combination of both, e.g. [108],[109]. Deterministic pedestrian models provide the same results, 

e.g. path-finding trajectories, on every simulation run at given initial conditions, while stochastic 

models provide a range of possible outcomes, e.g. by adding random noise when the pedestrian 

model state is updated. 

In the case of a continuous space-time domain, a pedestrian model agent may be represented 

as a particle whose 3D movement in space is driven by attractive/repulsive factors modelled as 

Newtonian forces, also called ‘social forces’ in [110]. Social forces can be attractive, e.g. towards a 

target or points of interest, or repulsive, e.g. against other pedestrians or obstacles like walls etc., 

noting that this could also be represented using a magnetic analogy and the respective EM field 

equations. An example application of the social force model is to determine irregular individual 

pedestrian behaviour in crowds [111]. Although social force modelling may provide valuable 

statistical results when a large number of pedestrian particles are employed, this may not be the case 

in simulating motion at individual pedestrian level or when a small number of pedestrian agents is 

required for a given application [109]. Last but not least, social force models implementation can be 
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computationally demanding as they require multiple iterations to calculate interactions between 

modelled pedestrian particles. 

In the discrete space-time domain, there are mainly two approaches of modelling pedestrian 

behaviour: cellular automata and agent-based models, both using a matrix of cells to represent space, as 

well as discrete time steps to advance between current and future pedestrian states [112]. Cellular 

automata models are considered efficient in macroscopic modelling of pedestrian flows [113], while 

agent-based models allow agents to follow individual behavioural rules, which is more relevant to the 

scope of this thesis. Pedestrian agents may also be given a specific target to navigate to, or may move 

around using a stochastic process, e.g. performing a random walk, or may select a target based on a 

pre-defined probability distribution [114],[115]. 

Pedestrian routing models have been employed in robotics applications, both for trajectory 

planning and in order to make robotic trajectories more ‘human-like’ (or ‘anthropomorphic’) [116]. 

Other application where pedestrian routing models have been employed encompass prediction of 

pedestrian flows for transport and retail facilities, evacuation planning and path optimisation for 

emergency situations, pedestrian tracking [117] and subgroup characteristics simulation, e.g.  

pedestrians holding hands [118].  

For the purposes of driving a pedestrian agent between two known geographic points, which 

is more relevant to the scope of this thesis, path-finding algorithms can also be employed. A path-

finding algorithm aims at optimising the path between two locations (or any two network nodes), e.g. 

in terms of time, distance, cost or any other appropriate criteria [119]. Generally, path-finding 

algorithms can be applied using deterministic or stochastic rules, e.g. in order find a route within a 

transport network. Typically, the domain of a path-finding algorithm is represented by a graph or, 

equivalently, by a grid (lattice) of cells. 

A commonly used method of finding the shortest path between two nodes, either in a graph 

or a grid of cells, is Dijkstra's algorithm [120]. Dijkstra's algorithm starts on a specific cell and searches 

the adjacent cells to find which one provides the lowest cost. a specific node and expanding gradually 

the search around that node, until the target node is reached, provided that at least one connecting 

path between the start and end nodes exists. A special case of Dijkstra's algorithm is the A* 

(pronounced “A-Star”) algorithm, which aims at making the search process for the shortest path 

more efficient computationally by using heuristic rules, e.g. constraining the search on cells within a 

buffer along a straight path between the start and finish points [121]. Examples of A* 

implementations are reported in [122][123][124] and [125]. It is worth noting that the A* algorithm 

search is optimal (compared to the original Dijkstra’s algorithm), only if the applicable heuristic rules 

are optimal. 

A drawback on using path-finding algorithms on grid space is that the final path is not smooth, 

as it depends on the density of the underlying grid [126]. One possible solution is to increase the 
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density of the grid, increasing the computational load, as the number of cells in the search space will 

increase quadratically. Another possible solution is to apply a smoothing function to the final path 

produced by a path-finding algorithm. In pedestrian motion simulation applications, which are 

relevant to this thesis, this smoothing is required in order to avoid artefacts, e.g. sudden position 

“jumps” of an animated character, or potential artificial effects on simulated GNSS carrier-tracking 

loops (SGCTLs), e.g. artificial cycle-slips on carrier phase tracking. Smooth trajectories generation is 

an issue that concerns the animation and gaming industry [127] and robotics [128]. Also, a review of 

spline (curve-fitting) methods that can be used as smoothing functions is provided in [129].  

To summarise, this chapter reviewed the relevant literature to provide the background 

knowledge required to address the aims of this thesis, stated in Section 1.2. The chapter introduced 

to the reader some fundamental concepts of pedestrian motion analysis, e.g. the gait cycle, and 

methods used to capture human motion, e.g. using optoelectronic systems and/or inertial or other 

positioning and navigation sensors. In addition, this chapter introduced basic concept and principles 

in inertial and GNSS positioning and navigation. Finally, this chapter discussed different ways to 

model human body motion, e.g. with systems employing active/passive markers or markerless 

systems, and also introduced Dijsktra’s path-finding algorithm between two locations. This 

discussion in this chapter informs the design and execution of human motion capture experiments 

(see Chapter 3), the development of the pedestrian motion model (PMM), described in Chapter 5, 

and the simulation of GNSS carrier tracking loops (see Chapter 4) as a test platform for analysing 

and comparing the real human MoCap and PMM synthetic motion data. The thesis continues with 

the description of the human motion capture experiments. 
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 Field Data Collection and Pre-processing 

This chapter describes the experiments of human motion capture (MoCap) of this thesis. The human 

MoCap experiments provide the ground truth data for assessing the impact of human motion on the 

performance of GNSS equipment (see Chapter 6) and for validating the synthetic output of the 

pedestrian motion model (PMM), detailed in Chapter 5. This chapter comprises three sections, the 

first one describes the experimental equipment used to capture human motion data, the second one 

(Section 3.2) describes the pilot experiments and the third (Section 3.3) describes the main experiment 

of human MoCap. Alongside the discussion of the pilot and main experiments, this chapter discusses 

the quality issues identified during pre-processing the data in order to facilitate further analysis 

(discussed in Chapter 6), by using the simulated GNSS carrier-tracking loops (SGCTLs), which are 

detailed in Chapter 4.  

The motion capture process described in Chapter 3 was essential in order to analyse the effects 

of real human motion on the performance of SGCTLs (see results in Section 6.2); to validate the 

synthetic motion output of the PMM (see results in Section 6.3); and also to make recommendations 

on GNSS carrier tacking loops design (see results in Section 6.4). It must be noted that human MoCap 

data was not used for human biomechanical modelling, as this was based on other studies in the 

human biomechanical literature (see Section 5.3). 

3.1 Experimental Equipment Description 

Xsens MTi-G sensor, illustrated in Figure 3.1, provides an integrated KF navigation solution for 

position, velocity and orientation, w.r.t the local navigation frame (see Section 2.2.1). It comprises a 

triad of accelerometers, a triad of gyroscopes (gyros), a triad of magnetometers, a thermometer for 

temperature-dependent calibration, a barometer and a GPS receiver operating in the L1 frequency 

band and tracking coarse/acquisition (C/A) ranging code. The device provides the options to output 

calibrated or uncalibrated (raw) accelerometers’ measurements. In the case of calibrated 

accelerometers’ measurements, the device performs (at firmware-level) temperature-dependent 

calibration of the inertial sensors’ measurements and correction of the accelerometers’ static and run-

in biases. The accelerometer’s bias calibration is achieved by updating the inertial navigation solution 

(position, velocity and attitude) using GPS updates at a 4Hz rate, through a Kalman Filter (KF) which 

has to be selected (from a list of 6 proprietary pre-defined KF scenarios) before the motion capture 

starts and cannot be changed afterwards.  

The KF scenarios provide the option to fuse accelerometers, gyros and GPS measurements 

(as a minimum), with additional options to include measurements from the triad of magnetometers 

and the barometer. The two KF scenarios considered in this thesis are the "General" which uses the 
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IMU (accelerometers and gyros), GPS and barometric measurements, and the "Aerospace", which 

uses IMU (accelerometers, gyros and magnetometers), GPS and barometric measurements. It follows 

that the IMU outputs of the general and aerospace scenarios are identical, but the integrated 

navigation solution (position in latitude, longitude and altitude) and velocity, differ. Other KF 

scenario options include “General/Aerospace_nobaro” which are similar to the general and 

aerospace scenarios, but do not fuse the barometric measurements. The latter KF scenarios were not 

used as the motion capture experiments were conducted outside, so the barometers should be able 

to measure atmospheric pressure without constraints occurring, e.g. inside a sealed lab. Also, two 

additional KF options intended for automotive applications (applying constraints on the heading) 

and marine applications (assuming constant significant velocity), are considered out of the scope of 

this thesis. Xsens MTi-G also provides the option to store the current Kalman Filter state (inertial 

sensor biases) and re-use it in the future for similar MoCap scenarios. In this way, the Kalman Filter 

settles faster next time that new MoCap data is to be captured [49]. 

 

Figure 3.1. The Xsens MTi-G IMU/GPS device with a GPS antenna 
 

As far as heading observability is concerned (see Section 2.2.4 for an explanation), if the Xsens 

MTi-G is static or moving at constant speed >10s, then the heading observability will degrade and 

the KF status will be set as “invalid”. The aerospace KF scenario however, uses magnetometers so 

the heading is always observable. For KF scenarios fusing magnetometer measurements, it is 

recommended to perform a magnetic calibration, in order to calibrate any hard/soft iron effects at 

fixed position/attitude w.r.t the sensors frame, before commencing the data collection. The process 

of magnetic calibration of the Xsens MTi-G is explained in [130]. Xsens MTi-G updates the local 

magnetic declination when there is GPS fix, based on the WMM-2010. The X-axis of the body frame 

points to the magnetic north when no GPS fix/set magnetic declination are available, otherwise X-

axis will be aligned with the true North. The magnetic calibration process assumes that there is no 

horizontal acceleration, in order to calculate accurately the tilt during rotating the sensor. Also, the 

magnetometers output is normalised to the local geomagnetic field strength (i.e. after calibration), as 
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the body frame attitude can be determined by the relative change of the measurements between the 

magnetometers’ axes, without having the absolute measurements. 

The raw data provide the inertial sensors’ measurements at the analog-to-digital conversion 

level, i.e. uncalibrated for temperature (or accelerometers’ bias via GPS updates). The raw data output 

may also include the GPS-only position, velocity and timing (PVT) solution, if the user selects so. 

The option to capture raw data instead of calibrated, enables the user to export calibrated data at 

software-level from the logged raw data binary file (i.e. without having the IMU/GPS device 

connected to the user’s computer) using any of these 6 proprietary KF scenarios. In terThe software 

package that provides this functionality is the Xsens proprietary “MT Manager”, which is a graphical 

user interface for visualising the logged data during motion capture and export the logged binary files 

into text format, using an appropriate KF scenario, noting that Xsens encrypts and records the 

necessary calibration parameters logged into the binary file, in order to allow the user to export 

calibrated data during post-processing. The technical specifications for the Xsens MTi-G device are 

mentioned in Appendix C, based on [49]. 

The chapter continues with the description of the pilot MoCap experiments. 

3.2 Pilot Experiments 

This section describes the pilot experiments of this thesis. The pilot experiments supported the design 

and implementation of the main experiment, by enabling:  

• Familiarisation with the experimental equipment, described in Section 3.1. 

• Design and implementation of an appropriate calibration protocol for Xsens MTi-G 

INS/GPS, 

• Design and implementation of an appropriate method to conduct the main experiment, e.g. 

keeping logs, video recordings, timings etc., 

• Development of appropriate tools for pre-processing human MoCap, e.g. Matlab tools to 

identify and/or filter out potential artefacts due to the data collection process or equipment 

design. 

Table 3.1 lists the candidate sensor locations, applicable gestures and activities considered for 

modelling on the top of nominal walking movement in this thesis. The sensor candidate locations 

were selected as they comprise the most typical places to hold a sensor, depending on pedestrian 

activity, e.g. foot for measuring fitness activity or informing a pedestrian navigation system with zero-

velocity updates (ZVU), noting that, as explained in Section 1.1, the purpose of this thesis’ developed 

pedestrian model (see Chapter 5) is to drive the SGCTLs, not to form a complete pedestrian 

navigation system, which could be used e.g. as a testbed for pedestrian dead-reckoning algorithms. 

The foot as a sensor candidate location was explored during pilot experiments but was found to cause 
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the inertial sensors exceeding their dynamic output range (a similar example from MoCap 

experiments is illustrated in Figure 3.3). The hand is a common place of placing/holding PNE such 

as IMU/GPS-enabled wrist watches or smartphones, respectively, in pedestrian applications. The 

head may also be a candidate location to model as e.g. a helmet could be equipped with a GNSS 

receiver; however, for practical reasons and time constraints this location was not prioritised in the 

MoCap experiments. Also, an armband or a bag, e.g. back-pack or hand-bag, are typical places where 

PNE is attached to or held, respectively. Finally, candidate locations in the waist (using e.g. a waist-

band) and the back (above the tail-bone) were not included in the main MoCap experiment, as during 

the pilot experiments they were found to impose practical issues on the MoCap process, i.e. it was 

not practical to fix the sensor with the antenna in those locations, ensuring that the relative motion 

between the sensor and the human body is minimised. The main MoCap experiment is described in 

Section 3.3. 

The most relevant gestures to the scope of this thesis are those involving hand movement, as 

hand movement can subject GPS-enabled devices to significant jerk dynamics along the line of sight 

(LOS) between the receiver and GNSS satellites’ antennae. This could potentially lead to performance 

degradation by introducing phase cycle slips and false frequency locks in the receiver’s carrier tracking 

loops, as explained in Section 2.2.3.4. A practical problem observed while captured human motion 

was that the gyroscopes cannot in Xsens MTi-G could not capture the whole motion range of the 

“answer the phone” gesture, as illustrated in Figure 3.3. Therefore, adjustments had to be made 

during the main experiment in order to manually avoid exceeding the (limited) dynamic output range 

of the gyros, otherwise the inertial navigation solution would not be updated accurately, as described 

in Section 2.2.2. 

It is also worth noting that in this thesis, MoCap refers to the captured trajectory of the Xsens 

IMU/GPS sensor attached on or held by a pedestrian at typical body locations, such as the arm, 

during the thesis’ pilot and main field experiments. The MoCap in this thesis employed one sensor 

only and was used to validate the final trajectory of that sensor, not to capture the motion of 

individual human body segments for biomechanical modelling purposes, or isolate different 

movements, e.g. walking from gestures. The human biomechanical model used in this thesis was 

based on biomechanical studies (see Section 5.3 for further details). 

In terms of relevant pedestrian activities, such as walking, jogging and running (all 

encompassed by the human gait definition in Section 2.1.3), the pilot experiments showed that 

jogging and especially running could drive the accelerometers and gyros outside their specified output 

dynamic range. Therefore, the main experiment MoCap protocol was adjusted in order to 

accommodate this limitation, by excluding running MoCap scenarios and jog at a lower (than 

originally chosen) speed in order to induce less motion dynamics stress to these inertial sensors. It is 

also worth noting that in all pilot and the main human MoCap experiments, the right leg is the 
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reference leg of the gait cycle (stride), i.e. a gait cycle is defined between two consecutive heel strikes 

of the right leg, and that all MoCap scenarios started by moving the right leg first. 

 

Candidate sensor 

location 
Examples of applicable gestures 

Examples of 

applicable activities 
Experimental Motion Capture 

(1) Foot 
(A) Kick a ball 

(B) Stamp foot on the ground 

(i) Walking 

(ii) Jogging 

(iii) Running 

No (as gyros and 

accelerometers exceeded 

their specified dynamic 

range) 

(2) Hand 

(A) Answer a phone 

(B) Put a phone down (after 

answering) 

(C) Send a text or 

email/looking at the phone 

screen while holding it 

(D) Put/Remove the phone 

in/from the pocket 

Yes (for walking and 

adjusted jogging activities 

only, in order to avoid 

exceeding the inertial 

sensors’ specified dynamic 

range) 

 

(3) Head 
(A) Turn head 

(up/down/right/left) 
No 

(4) Bag (e.g. back-

pack or handbag) 
n/a Yes 

(5) Waist (e.g. 

waist-band 
n/a 

No (experimental capture 

practicalities) 

(6) Back (above 

tail-bone) 
n/a 

No (experimental capture 

practicalities) 

Table 3.1. Candidate HBM sensor locations and gestures. 
 

The first pilot experiment was conducted in St. James’s Park and Hyde Park in May 2012, 

using an Xsens MTi-G (IMU/GPS) and a digital video camera. The first stage of the experiment was 

the calibration of the Xsens IMU/GPS unit by holding it over the user’s head and moved horizontally 

in a figure of 8 pattern, with the Z axis of the device (body frame) always vertical. The purpose of an 

IMU calibration was explained in section 2.2.4. The video-camera was used in order to have a visual 

record of the pedestrian movement with a time reference and identify the timings of specific 

movements during post-processing, e.g. in which timeframe the pedestrian user stopped the 

calibration and started performing the test scenario or a particular gesture (e.g. pick up the phone). 

The first walking scenario involved placing the IMU on the centre of the thorax (underneath the 

chest bone), with the GPS antenna on the head and walking in a 30m straight line, reversing and 

walking up to the starting point. The second walking scenario involved another calibration (same as 

in the first walking scenario) with the GPS antenna attached to the top of the right hand (for better 

satellite visibility) and the IMU on the other side of the hand. During walking, the user performed an 
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“answering the phone” gesture three times. Figure 3.2 shows an example of MoCap in Hyde Park, 

using the Xsens MTi-G IMU/GPS device. 

  

Figure 3.2. An example of using the Xsens MTi-G in a human MoCap experiment 
 

The results of this experiment showed that there was a need to improve the calibration process, 

noting that the equipment user manual does not describe what movements are needed in order to 

calibrate the IMU [49]. Another observation from that experiment was that GPS position, velocity 

and orientation corrections to the integrated (KF) solution cause sharp peaks or transients due to 

inefficiency of the Xsens KF to smooth their effect. These transients are artefacts introduced by the 

Xsens KF, thus they need to be smoothed, because they could potentially cause artificial cycle slips 

when fed to the GNSS tracking loop model. As part of the data collection using the Xsens MTi-G 

IMU/GPS, an experimental protocol to calibrate the device was developed in order to calibrate the 

accelerometers’ bias using the regular GPS updates.  

Another observation from these experiments was that capturing pedestrian motion by 

attaching (or holding) the IMU and GPS antenna into a fixed relative position w.r.t. the human body, 

while trying to have a clear view of the sky for the GPS antenna for the duration of the movement, 

often impose conflicting requirements which cannot be addressed simultaneously. A potential 

solution would be to perform the calibration in a good signal environment and then move the 

equipment elsewhere to capture human motion; however, it was found experimentally the Xsens KF 

algorithm was degrading during the equipment setup stage, i.e. between start recording human 

MoCap and placing the laptop securely inside a back-pack. However, the location of the main MoCap 

experiment (see Section 3.3) was selected to be in a field with good satellite visibility, in order to 

enable the calibration to be performed on site.  

The last pilot experiments took place in Regents Park (18/6/2013) and Kensington Gardens 

(25/6/2013). In both experiments, the Xsens MTi-G was used to capture pedestrian motion data at 

a 100Hz output rate. In response to the experimental MoCap issues identified in the previous pilot 

experiments, this last pilot experiment involved a new method of calibrating the IMU (using GPS 

updates), by walking in a cycle of 5m radius while moving the hand-held IMU/GPS device along the 
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left-to-right direction. Also, in this experiment the data were collected in raw mode (instead of 

calibrated mode in the previous pilot experiments), to allow selecting different KF scenarios in the 

Xsens user interface (MT Manager) during post-processing, as well as potential future calibration of 

the IMU measurements by GPS ones through a custom KF (noting that this was not realised due to 

the thesis’ time constraints).  

The last pilot MoCap experiment pedestrian motion scenarios were: 

• Walking 20m in a straight line, having the IMU in front of the body and going back. 

• Walking 20m in a straight line, holding the IMU in the right hand, placing the IMU by the 

right ear (like answering the phone) on the 5th step, then removing the IMU beside the ear 

and keep holding it on the 10th step and going back.  

• Walking 20m in a straight line, having the IMU in the back pocket, placing the IMU by the 

right ear (like answering the phone) on the 10th step, then removing the IMU beside the ear 

and keep holding it on the 20th step and going back.  

• Walking 20m in a straight line, with the IMU placed above the tail bone and going back. 

• Jogging 20m in a straight line, with the IMU placed above the tail bone and going back. 

• Running 20m in a straight line, with the IMU placed above the tail bone and going back. 

• Walking 20m in a straight line, with the IMU placed on the right foot and going back. 

• Jogging 20m in a straight line, with the IMU placed on the right foot and going back. 

• Running 20m in a straight line, with the IMU placed on the right foot and going back. 

The selection of these motion capture scenarios aimed at capturing the differences between 

walking, jogging and running, as well as some typical phone locations on the human body and gestures 

while carrying the phone. The running scenarios showed clearly that the IMU was exceeding its 

nominal specifications, so these scenarios could not be repeated for this thesis, at least using the same 

experimental equipment. 

An important issue observed while analysing the captured human motion data from the pilot 

experiments was that during holding or answering the phone the z-axis (of the body frame) gyro, 

exceeded the manufacturer’s specified nominal dynamic range (300deg/s, [49]). This results in 

uncompensated non-linear scale factor errors (as scale factor errors can be compensated effectively 

within the specified sensor output range only), leading to an inaccurate navigation solution frame 

calculation, e.g. an erroneous local navigation frame. As a result, the acceleration is integrated in an 

erroneous navigation solution frame, causing the integrated position and velocity solutions firstly to 

drift, and secondly, not to change smoothly as the regular GPS updates will attempt to correct the 

inertial navigation solution errors, also depending on which KF scenario has been selected. An 

example of the z-axis gyro output is illustrated in Figure 3.3, noting that this figure describes the IMU 

movement in terms of gestures applicable to a phone, e.g. “answer the phone”. A potential solution 
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to this issue would be to rotate the hand such as minimising the angular rate about the z-axis of the 

body frame when performing the “answering the phone” gesture in the rest of the experiments. 

 

Figure 3.3. Gyro Z exceeding the specified (as per manufacturer’s datasheet [49]) nominal 
dynamic range (red line) while using the IMU. 

 

Probably the most significant issue observed during the pilot experiments which, as a result 

contributed to the design of the main experiment and analytical method of this thesis was the 

existence of transients in the integrated KF position solution, as illustrated in  

Figure 3.4, but are not propagated to the accelerometers’ (calibrated by GPS) outputs, 

illustrated in Figure 3.5. The snapshot of captured data in  

Figure 3.4, corresponds to the IMU/GPS sensor being held by the ear while walking for 6 

steps, so the true height solution should have been smoother (sinusoidal) without transients 

(“jumps”), highlighted with orange arrows. These transient artefacts appear every 250ms, which is 

the GPS update time interval (equivalent to a 4Hz update rate in the frequency domain) of the KF 

fusion algorithm. This is a result of pedestrian motion-induced dynamics to the KF fusion algorithm, 

in other words, their magnitude would be less if the measurement update interval was smoother and 

the IMU specifications were better (assuming that motion does not increase the IMU noise). The 

transients’ magnitude also depends on the KF design, e.g. which states are estimated, although this 

information, as well as further details on the tuning of the internal KF of the IMU/GPS are 

proprietary. A solution to this issue would be independent motion capture (MoCap) using an opto-

electronical system, as discussed in Section 2.3.1. with regards to human motion capture methods. 

Further analysis (detailed in Section 6.1.1) showed that these transients can introduce 

significant artefacts on the simulated GNSS carrier-tracking loops. Therefore, it was decided that for 
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further analysis, the inertial position solution had to be calculated, which does not introduce artificial 

tracking slips (i.e. cycle slips or false frequency locks) to the simulated GNSS carrier-tracking loops, 

as explained in Section 6.1.1. In addition, a proposed method of detecting and removing these 

transients is presented in Appendix B, noting that another option of removing the transients would 

be the development of a custom Kalman Smoother which would fuse the inertial and GPS 

measurements of the Xsens MTi-G; however, it was not feasible to implement a custom Kalman 

Smoother, as the Xsens MTi-G could not readily provide the GPS pseudorange measurements which 

are required for this method to work.  

In summary, the knowledge gained from the pilot experiments in terms of experimental 

protocol design and data processing, supported the main experiment of the thesis and the analysis of 

the collected data in terms of: 

• Developing an appropriate IMU/GPS calibration protocol, as discussed in this section. 

• Identifying quality issues with the MoCap profiles and respond by adjusting the motion 

profiles, e.g. smoother motion dynamics by excluding running scenarios. 

• Identifying quality issues with the MoCap data processing method and develop mitigation 

strategies, i.e. collect data in raw mode to enable different KF selection during post-processing; 

detection/smoothing of GPS transients (see Appendix B); and finally, the decision to use the 

inertial solution which is transient-free (since no sensor fusion is involved). 

The Chapter continues with the description of the thesis’ main experiment. 
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Figure 3.4. Examples of GPS-induced transients (pointed by orange arrows) to KF Altitude 
solution (blue line). 

 

Figure 3.5. Transients (pointed by orange arrows) can be observed in the integrated KF solution 
(blue line), but not in the inertial specific force output (green line) of Xsens MTi-G 

 

3.3 Main Experiment 

The purpose of the main experiment was to provide the real human motion data in order to test the 

effects of human dynamics on GNSS carrier tracking, to determine which movements most affect 

the GNSS carrier tracking performance and also, to validate, or not, the pedestrian motion model 

(see Chapter 6), according the aims of this thesis (see Section 1.2). The human MoCap data collected 
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during the main experiment are aimed at driving the simulated GNSS carrier tracking loops (SGCTLs, 

see Chapter 4); the requirements of the human MoCap the can be summarised as: 

• Be representative of underlying motion, e.g. follow a trend when the user moves the 

IMU/GPS up or down. 

• Not include any artefacts due to the applicable MoCap experimental protocol, e.g. 

insufficient calibration. 

• Not include artefacts due to the Xsens internal IMU/GPS measurements’ fusion algorithm 

implementation, e.g. transients when updating the integrated solution using measurements 

from different sensors. 

The main experiment of the thesis took place in a field with a good sky view enabling GPS fix 

availability throughout the duration of the experiment, in order to calibrate the IMU prior to MoCap, 

while during MoCap it is essential for heading observability and accelerometers’ bias correction. The 

main experiment was conducted in the last week of June 2013. The main experiment comprised 

human MoCap profiles with the pedestrian replicating the usage of a smartphone, i.e. walk holding, 

answering and/or texting, and scenarios where the smartphone is carried at different locations on the 

human body, e.g. in a pocket, in a bag, or on an arm band, as summarised in Table 3.2 (noting that 

the term “IMU” used in this table refers to the Xsens MTi-G IMU/GPS device, for brevity). 

