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ABSTRACT 

Planar Fabry-Pérot (FP) ultrasound sensor arrays have been used to produce in-vivo photoacoustic images of 
high quality due to their broad detection bandwidth, small element size, and dense spatial sampling. However 
like all planar arrays, FP sensors suffer from the limited view problem. Here, a multi-angle FP sensor system is 
described that mitigates the partial view effects of a planar FP sensor while retaining its detection advantages. 
The possibility of improving data acquisition speed through the use of sub-sampling techniques is also explored. 
The capabilities of the system are demonstrated with 3D images of pre-clinical targets 

Introduction 
Thin-film Fabry-Pérot (FP) interferometric ultrasound sensors have been used to produce photoacoustic images 
of high quality[1], [2]. For simplicity of manufacture, FP sensors are produced in a planar form. As with all 
planar detectors, images produced with data from a single FP sensor array suffer from limited view artifacts[3], 
[4]. In a previous work [5]–[7] it has been shown that the use of two orthogonal FP sensor planes can produce 
images with reduced artifacts and sharper details in ex-vivo conditions. Here the use of multiple additional 
planes to further increase the solid angle subtended by the array is explored.  

Multiple sensor planes were synthesised by rotating the imaged target relative to the sensor plane. Whilst 
rotating the target is not a novel way of dealing with the limited-view problem [8]–[12], it has not previously 
been implemented using a FP sensor, and allows different arrangements to be tested at this proof-of-principle 
stage. For example, the positions of the multiple planes can be altered by changing the distance between the 
centre of rotation and sensor plane, by changing the size of the region of the sensor that is interrogated, by 
changing the size of the angle between subsequent sensor positions, and by changing the overall number of 
sensor positions.  

System design 
The system, shown in Fig. 1, consisted of a planar Fabry-Pérot thin film interferometer [1], mounted vertically, 
and a custom interrogation system mounted horizontally relative to the sensor. The sample was held directly in 
front of the sensor in a custom sample holder, which was rotated by a stepper motor (Sanyo Denki 103H5208-
0440). Excitation light, from a Quantel Ultra (λ=1064nm, 8ns pulse width, 20Hz repetition rate), was introduced 
into the volume in backward mode through the sensor.   
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Figure 1 System diagram. Standard Fabry-Pérot(FP) sensor mounted vertically, interrogated by a custom 
interrogation system. The sample is held in front of the sensor in a custom mount. The sample mount is rotated by 
a stepper motor. Excitation light is introduced in backward mode through the sensor. The water tray used to 
acoustically couple the sample to the sensor is not shown.  

Registration procedure 
In order to register all of the planes’ local coordinate systems to a single global coordinate system, a registration 
procedure was developed. A registration phantom consisting of three separate 17 µm polymer strands was 
photoacoustically imaged from each sensor position. In this case six angles, each 45° apart, were used to give a 
total angular aperture of 225°. The separate images for each plane/angle were reconstructed using time 
reversal[13], [14], and for each a point cloud was generated by thresholding the voxels based on their image 
intensities (Fig. 2(a)). A rigid point set registration [15] was then used to align the point clouds and thereby 
register each plane to the universal coordinate system. The six planes registered to a single universal coordinate 
system can be seen in Fig. 2(b).  

 

 

Reconstruction 
An iterative time-reversal image reconstruction algorithm[16], [17] was used to obtain a single photoacoustic 
image from the combined data from all sensor planes. An iterative technique has the benefit of allowing the dual 
physically-justified constraints of zero initial acoustic particle velocity and non-negative initial acoustic pressure 
to be enforced. This improves the quality of the image by, for example, reducing the level of artifact, compared 
to a linear sum of the individual images. Fig. 3 demonstrates this with two reconstructions of the registration 
phantom obtained with different algorithms. In Fig. 3(a) the image is the sum of the images obtained for each 

Figure 2 (a) demonstration of two point clouds generated from two different planar positions having been 
registered using the rigid point registration. (b) Position of 6 planes registered to global co-ordinate system. 

(a) (b) 
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