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Female gender, post-menopause, chronic kidney disease (CKD) and (CKD linked) microvascular disease are im-
portant risk factors for developing heart failure with preserved ejection fraction (HFpEF). Enhancing our under-
standing of the interrelation between these risk factors could greatly benefit the identification of new drug
targets for future therapy. This review discusses the evidence for the protective role of estradiol (E2) in CKD-
associated microvascular disease and related HFpEF. Elevated circulating levels of uremic toxins (UTs) during
CKDmay act in synergywith hormonal changes during post-menopause and could lead to coronarymicrovascu-
lar endothelial dysfunction in HFpEF. To elucidate the molecular mechanism involved, published transcriptome
datasets of indoxyl sulfate (IS), high inorganic phosphate (HP) or E2 treated human derived endothelial cells
from the NCBI Gene Expression Omnibus database were analyzed. In total, 36 genes overlapped in both IS- and
HP-activated gene sets, 188 genes were increased by UTs (HP and/or IS) and decreased by E2, and 572 genes
were decreased by UTs and increased by E2. Based on a comprehensive in silico analysis and literature studies
of collected gene sets, we conclude that CKD-accumulated UTs could negatively impact renal and cardiac endo-
thelial homeostasis by triggering extensive inflammatory responses and initiating dysregulation of angiogenesis.
E2may protect (myo)endotheliumby inhibiting UTs-induced inflammation and ameliorating UTs-related uremic
bleeding and thrombotic diathesis via restored coagulation capacity and hemostasis in injured vessels.
© 2017 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Complex interrelationship between chronic kidney disease and
heart failure with preserved ejection fraction

Heart failure (HF) is a growing major public health problem that af-
fects ~2% of the western population [1]. It has two main subtypes, HF
with reduced ejection fraction (HFrEF) and HF with preserved ejection
fraction (HFpEF). Within the HF population, more than 50% suffer
from HFpEF [2]. Interestingly, chronic kidney disease (CKD) occurs in
26% to 53% of the HFpEF population and the subclinical diastolic dys-
function appears to be the most common echocardiographic feature in
asymptomatic CKD patients on hemodialysis, suggesting a strong link
between CKD and HFpEF [3,4]. Furthermore, clinical studies showed a
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linear relationship between the progression of CKD and the worsening
of longitudinal function of the left ventricle in the HFpEF population
[5]. The cardiac parameters in patients with CKD stage 2 and 3 already
resemble early HFpEF, and the cardiac mechanics have been reported
to become worse in patients with CKD stage 4 and 5. In a large cohort
study on the development of heart dysfunction during 11 years of
follow-up, Brouwers and colleagues demonstrated that increased uri-
nary albumin excretion and cystatin C were more associated with the
onset of HFpEFwhen compared to HFrEF [6]. In particular, older females
with increased urinary albumin excretion or cystatin C were more vul-
nerable to developHFpEF. Thesefindings indicate a clear association be-
tween CKD and HFpEF, especially in the elderly female population.

Importantfindings in thefield further prove that impaired renal func-
tion is a major risk for developing HFpEF [7]. Although several mecha-
nisms underlying how CKD contribute to HF in general have been well
established, including increased inflammatory responses and activated
neurohormonal pathways [8], studies on the driving mechanisms on
CKD-related HFpEF are limited. A recent publication by Paulus et al.
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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proposed a disease mechanism in which renal dysfunction caused sys-
temic changes in circulating factors that activated inflammation and
led to microvascular disease (MVD), cardiomyocyte stiffening, and a hy-
pertrophic response [7]. MVD often occur ubiquitously throughout the
body in patients with cardiovascular disease [9]. Paulus and co-workers
further proposed that identified metabolic syndrome linked cardiovas-
cular comorbidities, such as diabetes and obesity, could act as inducers
of systemic inflammation that trigger global and coronary endothelial
dysfunction, leading to myocardial hypertrophy, impaired myocardial
relaxation and increased myocardial stiffness [10]. In relation to cardio-
vascular disease in general, endothelial dysfunction is well known to be
able to serve as a strong predictor of coronary artery disease onset [9].
CKD, a common cardiovascular comorbidity associated with metabolic
risk factors, leads to hyperphosphatemia and accumulation of uremic
toxins (UTs) that trigger inflammation and MVD, which could subse-
quently contribute to HFpEF onset and progression [11].

