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a b s t r a c t 

Segmentation algorithms are typically evaluated by comparison to an accepted reference standard. The 

cost of generating accurate reference standards for medical image segmentation can be substantial. Since 

the study cost and the likelihood of detecting a clinically meaningful difference in accuracy both depend 

on the size and on the quality of the study reference standard, balancing these trade-offs supports the 

efficient use of research resources. 

In this work, we derive a statistical power calculation that enables researchers to estimate the appropriate 

sample size to detect clinically meaningful differences in segmentation accuracy (i.e. the proportion of 

voxels matching the reference standard) between two algorithms. Furthermore, we derive a formula to 

relate reference standard errors to their effect on the sample sizes of studies using lower-quality (but 

potentially more affordable and practically available) reference standards. 

The accuracy of the derived sample size formula was estimated through Monte Carlo simulation, demon- 

strating, with 95% confidence, a predicted statistical power within 4% of simulated values across a range 

of model parameters. This corresponds to sample size errors of less than 4 subjects and errors in the 

detectable accuracy difference less than 0.6%. The applicability of the formula to real-world data was as- 

sessed using bootstrap resampling simulations for pairs of algorithms from the PROMISE12 prostate MR 

segmentation challenge data set. The model predicted the simulated power for the majority of algorithm 

pairs within 4% for simulated experiments using a high-quality reference standard and within 6% for sim- 

ulated experiments using a low-quality reference standard. A case study, also based on the PROMISE12 

data, illustrates using the formulae to evaluate whether to use a lower-quality reference standard in a 

prostate segmentation study. 

© 2017 Published by Elsevier B.V. 

 

 

 

 

 

 

 

 

 

 

a  

t

 

t  

a  

o  

t  

h  

e  

r  

e  

t  
1. Introduction 

Demonstrating an improvement in segmentation algorithm ac-

curacy typically involves comparison with an accepted reference

standard, such as manual expert segmentations or other imag-

ing modalities (e.g. histology). In many medical image segmen-

tation problems, such segmentations are challenging due to the

variable appearance of anatomical/pathological features, ambigu-

ous anatomical definitions, clinical constraints, and interobserver

variability. The resulting errors in the reference standards intro-

duce errors in the performance measures used to compare seg-

mentation algorithms, and can impact the probability of detecting
∗ Corresponding author. 
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 significant difference between algorithms, referred to as the sta-

istical power ( Beiden et al., 20 0 0 ). 

The cost and quality of a reference standard is affected by the

ime and effort devoted to segmentation accuracy, the sample size,

nd the number, background, experience and proficiency of the

bservers. For example, the PROMISE12 prostate MRI segmenta-

ion challenge used two reference standards (illustrated in Fig. 1 ): a

igh-quality reference standard manually segmented by one experi-

nced clinical reader and verified by another independent clinical

eader, and a low-quality reference standard segmented by a less

xperienced non-clinical observer. An alternative approach is to es-

imate a high-quality reference standard by combining indepen-

ent segmentations from multiple observers using algorithms such

s STAPLE ( Warfield et al., 2004 ) and SIMPLE ( Langerak et al., 2010 ).

 third approach is to mitigate the errors in a lower-quality ref-

rence standard by increasing the sample size ( Konyushkova et al.,

http://dx.doi.org/10.1016/j.media.2017.07.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2017.07.004&domain=pdf
mailto:eli.gibson@ucl.ac.uk
http://dx.doi.org/10.1016/j.media.2017.07.004
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Fig. 1. Left: Illustrative prostate MRI segmentations from the PROMISE12 prostate 

segmentation challenge ( Litjens et al., 2014b ) by two algorithms – A (blue) and B 

(yellow) – and the two manually contoured reference standards – L (red) which is 

of lower quality and H (green) that is of higher quality. Compared to H, L over- 

segmented anteriorly where image information was ambiguous, affecting accuracy 

measurements of A and B using L. Right: Harder apical segmentations showing re- 

gions containing voxels with different combinations of segmentation labels ABLH 

(overbar denotes negative classifications). The statistical model underlying the de- 

rived sample size formula for segmentation evaluation studies is derived from prob- 

ability distributions of these voxel-wise segmentation labels. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 
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015; Top et al., 2011; Maier-Hein et al., 2014; Irshad et al., 2015 ).

ll three of these approaches, however, raise the cost of generat-

ng the reference standard, both logistically and economically. 