To conduct the MoCap experiments, a specific experimental protocol was developed and 

followed, whose workflow is illustrated in Figure 3.6. The first stage is to set-up all the equipment, 

including the magnetic calibration of the IMU, explained in [130]. The magnetic calibration 

compensates for the hard iron effects, distorting permanently the geomagnetic field, and involves 

rotating the sensor in all different directions (at least 30 samples are recommended by the 

manufacturer) in order to map the magnetic field distortions in 3D (with a 2D also available), 

compared to the internally stored values during factory calibration. Then the next two stages involve 

start recording video (using a digital camera), covering visually the area where the MoCap takes place 

and start recording the output data from the IMU/GPS device through its proprietary user interface 

“MT Manager”.  

The IMU/GPS device is calibrated for the accelerometer biases by comparing (and correcting) 

the inertial solution, fusing the regular GPS updates, which are not subject to drift. This requires that 

the IMU/GPS device is subject to significant horizontal acceleration prior to the actual motion 

capture phase in order to calibrate the acceleration biases (expressed) in the horizontal plane, as the 

calibration along the vertical direction takes place anyway due to the combined effect of the gravity 

and the accelerometers’ chassis causing the proof mass to exhibit a reaction force to gravity (of equal 

magnitude but opposite sign). It is worth noting that the GPS antenna was in fixed relative position 

w.r.t the IMU chassis, with the lever arm at (0, 0, 0.05), units in m, in body frame axes. This lever arm 

effect is compensated by the Xsens “MT Manager” processing software. 
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ID MoCap Scenario Name: Description 

1 L_H_W30m_S: Walk 30m holding the IMU (swinging the arm), then stop. 

2 L_P_W30m_S: Walk 30m with the IMU in the pocket, then stop. 

3 L_B_W30m_S: Walk 30m with the IMU in a back-pack, then stop. 

4 L_A_W30m_S: Walk 30m with the IMU in an arm-band, then stop. 

5 

L_H_W10m_A_W10m_D_W10m: Hold the IMU swinging the arm, walk 10m, perform an 

“answer the phone” gesture with the IMU, walk 10m, perform a “put the phone down” 

gesture, walk 10m, stop walking and perform a “stop answering the phone” gesture. 

6 

L_P_W10m_A_W10m_D_W10m: Walk 10m with the IMU in the right pocket, perform an 

“answer the phone” gesture with the IMU, walk 10m, perform a “put the phone down” 

gesture, walk 10m, stop walking and perform a “stop answering the phone” gesture. 

7 
L_H_W15m_A_W15mS_D: Hold the IMU (arm swing), walk 15m, perform an “answer the 

phone” gesture, walk 15m, stop walking and perform a “put the phone down” gesture. 

8 
L_P_W15m_A_W15mS_D: IMU in the pocket, walk 15m, perform an “answer the phone” 

gesture with the IMU, walk 15m, stop walking and perform a “put the phone down” gesture. 

9 
L_H_W15m_T_W15mS_D: Hold the IMU, walk 15m, perform a “send a text” gesture with 

the IMU, walk 15m, stop walking and perform a “put the phone down” gesture. 

10 

L_P_W15m_T_W15mS_Dh: IMU in the right pocket, walk 15m, perform a “send a text” 

gesture with the IMU, walk 15m, stop walking and perform a “put the phone down” gesture 

with the IMU and keep holding it (i.e. don’t put it back in the pocket). 

11 L_H_J30mS: Jog 30m holding the IMU, stop. 

12 L_P_J30mS: Jog 30m, with the IMU in the pocket, stop. 

13 
L_H_W30m_U_W30m: Walk 30m holding the IMU (swinging the arm), turn around (U-

turn) and walk another 30m holding the phone, stop. 

14 
L_P_W30m_U_W30m: Walk 30m having the IMU in the right pocket, turn around (U-turn) 

and walk another 30m (having the IMU in the right pocket), stop. 

15 

L_H_W15m_A_W15mUW15m_Dh_W15mS: Hold the IMU (swinging the arm), walk 

15m, perform an “answer the phone” gesture with the IMU, walk 15m, turn around (U-turn) 

and walk another 15m, perform a “put the phone down” gesture, walk another 15m and stop. 

16 

L_H_W15m_T_W15mUW15m_Dh_W15mS: Hold the IMU (swinging the arm), walk 

15m, perform an “send a text/email” gesture with the IMU, walk 15m, turn around (U-turn) 

and walk another 15m, then perform a “put the phone down” gesture, walk 15m and stop. 

17 

L_P_W15m_T_W15mUW15m_Dp_W15mS: Walk 15m having the IMU in the right 

pocket, perform an “send a text/email” gesture, walk 15m, turn around (U-turn) and walk 

another 15m, perform a “put the phone in the pocket” gesture, walk 15m and stop. 

18 

L_P_W15m_A_W15mUW15m_Dp_W15mS: Walk 15m having the IMU in the right 

pocket, perform an “answer the phone” gesture, walk 15m, turn around (U-turn) and walk 

another 15m, perform a “put the phone in the pocket” gesture, walk 15m and stop. 

Table 3.2. Descriptions of MoCap scenarios of the main experiment 
 

During the next stage of the workflow, the user goes to the initial position and performs event-

based synchronisation (EBS) between the IMU/GPS device and the video camera; this involves 
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moving the IMU/GPS device up and down for five times, which is a distinct movement that makes 

easier to recognise the start and end of the actual movement during data post-processing. The user 

performs the motion scenario in question and, when finished, performs EBS again. The EBS process 

is particularly important in order to identify the time instants when MoCap starts and stops during 

the post-processing of the captured data, distinguishing between MoCap and the calibration phase. 
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Figure 3.6. Motion capture workflow 
 

The selected calibration manoeuvres involve walking in a circle of 3 metres radius, as shown 

in Figure 3.7, and rotating the IMU describing a 3D sinusoidal motion, as illustrated in Figure 3.8. 

During this movement of the IMU it is important not to exceed the gyros’ maximum output range 

(300 degrees/second). Also, the GPS antenna should be in a fixed position w.r.t the IMU. The IMU 

is rotated three times on each direction of the 3m-radius circle following the “figure of 8” pattern. 

This movement pattern was selected in order to force the triad of gyros of the IMU to sense angular 

rate about all 3D directions, as well as the triad of accelerometers to sense horizontal specific force, 

noting that in the vertical dimension, they sense specific force anyway due to reaction of the chassis 

walls to the gravity exerted on the proof mass. This important in order to observe the heading of the 

IMU, using accelerometer outputs combined with regular GPS corrections, as only horizontal 

acceleration can raise horizontal velocity errors. In other words, the heading of a static IMU could 

not be observed using this method. The relative accuracy of the pre-calibrated data was found by 

visual inspection in excess of 20m, with the sensor trajectory not following the actual motion trend. 

Visually inspected post-calibration data do not exhibit these errors.  

Also, following the discussion from Section 2.2.2 about the IMU calibration, the integrated 

KF would calibrate the IMU errors along the vertical axis of the navigation solution as a result of the 

accelerometers’ proof masses reaction to gravity, causing the inertial velocity error to grow (linearly) 
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and the position (quadratically), which can then be corrected by the height (and vertical velocity) 

solution from GPS.  

The thesis continues with Chapter 4, which details the methods of implementing (in Matlab) 

and validating the simulated GNSS carrier-tracking loops (SGCTLs), used to assess the impact of the 

MoCap profiles explained in this chapter, as well as the synthetic motion profile (output of the 

pedestrian motion model, described in Chapter 5). 
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Figure 3.7. IMU/GPS sensor calibration – ground trajectory 
 

 

Figure 3.8. IMU/GPS hand-held sensor calibration Forward, Right and Down trajectory (example 
covers only one period of movement) 
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 GNSS Carrier-Tracking Loops: Simulation 

and Validation 

This chapter explains the method of simulating GNSS carrier-tracking loops in Matlab, based on the 

literature review presented in Chapter 2. This chapter is divided into four sections, the first (Section 

4.1) details the assumptions made in order to simulate GNSS carrier-tracking loops (SGCTLs) in 

Matlab, the second, Section 4.2, describes the implementation of a simulated GNSS phase lock loop 

(SGPLL) in Matlab, the third, Section 4.3, describes the implementation of a simulated GNSS 

frequency lock loop (SGFLL) in Matlab, and finally, Section 4.4. concludes the chapter describing 

the validation process and results of the SGCTLs, under static antenna conditions in the presence of 

white (Gaussian) noise, generated in Matlab. The SGCTLs presented in this chapter provide the 

testbed in order to assess the impact of human captured motion (MoCap, discussed in Chapter 3) on 

the carrier-tracking function of GNSS receivers, and validate the pedestrian motion model (PMM) 

by comparing the effect of the PMM synthetic output (3D trajectory of the GNSS receiver antenna) 

on the SGPLL to the real MoCap profiles’ effect. The validation process of the PMM is described in 

Chapter 5, while the results of analysing the impact of human MoCap and PMM synthetic data on 

the SGCTLs are detailed in Chapter 6.  

The work presented in Chapter 4 was essential in order to address the research questions of 

the thesis (see Section 1.2) as it provides the testbed for testing the effects of real (MoCap) human 

motion (whose capture process is described in Chapter 3) and the effects of synthetic motion output 

from the pedestrian motion model (described in Chapter 5) on the simulated GNSS carrier-tracking 

loops (SGCTLs) developed for this thesis.  

4.1 Simulation of GNSS Carrier-tracking Loops 

This section presents a method of simulating GNSS carrier-tracking loops in Matlab. The 

development of the simulated GNSS carrier-tracking loops (SGCTLs) provides the platform for:  

• Analysing the effects of real pedestrian motion on the performance of GNSS carrier-tracking 

loops. 

• Validating the pedestrian motion model (PMM) – discussed in Chapter 5, in order to ensure 

that the synthetic output, i.e. 3D trajectory of the PNT equipment attached or held near to the 

human body, has a similar impact on the performance of SGCTLs as real motion, whose 

capture was discussed in Chapter 3. 

The operation principles of GNSS carrier-tracking loops were discussed in Section 2.2.3. For 

the simulation of carrier-tracking loop models in Matlab, the following assumptions have been made: 
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• The code-tracking error is negligible, i.e. the incoming PRN code and the locally generated 

replica PRN code in the receiver are fully aligned and remain so during the simulation 

experiments. As a result, the autocorrelation function output of the authentic and replica PRN 

codes is assumed to be unity and code-tracking loops are not explicitly simulated. This is 

because the maximum position amplitude for pedestrian motion (e.g. 2m for moving a sensor 

from the floor to a shelf), is much less than the length of a GPS L1 C/A code chip, about 

293m.  

• The carrier-tracking loops have a fixed gain (response), independent of C/N0.  

• The carrier frequency and phase errors (difference between incoming and locally generated 

carrier signals) can be modelled by the standard Gaussian distribution, and are initially within 

3σ (where sigma σ equals 1 standard deviation) from their zero mean. 

• The signal noise standard deviation after the AGC stage is constant and equal for both I and 

Q channels.  

• Factors such as band-limiting, quantisation and clock noise have not been modelled. It is worth 

noting that band-limiting and quantisation noise typically reduce the C/N0 of a real GNSS 

receiver by 1 dB [62]. 

• The tracking noise in the I and Q channels is assumed to be standard Gaussian. 

• The observed frequency and phase errors by the SGCTLs are only due to relative motion 

between the GNSS antenna and the reference satellite along the LOS. 

• This analysis assumes a GPS L1 C/A signal, without loss of generalisation for other GNSS 

signals. 

• Any factors not mentioned as part of the simulation, are out of scope for the present analysis, 

or they are considered negligible, e.g. rounding errors in Matlab. 

The SGCTLs comprise a simulated GNSS phase lock loop (SGPLL) and a simulated GNSS 

frequency lock loop (SGFLL), which are explained below. 

4.2 Carrier Phase Lock Loop Simulation 

Figure 4.1 illustrates a typical functional diagram of a (digital) phase lock loop (PLL), divided 

into 7 functional blocks (stages). The variables in this diagram refer to the range domain (m) for 

simplicity purposes, as true (incoming) range 
ca  and its derivative quantities (range rate 

ca , range 

acceleration 
ca ) are not cyclic variables, like phase. Starting from the lower-left part of this figure, 

the range and range rate (always refer to the LOS between the receiver and satellite APCs), enter the 

PLL (Stage 1). In the first epoch (k=1), the range error ca  (difference between incoming and 

locally generated carrier phase/range) is initialised using a random number taken from a continuous 
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uniform distribution U, which spans [-3σ(Φ),+3σ(Φ)] around the zero mean of the range (equivalent 

to carrier phase) tracking noise, Φ (units in m), whose standard deviation is denoted with σ(Φ). 

Assuming a Costas two-quadrant arctan range error discriminator, this range error standard deviation 

is given by [3]: 
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(4.1) 

where c is the speed of light in vacuum (m/s), fca is the carrier central frequency (Hz), BL_CA is the 

effective PLL bandwidth (Hz), τα is the accumulation time interval between two PLL iterations, and 

c/n0 is the carrier-power-to-noise-density ratio. Note that c/n0 is equivalent to the carrier-power-to-

noise-density ratio in logarithmic scale (dB) which is denoted as C/N0, with capital letters for clarity, 

following the equation: 

 
0

10

0 10 0 010log 10 .
C N

C N c n c n    (4.2) 

The range rate error 
ca , which is equivalent to Doppler shift error in the frequency domain, 

is also initialised using a random number taken from a continuous uniform distribution U, between 

[-3σ,+3σ] around a zero mean of the range rate (carrier frequency) tracking noise, which for a PLL 

with a Costas two-quadrant Arctan discriminator is [3]: 
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(4.3) 

The initialised range and range rate errors of Stage 1, are then converted to phase and 

frequency errors, respectively, in Stage 2, solving for phase and frequency errors in Eqs (4.4) and 

(4.5): 
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,ca ca

ca

c
f
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(4.5) 

where λca the carrier wavelength (m) and considering any relativistic effects negligible for pedestrian 

applications in this thesis. 
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Figure 4.1. Custom PLL implementation for pedestrian motion. 
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This is essential in order to generate the simulated post-correlated prompt I and Q signals 

(entering the carrier tracking loops) in Stage 3, using the equations [3]: 

where IP and QP are the prompt I and Q signals, respectively, tsa is the time of signal arrival at the 

receiver APC, σIQ is the standard deviation of the normalised amplitude as it leaves the receiver AGC 

(and has been omitted in the Matlab code implementation as by dividing Q over I in the arctan 

discriminator in Stage 4, they both cancel out). R(x) is the code autocorrelation function output 

(assumed as unity for fully aligned received and internally generated PRN codes, therefore omitted 

from the Matlab code implementation for optimisation purposes). D(tst) is the navigation data bit (-1 

or 1) which is referenced to the time of signal transmission from the satellite tst; this is also omitted 

in the Matlab code implementation as the Costas phase discriminator used in the present analysis is 

not sensitive to navigation bit transitions over the accumulation time interval τα. Finally, wIP and wQP 

denote the noise on the accumulated correlator outputs (Is and Qs) and are modelled by standard 

Gaussian distributions, noting that this is generated as pseudo-random number sequence in Matlab 

which is different for I and Q channels and for repeatability purposes the seed is not randomised 

between simulation runs, but fixed to the (hard-coded) default value set in Matlab software. As seen 

in Eq. (4.6), the higher the c/n0 the lower the impact that the simulated tracking noise has in the Is 

and Qs generation. It is worth underlining that the code tracking noise is significant at low C/N0, so 

the simulation investigates C/N0 values between 20dB-Hz and 50dB-Hz at 1dB-Hz steps, as code 

tracking noise is not part of the simulated parameters. 

In Stage 4, the Arctan (Costas) discriminator function determines the range (phase) error based 

on the I and Q signals, generated in the previous stage. The selection of a Costas discriminator was 

based on the fact that it is not sensitive to navigation bit transitions, since its pull-in range is ±π/2 

rad (see Section 2.2.3), so the input-output curve repeats itself every π rad, as illustrated in Figure 4.2. 

It is worth noting that the input to the discriminator is the observed phase error ca  (derived by 

the Is and Qs) and also, that within the pull-in range of the discriminator, the input-output curve is 

linear, as shown in Figure 4.2, which is why it is commonly used in GNSS receivers [131]. A Costas 

Arctan discriminator ensures a linear input to the tracking loop so that the effective gain is constant, 

within the defined (-π/2, π/2) pull-in range, as Figure 4.2 illustrates. Cycle slips occur when the 

absolute tracking error exceeds π/2 rad, i.e. they can tolerate a sudden range (phase) jump up to a 

quarter of the carrier wavelength between two subsequent PLL epochs. In this stage, the observed 

range tracking error ca  is converted from phase (rad) back to the range (m), noting that although 
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this is not the case in a real PLL, for simulation purposes it is easier to work with quantities which 

are measured in meters (range) and m/s (range rate).  

In Stage 5, the observed range error ca  (m) from the discriminator is used to update the 

current range ca 
, range rate ca 

 and range acceleration ca 
 estimates via the loop filter (gain 

function) of the PLL, which controls the magnitude of the loop filter response (compensation) w.r.t. 

the input range error. This compensation stage is essential in order to provide a stable input into the 

NCO, which will then provide a stable response in order to reduce the range error in the next PLL 

epoch. The gain values Kca1, Kca2 and Kca3, are calculated as a function of the PLL effective (3dB) 

bandwidth, denoted as BL_CA between 5Hz and 20Hz, at 5Hz intervals. For simulation optimisation 

purposes, the intermediate BL_CA values’ results are not calculated, noting that in a real receiver the 

NCO noise (not simulated) is the dominant type of noise for bandwidths below 5Hz therefore 

simulation excludes these values. The coherent integration time interval τα (typically it is 0.01s), has 

been selected to match the time interval of the input data from Xsens MTi-G (captured at 100Hz 

output rate, as explained in Section 3.3), so that all captured data could be used in the GNSS tracking 

simulation, without any oversampling or under-sampling issues. 

In Stage 6, the estimated range, range rate and range acceleration are used to update the 

respective predicted quantities for the next PLL iteration, denoted with a “k+1” subscript for the 

epoch and a minus superscript for their status, i.e. predicted but not yet updated. In the present 

analysis, these predicted quantities are used to determine the phase δφca and frequency δfca tracking 

errors, used to calculate the Is and Qs. This stage is equivalent to the generation of NCO commands 

to drive the carrier NCO. The loop then starts again from Stage 1 to produce the new range/ range 

rate errors as the difference between the predicted range values (Stage 6 of the previous epoch) and 

new input range values (next epoch Stage 1) from the incoming GNSS signal. The estimated range 

error shows whether a cycle slip has occurred (Stage 7), depending on whether the absolute range 

error is larger than the range error discriminator pull-in range (a quarter of the carrier wavelength – 

equivalent to the ±π/2 rad). 
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Figure 4.2. Costas Arctan (2 quadrant) discriminator is not sensitive to navigation data-bit 
transitions over the accumulation time interval. 

 

It is important to mention at this point that the synthetic or captured pedestrian motion (3D 

trajectory), will be input into the PLL by projecting the 3D motion dynamics along the LOS between 

the receiver and a (hypothetically static for the duration of motion) satellite, e.g. for a simulated static 

satellite at zenith (above the pedestrian subject), any sudden vertical jump of the GNSS antenna 

(height change) between two epochs is equivalent to the initial range/ range rate errors input into the 

SGCTLs. Similarly, assuming a static satellite on the local horizon, e.g. at a Northbound direction, 

any horizontal movement along that direction would introduce range/range rate errors in the PLL 

simulation. Defining static satellites (which do not introduce additional tracking errors) is considered 

acceptable for simulation purposes in this thesis, assuming that the real satellite geometry does not 

change significantly over the course of a typical one-minute pedestrian movement. In addition to 

that, in a real receiver tracking satellite signals, the motion of the satellites is known (from the 

almanac) and smooth, so it would not significantly affect tracking errors. 
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4.3 Carrier Frequency Lock Loop Simulation 

A custom FLL simulated in Matlab is illustrated in Figure 4.3, noting that the main differences 

between typical PLLs and FLLs are the discriminator function (FLL discriminators cannot estimate 

phase error, which PLL discriminators can do) and the loop filter response which tries to compensate 

for the frequency error in FLLs instead of the phase error (in PLLs), as described in this section. 

Figure 4.3 illustrates a typical functional diagram of an FLL, adjusted to the purposes of this thesis, 

i.e. converting the frequency error to range rate error in order to have easier to handle units (m/s) 

instead of Hz, when feeding the pedestrian motion into the FLL, similar to what was previously 

described for the simulated custom PLL.  

In Stage 1, the GNSS equipment antenna velocity (range rate ca  – induced by pedestrian 

motion dynamics) along the LOS is input into the FLL. Then in Stage 2, for the first epoch 

(initialisation of the FLL), the range rate error ca is a random number taken from a continuous 

uniform distribution (denoted as U), with an absolute value less than three standard deviations of the 

carrier frequency tracking noise (units in m/s), which is given by [3]: 

 
   

_

0 0

1
1

L CF

cf

ca a a

Bc

f c n c n
 

  

 
  

  

 
(4.7) 

For subsequent epochs in Stage 2, the observed range rate error ca  is calculated as the 

difference of the input velocity (range rate) with the forward prediction of the range rate from the 

previous epoch. The range rate error of Stage 2 is then converted to Doppler error 
caf  and is used 

to generate the Is and Qs signals in Stage 3, using the same formulae from Eq. (4.6). The generation 

of the Is and Qs is similar to the one for the simulated PLL, with the only difference that only actual 

input from the captured pedestrian motion (projected along the LOS) is the range rate.  

In Stage 4, the frequency error discriminator function uses the generated Is and Qs in Stage 3 

(both from the current and previous epoch) in order to determine the frequency error, which is then 

converted to range rate error. A Costas arctan (two-quadrant) frequency error discriminator was 

selected because it is not sensitive to navigation data-bit transitions, which invert the incoming signal 

phase (π rad) over the correlator accumulation time interval τα, as well as because the specific 

discriminator provides a linear input-output curve within the pull-in range  (-
1

4τα
,

1

4τα
). For the 

current implementation (τα = 0.01s), therefore the pull-in range will be (-25Hz, 25Hz).  

Stage 5 comprises the loop filter, whose gain Κcf1 and Kcf2 (response magnitude to compensate 

the frequency error) is a function of the FLL effective bandwidth, as illustrated in Figure 4.3. During 

Stage 5, the current range rate ,ca k 
 and range acceleration ,ca k 

 are estimated by updating the 
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respective ones from the previous epoch. In real FLLs, this stage is the compensation of the 

frequency error in order to produce a stable signal that will feed the NCO. The current range rate 

and range acceleration estimates are then used to predict forward the respective quantities in the next 

FLL iteration in Stage 6, denoted with a “k+1” subscript for the epoch and a minus superscript for 

their status (i.e. predicted but not updated), which represents the NCO function in real FLLs. Finally, 

the loop starts over again with the predicted range rate of the previous iteration becoming the current 

(observed) range rate of the next epoch. The new range rate error then can be calculated as the 

difference between the current (observed) range rate and the range rate input from the pedestrian 

velocity projected along the LOS. This range rate error is then compared with the tolerance of the 

frequency error discriminator (converted in range rate units as well), in order to determine whether a 

false lock occurs in the current epoch or not. A false lock is detected when the absolute range rate 

error exceeds the pull-in range of the frequency error discriminator, i.e. on-quarter of a carrier 

wavelength λca divided by the coherent integration time interval for τα = 0.01s, which is equivalent to 

(-12.5Hz, 12.5Hz) in the frequency domain.  

This chapter continues with the validation of the SGCTLs in Matlab. 
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Figure 4.3. Custom FLL implementation for pedestrian motion.
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4.4 Validation of SGCTLs 

The validation of simulated GNSS carrier-tracking loops (SGCTLs) was conducted using a static test 

case scenario. This is because the static scenario can only induce cycle slips and/or false frequency 

locks to the SGCTLs due to the tracking noise contained in the I and Q signals entering the SGCTLs 

(simulated via Matlab pseudo-random sequences, as explained in Sections 4.2 and 4.3). Therefore, 

when the real motion scenarios are tested via the SGCTLs (using the same set of pseudo random 

sequences as in the static scenario testing), any additional observed cycle slips and/or false frequency 

locks can only be attributed to the presence of LOS dynamics, which is a useful distinction in order 

to understand and analyse the effect of the pedestrian motion induced to the sensor (projected along 

the LOS).  

In this static scenario, (pseudo) random noise sequences, generated by standard Matlab tools, 

were injected in the SGCTLs in order to simulate the RF noise received by the GNSS antenna and is 

passing through the signal processing chain onto the tracking loops. The SGCTLs’ response was 

analysed in terms of phase noise (for the simulated PLL only) and frequency noise (for both 

SGCTLs), for a range of C/N0 and effective carrier tracking loop bandwidth sets of parameters 

through a Monte Carlo simulation in Matlab. The phase and frequency noise is assumed to be 

Gaussian. The results were plotted as tracking noise (vertical axis) versus C/N0 (horizontal axis) for 

different tracking loop bandwidths (depicted as coloured solid lines) and compared against the 

theoretical tracking noise (1σ) curves (depicted as coloured dotted lines) as, as per Eqs. (4.1), (4.3) 

and (4.7). The baseline Matlab code used for the present analysis is reported in Appendix F on the 

CD. The parameters used for the simulation are: 

• The number of runs per Monte Carlo simulation (MCS) is 10,000. Each MCS corresponds to 

one pair of C/N0 and PLL/FLL effective bandwidth value, BL_CA and BL_CF, respectively. Each 

run is initialised with a different tracking error (taken from the uniform distributions explained 

in Sections 4.2 and 4.3. Each MCS contains the same pseudo-random sequence, generated in 

Matlab using the same noise seed, in order for each pair of C/N0 and effective bandwidth 

values to be subjected under the same noise profile. Assuming statistical independence of the 

results from each pseudo-random sequence run, the standard error (showing how close is the 

sample to the population standard deviation) is inversely proportional to the square root of 

the number of samples. In this case, 10,000 runs per MCS, mean that the results are 1% 

accurate w.r.t. their true values, i.e. the values they would have obtained if the simulation could 

run an infinite number of times. This level of accuracy is considered acceptable for this thesis. 

• The number of simulation iterations is 5,000. This is defined by creating input (static) range 

and range rate datasets whose number of epochs is 5,000, noting that the time interval between 
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epochs is defined as 0.01s, in order to match the time interval that human motion data was 

captured (see Section 3.3). The number of iterations was chosen after a pilot MCS showing 

that the SGCTLs were able to track the input phase/frequency error (as appropriate), when 

the lowest effective bandwidth was used (5Hz for the SGPLL and 1Hz for the SGFLL), noting 

that the lower the bandwidth, the slower the response time to dynamic stress along the LOS. 