Early stage of kidney disease can already bedetected by the presence
of proteinuria, and a continuous retention of UTs results in a toxic
circulatory environment due to the reduction of glomerular filtration
rate during the progression of CKD [12]. Serum levels of some uremic
toxin compounds, such as methionine sulfoxide and hydroxyproline,
accumulate significantly as glomerular filtration rate declines and
have been proposed as markers for detecting early stage of CKD
[13]. Most UTs circulate in the bloodstream in albumin bound form,
and they are not able to directly pass an intact endothelial barrier
[14,15]. However, alterations in endothelial barrier do occur in re-
sponse to various inflammatorymediators and atherogenic metabol-
ic particles [16]. Many UTs, such as indoxyl sulfate and p-cresyl
sulfate, have been shown to compromise the endothelial barrier
function [17], which could promote protein leakage, causing direct
exposure of surrounding non-vascular cells like cardiomyocytes to
(protein bound) UTs. However, the exact mechanisms underlying
CKD-triggered MVD and corresponding HFpEF remain to be further
elucidated, especially at the molecular level.

In this reviewwe focused on themicrovasculature in female CKDpa-
tients before and aftermenopause, whichwill improve our understand-
ing on the subsequent development of HFpEF. Firstly, female gender and
aging, two major risk factors of HFpEF, will be addressed. Secondly, the
evidence for the role of estrogen (E2) mediated protection mechanisms
in the onset and progress of renal disease-related MVD and HFpEF will
be summarized. Finally, we will further discuss the new information
that we have gathered from the analysis of publicly available NCBI
Gene Expression Omnibus (GEO) database sets for the transcriptome
response of endothelial cells (ECs) to E2 and CKD associated circulatory
factors. Based on this, we propose putative pathways of CKD-related
MVD that are susceptible to E2 protection.

2. Postmenopausal women are at high risk of developing HFpEF

The prevalence of HFpEF increases with age and HFpEF patients
are typically older than those with HFrEF [18]. In general, the average
age of HFpEF patients are between 73 and 79 years old [19]. Aging
has been proposed as an independent risk factor for abnormal dia-
stolic function [20]. Age-dependent increase in left ventricular
mass index has been observed in humans, and age-dependent in-
crease in cardiomyocyte size has been observed in animals. In addi-
tion, increased interstitial fibrosis has also been noticed in aged
myocardium. These changes due to aging contribute to myocardial
stiffness, putatively leading to diastolic dysfunction in HFpEF. Unfor-
tunately, clinical trial data of treatments for HF were mostly collect-
ed from the young and the middle-aged patients, leading to the lack
of adequate evidence in treating the elderly, not to mention the older
HFpEF patients specifically [21].

Besides the elderly population, women are consistently ~2 times
more at risk than men to develop HFpEF and outnumber men by a 2:1
ratio in the HFpEF patient population [22]. Women also differ from the
male HFpEF population as they show less evidence of coronary artery
disease but are more vulnerable for coronary MVD, indicating a sex-
based difference in the underlying pathology of HFpEF [22,23]. Left ven-
tricular diastolic dysfunction (LVDD) can be considered as a pre-stage of
HFpEF. In the female population, LVDD onset and progression into
HFpEF is strongly associated to the postmenopausal period [24]. High
estrogen levels appear to protect the premenopausal heart from ven-
tricular remodeling triggered by hypertension, although the specific
mechanism remains to be further defined. Therapeutic interventions
for HFpEF have failed to improve the mortality rate. At the moment
early detection and treatment of LVDD appear to be the only effective
strategy to prevent progression into HFpEF.

Since both aging and female gender appear to be important risk fac-
tors for LVDD and HFpEF, it has been postulated that gender specific
hormones and changes in hormone levels may play an important role
in the higher prevalence of HFpEF in women, particularly in the post-
menopausal population [25]. Studies in the early 1990s already showed
the beneficial effects of menopausal hormone therapy (MHT) on
preventing coronary heart disease [26]. However, subsequent random-
ized clinical trials failed to demonstrate that MHT prevents secondary
events in ischemic heart disease, cerebrovascular events, or progression
of coronary atherosclerosis in postmenopausal patients with already
established coronary disease [27,28]. Recently, reevaluation of those
trails and the initiation of new clinical trials have shed light on how to
improve MHT. In particular, the effects of early versus late MHT inter-
vention were evaluated, as comparison between previous MHT respon-
sive and non-responsive groups have indicated that women who
received intervention at the early postmenopause stage without pre-
existing coronary disease were more likely to benefit from MHT than
older patients with pre-existing coronary disease [29]. A recent retro-
spective single-center study showed that MHT was significantly associ-
ated with improved left ventricular relaxation indices, which is in line
with the reported improvement in diastolic function following MHT in
postmenopausal women, pointing towards the need for further investi-
gation of the use of MHT in treatment of HFpEF [30]. Together, these
clinical studies indicate the postmenopausal women are at high risk of
developing HFpEF.