There are clear trade-offs between the sample size of the study,

he cost of generating the reference standard, and the reference

tandard quality. The optimal balance of these trade-offs depends

n the relationship between the study design parameters and sta-

istical power. However, standard power calculation formulae do

ot, in general, account for the quality of reference standard seg-

entations. Thus, there is a need for new formulae to quantify

hese relationships. As a first step towards this goal, this paper

resents a new sample size calculation relating statistical power

o the quality of a reference standard (measured with respect to a

igher-quality reference standard). Such a formula can answer key

uestions in study design: 

• How many validation images are needed to evaluate a seg-

mentation algorithm? 
• How accurate does the reference standard need to be? 

In preliminary work ( Gibson et al., 2015 ), we derived a relation-

hip between statistical power and the quality of a reference stan-

ard for a simplified model that cannot account for correlation be-

ween voxels, and made a strong assumption that the reference

nd algorithm segmentation labels are conditionally independent

iven the high-quality reference standard. In the present paper, we

uild on our initial work to develop a generalized model that takes

nto account the correlation between voxels and the statistical de-

endence between algorithms and reference standards observed in

egmentation studies. 

The remainder of this paper outlines the derivation

 Section 2.3 ), application ( Sections 3 and 6 ) and validation

 Sections 4 and 5 ) of a statistical power formula for image

egmentation. Insights and heuristics derived from the formula

nd its validation, as well as limitations of the work, are discussed

n Section 7 . Appendix A and Appendix B present mathematical

etails of the derivations. 

. Sample size calculations in segmentation evaluation studies 

The probability of a study correctly detecting a true effect de-

ends in part on the sample size. A study with a sample size that

s too small has a higher risk of missing a meaningful underly-

ng difference, while one with a sample size that is too large may

e more expensive than necessary. Sample size calculations relate
he probability of a study correctly detecting a true effect to spec-

fied and estimated parameters of the study design ( Mace, 1964 ).

he sample size depends on the probability distribution of the test

tatistic under the null and alternate hypotheses. This distribution,

n turn, depends on the statistical analysis being performed and on

n assumed statistical model of the studied population. 

We derive a sample size calculation for a specific analysis: com-

aring the mean segmentation accuracy — i.e. the proportion of

oxels in an image that match the reference standard L — of two

lgorithms A and B that generate binary classifications of v vox-

ls on n images using a paired Student’s t -test ( Rosner, 2015 ) on

he per-image accuracies. Specifically, this tests the null hypothe-

is that the mean segmentation accuracies of A and B (both mea-

ured by comparison to L) are equal against the alternative hy-

othesis that they are unequal. Paired t -test analyses such as this

ne are frequently performed in comparisons of segmentation ac-

uracy ( Caballero et al., 2014 ). 

.1. Notation 

Throughout this paper, we use the notation given in Table 1 .

ymbols used in this paper are summarized in Table 2 . 

.2. Statistical model of segmentation 

Our stochastic population model represents the joint distri-

ution of possible segmentations by A, B, and L over a pop-

lation of images. The data for one image from this popu-

ation comprises binary segmentation labels (encoded as in-

egers 0 or 1) assigned by A, B and L to each of the

 voxels: a k, 1 , . . . , a k, v , b k, 1 , . . . , b k, v , l k, 1 , . . . , l k, v , where a k, i , b k, i ,

nd l k, i are the labels for the i th voxel in the k th im-

ge. The data for a study comprises n randomly sampled

mages, which we denoted with a set of random variables

 A k, 1 , . . . , A k, v , B k, 1 , . . . , B k, v , L k, 1 , . . . , L k, v | k = 1 ..n } , where A k, i , B k, i ,

nd L k, i are the random variables representing labels for the i th

oxel in the k th randomly sampled image. 

.2.1. Accuracy difference measures 

We focus on three types of segmentation accuracy differences.

irst, the per-voxel segmentation accuracy difference for the i th

oxel in the k th image is D k,i = | B k,i − L k,i | − | A k,i − L k,i | . D k, i can

ake on three values: 1 (when A k,i = L k,i � = B k,i ), 0 (when A k,i =
 k,i ) and −1 (when A k,i � = L k,i = B k,i ). Random vector � D k represents

ll D k, i for the k th image. Second, the per-image accuracy dif-

erence is the proportion of correct voxel labels from algorithm

 (with respect to reference standard L) minus the proportion

f correct voxel labels from algorithm B (with respect to refer-

nce standard L): D k = 

1 
v 

∑ v 
i =1 (1 − | A k,i − L k,i | ) − 1 

v 
∑ v 

i =1 (1 − | B k,i −
 k,i | ) = 

1 
v 

∑ v 
i =1 D k,i . Third, the population average accuracy differ-

nce δ is the expected value E[ D k ] for a randomly selected image

n the population, and equivalently, δ = p(D = 1) − p(D = −1) for

 randomly selected per-voxel accuracy difference D . 