The validation criteria considered in the current analysis are: 

• The ratio of the simulated tracking noise standard deviation (SD), over the theoretical tracking 

noise SD (see Sections 4.2 and 4.3), should be within a factor of two, since the static tracking 

noise is bandlimited as a result of the input motion entering the SGCTLs (through the Is and 

Qs) at a rate of 100Hz, equivalent to samples at 0.01s time intervals, while the theoretical 

tracking noise assumes an infinite (pre-correlation) bandwidth. The factor of two maximum 

difference means that the ratio of the simulated static test case tracking noise SD over the 

theoretical tracking noise should not exceed two, or be less than half. 

• The simulated PLL and FLL are expected to exhibit relatively more tracking slips (i.e. phase 

cycle slips and/or false frequency locks, as appropriate) due to tracking noise at a lower C/N0 

with higher effective bandwidths, e.g. a simulated PLL would exhibit more tracking noise-

induced cycle slips below a C/N0 of 30dB-Hz for a BL_CA of 20Hz than a BL_CA of 5Hz, noting 

that the SGCTLs would be more resistant to dynamic stress-induced tracking slips at higher 

effective bandwidths (as they would be able to respond faster to LOS dynamics).  

Meeting the above-mentioned assumption means that no significant tracking slips (cycle slips 

and/or false frequency locks, as appropriate) are introduced by the SGCTLs when processing the 

real and synthetic (pedestrian motion model output) motion profiles in Chapter 6. 

 Custom PLL validation 

Figure 4.4 illustrates the SGPLL simulation results for a static test scenario. The only contributing 

factor to the SGPLL tracking noise SD  ,PLL S , given the assumption that rounding errors are 

negligible, is the Matlab-generated pseudo-random noise sequences for the I and Q signals entering 

the SGPLL and the random initialisation of the range and range rate prediction errors, shown in stage 

2 of Figure 4.1. The vertical axis in Figure 4.4 shows the ratio between the simulated (static test case) 

SGPLL phase tracking noise SD (rad) over the theoretical phase tracking noise, and the horizontal 

axis shows the simulated C/N0 (dB-Hz).  The coloured solid lines depict the results at different PLL 

effective bandwidths, with the black dotted lines representing the thresholds where the simulated 

values exceed the theoretical ones by a factor of 2, i.e. either more than two times the theoretical 

values, or less than half of the theoretical values, noting that the theoretical values can be calculated 

using Eq. (4.1). The results show that the SGPLL breaks, i.e. simulated tracking errors due to cycle 
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slips exceed more than twice of the theoretical values, at various C/N0 levels, depending on the 

effective SGPLL bandwidth. The static phase-tracking noise SD exceeds the theoretical phase-

tracking noise SD, above the factor-of-two threshold, at 25dB-Hz C/N0 with a 5Hz bandwidth, at 

28dB-Hz C/N0 with a 10Hz bandwidth, at 29dB-Hz C/N0 with a 15Hz bandwidth, and at 31dB-Hz 

C/N0 with a 20Hz bandwidth. This shows that higher PLL bandwidths allow more tracking noise to 

enter the SGPLL. It is also worth noting that the theoretical values do not account for any observed 

cycle slips, even at a C/N0 below 25dB-Hz with high PLL bandwidths (e.g. 20Hz). Also, for C/N0 

where no cycle slips are observed, the ratio of the simulated tracking noise over the theoretical 

tracking noise is constant, so the validation criteria set in the introduction of Section 4.4 are met.  

 

 

Figure 4.4. Simulated over Theoretical PLL carrier phase tracking noise SD ratio (unitless) 
 

This section continues with the validation of the simulated FLL results. 

 Custom FLL validation 

Figure 4.5 illustrates the ratio of the simulated FLL frequency tracking noise SD 
,

( )
FLL S

f   over 

theoretical FLL frequency tracking noise SD 
,

( )
FLL S

f  . It is important to note at this point, that 

the theory predicting the FLL tracking noise, as expressed in Eq. (4.7), assumes that the tracking 

noise exiting the discriminator is Gaussian, although this is not the case, as the discriminator (see 

Section 4.3) estimates the frequency error by differencing the Is and Qs of the current and previous 

epochs, so the Gaussian tracking noise contained in them becomes anticorrelated. To address this 
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issue, the theoretical tracking noise prediction  cf  in Eq. (4.7) has been adjusted, giving a new 

tracking noise prediction  cf  , for a first-order FLL, following (P. Groves, personal 

communication, 24 January, 2017): 

   

_

,
,

4

cf cf

L CF aB

    

 

 

  
 (4.8) 

The coloured lines in Figure 4.5 represent different effective bandwidths, as shown in the legend. 

The results show that the static frequency-tracking noise SD exceeds the theoretical one, above the 

factor-of-two threshold, at 35dB-Hz C/N0 with a 1Hz bandwidth, at 29dB-Hz C/N0 with a 2Hz 

bandwidth, noting that the theoretical tracking noise SD does not account for any observed 

frequency-locks and that the oscillator noise in a real receiver (not simulated in this thesis) would 

introduce additional false frequency locks at these low bandwidths. The results also show that the 

static frequency-tracking noise SD exceeds the theoretical one, above the factor-of-two threshold, at 

24dB-Hz C/N0 with a 5Hz bandwidth, and at 26dB-Hz C/N0 with a 10Hz bandwidth, which shows 

that higher FLL bandwidths allow more tracking noise to enter the SGFLL. Also, for higher C/N0 

values, where no false frequency locks are observed, the ratio of the simulated frequency-tracking 

noise over the theoretical one, is contained within the factor-of-two threshold limits, and (at higher 

effective bandwidths) the ratio remains relatively constant, therefore it is considered that the 

validation criteria set in the introduction of Section 4.4 are met. 

 

Figure 4.5. Theoretical and Simulated FLL carrier frequency tracking noise SD (Hz). 
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The C/N0 minimum level before the factor-of-two threshold of the simulated and theoretical 

tracking noise SDs is exceeded, both for the SGPLL and the SGFLL are summarised in Table 4.1. 

The thesis continues with the discussion of the pedestrian motion model development in the next 

chapter. 

SGPLL 

Phase-tracking 

SGFLL 

Frequency-tracking 

BL_CA 

(Hz) 

Minimum 

C/N0 

BL_CF 

(Hz) 

Minimum 

C/N0 

5 26 1 36 

10 29 2 30 

15 30 5 25 

20 32 10 27 

Table 4.1. Minimum C/N0 level before exceeding the factor-of-two simulated tracking noise SDs 
over theoretical tracking noise threshold. 
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 Proposed Pedestrian Motion Model 

This chapter explains the development method of a custom pedestrian motion model (PMM) which 

can simulate the 3D motion of positioning and navigation equipment held by or attached on a 

pedestrian. The discussion in this chapter is based on the literature review of human motion analysis, 

capture and modelling introduced in Sections 2.1 and 2.3. This chapter is divided into four sections. 

The first Section 5.1, describes the candidate pedestrian motion methods in order to justify the 

currently selected one. The second, Section 5.2, details the implementation of the pedestrian routing 

model (PRM), and the third, Section 5.3, explains the development of a human biomechanical model 

(HBM), which is used to simulate segments motion (gestures). The final Section 5.4, explains the 

synthesis of the HBM and the PRM into the pedestrian motion model (PMM), i.e. the HBM following 

the PRM output path. The output of the PMM is synthetic 3D motion data of the positioning and 

navigation equipment (PNE), when attached on or held by a pedestrian. To assess the impact of the 

synthetic motion on GNSS receivers, the synthetic data output is fed into the simulated GNSS carrier-

tracking loops (SGCTLs, as described in Sections 4.2 and 4.3), with the results of this analysis 

presented in Chapter 6.   

The work presented in Chapter 5 is important for the purposes of the thesis, as a custom-

made PMM can be manipulated (by means of rotating constituent body segments) to represent 

human motion, without the need to conduct new MoCap experiments when a new motion profile is 

required.  Although that work was a major time commitment for the thesis, it also facilitated the 

future productisation of the thesis’ outcomes. This is firstly in terms of licensing, i.e. avoiding issues 

which may arise when using third-party functionality, and secondly, future support and/or tailored 

enhancements of the PMM, since the PMM code is fully available and understood.  

Furthermore, Chapter 5 explains how a tailored human biomechanical model can be controlled 

using MoCap data in order to produce realistic human motion. This was considered appropriate for 

the thesis as although modelling human motion using MoCap techniques produces realistic, human-

like results, the process can be involved in terms of conducting the experiments end processing the 

results, e.g. by weighting and smoothing measurements. In addition, combining MoCap segments to 

synthesise a complete trajectory may involve additional smoothing in order to avoid discontinuities 

(especially when higher-order quantities, e.g. velocity or acceleration are of interest). Other methods 

involve imposing physical constrains on human movement, and generate motion without requiring 

prior MoCap and equipment calibration. However, the result may be unrealistic, due to the high 

dimensionality of human movement, i.e. there are several ways for human body segments to move 

and rotate in order to reach from a specific posture to another one. Therefore, these methods have 

not been considered suitable for this thesis. 
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5.1 Pedestrian Motion Modelling Approaches 

Human motion is subject to great variability depending on individual characteristics, e.g. gender, 

height, health status. Therefore, appropriate modelling of human motion is critical for testing its 

effects on GNSS receivers. This study proposes a method of modelling human motion, using a 

human biomechanical model (HBM), which will be driven by a pedestrian routing model (PRM) in 

order to simulate the 3D trajectory of PNT equipment, held by or attached to a pedestrian. The 

output of the proposed PMM is validated in comparison with human motion capture (MoCap) data 

to ensure that both have the same effect on GNSS carrier tracking loops. Three methods have been 

identified as candidate approaches in order to generate a pedestrian movement model for this thesis. 

The first is the trials-based approach, which involves capturing of human motion data (MoCap), 

discussed in Section 2.3.1, and then the identification of pedestrian movement elementary 

components within the captured data, e.g. individual steps, or specific gestures. These basic 

components will then be combined to create a representative sequence for the pedestrian movement 

in question. Due to the repeatable manner (i.e. periodic events) of human gait, this option may be 

practical in simple cases of human movement, e.g. series of forward steps without gestures. However, 

this method involves MoCap in order to record specific human movement variations, e.g. step length 

(discussed in Section 2.1) within strides of the same subject, or between different subjects, although 

limited scalability in terms of in terms of varying the motion speed or the height of the subject could 

be applied. Also, since the combined sequence of movement signatures has to follow tightly the 

output path from the pedestrian routing model, the sequence will have to accommodate turns, (and 

gestures as well), so it is essential to ensure that the transitions between different movement segments 

are smooth, in order to avoid artefacts such as position/velocity/orientation discontinuities which 

may degrade the performance of the SGCTLs by introducing artificial cycle-slips. Transitioning 

smoothly between subsequent postures and gestures can be a tedious task involving smoothing 

algorithms development and manual editing of human body coordinates. This approach would be 

proven challenging within the timescales of this thesis, especially when alternative approaches exist. 

Another issue with employing this method is that all different pedestrian movement scenarios 

(involving different sensors locations) would need to be captured separately. In other words, trials-

based motion generation can only apply only within the scope of the specific captured motion 

(MoCap) scenarios, with very limited options to expand this scope.  

The second is the analytical approach, e.g. [100], [101], which encompasses an analytical model 

of the human body describing movement of human body segments. Any pedestrian size, gait (walking 

or running) speed, gender motion variations (discussed in Section 2.1) and gestures can also be 

modelled, e.g. using lever arms starting from a reference point, whose motion is also defined. The 

humanoid motion is well-defined and repeatable, noting that an analytical model of pedestrian 
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movement may not be entirely deterministic, but could encompass a stochastic element which would 

model pedestrian-induced noise, e.g. due to the muscles physiological tremor [132][133]. The 

advantage of this method is that the scope of the analytical model can be extended in order to 

represent pedestrians with different anatomical characteristics (e.g. gender, step length, cadence). It 

is worth noting that although the model described in [100] was available to be reused for research 

purposes, the licence agreement prohibited any future commercial use, which is a prospective 

outcome from this thesis, as mentioned in Section 1.1.  

Finally, the third is the hybrid approach, which can employ a combination of the trials-based 

and analytical approaches e.g. by modelling a specific gesture analytically and over-imposing this onto 

the trials-based motion. This method provides some additional scalability for particular cases of 

motion, compared to the limited scalability of the trials-based approach, e.g. in terms of adjusting the 

overlaid gesture type and speed. Overall though, the hybrid approach is bound to the same scope 

limitations as the trials-based approach. Also, the hybrid approach could add some stochastic element 

on the trials-based motion, e.g. white noise with a variable mean depending on the exhibited 

acceleration. 

For the purposes of thesis, the PMM should allow the overlay of gestures, in order to extend 

the range of the motion profiles that can be simulated, noting that in real life, gestures may occur at 

any time point over the gait cycle. Therefore, the trials-based and hybrid approaches are practically 

limiting the scope of this requirement, as any new gesture occurring at a different time instant (during 

the gait cycle) would require a new motion capture (MoCap) experiment. Furthermore, the analytical 

approach enables the PMM scope to expand in future in order to follow any given trajectory 

generated by the PRM. This option would not be available in the case of the trials-based and hyrid 

approaches, as a new path might mean an experimental re-capture of pedestrian motion. Considering 

these points, the analytical approach has been selected as the most suitable approach for the purposes 

of this thesis. 

5.2 Pedestrian Routing Model 

Simulation of human motion requires a PRM, combined with an HBM. This section describes the 

implementation of the pedestrian routing model (PRM) which, along with the human biomechanical 

model (HBM) described in Section 5.3.3, comprise the integrated pedestrian motion model (PMM) 

described in Section 5.4. The (integrated) PMM outputs synthetic human motion data, representing 

the 3D trajectory of positioning and navigation equipment (PNE) while held by or attached on the 

human body. The simulated GNSS carrier tracking loops (SGCTLs, described in Section 4.1) provide 

the validation test platform for the PMM, as both synthetic and real captured human motion (MoCap) 
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data should exert similar behaviour on the SGCTLs, in terms of phase cycle slips and frequency false 

locks, for the simulated carrier phase and frequency tracking loops, respectively.    

The current PRM implements the standard Dijkstra’s pathfinding algorithm [120], based on 

the code from [134], and a standard smoothing function, explained later in this section, in order to 

make the output trajectory more realistic. The operation of Dijkstra’s algorithm was introduced in 

Section 2.3.2. The current implementation runs the algorithm between two points, a pre-defined start 

point and a user-defined finish point, both located on a pre-defined grid, as illustrated in Figure 5.1. 

The underlying map (grid) is a binary image with white pixels which the moving agent (representing 

the pedestrian moving on the grid) is permitted to move onto and black squares which the agent 

cannot move onto. The current algorithm implementation could also account for intermediate “grey” 

pixels, i.e. representing a cost function, but this is out of the thesis’ scope. The output path of the 

Dijkstra algorithm, e.g. as illustrated in Figure 5.1, cannot be considered realistic enough as firstly, 

the motion direction can only change in discrete angles of π/4 rad, i.e. a maximum of 8 permitted 

directions around the current pixel, and secondly, the path nodes are on the centre of the pixels, i.e. 

the size of the pixel controls how smooth the output path will be, noting that the more pixels (for 

the same size of grid, i.e. a denser grid) the higher the output path spatial resolution, but also, the 

higher processing load in order to run Dijkstra’s algorithm. It follows that there are two step sizes on 

the grid, i.e. unity size when the agent moves between adjacent right, left, up and down cells, and 2

size when the agent moves diagonally. 

 

Figure 5.1. Dijkstra's algorithm Matlab implementation 
 

The output of Dijkstra’s algorithm can be made more realistic by equalising the distance 

between epochs and smooth out the original Dijkstra’s algorithms output trajectory, which is based 
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on a grid with a specific spacing (pixel size). Also, the PRM path is processed by applying a smoothing 

function averaging the positions of the data-points, using the central difference standard method, 

explained in [135]. The only two points not smoothed by applying this method are the start/end 

ones. The method averages two position vectors with an intermediate position vector between them: 

1 -1-
, 1 1,

2
i i

i i m   
r r

r  
(5.1) 

where vector 
ir  is the position at epoch i, and m is the total number of epochs (data-points) of the 

output path, noting that the first epoch index is zero (i=0). The new intermediate point is located 

half-way w.r.t. the previous and next points. Applying the central difference method more than once, 

results to a smoother position for the intermediate vector. It follows that applying the method a large 

number of times on a curved path, it will result to a straight line connecting the start/end points of 

that path. Using this method, Eq. (5.1), on time-stamped position vectors, such as the output of the 

PRM, it is possible to maintain the same time validity of the intermediate position vectors. For 

example, assume that the old intermediate point is valid at time t. The new intermediate position 

vector is also valid at time t, as it is a function of two (equally-weighted) position vectors, previous 

and next, valid at t-τ and t+τ, respectively, where τ the time interval between position vectors and it 

is fixed for the duration of the output path.   

Also, it is worth noting that in order to simulate different walking speeds, this time interval 

can be increased or decreased accordingly. The underlying assumption is that, for non-straight paths, 

moderate variations of the walking speed, e.g. up to 10%-15%, would produce the same positions of 

output path data-points, in other words, the result of the changing speed on the gait characteristics, 

e.g. step length or human body tilt while turning, is negligible. These small variations in walking speed 

can be simulated by altering proportionally the time interval between the output path data-points’ 

positions. 

The smoothed output of the PRM is the path which the HBM needs to follow in order to 

simulate the complete PNE 3D trajectory, encompassing human walking and any gestures. The 

current implementation integrates the PRM and HBM at walking speed in order to be comparable 

with the capture motion (MoCap) scenarios described in Chapter 3. The PNE dynamics are then 

calculated from this 3D position trajectory and projected along the lines-of-sight between the sensor 

and three simulated satellites (positioned in forward, left and overhead directions) to produce the 

synthetic motion data. The synthetic motion is then fed into the simulated GNSS tracking loops 

(SGCTLs), described in Chapter 4, in order to study the impact on the SGCTLs’ performance and 

compare this impact with the real-world MoCap data for validation purposes. The input routing 

trajectories used for PMM validation (see Section 6.3) were simpler than the one depicted in Figure 

5.1. (30m straight line and a U-turn). However, this PRM is an essential part for the thesis as this 

functionality can be used in the future to automatically calculate the route given a map, e.g. like the 
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one depicted in Figure 5.1, which is faster than defining the same path manually as pairs of 2D 

coordinates. 

This chapter continues with the description of the HBM in Section 5.3 and concludes with 

how the HBM and PRM were integrated to form the PMM in Section 5.4. 

5.3 Human Biomechanical Model 

This section describes how the design, and implementation of the HBM. The HBM moves along the 

PRM output path (forming the integrated PMM, described in Section 5.4), in order to provide a 

synthetic positioning and navigation equipment (PNE) 3D trajectory which reflects the motion 

dynamics exhibited by the PNE in the presence of underlying human motion. The impact of this 

synthetic trajectory on the SGCTLs (which were detailed in Section 4.1), can then be assessed and 

compared to the real-world human MoCap for PMM validation in Chapter 6.  

 Human biomechanical model definition 

The human body can be modelled as a system of segments and connecting joints/nodes, as discussed 

in Section 2.3.1 of the literature review. The HBM proposed in this thesis, is shown in Figure 5.2 and 

is referenced to the pedestrian p frame, illustrated in the same figure. The design of the HBM is based 

on an anthropometric study [135] in order to represent the average proportions of the human body 

segments. The segments and nodes of the current HBM implementation are summarised in Table 

5.1, with the coordinates in the last column being normalised in body height, in order to be able to 

represent bodies of different heights. For the purposes of this thesis the segments are all considered 

rigid (inelastic) bodies, whose length cannot change. The term “node” encompasses points which 

could be considered as “joints” of the human body from a physio-anatomical perspective, and other 

HBM points which are used to connect the human body segments with the PRM (node no. 1, “Op”), 

the modelled position of the PNE on the human body (node no. 23, “Sr”), and the calculated human 

body centre of mass (node no. 24, “CoM”). Each HBM segment can be defined as lying in-between 

a proximal and a distal end. The proximal end is closer to the human body CoM, e.g. for the head 

and neck segment the proximal end is the head and neck joint (no. 3, “Hn”), while for the right upper 

arm segment, the proximal end is the right shoulder joint (no. 5, “Rsh”). The distal end is the segment 

end that lies further away from the CoM.  

The HBM moves by segments’ rotations and translations. In terms of rotations, it is useful to 

define segment ends in terms of parent frames, denoted with α, and child frames, denoted with β, 

which are rotated by the parent frames. As parent frames α can be considered all the HBM proximal 

end points, plus the p frame origin (node no. 1 “Op” in Figure 5.2) which as part of the HBM can 

(only) be used to rotate its child frame (node no. 2, “Hc”). Node “Op” is where the HBM midline 
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(illustrated with a dotted red line in Figure 5.2) intersects with the horizontal level, noting that the 

midline is the vertical line between the CoM and the horizontal level when the HBM is at the 

fundamental position, described in Section 2.1.1. 

The set of child frames encompasses the distal end points, plus the sensor/PNE frame (node 

no. 23, “Sr”) which can only be rotated by its parent frame as appropriate for the user-defined sensor 

location on the HBM. The only HBM node which cannot be considered as a parent or child frame, 

is node no. 24 “CoM” (illustrated as a solid black point in Figure 5.2). This node represents the 

calculated position of the HBM’s CoM at an epoch k, following the method given in Appendix A. 

The attitude of a segment j at epoch k can be updated by rotating the distal end w.r.t. its 

proximal node, i.e. from parent frame α to child frame β, in order to represent human motion. The 

blue arrows in Figure 5.2 show the direction of the rotation from a parent frame α to a child frame β. 

All frames in-between two segments, can be interchangeably parent or child frames, except for: 

• The p frame origin: node no. 1 “Op”. This can only be a parent frame (illustrated as a solid 

blue point in Figure 5.2). The translation of this point to local tangent plane (LTP) coordinates 

enables the PMM to also have LTP coordinates. 

• The distal ends of: the head (no. 4, “Ht”), right hand (no. 8, “Rfi”), left hand (no. 17, “Lfi”), 

right foot (no. 13, “Rfo”), left foot (no. 22, “Lfo”), and the sensor/PNE frame (node no. 23, 

“Sr”). These can only be child frames (illustrated as solid orange points in Figure 5.2). The 

sensor/PNE frame (node no. 23, “Sr”) can be a child frame to any parent frame of the HBM, 

representing different sensor locations on the human body that the PNE can be attached to. 

Table 5.2 defines the frame origins contained in the HBM from a functional anatomical 

perspective, noting that the HBM joints are assumed to rotate about their nominal centre of rotation, 

although in reality the joint centre is translated during the rotation, as explained in Section 2.1.2. 

Table 5.1 summarises the parent and child frames of the HBM. The child-joint frame 

coordinates (normalised in height) are referenced and resolved in parent frame axes, and not the p 

frame, e.g. the coordinates of head top “Ht” node in Table 5.1 are (0, 0, 0.182) w.r.t to its parent 

frame (head and neck “Hn” node), while the head top normalised coordinates referenced and 

resolved in p frame axes are (0, 0, 1). It follows that preceding rotations of a parent frame, propagate 

to subsequent rotations of any child frames.  
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16 Lwr7 Rwr
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9 Rhi 18 Lhi

1 Op12 Rhe
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4 Ht

8 Rfi 17 Lfi

2 Hc

11 Ran 20 Lan

13 Rfo
21 Lhe
22 Lfo

Stature, Z = 1

Pedestrian body frame p (with origin point Op):
X – pointing out of the page,
Y – Left,
Z – Up.
All frames (α or β) are parallel to p at initialisation.

X Y

Z

23 Sr

(user-defined frame α)

p frame:

Op

24 CoM

Key

Frame β (child) origin

Frame α (parent) origin - frame α rotates frame β

Frame α or β origin, as appropriate

Arrow from a frame α to a frame β

Human center of mass (CoM)

 

Figure 5.2. Proposed Human Biomechanical Model (front-facing), based on [135]. 
 

The joints and sensor frame coordinates in Table 5.1, denoted with d, are normalised in body 

height and referenced to their respective parent frame, e.g. the “Ht” (head top) point has (0, 0, 0.182) 

coordinates w.r.t. its parent frame “Hn” (head & neck joint), but if it was referenced to “Op” (HBM 

frame) the coordinates would be (0, 0, 1) as it marks the body height along HBM’s Z-axis. To obtain 

these normalised coordinates in meters, denoted with r, a scale factor s  corresponding to pedestrian 

stature (height) must be applied: 

.s 

  r d  
(5.2) 

Also, the sensor “Sr” frame can be modelled w.r.t. any parent frame on the HBM. This 

provides flexibility in order to accommodate different pedestrian applications, e.g. requiring sensor 

placement on the shoulder or the head (via a helmet). An applicable gesture is meaningful when it 

affects the trajectory of the sensor frame, either directly, by being applied on the parent segment of 

the sensor frame, or indirectly, by rotating a preceding parent frame, which will result in moving the 

sensor. Therefore, the list of candidate relevant gestures applied by the HBM depends on the 

candidate positions of the sensor on the HBM. 
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Node 
index 

Frame 
β origin 

Frame β description 
Segment (between 
frames β and α) 

description 
Frame α origin  

Frame β’s 3D 
normalised coordinates, 
referenced and resolved 
in parent frame α axes, 

at first epoch (k=1)

1k



 d   

1 Op Pedestrian frame p n/a 
Origin of l (LTP), 

not shown in 
Figure 5.2. 

n/a (used to resolve 
PRM in LTP axes) 

2 Hc Hip centre n/a Op (p frame) (0, 0, 0.530) 

3 Hn Head & neck Torso Hc (0, 0, 0.288) 

4 Ht Head top Head & neck Hn (0, 0, 0.182) 

5 Rsh Right shoulder Right shoulder Hn (0, -0.1295, 0) 

6 Rel Right elbow Right upper arm Rsh (0, 0, -0.186) 

7 Rwr Right wrist Right forearm Rel (0, 0, -0.146) 

8 Rfi Right fingertip Right hand Rwr (0, 0, -0.108) 

9 Rhi Right hip Right part of pelvis Hc (0, -0.0955, 0) 

10 Rkn Right knee Right thigh Rhi (0, 0, -0.245) 

11 Ran Right ankle Right shank Rkn (0, 0, -0.246) 

12 Rhe Right heel Right heel Ran (0, 0, -0.039) 

13 Rfo Right foot tip Right foot Ran (0.152, 0, -0.039) 

14 Lsh Left shoulder Left shoulder Hn (0, 0.1295, 0) 

15 Lel Left elbow Left upper arm Lsh (0, 0, -0.186) 

16 Lwr Left wrist Left forearm Lel (0, 0, -0.146) 

17 Lfi Left fingertip Left hand Lwr (0, 0, -0.108) 

18 Lhi Left hip Left part of pelvis Hc (0, 0.0955, 0) 

19 Lkn Left knee Left thigh Lhi (0, 0, -0.245) 

20 Lan Left ankle Left shank Lkn (0, 0, -0.246) 

21 Lhe Left heel Left heel Lan (0, 0, -0.039) 

22 Lfo Left foot tip Left foot Lan (0.152, 0, -0.039) 

23 Sr Sensor location n/a 

User-defined 
as any parent 

frame α, from no. 
3 to no. 22 above. 