3. Postmenopausal estrogen depletion in female CKD patients and
microvascular dysfunction

A limited number of studies have started to reveal the putative dis-
ease mechanisms of LVDD and HFpEF in women with CKD. An in vitro
study showed that the contraction rate in uremic toxin p-cresol treated
cardiomyocytes was decreased, and p-cresol impaired cardiomyocytes
gap junctions by increasing the activity of protein kinase Cα [31]. UTs
have also been shown to induce cardiac remodeling response via estro-
gen receptor dependent mitogen-activated protein kinase and nuclear
factor-κB pathways, suggesting that estrogen receptor signaling could
interfere with the negative effects of UTs [32].

Brunet et al. have summarized two major mechanisms of how UTs
contribute to vascular dysfunction [33]: (1) UTs promote inflammation
by stimulating leukocyte activation and endothelial adhesion molecule
expression. Activated inflammation and immune responses increase
the migration and proliferation of vascular smooth muscle cells
(VSMCs). However, UTs also inhibit the proliferation of ECs and enhance
the apoptosis of endothelial progenitor cells, thus impairing vascular re-
pair. (2) UTs stimulate the transdifferentiation of VSMCs into
osteoblast-like cells and reduce digestibility of collagen and other extra-
cellularmatrix proteins by forming irreversible crosslinks, which subse-
quently lead to an increased vessel stiffness and vascular dysfunction.
Among over 150 UTs that have been listed to date, some UTs like
indole-3-acetic acid strongly accumulate in the circulation of patients
who are still in an early stage of CKD as compared to normal levels ob-
served in healthy individuals [34]. The concentrations of 11 different
uremic toxins have been reported to be 2.3 to 44.7 times increased in
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patients with stage 3 and stage 4 CKD (moderate to severe CKD stage
but before stage 5 (dialysis stage)) versus the plasma levels found
healthy controls [35]. Protein-bound UTs, such as ADMA, p-cresyl sul-
fate and indoxyl sulfate (IS), also accumulate in patients with early
CKD stages with continuous concentration build up during CKD pro-
gression [36]. These protein-bound toxins have been shown to exhibit
high endothelial and vascular toxicity [36,37]. A common pathway for
these UTs is the activation of NAD(P)H oxidase, a reactive oxygen spe-
cies (ROS) inducer, leading to oxidative stress in ECs and a reduction
of nitric oxide (NO) bioavailability in the micro-environment [38]. NO
contributes to vasorelaxation and inhibits platelet aggregation, expres-
sion of adhesionmolecules and proliferation of VSMCs. Through activat-
ed oxidative stress and the subsequent activation of the p38/ mitogen-
activated protein kinase pathway, UTs also affects immune cells as dem-
onstrated by increased cell-surface expression of the immune activation
marker beta2-integrin Mac-1 (CD11b/CD18) in the leukocyte and
monocyte cell populations of CKD patients.

Unlike the deleterious influence of UTs on endothelium, clinical stud-
ies showed that E2 administration increased flow-mediated vasodilation
response, indicating that E2 is an important regulator of protective endo-
thelial function [39]. The non-genomic and genomic pathways of E2 that
act via its three receptors (ERα, ERβ, and GPER) have been shown to be
able to increase endothelial NO synthase (eNOS) in various cell types [39,
40]. In E2 treated human ECs, ERα signaling via PI3K triggers the activa-
tion of protein kinase B, extracellular-signal-regulated kinase 1/2, and
phosphorylation and activation of eNOS. Increased eNOS and NO bio-
availability promote vascular relaxation, ECsmigration and proliferation.
A rapid increase in intracellular calcium is also observed after E2 stimula-
tion [40]. A recent paper demonstrated that activatedGPER increased the
expression of calmodulin and prolonged cytoplasmic Ca2+ signals via
the transactivation of epidermal growth factor receptor and the activa-
tion of mitogen-activated protein kinase cascade in porcine aortic ECs
[41]. Calmodulin is a transducer of Ca2+ signals, and an activated cal-
modulin/Ca2+ system is able to modulate eNOS function. Interestingly,
E2 treatment was shown to increase the number of endothelial progeni-
tor cells in aNO-dependentway,which in return restored vascular repair
activities [42]. Furthermore, Osako et al. showed that the activation of
ERα suppressed the cascade of the receptor activator of nuclear factor-
κB and its ligand,which subsequently promoted expression of a calcifica-
tion inhibitor matrix Gla protein while inhibiting the expression of a cal-
cification inducer bone morphogenetic protein 2 in both human aortic
ECs and VSMCs, implying a beneficial effect of E2 in preventing vascular
calcification [43].