.2.2. Model distribution 

For calculating power, the model (summarized in Table 3 and il-

ustrated in Fig. 2 ) must encode the distribution of the metric anal-

sed in the statistical analysis: the per-image accuracy difference

 k . While D k depends on all three segmentations A, B and L, it

an be expressed more simply as a unary function of � D k . There-

ore, we consider the distribution of � D k directly, modeled as a v -

imensional correlated categorical distribution. To model this dis-

ribution, we follow the common convention of breaking down

omplex joint distributions into the mean, and multiple simpler

ources of variation about the mean. 



46 E. Gibson et al. / Medical Image Analysis 42 (2017) 44–59 

Table 1 

Notation for mathematical symbols. 

Type notation 

Segmentation algorithms X (upper case non-italic) 

Random variables and vectors X (upper case) 

Realizations of random variables and constants x (lower case) 

Vectors �
 x (arrow accent); 〈 x, y 〉 (angle brackets) 

Estimates ˆ x (circumflex accent) 

Parameterized distributions X ∼ X ( θ ) (bold capital with parameters in parentheses) 

Expectation of X E [ X ] 

Conditional expectation of X given Z E ( X | Z ) 

Conditional variance of X given Z σ 2 
X| Z 

Conditional covariance of X and Y given Z cov ( X, Y | Z ) 

Event X = 1 x (bold lower case) 

Event X = 0 x̄ (bold lower case with bar) 

Table 2 

Glossary of mathematical symbols. 

Symbol Support Description 

Experimental parameters 

n N Sample size 

v N Number of voxels per image 

α R Significance threshold (acceptable Type I error) 

β R 1 − power (acceptable Type II error) 

δMDD [ −1 , 1] Minimum difference to detect with specified power 

Population parameters 

�
 p [0, 1] 3 Population average marginal probability for the per-voxel accuracy difference 

δ [ −1 , 1] Population accuracy difference 

ψ [0, 1] Probability that A and B disagree on voxel label 

δH [ −1 , 1] Population accuracy difference measured against high-quality reference standard H 

p ( a ), p ( b ), p ( l ), p ( h ) [0, 1] Probabilities of voxel labels being 1 for a randomly selected voxel 

ρ i, j [ −1 , 1] Correlation between D k, i and D k, j given � O k 
ρi, j [0, 1] Average ρ i, j over all voxel pairs i and j 

σ 2 
O 1 −O −1 

[0 , ψ − δ2 ] Variance of the accuracy difference in the marginal probability prior 

ω ω ∈ R + Precision parameter of Dirichlet distribution controlling inter-image variability 

Random variables 

A k, i , B k, i , L k, i , H k, i {0, 1} Segmentation label for the i th voxel in the k th image 
�
 O k [0, 1] 3 Per-image prior on average marginal probability 
�
 O k,i [0, 1] 3 Per-voxel prior on marginal probability 

�
 D k { −1 , 0 , 1 } v Vector of per-voxel accuracies for the k th image 

D k, i {−1 , 0 , 1 } Difference in accuracy for the i th voxel of the k th image 

D {−1 , 0 , 1 } Difference in accuracy for a random voxel 

D k [ −1 , 1] Per-image accuracy difference 

Simulation variables 

Dist i, j R 
+ Distance between voxels i and j 

σρ R 
+ Scaling parameter to control spatial correlation in Monte Carlo simulations 

d k [ −1 , 1] Per-image accuracy difference of a simulated image 

d k, i {−1 , 0 , 1 } Per-voxel accuracy difference of a simulated voxel 

Other notation 

p −1 , p 0 , p 1 [0, 1] Elements of � p for values −1 , 0, and 1 

O k, −1 , O k , 0 , O k , 1 [0, 1] Elements of � O k for values −1 , 0, and 1 

O k,i, −1 , O k, i , 0 , O k, i , 1 [0, 1] Elements of � O k,i for values −1 , 0, and 1 

A, B, L, H Segmentation sources denoting two algorithms, a low-quality and a high-quality reference 

f Design factor 

t p {1} , t p {2} R 1- and 2-tailed p probability critical value from a T -distribution 

σ 2 
0 [0 , 

√ 

2 ] Per-image accuracy difference variance under the null hypothesis 

σ 2 
alt 

[0 , 
√ 

2 ] Per-image accuracy difference variance under the alternative hypothesis 

[ x, y ] denotes real numbers between x and y ; { x, y, z } denotes a set of possible values; a superscript x denotes a vector with x 

elements; N denotes natural numbers; R denotes real numbers. R + denotes positive real numbers. 