User-defined as 
relative 3D position 
between “Sr” and its 

parent frame α. 

24 CoM Centre of mass n/a Op (p frame) 
(0, 0, 0.5584) 

Calculated as per 
Appendix A  

Table 5.1. HBM segments and joints with initial normalised coordinates in height, based on 

[135]. Frame α encompasses segments’ proximal ends, and frame β the distal ends 
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Frame name (abbreviation) Definition (proximal/distal end) 

Head Top (Ht) Distal end of skull 

Head & Neck (Hn) T1 (1st thoracic vertebra)/ C7 (7th cervical vertebra) 

Shoulder (Rsh, Lsh) Glenoid cavity of scapula/ head of humerus. 

Elbow (Rel, Lel) Distal end of humerus/ proximal ends of ulna and radius. 

Wrist (Rwr, Lwr) 
Proximal end of wrist (lunate, pisiform, scaphoid, triquetral 

bones)/ distal ends of ulna and radius. 

Finger-tip (Rfi, Lfi) Distal phalanx of middle-finger 

Hip (Rhi, Lhi) Acetabulum/ Head of femur 

Hip centre (Hc) Mid-point between hip joints 

Knee (Rkn, Lkn) Distal end of femur/ Proximal end of tibia 

Ankle (Ran, Lan) Distal end of tibia 

Heel (Rhe, Lhe) Calcaneus bone end (in the opposite direction from the foot-tip)  

Foot-tip (Rfo, Lfo) Distal phalanx of big toe 

Table 5.2. HBM frames’ anatomical definitions 
 

A convenient way to express the rotation between two frames is by using a coordinate 

transformation matrix (CTM), which is also called a “rotation matrix” or “direction cosine matrix”. 

The coordinate transformation matrix representing the rotation from a frame β to a frame α is 

denoted with


C , i.e. “from” frame in subscript and “to” frame in superscript. The transpose matrix, 

which represents the rotation from frame α to frame β, is represented by: 

  , 




C C   
(5.3) 

noting that 3

 

  C C I , as the attitude of a frame w.r.t. itself is the 3x3 identity matrix. Also, a 

CTM and its transpose matrix are orthogonal: 

3 . 
 C C I   

(5.4) 

The CTM chain rule shows how successive rotations from a frame β to a frame γ, through 

an intermediate frame α, can be performed: 

,  
 C C C   

(5.5) 

noting that the fact that physical rotations are non-commutative is mathematically represented by the 

CTM multiplication non-commutativity. To transform the resolving frame of a vector x  from a frame 

γ to a frame δ: 
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.  
 x C x   

(5.6) 

 Gestures simulation 

For pedestrian modelling purposes in this thesis, a human gesture is defined as the movement 

that a human body segment (on which the sensor is located) performs in addition to the nominal 

human body movement during the gait cycle. Therefore, additional movements that may be 

performed during the gait cycle are considered human gestures which can be overlaid on the 

pedestrian movement model. Human gestures examples for the purposes of this thesis can be 

considered as those movements which can alter the position of the positioning and navigation 

equipment (PNE) in addition to the underlying gait movement, e.g. walking. Examples of gestures 

falling into this definition are answering a smartphone (with PNE), using a smartphone to text/email, 

or putting it in a pocket or bag. 

To control the HBM, gestures are applied through a series of segment rotations. Namely, a 

gesture comprises of rotations of individual segments. Each individual rotation, rotates a frame β 

(called “child-frame” herein) w.r.t. a frame α (called “parent-frame” herein), noting that a specific 

joint, e.g. the right shoulder can be defined as frame β when rotated by the head and neck joint (which 

in that case is frame α), but it is frame α when it rotates the right elbow joint (frame β). It follows that 

frames α and β can be considered as elements of a set A which comprises the following pairs of 

rotating frames: 

 

   

       

         

       

         

, ,

.

Hc,Hn , Hn,Ht ,

Hn,Rsh , Rsh,Rel , Rel,Rwr , Rwr,Rfi ,

Hc,Rhi , Rhi,Rkn , Rkn,Ran , Ran,Rhe , Ran,Rfo ,

Hn,Lsh , Lsh,Lel , Lel,Lwr , Lwr,Lfi ,

Hc,Lhi , Lhi,Lkn , Lkn,Lan , Lan,Lhe , Lan,Lfo

 

 
 
 
 

   
 
 
 
 

 
(5.7) 

with their abbreviations, listed in Table 5.1. The pairs of frames in set A correspond to specific human 

body segments, also listed in Table 5.1, noting that the pairs (l,p) and (p,Hc), have been added for 

completeness purposes, although they do not correspond to a human body segment; however, the 

rotation of the (l,p) lever arm orientates the pedestrian frame (HBM) w.r.t the local tangent plane, and 

the rotation of the hip centre “Hc” w.r.t. the pedestrian frame is the first rotation among a chain of 

applicable rotations on the HBM defining its posture at any epoch k. 

The 3D attitude update of frame β w.r.t. frame α, with  ,   , i.e. from the previous attitude 

β- to the updated β+, or in other words from β(t-τ) to β(t) after a time interval τ, occurs around a 

rotational axis in 3D. The attitude increment from β- to β+ can be expressed as a coordinate 

transformation matrix (CTM), where the CTM and attitude increment relationship is defined for a 
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specific segment j at a specific epoch k, e.g. j
k




C ; however, for readability purposes the segment 

and epoch upper and lower indexes have been omitted in the following analysis. Also, although in 

the case of the HBM the Rodrigues’ formula is applied for a rotation from a frame β- to β+, it can be 

applied to any frame rotation in 3D, without loss of generality, as any 3D rotation can be represented 

as a rotation about an appropriate axis.  

As an example, assume that gesture i “answer the phone” comprises rotations of three 

segments j=1,2,3: 1. upper arm rotation, where the shoulder (parent-frame α) rotates the elbow (child-

frame β), 2. forearm rotation, where the elbow (now parent-frame α) rotates the wrist (child-frame β), 

and 3. hand rotation, where the wrist (now parent-frame α) rotates the fingertip (child-frame β), noting 

that the segment between the wrist and the fingertip models the hand as a solid segment, i.e. the 

fingers’ rotation has not been currently modelled. Also, only one gesture can be applied on a specific 

segment at a given epoch in order to avoid conflicting applied gestures on that segment, noting that 

this is in addition to the underlying walking motion (encompassing arm swinging). For an epoch k, 

the attitude of a frame β w.r.t. frame α can be expressed using the notation j
k


C , while a vector will 

be written in the general form j
k


x . Following these notation conventions the attitude, denoted 

with a plus sign at a given epoch k and with a minus sign at the previous epoch k-1, can be updated 

using Rodrigues’ formula [3]: 

,  
  


  C C C  

(5.8) 

2
( )
( ) 3 2

sin 1 cos
,t

t

 
     

    
 

 



           

α α
C C I α α

α α

  
(5.9) 

where 3I  is the 3x3 identity matrix, 


α is the magnitude of the attitude increment vector, which is 

defined as the integral of the angular rate vector, noting that it accounts for rotations non-

commutativity: 

,

t

t

dt 
 



 α ω  
(5.10) 

 and 



  α  is the corresponding skew-symmetric matrix: 

, , ,

, , ,

, , ,

0

, 0 .

0

x z y

y z x

z y x

  

  

    

    

  

  

  

  

  





   
   

        
      

α α  
(5.11) 



 

119 

 

To avoid division by zero, or numerical instability issues due to dividing with a small number, 

in Eq. (5.9), or when 



α  is small, e.g. lower than 10-8 rad, the fourth-order approximation can be 

used [3]: 

2 2

2

3

1
1 .

6 2 24

 
   

  



   
      
      
   
   

     
α α

C I α α  
(5.12) 

A gesture is defined as the final attitude position of each parent frame that exhibits rotation as 

part of this gesture, e.g. for an “answer the phone gesture” the relevant parent frames are the 

shoulder, elbow and wrist parent frames. The final attitude position is defined to be reached at epoch 

k+n, where k is the previous epoch, so in order for parent frame α to reach the desired final attitude 

position w.r.t. frame p, using Eq. (5.8), there are n-1 intermediate rotations involved: 

( 1)

( ) (1) ( )

2

,
n

p p i

n i

i



  





 C C C  
(5.13) 

where 
( 1)

( )

i

i






C  can be calculated using Eq. (5.9) or Eq. (5.12), as appropriate. In terms of simulation 

time-into-run, the gesture applies at time ( 1)startt k   , where τ is the uniform time interval 

between subsequent epochs, and  ( 1) ( 2)end startt t n k n       . The HBM allows more than 

one gestures to be applied at the same epoch(s), provided that they encompass different parent frames 

each), so a parent frame’s rotation can only be controlled by one gesture at any epoch. The advantage 

of this method is that a gesture can be applied from any starting epoch k. Another advantage of this 

method is that if the number of intermediate epochs between tstart and tend changes, noting that these 

time instants remain the same, the gesture can still be applied in the same way, with the only difference 

being the intermediate number of rotations, which is calculated by Eq. (5.13). The time interval τ may 

change e.g. in case that the underlying data are interpolated with a subsequent decrease of τ and 

increase of n, or smoothed with a subsequent increase of τ and decrease of n.  

The parent-frames coordinates are referenced and resolved along their respective parent frame 

α axes, are assumed to remain constant (forming a lever arm) for all epochs: 

1 , 1 ,k k m
 

  r r  
(5.14) 

where m is the total number of epochs.  

It is important to note that the HBM’s child and parent-frames’ attitude positions are defined 

as parallel to the pedestrian frame (w.r.t. the local tangent plane) at the first epoch, when the HBM is 

defined to be in fundamental position (explained in Section 2.1.1 and illustrated in Figure 5.2): 
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 1 1 3 ,, .l

p



    C C Ι   
(5.15) 

It follows that if 
3k



 C Ι  at any epoch k (during movement), then the HBM is in fundamental 

position at epoch k, as the HBM posture depends on the applicable chain of rotations of its nodes 

for any epoch k. 

From Eqs. (5.6) and (5.9), or (5.12) as appropriate, the rotation of a child-frame w.r.t. its 

parent-frame can be applied: 

,  

  r C r  
(5.16) 

The updated coordinates of a child-frame β w.r.t., and resolved in, local tangent plane l axes at 

the end of epoch k will be: 

            , , , ,l l l

l l l p

           r r C r  
(5.17) 

where 

(3) (2)

( 1) (2) (1) ,l l p Hp

p Hp n

 

        C C C C C C   
(5.18) 

is the chain of rotations from the current α frame to the l frame, with n intermediate frame rotations, 

i.e. from parent frame α(1), of the child-frame β whose updated coordinates  l

l r  are sought, up 

to (and including) parent frame Hp which the last frame in the chain of rotations before the pedestrian 

frame p, as illustrated in Figure 5.2. From Eqs. (5.15), (5.16), (5.17) and (5.18) the coordinates of any 

frame β can be calculated, referenced and resolved in LTP axes. The calculation of (linear) velocity, 

can be given by [3]: 

,l l l l l l l l l

l l l l l l

    

                    v v v C r v v C Ω r v C Ω r  
(5.19) 

since 
T[0,0,0]l

 v as the position between the alpha and beta frames is fixed. In Eq. (5.19):  

,

,

l l

l l

l l l

 

 

    



 

v r

v C v C r
 

(5.20) 

and 

,l l

l



  C C Ω   
(5.21) 
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noting that l

C is given by Eq. (5.18). The position vector derivative 
l

lr and 


r  in Eq. (5.20) can be 

calculated using the custom numerical differentiation method, described in Appendix E. Also, the 

skew-symmetric matrix 
l


Ω  of the angular rate 

l



ω  can be calculated using: 

1
^ ^ ,l l l

  

  


       Ω ω α  
(5.22) 

where τ the time interval between epochs (τ=0.01s) and l



α  the attitude increment vector, between 

epoch k and k+1, which is a function of the respective coordinate transformation matrix (CTM): 

     ( ) ( 1)

( ) ( ) , 1 ,t k

l t kf f f k m    

   

  

    α C C C  
(5.23) 

as implied by Rodrigues’ formula in Eq. (5.9). The CTM can then be given by Eq. (5.8). 

The implementation of the HBM can be found in the Matlab scripts, provided in Appendix F 

on the thesis’ accompanying CD. 

 Gait cycle simulation 

This section describes the process of defining the PMM segment rotations, in order to simulate free-

walking for one gait cycle, from published biomechanical studies, e.g. [19], [98], by extracting the 

human body segments’ and joints’ rotation angles over one gait cycle, e.g. knee rotation in 3D axes, 

and feeding them to the PMM. The following describes the process of extracting the 3D rotation 

angles from these studies, corresponding to one gait cycle, by using a custom Matlab toolkit 

“ExportGraphData”, developed specifically to extract the relevant data from these studies and import 

them to the HBM in order to drive it by rotating its constituent joints and segments. To simulate a 

motion profile involving several steps, e.g. for the whole length of a PRM output path, it is necessary 

to combine a number of these extracted datasets. The underlying assumption is that due to the gait 

periodicity (discussed in Section 2.1.3), the motion profile corresponding to one gait cycle is repeated 

as many times needed in order to cover the applicable path length. 

As discussed in Section 5.2, applicable HBM segments can rotate in order to simulate human 

walking, including arms swinging during walk. The custom Matlab toolkit “ExportGraphData” was 

were developed in order to export to the PMM profiles of joint angles during walking, from graphs 

of published biomechanical studies [19], [98], which illustrate the 3D rotations exhibited by human 

body joints and segments during a free-walking (nominal) gait cycle, e.g. ankle rotation in 3D. The 

custom Matlab toolkit “ExportGraphData” is included in Appendix F on the CD. The output of this 

process is a Matlab structure containing the 3D attitude positions (in Euler angles measured in 

degrees) of the HBM segments over one gait cycle. This custom process, which was developed 
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specifically for this thesis, involves four stages which are described below and illustrated in Figure 

5.3.  

Image

(biomechanical 

data graph)

SampleGraph()

(see H.2.1)
Start

End

<imageName>.mat 

(CPs/DCPs’ 

coordinates)

FitBezierCurveGUI()

(see H.2.2)

<imageName>_

OutputPoints.mat

(adjusted DCPs)

CreateNomWalkEulStruct()

(see H.2.3)

<walking> Matlab structure 

(HBM 3D rotation angles)

Stage 3Stage 2Stage 1

Stage 4

 

Figure 5.3. Beziér curve-fitting workflow diagram (four stages) 
 

The first stage of the process implemented to import join rotations from biomechanical studies 

to the HBM, is to identify appropriate biomechanical studies and save the graphs into an image 

format readable by Matlab. The second stage involves opening the image through the 

“ExportGraphData” Matlab toolkit in order to convert the image native coordinates (units in pixels) 

into the underlying graphs’ units. Typically, the underlying graph horizontal shows normalised time 

for one gait cycle, and the vertical axis shows the rotation (in degrees) of a specific segment about a 

specific axis, e.g. ankle rotation about the Y-axis of the HBM, discussed in Section 5.2. Three points 

on the graph must be defined in order to transform the image coordinates to the actual units in the 

graph (degrees along the vertical axis and normalised time for one gait cycle along the horizontal 

axis). These points are selected as a. the intersection of the graph axes (0,0), b. the maximum 

horizontal axis value set to 100, i.e. (100,0), and c. the maximum vertical axis value y (which depends 

on the magnitude of rotation that a particular segment exhibits during the gait cycle), i.e. (0,y). This 

process is similar to geo-registering an aerial/satellite image to an Earth-referenced coordinate 

system.  

The user can then define control points (CPs) along the underlying curve depicting the angle 

profile which need to be extracted to the HBM. The CPs should be chosen at local extrema and 

inflection points for a better cubic Beziér curve fit in the next stage. The tool will automatically create 

two derivative control points (DCPs) for each CP and initialise their positions with the same vertical 

axis value as the CP, with one DCP on the left and the other on the right of the CP, at an equal 

(arbitrary) distance of 3 horizontal axis units. These DCPs can be moved manually (by dragging them 

with the mouse). Their coordinates on the graph control the gradient of the fitted curve around the 

CP, i.e. the left DCP will control the gradient (first derivative) of the curve approaching to the CP, 

and the right DCP the gradient of the fitted curve when leaving the CP. Due to the gait cycle 

periodicity, the first and the last CPs are essentially the same point (with one gait period difference), 

so any action in one of the DCPs corresponding to the first/last CPs, will be automatically applied 

to the other as well, i.e. dragging the last CP’s previous DCP up in the graph, will result to the first 
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CP’s previous DCP being dragged up at the same amount. The tool saves the CPs and DCPs 

coordinates in tabular format (native Matlab *.mat file). If the user wishes to add/remove CPs, the 

same tool provides the option to read the saved tabular file and allow the user to add/remove new 

CPs (and save them to a new or overwriting the existing file). 

It must be noted at this point that fitting cubic Beziér curves is a standard method used to 

interpolate human body segments’ trajectories between two known positions [136], noting that higher 

order embodiments are out of this thesis’ scope. In this thesis, cubic Beziér curves were used to 

interpolate between two attitude positions in 2D, i.e. the horizontal axis is the time axis and the 

vertical axis the angle of rotation, for each segment of the HBM. The interpolation by cubic Beziér 

curves was decided because a. this method was found to a. it does not require many parameters to be 

defined, and b. it can be used in a piece-wise manner, fitting more effectively the underlying angle 

profiles on the graphs provided by the biomechanical studies [19], [98], used to drive the HBM. To 

use a cubic Beziér fitting curve the coordinates of 4 points must be defined, which is two control 

points (CPs) for the initial and final attitude positions which are to be interpolated and two derivative 

control points (DCPs), each one controlling the first derivative of the fitted curve at the respective 

CP, i.e. the gradient of the fitted curve around that CP, for better fitting results. To represent the 

rotation of a human body joint/segment three defined (single-axis) attitude interpolations must be 

performed, noting that a gesture in the current PM embodiment can encompass multiple 

joint/segment rotations. 

In the third stage of the curve-fitting process, the user opens the saved CPs and DCPs table 

in order to modify the DCPs positions (the CPs’ coordinates cannot be modified at this stage), in 

order to fine-tune the curve-fitting. The custom toolkit “ExportGraphData” will automatically fit an 

initial cubic Beziér curve (explained later in this section), based on the CPs and DCPs coordinates in 

the coordinates table. Any change on the DCPs’ position causes and automatic update of the fitted 

cubic spline on the graph. It is worth noting that in order to achieve a smooth transition of the fitted 

curve approaching and leaving the CPs, the left and right DCPs around a given CP are constrained 

to rotate in opposite directions at equal angles. The result is that the fitted curve is linear close to the 

CP (approaching and leaving from it). This implies that the first-order derivative at the specific CP is 

constant, so the second-order derivative at that specific CP is set to zero. By manual manipulation of 

the DCPs coordinates it is possible to fine-tune the cubic spline (thin orange line in Figure 5.4) to the 

underlying (blue) curve in question in the graph, depicting the (right) hip adduction angle about the 

X-axis of the pedestrian body frame, i.e. when the right leg moves towards the body. The user can 

save the curve-fitting results by clicking “Save Graph”. The custom toolkit “ExportGraphData” will 

then sample at user-defined fixed time intervals (along the x-axis), typically at 101 samples, noting 

that the number of samples over one gait cycle can be increased (at multiples of 10), as appropriate. 

The first and last sample points show the same attitude position with one gait period difference. This 
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allows multiple exported datasets to be joined together without discontinuities (by omitting the last 

sampled point). The number of gait cycles (datasets) joined together is controlled by the PMM, based 

on the length of the PRM trajectory (and the fixed stride length which depends on the stature), e.g. 

if the path is 15m long and the stride length 1.5m, then 10 datasets (representing segments’ rotations 

over 10 gait cycles) are joined together to drive the HBM from the PRM path’s start to finish. The 

fourth (and final) processing stage involves creating a Matlab structure containing the 3D rotation 

(Euler) angles of the HBM’s joints/segments.  

 

 

Figure 5.4. Custom Matlab toolkit “ExportGraphData” screenshot fitting a cubic Bezier curve 
(orange solid line) on biomechanical data (blue solid line) 
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5.4 Integrated Pedestrian Motion Model 

This section describes the development method of the PMM, comprising the PRM (discussed in 

Section 5.2) and HBM (described in Section 5.3), whose purpose is to feed the SGCTLs (presented 

in Section 4.1) with synthetic human motion data. The constituent parts of the PMM are listed below: 

• Human Biomechanical Model (HBM) 

o PNE/GNSS antenna location 

o Type of activity, e.g. walking 

o Gestures, e.g. answer phone 

• Pedestrian Routing Model (PRM) 

o Dijkstra’s algorithm 

o Interpolation function 

In the context of this thesis, the scope of the PMM is to simulate the motion dynamics’ 

environment of the PNE, which is attached on or held by a pedestrian, in the presence of pedestrian 

motion.  

It is important to underline that for validation purposes, the PMM simulations have to be 

consistent with the human motion capture (MoCap) data, presented in Chapter 3. Pedestrian motion 

modelling encompasses human gait, e.g. walking or jogging, and overlaid gestures, e.g. “pick-up a 

phone” or “send a text”, assuming that the PNE is embedded in a smartphone. The range of 

simulated pedestrian motion, based on the human MoCap data are discussed in Section 6.1 of the 

thesis results. The PMM simulates the motion dynamics environment of a PNE, depending on: 

• The selected route by the pedestrian, modelled by the PRM (which can also include turns). 

• The type of activity (e.g. slow/fast walking). 

• The PNE location on the human body (e.g. head-mounted or hand-held)  

• Specific gestures of a human body segment, which can affect the PNE motion, in addition to 

the underlying nominal walking, e.g. “answer the phone” or “send a text”, assuming a 

smartphone with embedded PNE. 

• The height of the HBM and the anthropometric modelling embedded in the HBM, i.e. the 

length of human body segments (normalised in human body height).  

It is also worth noting that in the current PMM implementation, the step length is proportional 

to the user-defined height of the HBM, and is assumed that any step length variations during the 

MoCap experiments, e.g. due to a different (free) walking speed, are negligible. In addition to the 

currently supported features by the PMM, a (future) production version could support (see also future 

work in Chapter 8): 

• A user interface for defining gestures, e.g. defining the final attitude of a human body segment, 

by rotating (in 3D) segments of a displayed human body model. 
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• Jogging and running activities, i.e. adding a “flight phase” to the modelled gait cycle (see 

Section 2.1.3). 

• A pedestrian routing model with inclined trajectories, e.g. staircases. This presupposes 

modelling the appropriate gait motion ascending/descending stairs. 

• Input of the stride (or step) length directly in the model as a parameter, noting that this would 

involve an inverse kinematics correction, similar to the one described in [137], in order to 

constrain the heel to walk on the ground level. 

An underlying assumption for the development of the PMM, is that a specific PRM output 

path is independent from the sensor location on the human body, the particular activity and gestures 

that the pedestrian may perform. Also, it is assumed that the PRM route does not have an effect on 

the choice of particular types gestures and the time of their applicability to the HBM, e.g. 

whether/when a pedestrian answers a smartphone (with embedded PNE).  

The human gait cycle forms the uniform basis of characterising the coordinated (and 

periodical) movement of human body segments during gait. All human body segments’ and joints’ 

movement can be referenced to the gait cycle, in terms of position and attitude (6 DOF). Assuming 

that human movement is identical across gait cycles, the HBM segments’ and joints’ motion is 

coherent, i.e. the relative phase between them w.r.t. the gait cycle remains constant. It follows from 

the gait cycle periodicity assumption, discussed in Section 2.1.3, that at the start/end of each gait 

cycle, the human body and its constituent segments and joints exhibit the same posture (attitude). In 

practice though, this is not the case as the variation in external conditions, e.g. ground inclination, 

will change slightly the human body posture between subsequent gait cycles; however, for the 

purposes of pedestrian motion modelling in this thesis, these factors are considered negligible and 

are discussed in the future work Chapter 8. Also, for modelling purposes, the PMM should be able 

to transition from/to the fundamental posture (described in Section 2.1.1) at the start/end of 

movement scenarios, respectively, as this is the posture at the beginning and end of MoCap, as 

described in Section 3.3. In the current PMM implementation, the step length is proportional to the 

user-defined height of the HBM, i.e. the step length variation has not been modelled, see future work 

in Chapter 8. 

At initialisation, all ΗΒΜ β frames are parallel with the pedestrian p frame (illustrated in Figure 

5.2 of Section 5.3.1 which describes the HBM), therefore: 

 
1 1

1 3

p p

p k k p k p

p pp



   

 



 
 

 

r C r
r r

C I
  

(5.24) 

For a straight PRM output path, as in the current PMM implementation, the pedestrian p 

frame is defined as parallel to the LTP l frame at any epoch k of movement: 
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3 , 1 ,l

p k k m  C I   
(5.25) 

where m is the total number of epochs. The method of rotating the p frame w.r.t. l frame, i.e. by 

updating 
l

p kC , in order to follow a PRM output path involving turns. 

The coordinates of the HBM child-frames β, e.g. the sensor “Sr” frame – listed in Table 5.1, 

referenced and resolved in l frame axes, are calculated using: 

,l l l

l k l k k k



    r r C r  
(5.26) 

noting that 
l

l kr is the synthetic output of the PMM which can be fed to the SGCTLs, in order to 

assess the effect of the synthetic motion. An example of a synthetic motion 3D trajectory is illustrated 

in Figure 5.5. The PMM implementation also provides the option of a vertical correction, in order to 

ensure that at any instant during movement, at least one HBM node will be in touch with the ground 

level (for walking scenarios), i.e. the right/left leg heel (“Rhe”, “Lhe”) or toe (“Rfo”, “Lfo”). In the 

current pedestrian motion model (PMM) results, presented in, the human biomechanical mode 

(HBM) follows either a straight path or a path with a U-turn, as discussed in the results presentation 

in Chapter 6. 

All relevant gestures are applied on the HBM on the top of the underlying walking movement 

(and arms swing). To calculate the PMM all HBM points have to be referenced and resolved along 

local tangent frame (LTP) l axes. To do this, an additional rotation of the pedestrian frame p w.r.t. 

the l frames at each epoch k has to be used. The rotation matrix may change from epoch to epoch. 

For epochs k>1, the rotation matrix needs to update the attitude of the pedestrian frame, in 

order to account for the turns (heading changes) of the followed PRM output path, assuming no tilt 

(pitch and roll) between p and l frames. The heading 
lp  of the p frame w.r.t. the l frame can be 

calculated by: 
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(5.27) 

where (xk, yk) the PRM output path coordinates (expressed in units of meters) at epoch k, noting that 

the position vector is  , ,
Tl

lp k k k kx y zr . The change in attitude due to turns in the route, 

expressed as an attitude increment vector, is: 
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0

0 ,l

lp

lp

 
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  
 
 

α   
(5.28) 

so to re-align the p frame the opposite attitude increment vector 
l

lpα  needs to be used in order to 

calculate 
( )

( )

p p t
p p t

 
 C C  using Eqs.  to (5.12), and update the 

l

pC  attitude matrix using Eq. (5.8). 