A community-based study showed that 18.2% of 445 women at the
mean age of 45.2 years old had reduced glomerular filtration rate
(b60mL/min/1.73m2), indicating a high prevalence of CKD in perimen-
opausal women [44]. Furthermore, clinical studies showed that MHT
protected renal function by increasing the glomerular filtration rate in
healthy postmenopausal women. This was coincided with a lower left
ventricular mass index when compared to other healthy postmeno-
pausalwomenwith lower glomerularfiltration ratewhodid not receive
MHT [45]. Taken together, we postulate that reduced estrogen levels
during and after menopause could increase the vulnerability of these
CKD patients for MVD, which may lead to LVDD and HFpEF. To further
elucidate this process, we analyzed published transcriptome datasets
of UTs or E2 treated human derived ECs fromNCBI GEO database.We in-
vestigated genes and pathways that may be involved in UTs-triggered
MVD in CKD. We obtained a gene set (group A) that poses deleterious
effects on endothelial function and could be inhibited by E2 stimulation,
and a second gene set (group B) with an endothelial protective effect
that could be induced by E2 (Supplemental Table 1). Based on these
two gene sets, we propose several target genes and their associated bi-
ological pathways, which may assist future studies in identifying valu-
able biomarkers and drug targets for early diagnosis and treatment of
the CKD postmenopausal population at risk of developing MVD and
subsequent HFpEF.
3.1. UTs impair microvascular homeostasis

Following a systematic pipeline (Fig. 1), we obtained two GEO
datasets that provide information of gene expression changes in ECs
under CKD condition. Briefly, keywords “chronic kidney disease” and
“uremic toxin”were coupledwith “endothelial cells” separately to gather
datasets from NCBI GEO database. Available datasets were further fil-
tered for “Organism: Homo sapiens” and “Study type: Expression profil-
ing by array”. Two GEO datasets were found according to these criteria
(Table 1). GSE34259 contains information of the transcriptome profile
of human umbilical vein endothelial cells (HUVECs) in response to IS
treatment. GSE60937 contains information of the transcriptome profile
of HUVECs in response to high inorganic phosphate (HP) treatment.
Both raw datasets were downloaded and sorted by R script provided
by NCBI's GEO2R program. These sorted gene expression datasheets
were analyzed as followed: (1) Based on default setting stated in
GEO2R, p-value below 0.05 was used to filter genes that reached signifi-
cance. (2) Selected genes with logFC value above 0 represented in-
creased expressions, and those with logFC value below 0 represented
decreased expressions. (3) Genes with increased or decreased expres-
sion were mapped between IS and HP groups to obtain overlapping
genes. We identified 36 genes with significantly increased expression
under both IS and HP stimulation, whereas 14 gene decreased expres-
sions under both IS and HP stimulation (Fig. 2A, Supplemental Table 2).

3.2. Functional annotation of UTs activated genes include positive regula-
tion of prostaglandin synthesis and prostaglandin-related processes

Based on the 36 genes that were significantly activated by both IS
and HP, we performed comprehensive functional annotations by using
the ToppGene Suite tool ToppFun (Correction: FDR; P-Value cutoff:
0.05; Gene limits: 1 ≤ n ≤ 2000). Themost enriched biological processes
include positive regulation of prostaglandin biosynthetic process
(GO:0031394) and prostaglandin-related processes (GO:2001280,
GO:2001279, GO:0031392, GO:0046890, Supplemental Table 3). In ad-
dition, cardiac chamber morphogenesis (GO:0003206) was identified
as the 7th most enriched biological process. By building a protein-
protein interaction network with these 36 genes using STRING, we
identified PTGS2, NRG1, ICAM1, PPKCA, PLA2G4A and ADAMTS1 as key
regulators within the constructed networks (Fig. 2B, confidence
score ≥ 0.4). Basal levels of prostaglandin production are very low but
increase significantly during inflammation, indicating UTsmay promote
inflammation of the endothelium.Many of the identified key mediators
of this gene set, including PTGS2, ICAM1 and PLA2G4, indeed exhibit pro-
inflammatory properties. During inflammation, arachidonic acid is re-
leased from the plasma membrane by PLA2G4-encoded phospholipase
2, followed by PTGS2 mediated conversion of arachidonic acid to pros-
taglandins [46]. ICAM1 is a ligand for lymphocyte function-associated
antigen 1 on leukocytes, and upregulation of ICAM1 expression in ECs
during endothelial activation is essential for leukocytes recruitment
[47]. Interestingly, Hadad et al. showed that phospholipase 2 increased
ICAM1 expression via two transcription factors nuclear factor-κB and
CREB in ECs [48]. These data indicate that prostaglandin regulation
may represent a common pro-inflammatory pathway underlying
MVD, which is induced by both IS and hyperphosphatemia.