Figure 5.5 shows an example of the PMM synthetic 3D position output for a sensor held by 

the right hand. The pedestrian routing model output path is not a straight line but involves slight 

turns, which the HBM follows. 

 

Figure 5.5. PMM synthetic output example for a hand-held sensor. 
 

In summary, this chapter proposed and described a PMM enabling the simulation motion 

dynamics induced by pedestrian motion and exhibited by PNE equipment. The PMM output is a 

synthetic 3D position trajectory representing the motion of the PNE equipment. This synthetic 

output trajectory can then be fed into the SGCTLs in order to compare the effects on the 

performance of simulated carrier phase/tracking loops w.r.t. the effects of human captured motion 

(MoCap). The thesis continues with the presentation of the analytical method of the results in Chapter 

6, which also encompass the comparative effects analysis for the real human MoCap and synthetic 

motion on the simulated GNSS phase lock loop (SGPLL). 
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 Results 

Following the description of the human motion captured (MoCap) data in Chapter 3, the description 

and validation of the simulated GNSS carrier tracking loops (SGCTLs) in Chapter 4, and the 

pedestrian motion model (PMM) description in Chapter 5, this chapter presents the thesis’ results, 

which address the two research questions of the thesis discussed in Section 1.2, i.e. which are the 

types of pedestrian motion that most affect the performance of GNSS equipment and which is the 

best way to model pedestrian motion for simulation testing GNSS equipment. This chapter is divided 

into four sections, the first, Section 6.1, describes the method used to pre-process the data, i.e. convert 

them from the Xsens MTi-G readily available navigation solution to motion projected along the lines-

of-sight between the sensor and three simulated static satellites. Also, Section 6.1, describes the 

analytical method used to assess the impact of real and synthetic output motion (from the pedestrian 

motion model – PMM). The chapter continues with Section 6.2, which addresses the first research 

question, by showing the effects of the real MoCap scenarios on the SGCTLs’ performance. The 

third, Section 6.3, addresses the second research question, by analysing the effects of synthetic motion 

(from the PMM) on the simulated GNSS carrier-tracking loop (SGPLL) and comparing these results 

to the ones obtained from the real motion in Section 6.2. The chapter concludes with Section 6.4, 

which summarises the results of this chapter and provides recommendations for GNSS receiver 

design in the presence of typical pedestrian motion.  

The results are based on analysing the impact of real and synthetic human motion using the 

SGCTLs (see Chapter 4), i.e. in a Matlab simulation environment. Using a real receiver to assess the 

impact of human motion was beyond the timescales of the thesis, but is part of the productization 

process of the thesis’ outcomes, as explained in Chapter 8 “Future Work”. 

6.1 Analytical Method 

 Real motion data pre-processing 

This section discusses the three methods identified in order to process the human motion captured 

(MoCap) data in the main experiment of the thesis (see Section 3.3) and describes the selected method 

for pre-processing the MoCap data in order to generate the line-of-sight (LOS) motion profiles 

required to drive the SGCTLs (see Sections 4.2 and 4.3). Also, this pre-processing stage aims to 

ensure that the MoCap data represent the underlying motion, without any potential artefacts induced 

as a result of the MoCap process. After pre-processing, the MoCap data are ready to enter the 

SGCTLs, in order to assess the impact of real motion on the SGCTLs. The three methods identified 

to pre-process the MoCap data are listed below (and denoted with “A”, “B” and “C”):  
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A. Convert the Xsens MTI-G-provided integrated inertial/GPS navigation solution, from 

latitude, longitude, altitude (LLA) coordinates, expressed in North, East and Down (NED) 

axes, to local tangent plane (LTP) coordinates. 

Smooth the integrated inertial/GPS navigation solution (A), i.e. already converted from LLA to 

LTP coordinates, by detecting and removing ensuing transients from the internal Xsens Kalman 

Filter, as the examples shown in  

B. Figure 3.4 and Figure 3.5. 

C. Calculate the inertial navigation solution, using the measurements from the inertial sensors 

(accelerometers and gyros) following the calculation steps described in Section 2.2.2. and 

convert it from LLA to LTP (similar to solutions “B” and “C”).  

Options “A” and “B” were not selected as data pre-processing methods, since the results, 

discussed in Chapter 6, show they may still introduce artificial false frequency locks on the simulated 

GNSS frequency lock loop (SGFLL), which was described Section 4.3. The calculation of the inertial 

navigation solution, method “C”, encompasses the following four stages: 

• Stage 1: Read and validate for recording errors the integrated navigation solution provided by 

Xsens MTi-G. The navigation solution is expressed in North East and Down local navigation 

frame axes. The position solution is given in curvilinear form, i.e. latitude, bL (rad), longitude, 

b  (rad), and height, bh  (m); the velocity solution is denoted with 

T

, , ,
n n n n
eb eb N eb E eb Dv v v 

 
v  (units in m/s) and the attitude solution in the form of a 

coordinate transformation matrix (CTM) is denoted with
n
bC . 

• Stage 2: Average the inertial sensor measurements (specific force, angular velocity) from Xsens 

MTi-G which are time-valid at epochs instead of being valid over time intervals, as required 

by the inertial navigation equations. The time of validity for inertial sensor measurement 

required by the applicable inertial navigation equations is discussed in Section 2.2.2 and 

illustrated in Figure 2.8. The average inertial sensor measurements, specific force 
b

ib kf  and 

angular velocity 
b

ib kω  at epoch k are: 

1
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
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(6.1) 

noting that for the first epoch (k=1) the average inertial sensor measurements are equal to the 

non-averaged ones. 
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• Stage 3: Calculate the inertial navigation solution for position in curvilinear form, i.e. latitude, 

bL (rad), longitude, b (rad), and height, bh   (m); the velocity solution, denoted with 

T

, , ,
n n n n
eb eb N eb E eb Dv v v 

 
v  (units in m/s) and the attitude solution, denoted with

n
bC . This 

is done by applying the described method and implemented Matlab function 

“Nav_equations_NED”  from [3], noting that this Matlab function is also provided in the 

accompanying CD of the thesis.  

• Stage 4: Convert the inertial navigation solution to LTP resolving axes, in two (sub)stages:  

a. the first one encompasses converting the inertial navigation solution into Cartesian ECEF 

frame resolving axes, by applying the described method in , from Eq. (B.2) to Eq. (B.6), based 

on the implemented Matlab function “NED_to_ECEF” from [3], which is provided in the 

accompanying CD of the thesis, and 

b. the second one encompasses converting the navigation solution from ECEF to LTP 

resolving axes, by applying the described method in Appendix B, from Eq. (B.26) to Eq. (B.30), 

implemented in Matlab function “ECEF_to_LTP”, which is provided in the accompanying 

CD of the thesis. The final output of this stage is the position vector
l
lbr , velocity vector 

l
lbv

and attitude CTM
l
bC . 

• Stage 5: Rotate the position and velocity vectors (fed into the SGCTLs) on the horizontal plane 

in order to align the motion along the forward direction with the Northings, and motion along 

the right direction with the Eastings. As forward motion direction is considered the vector 

from the start to the end positions for a straight walking path (without a U-turn), and the 

vector from the start to the point with the maximum Northing for a U-turn walking path, as 

illustrated in Figure 6.1, noting that this analysis uses the Xsens MTi-G integrated position 

solutions (Option “A”) which do not drift, due to the applicable GPS updates. The rotation 

of the position and velocity solutions on the horizontal plan is applied by rotating the 

integrated position solution trajectory 0.01° anti-clockwise, until the start and end points (for 

paths without a U-turn) or the start and maximum Northing points (for paths with a U-turn, 

as the one illustrated in Figure 6.1) have an Eastings’ difference less than 10cm. This process 

is implemented in Matlab function “CreateRealMotionDataStruct”, provided in Appendix F 

with the accompanying CD of the thesis.  
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Figure 6.1. Rotation example 
 

The final calculated (inertial) position and velocity solutions are referred as “real motion” in 

the remainder of this thesis. By aligning the MoCap Forward and Right direction with the Northings’ 

and Eastings’ LTP axes, each component of the (final) position vector 
T

, , ,
l l l l
lb lb F lb R lb Dr r r 

 
r

and the velocity vector 
T

, , ,
l l l l
lb lb F lb R lb Dv v v 

 
v refers to Forward, Right and Down direction 

(“FRD”), which readily provide the LOS motion w.r.t. three hypothetical static satellites placed along 

the FRD axes (assumed to be at an appropriate distance from the body-frame, i.e. exceeding the 

maximum magnitudes of the position components along each FRD direction). It is also important to 

note that this process is not required for the synthetic motion from the PMM, as they are readily 

output referenced and resolved to LTP axes which are aligned with the FRD directions. 

The calculated inertial position and velocity solutions (Option “C”) do not introduce artefacts 

in terms of false frequency locks (see Figure 6.2) to the simulated GNSS frequency lock loop 

(SGFLL), as the ones observed for options “A” and “B”, which are illustrated in Figure B.1 and 

Figure B.4, respectively, in Appendix B. Therefore, it is appropriate to use the calculated inertial 

navigation solution using method “C” for driving the SGCTLs. A disadvantage of the inertial 

navigation solution is that the position, velocity and attitude solutions drift, due to the accumulated 

errors from the inertial sensors, as explained in Section 2.2.2. However, for the purposes of this 

thesis, it is more important to drive the SGCTLs using LOS motion which does not introduce any 

artefacts, due to the GPS-induced transients (see Section 3.2). A proposed method for combining the 

advantages of the inertial navigation solution (transients-free) with the integrated navigation solution 
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(drift-free) is presented in Appendix B, noting that it requires further qualification, as discussed in 

future work Chapter 6. 

 

Figure 6.2. Real motion (inertial navigation solution, – subscript “C”) results to SGFLL example, 
without any observed artefacts. 

 Analytical method for real motion impact assessment on the SGCTLs 

Section 6.1.1 described the process of processing the MoCap data in order to generate the LOS 

motion profiles required to drive the SGCTLs (see Sections 4.2 and 4.3). This section describes the 

analytical method for assessing the effect of the MoCap and synthetic motion profiles SGCTLs, in 

order to answer which types of real motion affect most the performance of the SGCTLs, and validate 

the PMM in terms of comparing the effects of the synthetic motion to the real one. The list of 

analysed MoCap scenarios is presented in Table 3.2. The analysis in this section addresses the first 

research question of the thesis, discussed in Section 1.2, i.e. which are the key aspects of pedestrian 

motion that affect the performance of GNSS equipment. 

The analysis of this section encompasses feeding the real MoCap data, i.e. the inertial position 

and the static test scenario (control data) into the simulated GNSS carrier-tracking loops (SGCTLs). 

The static test case scenario is the same one used for the validation of the SGCTLs, in Section 4.4, 

noting that the acronym “SGCTLs” encompasses a simulated GNSS phase lock loop (SGPLL) and 

a simulated GNSS frequency lock loop (SGFLL), in order to investigate the errors induced in terms 

of cycle slips (for SGPLL only) and frequency false locks (both for SGPLL and SGFLL).  

The result from each MCS, i.e. using the SGCTLs for a given effective bandwidth BL and 

C/N0, is a scalar 
 0, /LB C N

q , which represents the relative frequency of cycle slip/false frequency 

lock occurrences across the epochs of a given input motion profile, i.e. the ratio of the total number 
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of cycle slips detected for a given motion profile, over the total number of epochs minus one, as the 

tracking error at the first epoch is initialised (see Sections 4.2 and 4.3) in way that does not cause a 

cycle slip. Please also note that 0q  , as the q  values express relative frequency which is a non-

negative quantity. The total count is then divided by the number of epochs of a given MoCap profile 

i in order to provide the relative frequency: 
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(6.2) 

noting that the q  superscripts: “PLL,PT” and “FLL,FT”, denote PLL phase-tracking and FLL 

frequency-tracking, respectively. The “S” subscript denotes the static case scenario, and “RM,i” or 

“PMM,i” subscripts denote a real or synthetic, respectively, motion scenario with index i, which 

follows the indexing of MoCap scenarios from Table 3.2. The “LOS” subscript denotes the line-of-

sight towards the simulated static satellites, along the forward “F”, right “R” or down “D” directions. 

N is the number of epochs that exhibited tracking slips (cycle slips or false frequency locks), with 

“PLL,cs” and “FLL,ffl” subscripts denoting PLL cycle slips and FLL false frequency locks, 

respectively. Also, m is the number of epochs of the real motion scenario i and n the number of 

simulation runs in each Monte-Carlo set of (BL, C/N0) parameters. The meaning of (m-1) in the 

denominator is that the first epoch is excluded from the total count of epochs as the pre-defined 

initial phase/frequency tracking errors in the SGCTLs (phase and frequency, see Sections 4.2 and 

4.3) do not introduce cycle slips or frequency false locks to the SGCTLs. Unless otherwise specified, 

the subscript indexes (BL, C/N0) have been removed from the notations in the remainder of this 

chapter, for readability purposes.  
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 To facilitate the analysis in this section and provide results independent of the particular 

choice of the LOS (forward “F”, right “R” or down “D”) between the sensor and the simulated 

(static) satellite, the 3D equivalent of the q elements in Eq. (6.2) was calculated, e.g. for the SGPLL 

phase tracking for a static test case scenario, without loss of generality, i.e. it applies also to SGPLL 

and SGFLL frequency-tracking: 
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(6.3) 

Also, Eq. (6.3) assumes that the q  values, along each LOS for the static case scenario, are equal. 

Examples of the 
 0

,

, , /L

PLL PT

RM i B C N
q and 

 0

,

, , /L

FLL FT

RM i B C N
q elements are shown in Figure 6.3 and Figure 

6.4, respectively. It is worth noting that the It follows that the standard deviation (SD) of q’s (assumed 

to be statistically independent variables): 
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Figure 6.3. Relative frequency of cycle-slip occurrences on SGPLL (for all epochs and MCS 
runs), due to a real motion scenario (ID: 2), encompassing walking 30m in a straight line having 

the sensor in the pocket. 

 

Figure 6.4. Relative frequency of false frequency-lock occurrences on SGFLL (for all epochs 
and MCS runs), due to a real motion scenario (ID: 2), encompassing walking 30m in a straight 

line having the sensor in the pocket. 
 

Figure 6.3 and Figure 6.4 show that the SGPLL and SGFLL, respectively, can track pedestrian 

motion more effectively when both the effective bandwidth and C/N0 are high. However, the 

SGCTLs’ validation results presented in Section 4.4, show that under static conditions the SGCTLs 

exhibit more tracking noise at higher effective bandwidths (see Figure 4.4 and Figure 4.5.), and as a 
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result will exhibit more errors in terms of cycle slips and false frequency locks (see also Table 4.1 for 

minimum C/N0 levels).  

The difference q  is the tracking slip difference (encompassing cycle slips and false frequency 

locks, as appropriate), between the real motion scenario i (or synthetic motion scenario, where 

appropriate) and the static case scenario q values: 
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It follows, assuming that q’s are statistically independent variables that the standard deviation 

(SD) of q is equal to the root of the squares sum of the SDs of 
,PLL PT

Sq , and 
,

,

PLL PT

RM iq (or 
,
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PMM iq , 

as appropriate), noting that the SD is calculated separately for each row q , i.e. for each simulated 

effective bandwidth: 
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(6.6) 

Therefore, if the tracking slip difference q  exceeds three times the SD σ(Δq), the motion 

scenario is considered to have introduced significant dynamic stress to the SGCTLs, at a confidence 

level of 99.7%, under the assumption that the q  distribution is Gaussian. It follows that if the 

tracking slip difference q  exceeds more than 0.6745 times the SD σ(Δq), defined as tolerance qT , 

then the motion scenario has introduced significant dynamic stress to the SGCTLs, at a confidence 

level above a 50% level:  
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(6.7) 

The metric M used to represent the effect of each MoCap scenario on the SGCTLs, is: 
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 (6.8) 

where 
,

, /

PLL PT

RM i SM  and
,

, /

FLL FT

RM i SM , follow the same superscript and subscript notation as for q . The 

BPLL (SGPLL effective bandwidths’) set is equal to {5,10,15,20}Hz and the BFLL (SGFLL effective 

bandwidths’) set is equal to {1,2,5,10}Hz. The CPLL and CFLL are defined, following the discussion 

in Sections 4.4.1 and 4.4.2, respectively, which provided the C/N0 values where the SGCTLs’ tracking 

noise exceeded the factor-of-two set threshold of the simulated over the theoretical tracking noise 

SDs’ ratio, with the results summarised in Table 4.1. 

In addition to the relative frequency of cycle slips q elements, calculated from the SGPLL via 

Eq. (6.2), it is useful to define a metric corresponding to the percentage of MCS runs which exhibit 

at least one cycle slip: 
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(6.9) 

where ,ca k  is the phase tracking error (rad) at epoch k (within a specific MCS run j) and observing 

that function f evaluates to unity (when non-zero) only if ,

2
ca k


  , which is the cycle-slip 
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detection criterion used in Section 4.2. To help illustrate Eq. (6.9), it is useful to consider the phase 

tracking error elements of the matrix: 
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noting that this matrix corresponds to a single MCS for a pair of simulated effective bandwidth BPLL 

and C/N0 parameters, with the rows (indexed with k, total number is m) referring to the epochs of 

the input motion (subscripts “RM,i”, “PMM,i” for real and synthetic motion, respectively) or static 

(subscript “S”) profiles, and with the columns (indexed with j, total number is n) referring to the 

number of MCS runs, i.e. one run per each added pseudorandom Matlab sequence, as discussed in 

Section 4.2.  

Similarly, we can define the percentage of MCS runs per (BFLL, C/N0), which exhibit at least 

one false frequency lock: 
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(6.11) 

where ,ca kf  the frequency tracking error (Hz) at epoch k (within a specific MCS run j), and noting 

that function g evaluates to unity (when non-zero) only if ,
1

4
ca kf






 , with  (s) the correlator’s 

accumulation time interval, discussed in Section 4.3. 

The average p values for PLL phase-tracking and FLL frequency-tracking will then be: 
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(6.12) 

Figure 6.5 illustrates the calculated  
,

,2

PLL PT

RMp  metric, showing the percentage of the MCS runs 

(1,000 runs in total), for which at least one cycle slip was observed on the SGPLL, in the presence of 

a motion scenario (ID:2) encompassing walking 30m in a straight line having the sensor in the pocket.   

Figure 6.6 

 

Figure 6.5. Percentage of real motion-induced cycle slips on SGPLL (per MCS run – 1,000 in 
total), for a real motion profile (ID: 2) encompassing walking 30m in a straight line having the 

sensor in the pocket. 
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Figure 6.6 illustrates the calculated  
,

,2

FLL FT

RMp  metric, showing the percentage of the MCS runs 

(1,000 runs in total), for which at least one false frequency lock was observed on the SGFLL, in the 

presence of a motion scenario (ID: 2) encompassing walking 30m in a straight line having the sensor 

in the pocket.  

 

Figure 6.6. Percentage of real motion-induced false frequency locks on SGFLL (per MCS run – 
1,000 in total), for a real motion profile (ID: 2) encompassing walking 30m in a straight line 

having the sensor in the pocket. 
 

The results between p and q metrics are very similar, as shown in Figure 6.3 and Figure 6.4, as 

well as Figure 6.5 and Figure 6.6. It is worth noting that the p metrics are typically higher than the q 

metrics, as Figure 6.5 and Figure 6.6 illustrate. This is due to the fact that even one tracking slip over 

the whole motion profile can cause the whole MCS run to be characterised as affected by tracking 

slips, and cause function f  in Eq. (6.9) and g in Eq. (6.11) to evaluate to unity, instead of zero. 

An extreme example would be to observe one tracking slip on each MCS run (1,000 runs in total), so 

the p metric would be unity (i.e. 100% of the 1,000 MCS runs are affected by at least one tracking 

slip), but the relative frequency, calculated via Eq. (6.2), would be divided by the number of epochs 

(minus one), multiplied by the number of runs, so e.g. for a motion profile of 2,001 epochs the q 

metric would be 1,000/(1,000x2000) = 0.05%. However, such extreme cases have not been observed 

in the analysed MoCap data. 

The difference of p metrics between the real (or synthetic) motion and the static test case, will 

then be: 
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(6.13) 

 The chapter continues with the presentation of the effects of the real motion on the SGCTLs, 

employing the methods and metrics discussed in this section.  

6.2 Real Motion Effect on GNSS Carrier-tracking 

 Real motion effect on SGPLL phase-tracking 

The SGPLL phase-tracking 
,

, /

PLL PT

RM i SM  metrics for all MoCap scenarios, are presented in Table 6.1, 

between the third and the 6th columns, for each of the simulated effective bandwidths (5Hz, 10Hz, 

15Hz and 20Hz, respectively). These represent the significance of the real motion-induced dynamic 

stress on the SGPLL. The first column provides a brief description of the specific MoCap profile 

and the second column the MoCap scenario ID (representing the i subscript of the metrics’ notation). 

This indexing is the same as the one used in Table 3.2, which describes in more detail   the 

encompassed motion in the MoCap scenarios. The “Sum” (in 7th) column shows the sum of the 

metrics for individual SGPLL effective bandwidths, in descending order, i.e. the motion scenarios 

inducing the most significant dynamics stress on the SGPLL, appear on the top of the table. Each 

individual metric per bandwidth value, is the area between the respective (solid coloured) lines and 

the threshold (dotted black) line in Figure 6.7. The “Sum” column is the total sum of these 

metrics/areas showing the performance of the SGPLL across different bandwidths for that specific 

input MoCap scenario. The number in the brackets (in the “Sum” column) shows the percentile rank 

of the sum of metrics. The asterisk in the MoCap scenario ID column denotes which MoCap 

scenarios have been simulated by the PMM, with their results presented in Section 6.3. 

The results in Table 6.1 show that motion profiles encompassing walking with U-turns and 

gestures (“answer the phone” and “send a text/email”) are above the 75th percentile, with the top 

two motion profiles (above the 98th percentile) encompassing a “send a text/email” gesture. Also, 

above the 75th percentile is the MoCap scenario representing an “answer the phone” gesture for 

walking without U-turns. The motion profiles with the least significant impact on the SGPLL (lower 

45th percentile) include walking with the sensor held by hand, or having the sensor inside a back-pack 

or attached on the upper arm with an arm-band, with the latter two scenarios being on the lower 11th 

percentile. 



 

143 

 

 Figure 6.7 illustrates the results summarised in Table 6.1. The horizontal axis shows the 

simulated C/N0 (dB-Hz) values, and the coloured lines the different SGPLL effective bandwidths. 

The coloured lines are truncated for lower C/N0 values, following the analysis in Section 4.4.1 and 

the minimum C/N0 thresholds from Table 4.1, which shows the level at which the tracking noise 

would induce significant stress on the SGPLL, in other words, the real motion-induced cycle slips 

would be shadowed by the dominant tracking noise below those minimum C/N0 thresholds. The 

vertical axis represents the significance of the real motion-induced dynamic stress on the SGPLL, in 

terms of the ratio between the 
,

, /

PLL PT

RM i Sq  metrics and the respective standard deviation (SD), i.e. 

 ,

, /

PLL PT

RM i Sq  . The black dotted line in the subplots of Figure 6.7 represents the 50% confidence 

level (CL), i.e. when the 
,

, /

PLL PT

RM i Sq is higher than at 0.6745 SDs, following Eq. (6.7).  

The results in Figure 6.7 show that all MoCap scenarios had a significant impact on the SGPLL 

(above 3SDs, i.e. 99.7% CL) for a 5Hz effective bandwidth, except for walking with the sensor held 

by hand (MoCap ID:1) above a C/N0 of 38dB-Hz and walking with the sensor inside a back-pack 

(MoCap ID: 3) or attached on the upper arm with an arm-band (MoCap ID: 4). For a 10Hz effective 

bandwidth, the real motion profiles did not introduce significant dynamic stress (above the 50% CL 

threshold – denoted with the black dotted line), except for walking with the sensor inside the pocket 

(MoCap ID: 2), jogging with the sensor held by hand (MoCap ID: 11) or inside a pocket (MoCap ID: 

12). In addition, real motion profiles which introduced significant dynamic stress on the SGPLL 

(above a 50% CL), encompass walking with the sensor inside a pocket and perform an “answer the 

phone gesture” (MoCap ID: 8) below a C/N0 of 32dB-Hz, or a “send a text/email” gesture (MoCap 

ID: 10), at a 31dB-Hz C/N0; and also, walking and performing a U-turn with the sensor in the pocket, 

without gestures (MoCap ID: 14) for a C/N0 below 35dB-Hz, or with a gesture, “send a text/email” 

(MoCap ID:17) or “answer the phone” (MoCap ID: 18), both for a C/N0 below 30dB-Hz. 