3.3. Dysregulation of angiogenesis in UTs exposed vasculature

Inflammation-induced angiogenesis aids in the replacement of lost
microvasculature and restores microvascular density in CKD [49].
Other identified key mediators of this gene set such as PRKCA and
NRG1 are known to promote angiogenesis, whereas ADAMTS1 blocks
angiogenesis: An in vitro study showed that inhibition of PRKCA result-
ed in decreased expression of VEGF, a crucial angiogenic factor [50].
Endothelial-derived NRG1 has been reported to bind to ERBB receptors,
and the downstream cascade involves the activation of angiogenesis-

ncbi-geo:GSE34259
ncbi-geo:GSE60937


Fig. 1.Overview of theworkflow for identifying interesting gene groups from three included GEO datasets, representing gene expressions in HUVECs under indoxyl sulfate (IS), high level
inorganic phosphates (HP) and estrogen (E2) stimulations. A)Workflow of dataset collection by searching for keywords in GEO datasets, followed by filtering “Organism: Homo sapiens”
and “Study Type: Expression profiling by array” and screening for the relevance. Three datasets were finally included after removing duplicates infiltered datasets. B) Significantly up- and
down-regulated genes in HUVEC under UTs (IS and HP) and E2 were identified based on their fold change and p values. C) By mapping genes that were regulated by both UTs and E2, we
identified a group of genes (group A) that were upregulated by UTs (IS and/or HP) and downregulated by E2, and another gene group (group B) inwhich genes were inhibited by UTs and
increased by E2.
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related tyrosine kinase receptors, like VEGF receptors and Eph receptors
[51]. ADAMTS1 has been proposed to block angiogenesis via two mech-
anisms, i.e. by suppressing EC proliferation by disrupting VEGF signaling
or by releasing anti-angiogenic peptides from angiogenesis-related pro-
teins thrombospondin 1 and 2 [52]. Based on our analysis, we propose
that increased circulating UTs could negatively impact renal and cardiac
endothelial homeostasis by triggering inflammation and initiating vas-
cular damage. In addition, vascular repair activity appears to be im-
paired by UTs-activated genes, leading to further progression of MVD.

4. E2 actives microvascular protective mechanisms

We also searched for gene expression changes in ECs under post-
menopausal condition. Keywords “menopause” and “estrogen” were
coupled with “endothelial cells” separately to gather datasets from
NCBI GEO database. Available datasets were further filtered for “Organ-
ism: Homo sapiens” and “Study type: Expression profiling by array”
(Fig. 1). One GEO dataset (GSE16683) was found according to these
criteria, which showed the transcriptome response of E2 stimulated
HUVECs (Table 1). Gene transcripts that were significantly increased
and decreased by E2 were identified in the same way as previously de-
scribed. In order to evaluate the susceptibility of UTs influenced genes
to E2 regulation, wemapped genes with increased and/or decreased ex-
pressions among IS, HP and E2 groups. We identified 188 overlapping
Table 1
Included GEO (Gene Expression Omnibus) datasets.

GEO
series

Cell
type

Stimulus Number of
up-regulated genes

Number of
down-regulated genes

GSE16683 HUVECs E2 2816 1670
GSE34259 HUVECs IS 286 50
GSE60937 HUVECs HP 1633 3175

HUVECs: human umbilical vein endothelial cells; E2: estradiol; IS: indoxyl sulfate; HP:
high inorganic phosphate.
genes that were increased in expression by UTs (IS and/or HP) and
inhibited by E2 in group A, and 572 overlapping genes that were de-
creased in expression by UTs and increased by E2 in group B. Group A
represents genes which are possibly involved in MVD-inducingmecha-
nistic pathways that could be suppressed by E2 protection. Group B rep-
resented genes in putative protective MVD-preventive pathways that
could be induced by E2.
4.1. E2 protects microvasculature by suppressing UTs-induced
inflammation