For higher effective bandwidths, i.e. 15Hz and 20Hz, the results in Figure 6.7 show that the 

real motion did not have a significant impact on the SGPLL, as the ratio in the vertical axis was below 

the 50% CL line for all MoCap scenarios for all applicable C/N0 values, with the 20Hz bandwidth 

results below a 1% CL threshold (not illustrated as a line in Figure 6.7). The maximum real motion 

induced dynamic stress significance levels for a 15Hz effective bandwidth (below the 50% CL), are 

observed at 30dB-Hz C/N0, for MoCap scenarios encompassing walking with the sensor inside the 

pocket and performing a U-turn (MoCap ID: 14), with a ratio of 0.35 (27.3% CL), the same motion 

profile without a U-turn (MoCap ID: 2) with a ratio of 0.27 (24.4% CL), and also, jogging with the 

sensor held by hand (MoCap ID: 11) or inside the pocket (MoCap ID: 12), with ratios 0.32 (25.1% 

CL) and 0.345 (27% CL), respectively.  
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Brief  

MoCap Scenario  

Description 

MoCap 

Scenario ID 

(i) 

SGPLL Phase-tracking 

,

, /

PLL PT

RM i SM  Sum of metrics 

and 

(percentile rank) BPLL (Hz) 

5 10 15 20 

Walk 15m; sensor in pocket, “send a 

text/email”; U-turn 
17 145.3 3.4 0.1 0 148.7 (100) 

Walk 15m; sensor in hand, “send a 

text/email”; U-turn 
16* 146.2 0.2 0 0 146.4 (98) 

Walk 15m; sensor in pocket, “answer the 

phone”; U-turn 
18 137.2 6.2 0.1 0 143.5 (97) 

Walk 15m; sensor in pocket, “answer the 

phone” 
8 136.1 5.5 0.1 0 141.6 (95) 

Walk 15m; sensor in hand, “send a 

text/email” 
9* 116.9 0.1 0 0 117 (79) 

Walk 15m; sensor in hand, “answer the 

phone”; U-turn 
15* 111 0.1 0 0 111.1 (75) 

Jog; sensor in pocket 12 88.7 18.4 0.6 0 107.7 (72) 

Walk 10m; sensor in hand, “answer the 

phone” 
5* 106.8 0.2 0 0 107 (72) 

Walk; sensor in pocket; U-turn 14 86.9 14.2 0.8 0 101.8 (68) 

Walk 10m; sensor in pocket, “answer the 

phone” 
6 93 7.3 0.1 0 100.4 (68) 

Walk; sensor in pocket 2 79.6 18 0.5 0 98.1 (66) 

Walk 15m; sensor in pocket, “send a 

text/email” 
10 87.8 6.5 0.1 0 94.4 (63) 

Walk; sensor in hand; U-turn 13* 92.3 0 0 0 92.3 (62) 

Walk 15m; sensor in hand, “answer the 

phone” 
7* 89.7 0.4 0 0 90.2 (61) 

Jog; sensor in hand 11 72.7 16.5 0.6 0 89.7 (60) 

Walk; sensor in hand 1* 66.6 0 0 0 66.6 (45) 

Walk; sensor in back-pack 3 16.2 0.5 0 0 16.7 (11) 

Walk; sensor in arm-band 4 12.6 0 0 0 12.6 (8) 

Table 6.1. Metrics for real motion scenarios’ effect on the SGPLL 
 

In addition to the real motion-induced dynamic stress significance ratios’ results, Figure 6.8 

shows the percentage of real motion-induced cycle slips (per MCS) on the SGPLL, i.e. the p  metrics 

defined in Eq. (6.9). The black dotted line shows the p  level where 50% of the MCS runs (1,000 in 

total) exhibit at least one cycle slip. The results show that for an effective bandwidth of 20Hz, the 

real motion scenarios did not introduce any significant dynamic stress on the SGPLL, with Δp<1%, 
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for all C/N0 values, noting that the same effect applies for a 15Hz effective bandwidth, for all C/N0 

values above 34dB-Hz. The maximum p  metrics for a 15Hz effective bandwidth (with Δp<50%, 

i.e. below the 50% threshold), are observed at 30dB-Hz C/N0, for MoCap scenarios encompassing 

walking with the sensor inside the pocket and performing a U-turn (MoCap ID: 14), with Δp<31.5%, 

the same motion profile without a U-turn (MoCap ID: 2) with Δp=18.7%, and also, jogging with the 

sensor held by hand (MoCap ID: 11) or inside the pocket (MoCap ID: 12), with p  metrics at 25.2% 

and 25.4%, respectively.  

For an effective bandwidth of 10Hz, the results in Figure 6.8 show that the Δp metric is 

inversely proportional to the C/N0, with most MoCap profiles not introducing dynamic stress on the 

SGPLL above Δp=60%, at a C/N0 level of 29dB-Hz, except for motion profiles encompassing 

walking with the sensor inside the pocket (MoCap ID: 2) where Δp=67.1%; jogging with the sensor 

held by hand (MoCap ID: 11) or inside the pocket (MoCap ID: 12), with p  metrics at 67% and 

63.1%, respectively; and also, walking with the sensor inside the pocket and performing a U-turn 

(MoCap ID: 14), with Δp=68.9%. Finally, for an effective bandwidth of 5Hz, the results in Figure 

6.8 show that real motion introduced significant dynamic stress on the SGPLL, with Δp>97% for 

MoCap scenarios encompassing walking (without making a U-turn) holding the sensor and 

performing an “answer the phone” gesture (MoCap ID: 5); walking with the sensor in the pocket and 

performing an “answer the phone” gesture (MoCap ID: 8); walking holding the sensor and 

performing an “send a text/email” gesture (MoCap ID: 9); walking (making a U-turn) holding the 

sensor and performing an “send a text/email” gesture (MoCap ID: 16); walking (making a U-turn) 

having the sensor inside the pocket, and performing an “send a text/email” gesture (MoCap ID: 17), 

or an “answer the phone” gesture (MoCap ID: 18). 

This section (6.2) continues with the presentation of the real motion effect on the simulated 

GNSS frequency lock loop (SGFLL). A summary of the results presented in this (sub)section, as well 

as recommendations deriving from these results, are discussed in Section 6.4. 
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Figure 6.7. Real motion-induced dynamic stress significance on the SGPLL 
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Figure 6.8. Percentage of real motion-induced cycle slips (per MCS) on the SGPLL 
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 Real motion effect on SGFLL frequency-tracking 

The SGFLL frequency-tracking 
,

, /

PLL PT

RM i SM  metrics for all MoCap scenarios, are presented in Table 6.2, 

between the third and the 6th columns, for each of the simulated effective bandwidths (1Hz, 2Hz, 

5Hz and 10Hz, respectively). These represent the significance of the real motion-induced dynamic 

stress on the SGFLL. The first column provides a brief description of the specific MoCap profile 

and the second column the MoCap scenario ID (representing the i subscript of the metrics’ notation). 

This indexing is the same as the one used in Table 3.2, which describes in more detail the 

encompassed motion in the MoCap scenarios. The “Sum” (in 7th) column shows the sum of the 

metrics for individual SGFLL effective bandwidths, in descending order, i.e. the motion scenarios 

inducing the most significant dynamics stress on the SGFLL, appear on the top of the table. Each 

individual metric per bandwidth value, is the area between the respective (solid coloured) lines and 

the threshold (dotted black) line in Figure 6.9. The “Sum” column is the total sum of these 

metrics/areas showing the performance of the SGFLL across different bandwidths for that specific 

input MoCap scenario. The number in the brackets (in the “Sum” column) shows the percentile rank 

of the sum of metrics. 

The results in Table 6.2 show that motion profiles which cause the most significant disruption 

due to dynamics stress on the SGFLL, above the 69th percentile, encompass walking with the sensor 

in the pocket and making a U-turn, without performing any gestures (100th percentile), or performing 

a “send a text/email” gesture (77th percentile) or an “answer the phone” gesture (69th percentile), as 

well as walking with the sensor held by hand and making a U-turn, without performing any gestures 

(95th percentile), or performing an “answer the phone” gesture (92nd percentile). The motion 

scenarios causing the least significant disruption due to dynamics stress on the SGFLL, below the 

25th percentile, encompass walking holding the sensor by hand without performing any gestures (25th 

percentile) or performing an “answer the phone” gesture (17th percentile); walking having the sensor 

attached on the upper arm with an arm-band (16th percentile); walking with the sensor inside a pocket 

and performing an “answer the phone” gesture (13th percentile); walking having the sensor inside a 

back-pack (11th percentile); and jogging having the sensor inside the pocket (6th percentile) or held by 

hand (first percentile). 

Figure 6.9 illustrates the results summarised in in Table 6.2. The horizontal axis shows the 

simulated C/N0 (dB-Hz) values, and the coloured lines the different SGFLL effective bandwidths. 

The coloured lines are truncated for lower C/N0 values, following the analysis in Section 4.4.1 and 

the minimum C/N0 thresholds from Table 4.1, which shows the level at which the tracking noise 

would induce significant stress on the SGFLL, in other words, the real motion-induced false 

frequency locks would be shadowed by the dominant tracking noise below those minimum C/N0 
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thresholds. The vertical axis represents the significance of the real motion-induced dynamic stress on 

the SGFLL, in terms of the ratio between the 
,

, /

FLL FT

RM i Sq  metrics and the respective standard deviation 

(SD), i.e.  ,

, /

FLL FT

RM i Sq  . The black dotted line in the subplots of Figure 6.9 represents the 50% 

confidence level (CL), i.e. when the  ,

, /

FLL FT

RM i Sq  is higher than at 0.6745 SDs, following Eq. (6.7).  

Brief  

MoCap Scenario  

Description 

MoCap 

Scenario ID 

(i) 

SGFLL Frequency-tracking 

,

, /

FLL FT

RM i SM  
Sum of metrics 

and 

(percentile 

rank) 
BFLL (Hz) 

1 2 5 10 

Walk; sensor in pocket; U-turn 14 129.2 92.9 4.6 0.1 226.8 (100) 

Walk; sensor in hand; U-turn 13 126.7 86 1.7 0 214.5 (95) 

Walk 15m; sensor in hand, 

“answer the phone”; U-turn 
15 121.5 84 2.9 0.1 208.4 (92) 

Walk 15m; sensor in pocket, 

“send a text/email”; U-turn 
17 114.3 59 1.4 0 174.8 (77) 

Walk 15m; sensor in pocket, 

“answer the phone”; U-turn 
18 93.3 60 2.9 0.1 156.3 (69) 

Walk; sensor in pocket 2 60.1 36.1 2.5 0.1 98.8 (44) 

Walk 15m; sensor in hand, 

“send a text/email”; U-turn 
16 54.7 31.8 1.1 0.1 87.7 (39) 

Walk 15m; sensor in hand, 

“send a text/email” 
9 49.8 35.2 2.4 0.1 87.4 (39) 

Walk 10m; sensor in hand, 

“answer the phone” 
5 47.7 22.2 1.1 0 71 (31) 

Walk 10m; sensor in pocket, 

“answer the phone” 
6 38.1 26.1 1.5 0.1 65.8 (29) 

Walk 15m; sensor in pocket, 

“send a text/email” 
10 38.2 24.8 0.5 0.1 63.6 (28) 

Walk; sensor in hand 1 33.3 21.4 0.9 0.1 55.7 (25) 

Walk 15m; sensor in hand, 

“answer the phone” 
7 23.9 15.3 0.4 0 39.5 (17) 

Walk; sensor in arm-band 4 22.3 13.6 0.9 0.1 36.9 (16) 

Walk 15m; sensor in pocket, 

“answer the phone” 
8 19.6 10 0.8 0.1 30.4 (13) 

Walk; sensor in back-pack 3 19.9 4.3 0.2 0 24.4 (11) 

Jog; sensor in pocket 12 7 4.4 1.4 0.2 13 (6) 

Jog; sensor in hand 11 0 0.2 0.9 0.2 1.3 (1) 

Table 6.2. Metrics for real motion scenarios’ effect on the SGFLL 
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The results in Figure 6.9 show that when a 1Hz SGFLL bandwidth is employed, real motion 

cause significant disruption due to dynamic stress on the SGFLL, above a  , ,

, / , /

FLL FT FLL FT

RM i S RM i Sq q 

ratio of 2 (i.e. 95% CL) for all C/N0 values and MoCap scenarios, except for jogging with the sensor 

held by hand (MoCap ID: 11) or inside the pocket (MoCap ID: 12). More specifically the ratio is 

above 3 except for real motion scenarios encompassing walking with the sensor inside a back-pack 

(MoCap ID: 3) with a ratio of 2; walking with the sensor attached on the upper arm with an arm-

band (MoCap ID: 4), with a ratio of 2.2; walking with the sensor held by hand and performing an 

“answer the phone” gesture (MoCap ID: 7) with a ratio of 2.4; and walking with the sensor inside the 

pocket and performing an “answer the phone” gesture (MoCap ID: 8) with a ratio of 2. For a 2Hz 

SGFLL effective bandwidth, all real motion profiles cause significant disruption due to dynamic stress 

on the SGFLL, above a  , ,

, / , /

FLL FT FLL FT

RM i S RM i Sq q  ratio of 0.6745 (i.e. 50% CL), except for scenarios 

which include walking with the sensor inside a back-pack (MoCap ID: 3); jogging with the sensor 

held by hand (MoCap ID: 11) or inside the pocket (MoCap ID: 12); and walking with the sensor 

inside the pocket and performing an “answer the phone” gesture (MoCap ID: 8), for C/N0 values up 

to 28dB-Hz. 

For a 5Hz SGFLL bandwidth, the results show that the significance of the real motion 

disruption (due to dynamics stress) on the SGFLL, never exceeds the 0.6745 ratio (i.e. 50% CL, 

denoted with the black dotted line in in Figure 6.9), for all MoCap scenarios, except for walking with 

the sensor inside the pocket (MoCap ID: 2) at a 25dB-Hz C/N0; walking holding the sensor and 

performing an “send a text/email” gesture (MoCap ID: 9) at a 25dB-Hz C/N0; walking with the 

sensor held by hand and performing a U-turn (MoCap ID: 13) at a 25dB-Hz C/N0; walking with the 

sensor inside the pocket and performing a U-turn (MoCap ID: 14) between 25dB-Hz and 27dB-Hz 

C/N0; walking (making a U-turn) with the sensor held by hand, performing an “answer the phone” 

gesture (MoCap ID: 15) at a 25dB-Hz and a 26dB-Hz C/N0; and walking (making a U-turn) having 

the sensor inside the pocket, and performing an “send a text/email” gesture (MoCap ID: 17) at a 

25dB-Hz and a 26dB-Hz C/N0. The significance ratio  , ,

, / , /

FLL FT FLL FT

RM i S RM i Sq q   of real motion 

disruption on the SGFLL for a 10Hz effective bandwidth, is below 0.6745 (i.e. 50% CL) for all 

MoCap scenarios tested with the SGFLL. The maximum value, below the 50% CL level, is observed 

for the motion profile encompassing jogging with the sensor inside the pocket (MoCap ID: 12), with 

a ratio of 0.1493 (i.e. 11.9% CL) at a 25dB-Hz C/N0. 

Further to the real motion-induced dynamic stress significance ratios’ results, Figure 6.10 

shows the percentage of real motion-induced false frequency locks (per MCS) on the SGFLL, i.e. the 

p  metrics defined in Eq. (6.9). The black dotted line shows the p  level where 50% of the MCS 
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runs (1,000 in total) exhibit at least one false frequency lock. It must be noted that, when the (blue) 

line representing the 1Hz effective bandwidth is not visible in Figure 6.10, it is hidden behind the 

(red) line representing the 2Hz bandwidth. The results show that the MoCap scenarios do not cause 

disruption to the SGFLL due to dynamic stress, at a ratio  , ,

, / , /

FLL FT FLL FT

RM i S RM i Sq q  above 0.05 (i.e. 

4% CL), above a 31dB-Hz C/N0 for an effective bandwidth of 5Hz, and for all C/N0 values when a 

10Hz SGFLL bandwidth is simulated. 

The chapter continues with detailing the synthetic motion effect on the simulated GNSS phase 

lock loop (SGPLL). A summary of the results presented in this (sub)section, as well as 

recommendations deriving from these results, are discussed in Section 6.4. 
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Figure 6.9. Real motion-induced dynamic stress significance on the SGFLL 
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Figure 6.10. Percentage of real motion-induced false frequency locks (per MCS) on the SGFLL  
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6.3 Synthetic Motion Effect on GNSS Carrier Phase-tracking 

This section presents the synthetic motion effect on the simulated GNSS carrier-tracking loop 

(SGPLL), and compares this to the real motion in order to validate, or not, the pedestrian motion 

model (described in Chapter 5). The analysis of this section addresses the second research question 

of the thesis, discussed in Section 1.2, i.e. which is the best way to generate a pedestrian motion model 

for simulation testing of GNSS equipment.  

Table 6.3 shows the simulated MoCap scenarios by the PMM, with a brief description of the 

encompassed motion and their ID (i notation), in the first and second columns, respectively. The 

third up to the 6th columns show the metrics of the synthetic motion 
,

, /

PLL PT

PMM i SM  (for each SGPLL 

bandwidth), calculated using Eq. (6.8) in Section 6.1.2, noting that the real motion metrics are shown 

in Table 6.1 of Section 6.2.1. The last column shows the ratio of the synthetic motion metrics’ sum 

over the real motion metrics’ sum (noting that for the real motion the metrics’ sum is shown in the 

last column of Table 6.1 in Section 6.2.1). A sum’s ratio of one means that the synthetic motion 

produced the same metrics’ sum as the real motion. A ratio below one means that the synthetic 

motion metrics’ sum is less than the real motion one, i.e. the synthetic motion underrepresents the 

effect of real motion on the SGPLL (for all effective bandwidths combined under this single metric). 

It follows that if the sum’s ratio is greater than one, the synthetic motion exaggerates the effect of 

the synthetic motion on the SGPLL, compared to the real motion effect. The results in Table 6.3 

show that the ratio is between 0.81 and 1.54, i.e. the synthetic motion output neither underrepresents 

nor exaggerates the real motion effect on the SGFLL, beyond these limits (which are less than a 

factor of two), for the simulated MoCap scenarios. 

To produce the results in Table 6.3, the PMM output, i.e. the position and velocity of the 

sensor body-frame projected along the LOS between three simulated static satellites, has been 

smoothed using the central difference method, following Eq. (5.1) explained in Section 5.2. The 

smoothing effect is illustrated in Figure 6.11 for the height solution of the MoCap scenario 

encompassing walking for 15m and performing an “answer the phone” gesture (MoCap ID: 15). The 

blue and orange lines in Figure 6.11 illustrate the height solution before and after applying the central 

difference method 500 times. The height of the simulated pedestrian is set to 1.8m, following the 

human biomechanical model definition, described in Section 5.3. 
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Brief  

MoCap Scenario  

Description 

MoCap 

Scenario ID 

(i) 

SGPLL Phase-tracking 

,

, /

PLL PT

PMM i SM  

Synthetic motion 

metrics’ Sum 

over the Real 

motion metrics’ 

Sum ratio 

BPLL (Hz) 

5 10 15 20 

Walk; sensor in hand 1 69.5 23.1 1 0 1.41 

Walk 10m; sensor in hand, “answer the 

phone” 
5 140.2 22.8 1.6 0 1.54 

Walk 15m; sensor in hand, “answer the 

phone” 
7 130.2 23 1.4 0 1.71 

Walk 15m; sensor in hand, “send a 

text/email” 
9 84.1 23.2 1.2 0 0.93 

Walk; sensor in hand; U-turn 13 78.9 22.2 1 0 1.11 

Walk 15m; sensor in hand, “answer the 

phone”; U-turn 
15 143 21.9 1.2 0 1.50 

Walk 15m; sensor in hand, “send a 

text/email”; U-turn 
16 95.3 22.2 1.2 0 0.81 

Table 6.3. Difference and ratio of the real and synthetic (smoothed) motion scenarios’ metrics, 
representing their effect on the SGPLL 

 

 

Figure 6.11. Effect of smoothing on PMM position solution output, using the central difference 
method (applied 500 times). 

 

Figure 6.12 illustrates the results summarised in Table 6.3. The horizontal axis shows the 

simulated C/N0 (dB-Hz) values, and the coloured lines the different SGPLL effective bandwidths. 

The coloured lines are truncated for lower C/N0 values, following the analysis in Section 4.4.1 and 
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the minimum C/N0 thresholds from Table 4.1, which shows the level at which the tracking noise 

would induce significant stress on the SGPLL, in other words, the synthetic motion-induced cycle 

slips might be shadowed by the dominant tracking noise below those minimum C/N0 thresholds. 

The vertical axis represents the significance of the synthetic motion-induced dynamic stress on the 

SGPLL, in terms of the ratio between the 
,

, /

PLL PT

PMM i Sq  metrics and the respective standard deviation 

(SD), i.e.  ,

, /

PLL PT

PMM i Sq  . The black dotted line in the subplots of Figure 6.12, represents the 50% 

confidence level (CL), i.e. when the 
,

, /

PLL PT

PMM i Sq is higher than at 0.6745 SDs, following Eq. (6.7). Also, 

Figure 6.13 (following the same illustration conventions as Figure 6.12), shows the 

 , ,

, / , /

PLL PT PLL PT

RM i S RM i Sq q   ratio for the real MoCap scenarios (i.e. only those simulated by the PMM) 

to facilitate the comparison between the synthetic and real motion results. 

The comparison between the synthetic (Figure 6.12) and real motion (Figure 6.13) significance 

metric  q q  , shows that the PMM output creates a similar effect to the real motion on the 

SGPLL when a 5Hz bandwidth is employed, by inducing significant dynamic stress to the SGPLL 

for all simulated scenarios and C/N0 values (similar to the real motion effect), above a significance 

ratio of 2.75 (i.e. 99.4% CL). For a 10Hz effective SGPLL bandwidth, the synthetic motion 

exaggerated the real motion profiles’ effect on the SGPLL, by increasing the significance ratio up to 

1.4 (i.e. 83.4% CL) compared to the real motion, for the applicable simulated scenarios and C/N0 

values. 

The results also show that for a 15Hz SGPLL bandwidth, the synthetic motion induces the 

same effect on the SGPLL as the real motion, i.e. it only increases the significance ratio by 0.05, i.e. 

a 4% CL, above a 37dB-Hz C/N0, which means that there is a 4% confidence level that the synthetic 

motion induced a significant dynamic stress (in addition to the one induced by the real motion). 

Finally, the comparison between the effect of the real and synthetic motion on the SGPLL for a 

20Hz effective bandwidth, shows that the synthetic motion induces an additional dynamic stress on 

the SGPLL of a level (ratio) below 0.02, i.e. there is 1.6% confidence that the synthetic motion 

produced a significant effect on the SGPLL, in addition to the real motion effect, for all simulated 

C/N0 values. 

In addition to the real motion-induced dynamic stress significance ratios’ results, Figure 6.14 

shows the percentage of real motion-induced cycle slips (per MCS) on the SGPLL, i.e. the p  metrics 

defined in Eq. (6.9), noting that to facilitate comparison with the real motion p  values, the latter 

are illustrated in Figure 6.15. The black dotted line shows the p  level where 50% of the MCS runs 

(1,000 in total) exhibit at least one cycle slip.  
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Figure 6.12. Synthetic motion-induced dynamics stress significance on SGPLL (for LOS motion 
smoothed 500 times, using the central difference method) 

 

Figure 6.13. Real motion-induced dynamics stress significance on SGPLL (shown for 
comparison against the synthetic motion results) 

 

The results show that for an effective bandwidth of 5Hz, the (smoothed) synthetic motion has 

a similar effect to the real motion on the SGPLL, for the simulated motion profile encompassing 

walking with the sensor held by hand and performing an “answer the phone” gesture, then 

performing a “put the phone down” gesture and stop (MoCap ID: 5). For a simulated motion profile 

encompassing walking holding the sensor by hand, the synthetic motion effect ( p value) is 0.11 
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higher (i.e. 8.8% CL) than the real motion p  value at a 29dB-Hz C/N0 and -0.23 (i.e. 18.5% CL) at 

a 45dB-Hz C/N0, i.e. there is a 18.5% confidence that the synthetic motion will underrepresent the 

real motion effect on the SGPLL at a 45dB-Hz C/N0. A simulated motion profile encompassing 

walking holding the sensor by hand and performing an “answer the phone gesture” (MoCap ID: 7), 

the synthetic motion p value is the same as the real motion one at a 29dB-Hz C/N0, but after this 

point, it exaggerates the effect of the real motion on the SGPLL, up to a p difference of 0.33 (25.9% 

CL) at a 45dB-Hz C/N0. The simulated motion profile which includes walking holding the sensor by 

hand and then performing a “send a text/email” gesture, shows small difference (less than 0.01 in 

p values) to the real motion p value up to a 29dB-Hz C/N0, but after that point it underrepresents 

the real motion effect up to a 0.37 difference in p values (28.6% CL) at a 45dB-Hz C/N0. 

 

Figure 6.14. Percentage of synthetic motion-induced cycle slips (per MCS) on the SGPLL 
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Figure 6.15. Percentage of real motion-induced cycle slips (per MCS) on the SGPLL (shown for 
comparison against the synthetic motion results) 

 

Furthermore, the simulated motion profile encompassing walking holding the sensor by hand 

and making a U-turn (MoCap ID: 13), represents accurately (with a Δp difference less than 0.02 – i.e. 

a 1.7% CL) the real motion effect on the SGPLL, up to a 31dB-Hz C/N0, as well as between a 40dB-

Hz and a 45dB-Hz C/N0, but for the in-between C/N0 values it underrepresents the real motion 

effect up to -0.32 (25.9% CL) at a 34dB-Hz C/N0. The simulated MoCap scenario including walking 

(making a U-turn) with the sensor held by hand, performing an “answer the phone” and a “put the 

phone down” gesture (MoCap ID: 15), shows that the synthetic motion represents accurately (within 

a 0.02 Δp difference compared to the real motion, i.e. a 1.7% CL), up to a 38dB-Hz C/N0, but above 

that C/N0 level, it exaggerates the real motion effect on the SGPLL, up to a 0.318 Δp difference (i.e. 

24.9% CL), for a 34dB-Hz C/N0. Finally, the MoCap scenario representing walking (making a U-

turn) holding the sensor, performing an “send a text/email” gesture and a “put the phone down” 

gesture (MoCap ID: 16), shows that the synthetic motion creates the same effect on the SGPLL as 

the real motion, i.e. with a less than 0.02 Δp difference, up to a 324dB-Hz C/N0, but above that 

point, it underrepresents the real motion effect on the SGPLL, up to a 0.33 Δp difference (i.e. 25.9% 

CL) at a 38dB-Hz C/N0. 

For a 10Hz SGPLL effective bandwidth, the results of the synthetic motion in Figure 6.14 

(compared to the real motion shown in Figure 6.15), show that the PMM output exaggerates the 

effect of the real motion on the SGPLL, between a 0.2 (15.5% CL) and a 0.3 (23.6% CL) Δp 

difference, for all simulated C/N0 levels. The 15Hz SGPLL bandwidth results show that the synthetic 

motion exaggerates the effect on the SGPLL, with a maximum 0.157 Δp difference (i.e. a 12.5% CL) 

up to a 35dB-Hz C/N0. Above that C/N0 level, the synthetic motion represents accurately the effect 
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of real motion on the SGPLL, with a maximum Δp difference of 0.034 (i.e. 2.7% CL). Finally, the 

20Hz employed SGPLL bandwidth, shows a good matching between the synthetic and real motion 

effect on the SGPLL, within a Δp difference less than 0.01 (i.e. less than 1% CL), for all simulated 

C/N0 values. 

The chapter continues with Section 6.4 which discusses the presented results in Section 6.2 

(real motion effect on the SGCTLs) and Section 6.3 (synthetic motion effect on the SGPLL and 

comparison with the real motion effect), and concludes with some recommendations for GNSS 

manufacturers, based on the evidence presented in these sections. 

  



 

161 

 

6.4 Summary of Results and Recommendations 

This section starts with a summary of the results presented in Section 6.2 and Section 6.3, and 

continues with some recommendations for GNSS receiver design, based on the presented evidence. 

The results show the performance of the simulated GNSS tracking loops (SGCTLs) in the presence 

of real and synthetic human motion, as a real receiver testing was beyond the timescales of this thesis. 

However, investigating the performance of a real receiver against these motion profiles is an essential 

part of future work which will precede the productisation of the thesis’ outcomes, as explained in 

Chapter 8. This future work will also add more confidence on the recommendations for GNSS design 

(see Section 6.4.2), noting that the testing will have to focus on GNSS receivers which can output 

relevant carrier tracking measurements and cannot be exhaustive considering all the different GNSS 

receivers/designs which are commercially available. 

 Summary of results 

The results presented in Section 6.1 show that in terms of real motion effect on the simulated GNSS 

phase lock loop (SGPLL), motion profiles encompassing walking with U-turns and gestures (“answer 

the phone” and “send a text/email”) are above the 75th percentile (see Table 6.1), with the top two 

motion profiles (above the 98th percentile) encompassing a “send a text/email” gesture. Also, above 

the 75th percentile is the MoCap scenario representing an “answer the phone” gesture for walking 

without U-turns. The motion profiles with the least significant impact on the SGPLL (lower 45th 

percentile) include walking with the sensor held by hand, or having the sensor inside a back-pack or 

attached on the upper arm with an arm-band, with the latter two scenarios being on the lower 11th 

percentile. 

The results in Figure 6.7, which illustrate the significance of the dynamic stress induced by the 

real motion profiles on the SGPLL, show that for a 5Hz effective SGPLL bandwidth, all MoCap 

profiles cause a disruption due to dynamic stress on the SGPLL above a ratio of 3 (i.e. with a 99.7% 

confidence level – CL), except for when the motion profile encompasses walking with the sensor 

held by hand (MoCap ID: 1), above a 38dB-Hz C/N0; walking with the sensor inside a back-pack 

(MoCap ID: 3) or attached by an arm-band on the upper arm (MoCap ID: 4), for all C/N0 values. 

For a 10Hz effective bandwidth, the real motion profiles did not introduce significant dynamic stress 

(above a 50% CL), except for walking with the sensor inside the pocket (MoCap ID: 2), jogging with 

the sensor held by hand (MoCap ID: 11) or inside a pocket (MoCap ID: 12); walking with the sensor 

inside a pocket and perform an “answer the phone gesture” (MoCap ID: 8) below a C/N0 of 32dB-

Hz, or a “send a text/email” gesture (MoCap ID: 10), at a 31dB-Hz C/N0; and also, walking and 

performing a U-turn with the sensor in the pocket, without gestures (MoCap ID: 14) for a C/N0 

below 35dB-Hz, or with a gesture, “send a text/email” (MoCap ID:17) or “answer the phone” 
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(MoCap ID: 18), both for a C/N0 below 30dB-Hz. Higher SGPLL bandwidths, show that the real 

motion profiles did not cause significant disruption on the SGPLL by inducing cycle slips due to 

dynamic stress, with the significance ratio below the 0.6745 threshold (i.e. 50% CL) for the 15Hz 

bandwidth and below 0.01 (less than 1% CL) for the 20Hz effective bandwidth. 

As far as the effect of real motion on the simulated GNSS frequency lock loop (SGFLL) is 

concerned, the results in Table 6.2 show that motion profiles which cause the most significant 

disruption due to dynamics stress on the SGFLL, above the 69th percentile, encompass walking with 

the sensor in the pocket and making a U-turn, without performing any gestures (100th percentile), or 

performing a “send a text/email” gesture (77th percentile) or an “answer the phone” gesture (69th 

percentile), as well as walking with the sensor held by hand and making a U-turn, without performing 

any gestures (95th percentile), or performing an “answer the phone” gesture (92nd percentile). The 

motion scenarios causing the least significant disruption due to dynamics stress on the SGFLL, below 

the 25th percentile, encompass walking holding the sensor by hand without performing any gestures 

(25th percentile) or performing an “answer the phone” gesture (17th percentile); walking having the 

sensor attached on the upper arm with an arm-band (16th percentile); walking with the sensor inside 

a pocket and performing an “answer the phone” gesture (13th percentile); walking having the sensor 

inside a back-pack (11th percentile); and jogging having the sensor inside the pocket (6th percentile) 

or held by hand (first percentile). 

The results in Figure 6.9, which illustrate the significance of the dynamic stress induced by the 

real motion profiles on the SGFLL, show that when a 1Hz SGFLL bandwidth is employed, real 

motion cause significant disruption due to dynamic stress on the SGFLL, above a 

 , ,

, / , /

FLL FT FLL FT

RM i S RM i Sq q  ratio of 2 (i.e. 95% CL) for all C/N0 values and MoCap scenarios, except 

for jogging with the sensor held by hand (MoCap ID: 11) or inside the pocket (MoCap ID: 12). For 

a 2Hz SGFLL effective bandwidth, all real motion profiles cause significant disruption due to 

dynamic stress on the SGFLL, above a  , ,

, / , /

FLL FT FLL FT

RM i S RM i Sq q  ratio of 0.6745 (i.e. 50% CL), except 

for scenarios which include walking with the sensor inside a back-pack (MoCap ID: 3); jogging with 

the sensor held by hand (MoCap ID: 11) or inside the pocket (MoCap ID: 12); and walking with the 

sensor inside the pocket and performing an “answer the phone” gesture (MoCap ID: 8), for C/N0 

values up to 28dB-Hz.  

For a 5Hz SGFLL bandwidth, the results in Figure 6.9 show that the significance of the real 

motion disruption (due to dynamics stress) on the SGFLL, never exceeds the 0.6745 ratio (i.e. 50% 

CL, denoted with the black dotted line in in Figure 6.9), except for lower C/N0 values (below 27dB-

Hz) when walking with the sensor inside the pocket, without performing any gestures or U-turns 

(MoCap ID: 2), or performing a U-turn (MoCap ID: 14), or performing a “send a text/email” gesture 

(MoCap ID: 17); walking holding the sensor by hand and performing an “send a text/email” gesture 
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(MoCap ID: 9), or performing a U-turn (MoCap ID: 13); or performing a U-turn) and an “answer 

the phone” gesture (MoCap ID: 15). The significance ratio of real motion disruption on the SGFLL 

for a 10Hz effective bandwidth, is below 0.6745 (i.e. 50% CL) for all MoCap scenarios. 

Further to the results showing the effect of real motion on the SGCTLs, this chapter assessed 

the impact of synthetic motion, for the motion profiles simulated by the pedestrian motion model 

(PMM) which was described in Chapter 5. The difference between the synthetic and real motion 

effect significance on the SGPLL is given in Table 6.3, with the synthetic motion significance ratios 

 q q   illustrated in Figure 6.12 and the real motion ones (for comparison) in Figure 6.13, in 

Section 6.3. This comparison shows that in some cases the PMM output motion dynamics 

underrepresent (or exaggerate) the effect of the real motion on the SGPLL, although less than a 

factor of two (for all effective bandwidths combined in a single metric). More specifically, the PMM 

output creates a similar effect to the real motion on the SGPLL when a 5Hz bandwidth is employed, 

by inducing significant dynamic stress to the SGPLL for all simulated scenarios and C/N0 values 

(similar to the real motion effect), above a significance ratio of 2.75 (i.e. 99.4% CL).  

For a 10Hz effective SGPLL bandwidth, the synthetic motion exaggerated the real motion 

profiles’ effect on the SGPLL, by increasing the significance ratio up to 1.4 (i.e. 83.4% CL) compared 

to the real motion, for the applicable simulated scenarios and C/N0 values. These results also show 

that for a 15Hz SGPLL bandwidth, the synthetic motion induces the same effect on the SGPLL as 

the real motion, i.e. it only increases the significance ratio by 0.05, i.e. a 4% CL, above a 37dB-Hz 

C/N0, which means that there is a 4% confidence level that the synthetic motion induced a significant 

dynamic stress (in addition to the one induced by the real motion). Finally, the comparison between 

the effect of the real and synthetic motion on the SGPLL for a 20Hz effective bandwidth, shows that 

the synthetic motion induces an additional dynamic stress on the SGPLL of a level (ratio) below 0.02, 

i.e. there is 1.6% confidence that the synthetic motion produced a significant effect on the SGPLL, 

in addition to the real motion effect, for all simulated C/N0 values. 

 Recommendations for GNSS receiver design 

Following the summary of the real motion effect results on the SGCTLs, Table 6.4 shows the 

minimum bandwidth requirements recommended for a GNSS receiver design operating in a (typical) 

pedestrian-induced dynamics’ environment, based on the results of the real motion effect significance 

on the SGPLL and SGFLL, discussed in Section 6.2 and illustrated in Figure 6.7 and Figure 6.9, 

respectively. These requirements are shown for three C/N0 levels, at a 30dB-Hz C/N0, in the third 

column, for the phase lock loop (PLL) design and in the 6th column for a frequency lock loop (FLL) 

design; at a 35dB-Hz C/N0 (in the fourth column for PLL design and 7th column for the FLL design); 

and at a 40dB-Hz C/N0 (in the fifth column for PLL design and 8th column for FLL design).  
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Based on the evidence summarised in Table 6.4, the minimum bandwidth recommendation 

for a GNSS PLL design, in the presence of typical pedestrian motion, is generally 10Hz, while for a 

GNSS FLL design is 5Hz, with a few exceptions highlighted in bold lettering, i.e. when the pedestrian 

motion encompasses walking with the sensor in the pocket (MoCap ID: 2) then it is recommended 

to use an FLL (with a minimum 10Hz effective bandwidth) for carrier-tracking at a 30dB-Hz C/N0 

and at least a 15Hz PLL effective bandwidth, for a C/N0 above 35dB-Hz. Also, when the sensor is 

attached on the upper arm with an arm-band (MoCap ID: 4) and the C/N0 is above 40dB-Hz, then 

the PLL bandwidth could be 5Hz (or higher). For pedestrian motion profiles encompassing walking 

with the sensor in the pocket and performing an “answer the phone” or “send a text/email” gesture 

(MoCap IDs: 6, 8 and 10), the bandwidth recommendation for a PLL design is 15Hz for a 30dB-Hz 

C/N0, noting that using a higher bandwidth at this C/N0 level would introduce additional cycle slips 

due to tracking noise (causing a potential degradation in PLL performance instead of improvement); 

and a minimum 15Hz PLL bandwidth a 35dB-Hz C/N0. 

In addition, for a pedestrian motion profile encompassing jogging holding the sensor by hand 

(MoCap ID: 11), the recommended GNSS receiver design is to switch to FLL (with a minimum 2Hz 

bandwidth) for carrier tracking at a 30dB-Hz C/N0; use a PLL bandwidth of 15Hz (at least) for a 

35dB-Hz or 40dB-Hz C/N0, or an FLL with a minimum 2Hz bandwidth at a 35dB-Hz C/N0, or a 

minimum 1Hz bandwidth at a 40dB-Hz C/N0. For a motion profile including jogging with the sensor 

inside a pocket (MoCap ID: 12), it is recommended to use FLL for carrier tracking at a 30dB-Hz 

C/N0, and a minimum 15Hz PLL bandwidth when the C/N0 is 35dB-Hz or 40dB-Hz. Furthermore, 

when a pedestrian is walking having the sensor inside the pocket and making a U-turn, the 

recommended method for carrier tracking at a 30dB-Hz C/N0 is to use an FLL with a 10Hz 

bandwidth. For the same motion profile, a PLL bandwidth of at least 15Hz might be employed when 

the C/N0 is 35dB-Hz or 40dB-Hz. Finally, a PLL bandwidth of 15Hz is recommended at a 30dB-Hz 

C/N0 when the pedestrian motion profile includes walking with the sensor in the pocket, making a 

U-turn, and performing a “send a text/email” gesture (MoCap ID: 17), or an “answer the phone” 

gesture (MoCap ID: 18) in which case, a minimum 15Hz PLL bandwidth is recommended for a 

35dB-Hz and a 40dB-Hz C/N0. 

It must be noted that information on code/carrier-tracking loop bandwidths is typically 

commercially confidential, especially for smartphones and wearable devices for pedestrian 

applications (i.e. lower-grade receivers). For high-end receivers this information can be available as 

the user can adjust the carrier tracking loops’ bandwidths depending on the application requirements. 

However, high-end receivers are not representative of the GNSS equipment in smartphones and 

wearable devices used for pedestrian applications, noting that for most pedestrian applications carrier 

phase cycle-slipping is not an important issue as they tend to provide the user with an integrated 

navigation solution (fusing measurements between GNSS and other sensors) which smooths out 
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these effects (on the expense of a lower output rate). However, for GNSS deign purposes it is 

important to account for these errors in order to optimise the navigation algorithms. The thesis 

continues with Chapter 7, which summarises the work conducted in this thesis, and draws some 

conclusions based on the evidence from the results presented on this chapter. 

Brief 

MoCap Scenario 

Description 

MoCap 

Scenario 

ID 

(i) 

Recommended PLL 

effective bandwidths (Hz), 

for C/N0 (dB-Hz): 

Recommended FLL 

effective bandwidths (Hz), 

for C/N0 (dB-Hz): 

30 35 40 30 35 40 

Walk; sensor in hand 1 10, 15 ≥10 ≥10 ≥5 ≥5 ≥5 

Walk; sensor in pocket 2 n/a ≥15 ≥15 10 ≥5 ≥5 

Walk; sensor in back-pack 3 15 ≥10 ≥10 ≥5 ≥5 ≥5 

Walk; sensor in arm-band 4 10, 15 ≥10 ≥5 ≥5 ≥5 ≥5 

Walk 10m; sensor in hand, 

“answer the phone” 
5 10, 15 ≥10 ≥10 ≥5 ≥5 ≥5 

Walk 10m; sensor in pocket, 

“answer the phone” 
6 15 ≥15 ≥10 ≥5 ≥5 ≥5 

Walk 15m; sensor in hand, 

“answer the phone” 
7 10, 15 ≥10 ≥10 ≥5 ≥5 ≥5 

Walk 15m; sensor in pocket, 

“answer the phone” 
8 15 ≥15 ≥10 ≥5 ≥5 ≥5 

Walk 15m; sensor in hand, 

“send a text/email” 
9 10, 15 ≥10 ≥10 ≥5 ≥5 ≥5 

Walk 15m; sensor in pocket, 

“send a text/email” 
10 15 ≥15 ≥10 ≥5 ≥5 ≥5 

Jog; sensor in hand 11 n/a ≥15 ≥15 ≥2 ≥2 ≥1 

Jog; sensor in pocket 12 n/a ≥15 ≥15 ≥5 ≥5 ≥5 

Walk; sensor in hand; U-turn 13 10, 15 ≥10 ≥10 ≥5 ≥5 ≥5 

Walk; sensor in pocket; U-turn 14 n/a ≥15 ≥15 10 ≥5 ≥5 

Walk 15m; sensor in hand, 

“answer the phone”; U-turn 
15 10, 15 ≥10 ≥10 ≥5 ≥5 ≥5 

Walk 15m; sensor in hand, 

“send a text/email”; U-turn 
16 10, 15 ≥10 ≥10 ≥5 ≥5 ≥5 

Walk 15m; sensor in pocket, 

“send a text/email”; U-turn 
17 15 ≥10 ≥10 ≥5 ≥5 ≥5 

Walk 15m; sensor in pocket, 

“answer the phone”; U-turn 
18 15 ≥15 ≥15 ≥5 ≥5 ≥5 

Table 6.4. Bandwidth recomendations for GNSS receivers – based on a dynamic stress 
disruption confidence level (CL) less than ±10% (±0.1256 SDs) on the SGCTLs. 
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 Summary and Conclusions 

This chapter provides a summary of research work conducted in order to address the aims and 

objectives of the thesis, presented in Section 1.2, and continues with drawing some conclusions from 

the results detailed in Chapter 6. These two research questions are, firstly, which types of pedestrian 

movement most affect the performance of GNSS equipment, and secondly, to describe which is the 

best way to simulate pedestrian motion in order to simulate effectively the effect of real motion on 

the GNSS equipment.  

To address these research questions, the thesis first reviewed the current state of the art (see 

Chapter 2) in order to introduce basic concepts and principles in pedestrian motion analysis in Section 

2.1; GNSS and inertial navigation systems in Section 2.2; and methods of human motion capture and 

modelling in Section 2.3. This discussion informed the design, development and implementation of 

methods in the remainder of the thesis, i.e. the design of an appropriate human motion data capture 

protocol (including usage of the experimental equipment) in Chapter 3; the development of the 

simulated GNSS carrier-tracking loops (see Chapter 4) to assess the effect of the real captured motion 

and the synthetic motion output of the proposed pedestrian motion model (described in Chapter 5). 

In addition, the discussion in Chapter 2 supported the development of the methods to pre-process 

the real motion and analyse its effect, alongside the synthetic motion, on the simulated GNSS carrier 

tracking loops (SGCTLs), as well as the interpretation of the results (in Chapter 6), as well as the 

identification of research gaps and longer term aspirations for this thesis, discussed in Chapter 8.  

The thesis progressed in Chapter 3 with describing the pilot and main experiments conducted 

in order to capture real human motion data. During the pilot experiments two significant issues were 

identified with the experimental equipment (Xsens MTi-G), i.e. that the gyros’ dynamic range was 

not sufficient to capture human motion and that the integrated GPS/inertial solution was containing 

significant artefacts which should be removed. For this reason, the inertial raw data, provided by 

Xsens MTi-G were used to calculate the inertial navigation solution which, as discussed in Section 

6.1.1, does not contain these artefacts. The thesis continued, in Chapter 4, with describing how a 

GNSS phase lock loop and a frequency lock loop were simulated in Matlab environment, in order to 

simulate and assess the effect of the real captured human motion and the synthetic output of the 

proposed pedestrian motion model (in Chapter 5) to real GNSS receivers. The simulated GNSS 

carrier-tracking loops were validated using relevant theory, with the results showing a better 

compliance of the simulated phase lock loop with the theory, than the frequency lock loop. 

The thesis proceeded with the description of the underlying mathematical model for a 

pedestrian motion model, able to generate a 3D dynamics profile (in terms of position, velocity and 

attitude) for a sensor held or attached on to the (walking) human body, given some optional pre-
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defined gestures, applicable to the carried sensor, e.g. “answer the phone”. It is worth noting that the 

proposed pedestrian motion model in this thesis has the potential to export (linear) acceleration, and 

jerk dynamics, and angular velocity, acceleration and jerk, which will enable it to feed 3D GNSS 

antenna dynamics to Spirent’s SimGEN software suite for GNSS RF signals’ simulation [138]. 

The thesis also investigated, in Chapter 6, the effect of a range of real motion scenarios (18 in 

total) and synthetic motion scenarios (7 in total) on the performance of the simulated GNSS carrier-

tracking loops (SGCTLs). The results presented in Section 6.1, address the first research question 

about which are the key aspects of pedestrian motion that affect the performance of GNSS 

equipment, while the results presented in Section 6.3 address the second aim of this thesis, about 

what is the best way to generate a pedestrian motion model for simulation testing of GNSS 

equipment, which is, essentially, the validation result (i.e. pass or fail, and under what conditions) of 

the pedestrian motion model (PMM) described in Chapter 5.  

In terms of which movements most significantly affect the performance of the developed 

SGCTLs, the analysis presented in Section 6.2 showed that the simulated GNSS phase lock loop was 

affected mostly by the motion profiles involving placing the sensor in the pocket, especially at a high 

gait speeds, such as when jogging. The performance of the SGCTLs was also found to be most 

significantly affected by real motion profiles which encompass U-turns, especially at the 5Hz SGPLL 

and 1Hz SGFLL bandwidths. As a general rule, higher SGCTLs’ effective bandwidths were more 

robust against real motion-induced dynamic stress than lower ones, noting that below the C/N0 levels 

given in Table 4.1 of Section 4.4, the GNSS receiver performance would degrade as a result of the 

higher tracking bandwidths allowing more tracking noise to enter the carrier tracking loops. The real 

motion effect analysis on the SGPLL shows that the MoCap scenarios which has the least significant 

effect on the are those with the sensor placed inside a back-pack or attached on the upper arm with 

an arm-band, and for the SGFLL, the motion profiles which encompass jogging.  

With respect to the synthetic unsmoothed motion effects on the SGCTLs, discussed in Section 

6.3, the results showed that in some cases the PMM output motion dynamics underrepresent (or 

exaggerate) the effect of the real motion on the SGPLL, although less than a factor of two (for all 

effective bandwidths combined in a single metric). More specifically, the PMM output creates a 

similar effect to the real motion on the SGPLL when a 5Hz bandwidth is employed, by inducing 

significant dynamic stress to the SGPLL for all simulated scenarios and C/N0 values while for a 10Hz 

effective SGPLL bandwidth, the synthetic motion generally exaggerated the real motion profiles’ 

effect on the SGPLL. These results also show that for a 15Hz SGPLL bandwidth, the synthetic 

motion induces the same effect on the SGPLL as the real motion, above a 37dB-Hz C/N0, and for 

all C/N0 values when a 20Hz SGPLL effective bandwidth is employed. 

Chapter 6 concludes with recommendations on GNSS receiver design in the presence of 

typical pedestrian motion, summarised in Table 6.4 in terms of minimum recommended bandwidths 
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(for specific C/N0 levels) for phase lock loop (PLL) and frequency lock loop (FLL) design. As a 

general recommendation, a PLL should operate at a tracking bandwidth greater than 10Hz, with a 

few exceptions for which the recommended bandwidth should increase to 15Hz (or decrease to 5Hz, 

as appropriate), or carrier tracking is recommended to use an FLL instead, e.g. for cases when the 

pedestrian motion profile encompasses jogging. Therefore, GNSS receiver designers should exercise 

caution when adjusting the phase lock loop (PLL) and frequency lock loop (FLL) carrier-tracking 

bandwidths in the presence of typical pedestrian motion. 

The thesis proceeds with Chapter 8, which discusses the future work deriving from this 

research. 
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 Future Work 

This chapter discusses research areas and additional tasks which derive from the research work 

conducted for this thesis, and which are recommended for future work purposes. These include the 

modelling of crystal oscillator phase noise in GNSS carrier tracking loop simulators, in order to study 

the behaviour of carrier tracking loops in the presence of pedestrian motion at lower bandwidth 

regions, e.g. less than 5Hz for a phase lock loop (PLL) or less than 2Hz for a frequency lock loop 

(FLL), at which the clock noise increases significantly. Also, in terms of validating the accuracy of the 

results from the simulated carrier tracking loops, a validation testing experimental setup can include 

a real GNSS receiver and Spirent simulators, which can simulate the line-of-sight motion dynamics 

between the receiver and satellite antennae. This is achieved through a Spirent-proprietary user 

motion trajectory (UMT) file, which contains a 6 degrees-of-freedom (6 DOF) GNSS antenna 

trajectory, used to adjust appropriately the phase and Doppler of the simulated GNSS signals. It is 

worth noting that the thesis’s results are currently validated against theoretical models published in 

the literature, as explained in Section 4.4.  

 Furthermore, a future line of enquiry could encompass studying the effect of individual gait 

variations, e.g. due to age, gender and/or health status, on positioning and navigation sensors’ 

performance. This could also inform the scope extension of the pedestrian motion model (PMM), 

e.g. in terms of greater variability on gait speed selection, curved paths and object avoidance in the 

routing model, incorporation of environmental features, such as elevation, stairs, and/or other types 

of activity, like running, cycling or boarding a train. Also, the PMM could be updated in order to 

allow the user to input a specific step (stride) length, with the PMM adjusting the gait profile 

(segments’ rotation angles) in order to match the specified step length. Another option would be to 

take as well take into account the in-path step variations, e.g. smaller steps walking at the beginning 

of the path (or before stopping) and larger steps in the middle of the path. Also, a random element 

could be added to the attitude increment when the user defines the final gestures’ attitude in order to 

make the segments’ rotation (involved in a specific gesture) more realistic. 

With respect to interfacing the PMM with Spirent software packages, a production version of 

the PMM may include a user interface to define parameters, such as the gait speed, human body 

height and segment proportions, the step length, a facility to calculate the pedestrian route that is to 

be followed, and the gestures, e.g. by defining the final attitude by rotating the segments of a human 

biomechanical model in order to reach the desired final posture and the start/end timings of the 

gestures’ application. This user interface may generate a Spirent-proprietary UMT file which can be 

fed into the Spirent software packages to control the simulated GNSS RF signals. 

Finally, additional lines of enquiry may include: 
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• Develop a custom smoothing algorithm with adjustable gain, depending on the carrier-tracking 

loop effective bandwidth for the PMM output.  

• Investigate the relative motion of the sensor with respect to the user’s body, in order to study 

the effect of GNSS signal shadowing (or masking) due to human body, to GNSS receiver’s 

performance. 

• Consider using equipment of better specifications, e.g. an IMU sensor, with gyros which can 

sense angular rates up to 750deg/s about their sensitive axes (compared to 300deg/s of the 

used Xsens MTi-G in the thesis’ experiments), and a GPS receiver which can provide pseudo-

range measurements in order to perform a custom INS/GNSS integration, as this was beyond 

the timescales of the current research.  

The discussion of the future work in this chapter, concludes the main body of the thesis. 
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Appendix A. Centre of Mass Calculation 

This section is based on [1] and explains how to calculate the centre of mass (CoM) of a multi-

segment system, such as the human body. Assuming a system of n segments (noted with index i), 

with mi the mass of each individual segment, and that M is the whole-body mass of the system: 

1

.
n

i

i

m M


  (A.1) 

If the mass of each constituent segment relative to the whole body mass is 

1

, 1 ,
n

i
i i

i

m
w w

M 

   (A.2) 

then the coordinates of the CoM of each segment i, referenced and resolved in the pedestrian frame 

p axes (Section 2.1.1), will be: 

  ,i

i i i i i i

Pp p p p

pC pP PC pD pP  r r d r r  (A.3) 

where 
i

p

pCr  is the coordinates of the ith segment’s CoM, 
i

p

pPr is the coordinates of its proximal end 

point, 
i

p

pDr  is the coordinates of its distal end point and i

i i

P
PCd  is the distance between its proximal 

and CoM points, normalised in the segment’s length, i.e. the sum of the distances of the segment’s 

CoM between the proximal and distal points is unity, with all segments modelled as linear (with their 

edges being their proximal/distal points). The proximal/distal end points’ normalised coordinates 

have been defined in Table 5.1.  

All segments contribute to the whole-body CoM coordinates (w.r.t. the pedestrian frame axes, 

defined in Section 2.1.1), depending on their location and relative mass w.r.t. the whole body. The 

CoM coordinates of the multi-segment system S (which may be a subset or equal to the total number 

of segments of the whole body n), is: 

1

1

,
i

S

n
p

i pC
p i

pC n

i

i

w

w










r

r  (A.4) 

The values for 
iw  and i

i i

P
PCd  are summarised in Table A.1 [1], noting that [1] defines the hand 

between the wrist and the second knuckle of the middle finger, while in Table 5.2 the hand is defined 
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between the wrist and the fingertip of the middle finger; however, this difference is assumed to be 

negligible.  

Proximal and distal end coordinates of a segment for a specific timeframe can be are obtained 

from the human biomechanical model (HBM) described in Section 5.2. 