Based on 188 genes in groupA, themost enrichedbiological process-
es (Table 2, Supplemental Table 4) that were annotated by using
ToppFun include “regulations of nitrogen compound metabolic pro-
cess”, “potassium ion import” and “neutrophil migration”, which are
known to influence microvascular homeostasis directly and could lead
to MVD [53,54]. During inflammation, neutrophils extravasate the vas-
culature by migrating between ECs to inflamed sites. Increased ROS
levels, produced by neutrophils, disrupt endothelial integrity by
inhibiting endothelial occludin expression in tight junctions and by ac-
tivating the phosphorylation of VE-cadherin, β-catenin and P120 caten-
in in adherens junctions, leading to increased diapedesis of
inflammatory cells [53]. Excessive ROS also activates the JNK cascade,
which is responsible for apoptosis, and could lead to tissue injury. Vaso-
dilation regulated by “positive regulation of nitrogen compound meta-
bolic process” and “potassium ion import”, further promotes a
persistent inflammatory response [55]. In the cardiac microvasculature,
it has been reported that increased ROS levels lower the activity of pro-
tein kinase G and titin hypophosphorylation, which resulted in an in-
creased resting tension of cardiomyocytes [56]. In addition, lower
activity of protein kinase G contributed to cardiomyocyte hypertrophy,
and subsequently increased left ventricle wall stiffness. Based on these
observations, we conclude that E2 could protect the (myo)endothelium

ncbi-geo:GSE16683
ncbi-geo:GSE16683
ncbi-geo:GSE16683
ncbi-geo:GSE34259
ncbi-geo:GSE34259
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Fig. 2. Identification of genes with significantly increased and decreased expressions in response to IS, HP and/or E2 stimulation in HUVECs. A) Venn diagram of genes stimulated by UTs
and suppressed by E2 (group A, indicated in red) and genes inhibited by UTs and enhanced by E2 (group B, indicated in black). B) Among 36 genes increased by both IS and HP, ADAMTS1,
PTGS2, NRG1, ICAM1, PRKCA and PLA2G4A were identified as the key mediators by STRING (confidence score ≥0.4). Stronger associations are represented by thicker lines. C) Biological
functions of identified key genes regarding endothelium homeostasis based on literature studies. Green arrow: gene promotes the process; red indicator: gene inhibits the process.
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by inhibiting UTs-induced inflammation, especially via downregulation
of genes involved in ROS signalling.

4.2. E2 facilitates vascular repair activity by activating platelet coagulation
and hemostasis at injured sites

Based on the 572 genes in group B, themost enriched biological pro-
cesses that are annotated by using ToppFun include “responses to
stress”, “wounding and growth factors” and “hemostasis” (Table 2, Sup-
plemental Table 4). These processes have been linked in literature to
mechanisms that restore microvascular homeostasis [57–60]. In addi-
tion, nerve growth factor signaling (ID106459)was one of the top path-
ways annotated in this gene set (Fig. 3) and is known to play a
regulatory role in promoting angiogenesis in vascular disease. For ex-
ample, Park et al. showed that the binding of nerve growth factor to
its receptor TrkA increased matrix metalloproteinase 2 expression via
Table 2
Most enriched biological processes in uremic toxins-increased and estrogen-inhibited groups (

GO rank ID Name

Group A
1 GO:0031328 Positive regulation of cellular biosynthetic proc
2 GO:0097368 Establishment of Sertoli cell barrier
3 GO:0051173 Positive regulation of nitrogen compound meta
4 GO:0010107 Potassium ion import
5 GO:0002027 Regulation of heart rate
6 GO:0010657 Muscle cell apoptotic process
7 GO:1902622 Regulation of neutrophil migration
8 GO:0001666 Response to hypoxia

Group B
1 GO:0007010 Cytoskeleton organization
2 GO:0007049 Cell cycle
3 GO:0033554 Cellular response to stress
4 GO:0033043 Regulation of organelle organization
5 GO:0007599 Hemostasis
6 GO:0016032 Viral process
7 GO:0009611 Response to wounding
8 GO:0022008 Neurogenesis
9 GO:0070848 Response to growth factor
10 GO:0044764 Multi-organism cellular process
the activation of PI3K/Akt pathway and the AP-2 transcription factor
[57]. Another significantly enriched pathway is the interleukin 6 signal-
ing pathway (ID198864, Fig. 3), which has been positively linked to co-
agulation [58]. Blood coagulation, a significantly enriched Biological
process (GO:0007596, p-value b 0.01), is in line with the observations
of estrogen-related pro-coagulation capacity in clinical studies and rep-
resents an important step in hemostasis [61]. During hemostasis, tissue
factor and the serine protease factor VIIa activate factor X and IX, which
initiate the coagulation cascade and lead to the formation of thrombin
[62]. Thrombin cleaves fibrinogen to generate insoluble fibrin, forming
a fibrin mesh to strengthen and stabilize the blood clot and stop bleed-
ing at the site of injury. By cleaving 2 protease activated receptors, PAR1
and PAR4, thrombin also activates platelets. Activated platelets express
receptor GPIb-IX-V and receptor GPVI to bind vonWillebrand factor and
collagen in the sub-endothelial matrix, which further facilitates platelet
adhesion. In addition, activated platelets secrete both pro- and anti-
group A) and uremic toxins-decreased and estrogen-enhanced groups (group B).