 

Segment 

index 
Segment name 

Segment mass 

proportion to the 

whole-body mass     

iw  

Normalised distance of 

segment’s CoM from its 

proximal end, normalised 

in segment’s length  

i

i i

P

PCu   

1 
Head and 

neck 
0.081 1.000 

2 
Thorax and 

abdomen 
0.355 0.630 

3 Pelvis 0.142 0.105 

4 Right thigh 0.100 0.433 

5 Right shank 0.0465 0.433 

6 Right foot 0.0145 0.500 

7 Left thigh 0.100 0.433 

8 Left shank 0.0465 0.433 

9 Left foot 0.0145 0.500 

10 
Right upper 

arm 
0.028 0.436 

11 
Right 

forearm 
0.016 0.430 

12 Right hand 0.006 0.506 

13 
Left upper 

arm 
0.028 0.436 

14 Left forearm 0.016 0.430 

15 Left hand 0.006 0.506 

Table A.1. Segment parameters used for HBM CoM calculations (after [1]) 
 

Following Eqs. (A.1-4) the coordinates of human body CoM, normalised in stature, are: 
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0

0.5584 ,

0
total

p
pC

 
 
 
 
 

d  (A.5) 

Noting that The derivation of 
total

p
pC

d coordinates in (A.5) is detailed in the Excel file 

“CoM_Calculations.xlsx” in the accompanying CD with this thesis. 
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Appendix B. GPS-transients Smoothing Filter 

This appendix supports the discussion of Section 6.1.1, which introduced the three identified 

methods for pre-processing the motion capture (MoCap) data, from the thesis’ main experiment (see 

Section 3.3), i.e.: 

A. Convert the Xsens MTI-G-provided integrated inertial/GPS navigation solution, from 

latitude, longitude, altitude (LLA) coordinates, expressed in North, East and Down (NED) 

axes, to local tangent plane (LTP) coordinates. 

Smooth the integrated inertial/GPS navigation solution (A), i.e. already converted from LLA to 

LTP coordinates, by detecting and removing ensuing transients from the internal Xsens Kalman 

Filter, as the examples shown in  

B. Figure 3.4 and Figure 3.5. 

C. Calculate the inertial navigation solution, using the measurements from the inertial sensors 

(accelerometers and gsyros) following the calculation steps described in Section 2.2.2. and 

convert it from LLA to LTP (similar to solutions “B” and “C”).  

Method “C” is the selected option to pre-process the MoCap data, and was described in 

Section 6.1.1 This appendix discusses why methods “A” and “B” were not selected, and continues 

with the description of method “B”.  

Method “A” can use the readily available LLA coordinates from Xsens MTi-G, converts them 

to LTP coordinates, and then projects the sensor (body frame) 3D motion along the forward, right 

and down lines-of-sight (LOS) in order to feed the SGCTLs (see Sections 4.2 and 4.3) with LOS 

range and range of rate dynamics. It is worth noting that the conversion from NED to LTP 

coordinates involves Eqs. (B.26) to (B.30), presented later in this appendix.  

However, method “A” was found to introduce significant artefacts to the simulated GNSS 

frequency-tracking loop (SGFLL), as shown in Figure B.1 (highlighted in red), which shows the 

relative frequency of false frequency locks occurrences (in the vertical-up axis). These results were 

obtained via a Monte Carlo simulation (MCS) for each set of C/N0 (dB-Hz) and effective bandwidth 

BL_CF (Hz) values. The input motion profile, with ID “1” denoted in the subscript of 
,

( ),1,

FLL FT

RM A Rq , 

encompasses walking 30m in a straight line holding the sensor by hand. The motion in this example 

is projected along the Right “R” LOS. Each MCS (i.e. one pair of C/N0 and BL_CF values) was ran 

1,000 times adding pseudorandom Matlab sequences to simulate tracking noise in the I and Q 

equations (see Section 4.3). The horizontal axis shows the simulated C/N0 (dB-Hz) values, ranging 

from 20dB-Hz to 45dB-Hz, the lateral axis (on the horizontal plane) shows the simulated effective 

bandwidths BL_CF (Hz) of 1Hz, 2Hz, 5Hz, and 10Hz.  
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False frequency locks may occur due to tracking noise at low carrier power-to-noise density 

ratios C/N0 (dB-Hz) and high effective bandwidths BL_CF (Hz), as shown in Figure B.1, also due to 

oscillator noise (not simulated in this thesis, so it is not shown in Figure B.1), and due to LOS 

dynamics, i.e. average jerk exceeding the SGFLL tolerance over the SGFLL time constant, as 

discussed in Section 4.3. The latter is the cause of the false frequency locks’ artefact observed in 

Figure B.1, which erroneously shows that for lower effective bandwidths there are no false frequency 

locks, although the SGPLL should be less tolerant to LOS dynamics at lower BL_CF. The cause of this 

artefact is explained by showing the input range and range rate data to the SGFLL, in Figure B.2 and 

Figure B.3, which show that they contain oscillatory elements which cancel out for lower BL_CF. 

 

Figure B.1. Real motion (original Xsens integrated navigation solution without smoothing – 
subscript “A”) effects to SGFLL example, with artefacts highlighted in red. 
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Figure B.2. Range input (m) to the SGFLL, for MoCap ID: 1 

 

Figure B.3. Range rate (m/s) input to the SGFLL, for MoCap ID: 1 
 

As far as Method “B” is concerned, the Xsens INS/GNSS solution contains position, velocity and 

attitude transients as a result of corrections applied by the Xsens Kalman filter. To remove the 

transients introduced by GPS measurements fusion to the integrated KF solution, several methods 
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were explored. The first set of methods used to remove the transients from the data, are internal 

Matlab functions (part of the “Curve Fitting” toolbox) [139]: 

• Moving average filtering. This method uses a number of neighbouring points, n points before and 

n points after the ith dataset point that is to be smoothed, according to: 

 
1

( ) ( ) ( 1) ( ) ,
2 1

sy i y i n y i n y i n
n

       


 (B.1) 

where y
s
(i) is the smoothed value of the ith dataset point, noting that the total number of 

points used to smooth i (inclusive) is 2n+1 points. The problem in using this method is that a 

span of points cannot be found for the first and last points of the dataset, therefore this method 

cannot smooth the first and last points of the input dataset; this will result in a discontinuity, 

which is an artefact not representing real motion and could potentially introduce an artificial 

tracking slip in the GNSS carrier-tracking simulation. 

• Least-squares smoothing filter (or curvilinear regression). This is a standard method that involves 

fitting to the measurements a polynomial of lower degree than the number of measurements. 

It is essentially interpolation method using polynomials.  

• Local regression smoothing. This is a standard method similar to the least-squares smoothing filter, 

but it uses a weight function which focuses where transients occur locally. The weight function 

is determined by a pre-defined span of points around the central point of interest (which is to 

be smoothed).  

For further information on the above methods, the reader may refer to [139]. These methods 

were not considered for further analysis in the thesis, as they exhibit a fundamental problem, i.e. they 

remove the corrections from the underlying real motion (even when different weights for specific 

points are used), which reduces the effect of the captured real motion dynamics on the simulated 

GNNS carrier-tracking loops (SGCTLs). In other words, they smooth the captured real motion by 

removing the transients, which represent corrections necessary for the accurate calculation of the 

final integrated navigation solution, e.g. if the heading is corrected by 3° at a given epoch, it is 

necessary to keep this correction in order to maintain an accurate final attitude solution. Therefore, 

a better approach to this problem is to spread the corrections (transients) among several epochs, 

instead of one, in order to smooth their effect on the real motion, but including them in the 

calculation of the final integrated navigation solution.  

To implement this approach, a custom transients smoother was developed, which is used to 

spread the correction to a number of user-defined epochs before and after the epoch where the 

transient occurs. Therefore, it is necessary to reprocess the integrated navigation solution so that the 

application of the corrections is spread smoothly over all epochs instead of only occurring four or 

five times a second. Note that disruptive transients in the position solution arise not only from the 
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position corrections, but also from velocity and attitude corrections integrated through the inertial 

navigation equations. Therefore, it is not sufficient to smooth the position in isolation. 

The selected method is the custom transients smoother, because it smooths the transients 

without altering the underlying (real) motion, as the GPS correction on the inertial data is spread over 

a number of epochs (before and after the epoch where the correction is applied to), instead of just 

one. The custom smoother cannot compensate though cases where the inertial sensors (especially 

gyros, as discussed in Section 3.2) exceed their dynamic output range. Since transients affect the 

position, velocity and orientation solutions, a custom smoother should carry out the following 6 

processing stages, (in the listed order): 

1) Conversion of the Xsens navigation solution to an ECEF-frame referenced and resolved solution. 

2) Detection and smoothing of attitude transients using the gyro measurements. 

3) Reconstruction of the velocity solution from the accelerometer measurements, smoothed attitude 

solution and Xsens velocity solution. 

4) Reconstruction of the position solution from the reconstructed velocity solution and Xsens 

position solution. 

5) Derivation of a velocity solution that is consistent with the position. 

6) Conversion of the position and velocity solution from ECEF-frame (referenced and resolved) to 

local tangent plane. 

 

 Stage 1 

At all epochs between the user-specified start and stop times, the Cartesian ECEF-referenced and 

resolved position, velocity and attitude solution is obtained from the Xsens INS/GNSS position, 

velocity and attitude solution, n

bC . The position is converted from curvilinear to Cartesian using 

 

 

 2

T

( ) cos cos

( ) cos sin ,

1 ( ) sin

,

e

eb E b b b b

e

eb E b b b b

e

eb E b b b

e e e e

eb eb eb eb

x R L h L

y R L h L

z e R L h L

x y z





 

 

   
 

   r

 (B.2)  

where Lb is the latitude, b is the longitude, hb is the height, e is the eccentricity of the ellipsoid (equal 

to 0.0818191908425 for WGS-84 [3]) and the transverse radius of curvature RE is given by: 

0

2 2
( )

1 sin
E b

b

R
R L

e L



 (B.3) 

where R0 is the equatorial radius of the Earth (equal to 6,378,137m for the WGS-84 ellipsoid [3]). 

The velocity is converted using: 

e e n

eb n ebv C v   (B.4) 
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where 
e
nC  is given by: 

sin cos sin cos cos

sin sin cos cos sin

cos 0 sin

b b b b b

e
n b b b b b

b b

L L

L L

L L

  

  

   
 

   
  

C  (B.5) 

The attitude is converted using: 

e e n

b n bC C C  (B.6) 

The position, velocity and attitude conversion is implemented in the MATLAB function 

NED_to_ECEF.m, provided in the accompanying CD of this thesis. 

 

Stage 2 

The smoothed attitude solution is provisionally set equal to the Xsens solution. Thus, for all epochs, 

k, 

, ,
ˆ e e

b k b kC C  (B.7) 

 

For all epochs, except the starting epoch, the measured attitude increment is compared with 

the increment in the Xsens attitude solution to identify large transients due to the application of 

Kalman filter corrections. The measured attitude increment is: 

 1
, , 1 ,2

b b b

ib k ib k ib k i α ω ω  (B.8) 

where i is the time interval between epochs and 
a

kia,
~ω  is the angular rate at epoch k, calculated by 

the Xsens software from the gyro measurements. The increment in the Xsens attitude solution is 

given by: 

, , 1

cos sin 0

sin cos 0

0 0 1

ie i ie i

b b e

b e k ie i ie i b k
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where ie is the Earth rotation rate and 
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 1
1,1 2,2 3,32

arccos 1b b b

b b bC C C   

  
    
 

 (B.11) 

noting that 
T

, ,

b e

e k b kC C . 

The attitude discrepancy is then: 

, , ,

b b b

ib k ib k ib k  α α α   (B.12) 

Smoothing of an attitude transient is required whenever the following condition is met: 

 2 2 2 2

, , , , , ,

b b b

ib k x ib k y ib k zα α α T      (B.13) 

where the threshold, T, can be determined empirically by MCS testing of values ranging e.g. between 

0.001 and 0.1 rad. The optimum value should minimise the position drift while maintaining the 

tracking-slip effects below the applicable method tolerance. 

At epochs where smoothing of an attitude transient is required, this can be achieved by 

spreading that transient over s epochs, where s is an even number less than or equal to the interval 

between the application of Kalman filter corrections to the Xsens attitude solution. The optimum 

value of s can be determined empirically by MCS testing of values ranging e.g. between 4 and 30 in 

steps of 2. The optimum value should minimise the position drift while maintaining the tracking-slip 

effects below the applicable method tolerance. 

The attitude corrections are determined using: 

, ,

,

0.5 1
0.5 1

0.5
0.5 1

0 otherwise

b b

ib j ib k
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(B.14) 
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, 3 , ,2

, ,

sin 1 cosb b

ib j ib je b b

b j ib j ib jb b
ib j ib j

  
              

α α
C I α α

α α
 (B.15) 

and then applied using 

, , ,
ˆ ˆ( ) ( ) 0.5 0.5 1e e e

b j b j b j k s j k s        C C C  (B.16) 

where () and (+) denote before and after the smoothing, respectively. This enables spreading 

intervals to overlap where necessary. Note that spreading is applied to the smoothed attitude solution, 

ˆ e

bC , whereas the Xsens attitude solution, 
e

bC , is used for transient detection. 

 

 

 

Stage 3 
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A velocity solution unaffected by large transients due to Kalman filter corrections can be determined 

by integrating the accelerometer measurements, transformed to ECEF-frame resolving axes using 

the smoothed attitude solution from stage 2. However, this will be subject to inertial drift which must 

be corrected. Corrections can be applied from the Xsens integrated velocity solution using a first-

order loop filter to smooth out the effects of the transients in the Xsens velocity. However, if the 

filter gain is set too low, the corrected solution will never converge with the Xsens integrated solution. 

Conversely, if the gain is set too high, there will be insufficient smoothing of the transients due to 

the Kalman filer velocity corrections. One solution to this problem is to vary the gain. One approach 

is to use a high default gain, but impose a limit on the size of the corrections that can be applied in 

order to avoid transients large enough to cause phase tracking slips in the simulated GNSS carrier-

tracking loops (explained in Sections 4.2 and 4.3). 

The smoothed velocity solution is initialised with the Xsens solution. Thus, ,1 ,1
ˆ e e

eb ebv v . For 

each epoch, the velocity is updated using: 

  1 1
, , 1 , 1 , 1 , , , , 12 2

ˆ ˆˆ ˆ2e e e b e b e e e e

eb k eb k b k ib k b k ib k b eb k ie eb k i   
     v v C f C f g r Ω v  (B.17) 

where the acceleration due to gravity, 
e
ag , is given by: 
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 (B.18) 

where μ = 3.986004418x10-14 m3s-2 and J2 = 1.082627x10-3. The full inertial navigation equations are 

implemented in the MATLAB function “Nav_equations_ECEF.m”, which calls 

“Skew_symmetric.m” and “Gravity_ECEF.m”, provided in the accompanying CD of the thesis. 

Before moving on to the next epoch, the velocity is then corrected using: 

, , ,

e e e

eb k eb k eb k  v v v  (B.19) 
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 (B.20) 

  

, , ,
ˆ e e e

eb k eb k eb k
 v v v  (B.21) 

The optimum values for the default gain, kv and the maximum correction, Δvmax, can be 

determined empirically by MCS testing, e.g. from a range of gain values between 0.001 and 1 for the 



 

195 

 

kv gain, and a range between 0.1 and 1ms1 for Δvmax. For each tested set of values, the inertial position 

solution is calculated (see Stage 4). The optimum values should minimise the position drift while 

maintaining the tracking-slip effects below the applicable method’s tolerance. 

 

Stage 4 

A position solution unaffected by large transients due to Kalman filter corrections can be determined 

by integrating the smoothed velocity solution from stage 3. However, this will be subject to inertial 

drift which must be corrected. Corrections can be applied from the Xsens integrated position solution 

using a first-order loop filter to smooth out the effects of the transients in the Xsens velocity. 

However, if the filter gain is set too low, the corrected solution will never converge with the Xsens 

integrated solution. Conversely, if the gain is set too high, there will be insufficient smoothing of the 

transients due to the Kalman filer position corrections. Tests have shown that it is difficult to find a 

suitable value. One solution to this problem is to vary the gain. One approach is to use a high default 

gain, but impose a limit on the size of the corrections that can be applied in order to avoid transients 

large enough to cause tracking slips. 

The smoothed position solution is initialised with the Xsens solution. Thus, ,1 ,1
ˆe e

eb ebr r . For 

each epoch k, the position is updated using: 

 1
, , 1 , 1 ,2

ˆ ˆ ˆe e e e

eb k eb k eb k eb k i 
   r r v v  (B.22) 

Before moving on to the next epoch, the position is then corrected using: 

, , ,

e e e

eb k eb k eb k  r r r  (B.23) 

 

, , , max

max
, , max

,

e e e

eb k r eb k r eb k

e e

eb k r eb ke

eb k

k k r

r
k r

 

 


   


 

r r r

r r
r

 (B.24) 

 

, , ,
ˆe e e

eb k eb k eb k
 r r r  (B.25) 

The optimum values for the default gain, kr, and the maximum correction, Δrmax, can be 

determined empirically by testing a range of gain values e.g. between 0.001 and 1 for the kr gain, and 

between 0.1 and 1m for Δrmax. The optimum values should minimise the position drift while 

maintaining the tracking-slip effects below the applicable method tolerance. 

 

Stage 5 
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A velocity solution consistent with the position solution is derived using a custom cubic spline 

method, as explained in Appendix E. 

 

Stage 6 

The method of converting the position and velocity solutions from ECEF frame (referenced and 

resolved) to local tangent plane axes (LTP), is described below, and is implemented in Matlab 

function “ECEF_to_LTP.m” which is provided in the accompanying CD of the thesis. 

 Similar to Eq. (B.2), the origin of the LTP (originally in curvilinear coordinates in latitude lL  

longitude l , and height lh ) w.r.t ECEF frame (Cartesian coordinates) can be calculated by: 

 

 

 2

( ) cos cos

( ) cos sin ,

1 ( ) sin

e

el E l l l l

e

el E l l l l

e

el E l l l

x R L h L

y R L h L

z e R L h L





 

 

   
 

 
(B.26)  

noting that the transverse radius of curvature RE is given by (B.3). The fixed attitude of the LTP w.r.t 

ECEF 
e
lC can be calculated, similar to Eq. (B.5), using: 

sin cos sin cos cos

sin sin cos cos sin ,

cos 0 sin

l l l l l

e
l l l l l l

l l

L L

L L

L L

  

  

   
 

   
  

C  (B.27) 

then the velocity solution of body frame b, referenced and resolved in LTP axes, will be: 

 
T

,
l l e e e
lb e eb l eb v C v C v  (B.28) 

noting that 
e
ebv is calculated from Eq. (B.21). 

 The position solution of body frame b, resolved and referenced in LTP axes will be:  

     
T

,
l l e e e e e
lb e eb el l eb el   r C r r C r r  (B.29) 

where 
e
elr is given by Eq. (B.26) and 

e
ebr by Eq. (B.25). The attitude of the body frame w.r.t. the LTP 

axes is: 

 
T

,
l l e e e
b e b l b C C C C C   (B.30) 

noting that 
e
bC  is calculated using Eq. (B.16) and 

e
lC from Eq. (B.27). 

Preliminary results are shown in Figure B.4, and indicate that using method “B”, a smoothed 

motion profile may still contain artefacts in terms of false frequency locks occurring on the SGFLL, 

although, compared to the results for the same MoCap profile (and LOS) shown in Figure B.1, the 

magnitude of the artefact is reduced. The vertical-up axis in Figure B.4, shows the relative frequency 

,

( ),1,

FLL FT

RM B Rq  of false frequency lock occurrences over the total number of samples (number of epochs 
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in the motion multiplied by 1,000 runs for each added pseudorandom sequence in Matlab, as 

explained in Section 4.3). The axes on the horizontal plane show the simulated carrier power-to-noise 

density ratio C/N0 measured in dB-Hz (horizontal axis) and the simulated FLL effective bandwidth 

(BL_CF) measured in Hz (vertical axis). It must be noted that the results in Figure B.4 indicate that a 

Monte Carlo simulation is required in order to fine-tune the parameters of the custom transients’ 

detection and smoothing algorithm, presented in this appendix, as discussed in future work Chapter 

8. 

 

Figure B.4. Example of real motion, walking 30m in a straight line holding the sensor. The 
smoothed integrated navigation solution (denoted with subscript “B”) can cause artificial false 

frequency locks to the SGFLL, highlighted in red. 
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Appendix C. Xsens MTi-G Specifications 

The Xsens MTi-G IMU/GPS weights 68g and its size is 58 x 58 x 33 mm (width x length x height). 

The versions of the Xsens MTi-G IMU/GPS components, used in this project, are shown in Table 

C.2 [1], noting that Xsens has issued an end-of-life notice for this product [2]. 

 

Component Version Notes 

Firmware 2.6.1 
This pre-installed firmware version (not upgradeable) 

does not support Galileo L1 signal or SBAS. 

MT Manager 1.7.0 Associated user interface 

MT SDK 3.3 Associated Software Development Kit 

Table C.2. Xsens MTi-G versions of components 

 
Table C.3 provides the performance specification of the Xsens MTi-G IMU 

constituent parts, i.e. accelerometers, gyros, magnetometers, thermometer and barometer [1]: 

 

 Accelerometers Gyros Magnetometers Thermometer Barometer 

Units m/s2 deg/s mGauss °C Pa 

Full Scale (Units) ±50 ±300 ±750 (-55,+125) (30, 1.2E05) 

Bias stability (Units 1σ) 0.02 1 0.1 0.5 100/year 

Scale factor (% of FS) 0.2 0.1 0.2 <1 0.5 

Scale factor stability (% 1σ)  0.03 - 0.5 - - 

Noise density (Units/Hz½) 0.002 0.05 1.5 (1σ) - 4 (~0.3m/Hz½) 

Table C.3. Xsens MTi-G versions of components 
 

The GPS receiver update rate is 4Hz and the nominal horizontal position accuracy is 2.5m 

(CEP – Circular Error Probable) [1], i.e. 50% of position estimates will fall within that circle’s radius 

assuming they follow a normal distribution, which corresponds to about 3.3m (1σ). The vertical 

(height) accuracy is typically three times higher than the horizontal, i.e. around 8m CEP or 10m (1σ). 

For this thesis, these specifications are adequate for the initial 3D position, but relative accuracy of 

subsequent epochs’ measurements is more important.  
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Appendix D. Xsens Attitude Transformation 

By default, Xsens MTi-G outputs the attitude of the body-frame, expressed in FLU (Forward, Left, 

Up) axes, w.r.t. a North-West-Up (NWU) local navigation frame. The same convention is used for 

the integrated velocity solution. The user may change the reference frame to a North-East-Down 

(NED) local navigation frame; however, this action will also change the body-frame of the sensor 

from FLU, to FRD (Forward, Right, Down) [1]. Therefore, to transform the attitude and velocity 

solutions, the following calculations need to be applied: 

   
T T

NED FRD FRD FLU

FRD NED FLU NED C C C C , (D.1) 

where  

1 0 0

0 1 0

0 0 1

FRD FLU

FLU FRD

 
 

  
 
  

C C . (D.2)  

Also,  

 
T

FLU FLU NWU NWU NWU

NED NWU NED FLU NED C C C C C , (D.3) 

where  

1 0 0

0 1 0

0 0 1

NED NWU

NWU NED

 
 

  
 
  

C C . (D.4)  

From (D.2) and (D.3): 

  
T

T
NED FRD NWU NWU

FRD FLU FLU NEDC C C C . (D.5) 

Doing the calculations in Eq. (D.5), it is possible to transform the attitude from 
NWU

FLUC  

(default) to
NED

FRDC : 

.NWU NED

FLU FRD

a d g a d g

b e h b e h

c f i c f i

    
   

   
   
      

C C  (D.6) 

Also, using Eqs. (D.2) and (D.4) it can be proven that the default velocity integrated solution 

of the body-frame (in FLU configuration), referenced to e (Earth-fixed Earth-fixed) frame axes and 

resolved in the default local navigation frame NWU axes, i.e. 
NWU

e FLUv , it is the same as 
NED

e FRDv : 



 

202 

 

1 0 0 1 0 0

0 1 0 0 1 0 .

0 0 1 0 0 1

NED NED NWU FLU NWU NWU

e FRD NWU e FLU FRD e FLU e FLU

   
   

    
   
       

v C v C v v  (D.7)  
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Appendix E. Custom Numerical Differentiation Method 

This appendix explains a custom method of differentiating velocity, constraining the mean velocity 

and mean acceleration between the input and output datasets to be preserved. This numerical 

differentiation method was developed by Paul Groves for [1], and may be applied, as appropriate, 

either for linear or angular velocity datasets. The underlying assumption for this method is that there 

is no rotation between the resolving and reference frames. 

 

Input dataset (velocity 3D vector with each component measured in m/s):  

, 0i i m v , 
(G.1) 

Output dataset (acceleration 3D vector with each component measured in m/s2):  

, 0i i m a , 
(G.2) 

Given the input and output datasets from Eqs. (G.1) and (G.2), the intermediate epochs of the output 

dataset can be calculated using: 

1 -1-
, 1 1

2

i i
i

i

i m


   
v v

a . 
(G.3) 

where τi (s) is the time interval between epochs. The coordinate frames’ superscripts and subscripts 

have been omitted for simplicity of notation, but it is assumed that there is no rotation between the 

reference and resolving frames. To determine a0 and am, two boundary conditions need to be applied:  

• Boundary condition 1: Mean acceleration is preserved between input and output datasets. 

• Boundary condition 2: Mean velocity is preserved between input and output datasets. 

These two boundary conditions are presented as follows.  

Boundary condition 1: 

The mean acceleration from the input dataset is: 

0 .m

im




v v
a  

(G.4) 

The mean acceleration from the output dataset is: 

1
1 0

1 1

1 1

2 2

m m
i i m

i

i im m




 

   
      

   
 

a a a a
a a , 

 
1

0 1 1 0
1 1 0

1

1 1 1
.

2 2 2 2

m
m i i m

m m

i i im m 


 





     
         

   


a a v v a a
v v v v  

(G.5) 
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Equating accelerations from Eqs. (G4) and (G.5) we have 

 
 0

0 1 1 0

1
,

2 2

m i

m m m





     

a a
v v v v v v ,  (G.6) 

then rearranging Eq. (G.6): 

 0 1 1 0

1
.m m m

i

A


     a a v v v v , 
(G.7) 

 

Boundary condition 2: 

Mean velocity from the input dataset is: 

0

1

1

m

i

im 



v v , 

(G.8) 

Mean velocity from the output dataset is: 
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(G.9) 

Equating velocities from Eqs. (G.8) and (G.9), we have: 
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(G.10) 

then rearranging Eq. (G.10): 
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(G.11) 
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   
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Finally, combining Eqs. (G.7) and (G.11) from the above boundary conditions: 
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              (G.12) 
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(G.13) 

or  
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(G.14) 

noting that intermediate epochs of the output dataset can be calculated using Eq. (G.3). 

To reconstruct the velocity and position solutions: 

 
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1
, , 1 , 1 ,2

21
, , 1 , 1 , 1 ,4
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(G.15) 
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Appendix F. Matlab Algorithms 

The contents of Appendix F are included on the accompanying CD with this thesis. 

 