FDR-corrected
p-value

Number of input/annotation genes

ess 7.410E-6 37/1872
7.799E-6 3/5

bolic process 8.883E-6 37/1887
1.431E-4 4/29
2.602E-4 6/95
3.711E-4 5/66
4.168E-4 4/38
4.293E-4 10/293

1.747E-9 72/1142
4.609E-9 97/1780
4.610E-3 97/1983
2.126E-6 62/1116
4.903E-6 38/574
6.011E-6 48/810
7.165E-6 60/1109
8.600E-6 88/1848
9.128E-6 53/944
9.172E-6 48/823



Fig. 3. Top 5 statistically significant pathways based on 572 genes in group B using the ToppGene Suite tool ToppFun (Correction: FDR; P-Value cutoff: 0.05; Gene limits: 1≤ n ≤2000). The
number of input genes and genes involved in each pathway are also listed.
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angiogenetic factors to repair and replace damaged blood vessels and
restore homeostasis [59].

Based on these findings, we suggest that E2 could counter the UTs-
induced inhibition of the platelet coagulation and hemostasis response
of the (micro)vasculature. Indeed, it has been long recognized that the
coagulation system of patients with renal insufficiency and uremia is
profoundly affected, demonstrating frequent symptoms of severe
bleeding or thrombosis that lead to significant increase in morbidity
and mortality [63]. The expression data of group B imply that UTs may
contribute to the pathogenesis of uremic bleeding and thrombotic di-
athesis, which can be counteracted by the effects of E2 protection. In re-
lation to uremic bleeding, treatment with conjugated E2 has been
proposed and shown to be effective [64]. Interestingly, uremic bleeding
has been linked to high NO bioavailability. Early studies have shown
that monomethyl-L-arginine mediated inhibition of NO could normal-
ize platelet dysfunction and bleeding time of uremic rats [65]. Likewise,
systemic inhibition of NO production in healthy human volunteers
could significantly shorten the bleeding time [66]. E2 has been shown
to normalize vascular expression of NO-producing enzymes and NO
plasma levels in uremic rats [67], whereas induction of NO diminished
the protective effects of estrogen in uremic bleeding [68]. As NO has
been indicated to play a central role in cardiac endothelial dysfunction,
linkingmicrovascular disease to onset of HFpEF, the uncovered putative
mechanism of UTs regulation of the coagulation system may be an im-
portant step in the pathogenesis that requires further study, particularly
in relation to post-menopausal estrogen levels.

4.3. Possible UTs and E2 regulate gene targets in EC-cardiomyocyte para-
crine crosstalk

Since ECs are located at a distance of maximum 5 μM from
cardiomyocytes, UTs and/or E2 induced signaling in ECs could further in-
fluence cardiac function in a paracrine fashion. In order to identify pos-
sible genes that are involved in EC-cardiomyocyte paracrine crosstalk,
genes in Group A and B were re-analyzed using ToppFun regardless of
their p-value (p-value cutoff: 1), and the obtained enrichments (includ-
ing Molecular function, Biological process, Pathway, Mouse phenotype,
Human phenotype and Disease) were further filtered for terms includ-
ing “cardio”, “cardiac”, “myocard” and “heart”. Following this procedure,
an enrichment list of 58 genes (31%) in group A, and 138 genes (24%) in
group B were produced that matched the above described criteria
(Fig. 4C and D).

Gene functions annotated from these 58 cardiac related genes in
groupA include “leukocytemigration”, “immune system development”,
“positive regulation of cell motility”, “response to lipid”, “regulation of
JNK cascade”, “vascular process in circulatory system”, and “regulation
of cellular response to stress” (Fig. 4A). Immune responses are known
to be linked to endothelial dysfunction, which in turn is related to a
lower activity of protein kinase G, titin hypophosphorylation, and an in-
creased resting tension of cardiomyocytes and a hypertrophic response
[56]. Endothelial dysfunction-related impaired NO bioactivity also re-
sults in endothelial-to-mesenchymal transition, during which ECs dif-
ferentiate into (myo)fibroblasts and contribute to cardiac fibrosis. The
identification of inflammation and MVD related mechanisms in the
gene set of group A, thus imply that these initiating factors that contrib-
ute to LVDD and HFpEF could bemainly induced by circulating UTs dur-
ing post-menopause.

Gene functions annotated from the 138 cardiac related genes in
group B include “Notch signaling pathway”, “ERBB signaling pathway”,
“fibroblast growth factor receptor signaling pathway” and “downregu-
lation of immune process” (Fig. 4B). During embryonic ventricular de-
velopment, Notch activation induces the expression of EPHRINB2,
NRG1 and BMP10, resulting in trabecular differentiation and the prolif-
eration of trabecular cardiomyocytes. In addition, Notch pathway, espe-
cially NOTCH1, is important in regulating endothelial function in the
aortic valve, whereas endothelial dysfunction is associated with aortic
valve calcification [69]. In response to pressure overload of the left ven-
tricle due to aortic valve calcification, the myocardium becomes hyper-
trophic, eventually leading to diastolic dysfunction [70,71]. A recent
paper showed an increased level of Notch ligand DLL1 was associated
with diastolic dysfunction, but no significant association between
serum level of DLL1 and HF patients with LVEF N 50% was found [72].

ERBB signaling is activated by endothelium-derived neuregulins.
Parodi et al. indicated that during heart development, neuregulins-
ERBB4 complex initiates dimerization with ERBB2, leading to a
neuregulins/ERBB signaling cascade that promotes cardiomyocytes pro-
liferation and differentiation [73]. Protein levels of ERBB2 and ERBB4
have been reported to be extremely reduced in HF patients, suggesting
a key role of ERBB signaling in maintaining cardiac function [73]. In line
with this notion, genetic knockdown of FRG receptor 1 and 2 in ECs of
myocardial infarctedmice led to decreased vessel density, increased ap-
optosis and worsened cardiac function measured by echocardiography,
suggesting a protective role of fibroblast growth factor signaling in vas-
cular adaptation for cardiomyocyte function during ischemic heart inju-
ry [74].

To conclude, these findings imply that E2 might protect the heart
against UTs by suppressing inflammatory responses, protecting cardiac
vessel density and facilitating cardiomyocyte proliferation in an EC-
cardiomyocyte paracrine crosstalk dependent manner.

5. Conclusion

In the current review, we aimed to gain more insight into the gene
expression profiles of ECs that are predisposing and preventing MVD



Fig. 4.Gene annotations based on 38 genes and 138 genes related to cardiac function in group A and B. A, B) Gene functions including; immune response, apoptosis, response to lipid and
stress signals in blood vessel cells were annotated by GeneMANIA (default parameters) in group A, whereas gene functions including; downregulation of immune-related process, ERBB
signaling pathway, Notch signaling pathway and fibroblast growth factor receptor signaling were annotated in group B. Genes in black and/or with lines within the nodes are input gene
and genes in grey and/or without lines within the nodes are annotation genes. C, D) Proportions of cardiac function-related genes within group A and B, respectively.
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and MVD-related HFpEF in postmenopausal women with CKD. By ana-
lyzing three published microarray datasets based on the transcriptome
responses of IS-, HP- and E2-treated HUVECs, we conclude that tran-
scriptional changes of ECs exposed to CKD-associated circulatory risk
factors IS and HP are characterized by increased expression of genes
that are related to activation of inflammation and dysregulation of an-
giogenesis. In addition, these deleterious pathogenic expression profiles
may be ameliorated by E2 protection during the premenopausal period
by a gene expression profile that promotes suppression of UTs-induced
inflammation and facilitates angiogenesis by restoring coagulation and
hemostasis in injured vessels. Reduced estrogen levels during and
after menopause could accelerate the development of cardiorenal syn-
drome and CKD-associated HFpEF in CKD patients due to loss of E2 pro-
tection of the endothelium in the deleterious environment of UTs. Our
analysis provides, for the first time to our knowledge, a comprehensive
in silico analysis of possible genes involved in CKD associated MVD that
are regulated by E2 and may be more affected during postmenopause
period. Other mechanisms, which could also contribute to CKD-related
HFpEF, might interact or work in parallel with our proposed mecha-
nism. Clinical studies of the high-risk population of postmenopausal pa-
tients with cardiorenal syndrome are required to further verify our
findings and to reveal the precise disease mechanisms involved. Even-
tually, improved insight into the link between loss of estrogen protec-
tion, MVD onset and progression in the CKD postmenopausal
population could yield new and more dedicated biomarkers and drug
targets for the development of new diagnostic tools and pharmacother-
apies for HFpEF for this specific patient population.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ijcard.2017.03.050.
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