Table 3 

Model summary. These expressions summarize the nested 

model used in our derivations. The motivation and detailed 

description is given in Section 2.2.2 . 

�
 O k ∼ �

 P ( � p ) where E[ � O k ] = 

�
 p 

∀ i � O k,i ∼ �
 O ( � O k ) where E( � O k,i | � O k ) = 

�
 O k 

∀ i D k,i ∼ Categorical ( � O k,i ) 

∀ i � = j cov (D k,i , D k, j | � O k ) = ρi, j 

√ 

σ 2 
D k,i | � O k 

σ 2 
D k, j | � O k 

 

s  
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t  
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D  
The mean of � D k is defined by the joint distribution of the

egmentation labels. Considering the joint distribution is impor-

ant, because the algorithm and reference standard labels for a

andomly selected voxel ( A, B and L ) may not be independent

rom each other, as they depend on the same image informa-

ion and overlapping prior knowledge. The mean of � D k , therefore,

ncodes the inter-segmentation correlation in the population av-

rage marginal probabilities of the per-voxel accuracy difference

 (marginalized over combinations of segmentations A, B and L
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Fig. 2. The illustrated nested model shows, from left to right, (1) the prior distribution of per-image average marginal probabilities � P ( � p ) (shown on the triangular (standard 

2-simplex) domain with axes O k , 1 and O k, −1 shown and O k , 0 implicitly defined as 1 − O k, 1 − O k, −1 ; darkness represents the probability density), (2) three different samples 

(i.e. three images) of per-image average marginal probabilities � o k (shown as arrows labelled � o 1 , � o 2 and � o 3 ), (3) three corresponding conditional prior distributions of per-voxel 

marginal probabilities � O ( � O k ) for the three images (shown as in (1)), (4) nine different samples (i.e. nine voxels from the second image) of per-voxel marginal probabilities 

�
 o k,i (shown as unlabelled arrows), and (5) the categorical distributions for the nine voxels from the second image (shown as pie charts of the relative probabilities of the 

per-voxel accuracy differences p(d k,i = 1 | � o k,i ) [orange], p(d k,i = 0 | � o k,i ) [blue], and p(d k,i = −1 | � o k,i ) [red]). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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ielding each difference value): 

p(D = 1) = p(A = 1 , B = 0 , L = 1) + p(A = 0 , B = 1 , L = 0) ;
p(D = 0) = p(A = B ) ;
p(D = −1) = p(A = 1 , B = 0 , L = 0) + p(A = 0 , B = 1 , L = 1) . (1) 

or example, when A and B are highly correlated, p(D = 0) is

igher and when A and L are highly correlated, p(D = 1) increases

hile p(D = −1) decreases. We consider the population average

arginal probabilities as a model parameter � p = < p 1 , p 0 , p −1 > = <

p(D = 1) , p(D = 0) , p(D = −1) > . 

The variation of � D k about the mean is affected by three sources

f variation: 

• intra-image inter-voxel correlation – two voxels in the same

image may have correlated labels if, for example, they are ad-

jacent or are commonly affected by the same image artifact. 
• inter-image variability – the expected segmentation perfor-

mance for different images may vary, as one image may have

features that are more or less challenging for a particular algo-

rithm or observer than another image. 
• inter-voxel variability – two voxels in the same image may

have different marginal probabilities depending on the image

content; for example, voxels that are easy to segment for any

algorithm would likely have the same labels for any algorithm,

where more challenging voxels are more likely to show differ-

ences. 

Both the inter-image variability and the intra-image inter-voxel

orrelation affect the covariance matrix of � D k . While the covariance

atrix could be an explicit model parameter, interpreting the pa-

ameter is challenging because it conflates these different sources
f correlation. Instead, we construct an over-parameterized nested

odel that allows us to separately represent inter-image variabil-

ty and intra-image inter-voxel correlation. The key concept in this

ested model is to introduce per-image priors (random variables
�
 

 k ∼ �
 P ( � p ) ) on the average marginal probability for D k, i within

ach image, in order to model inter-image variability. � P ( � p ) is a

istribution of probability vectors (i.e. � O k ∈ the open standard 2-

implex) with mean 

�
 p . Then, for each image, the conditional distri-

ution of D k, i given 

�
 O k models the intra-image inter-voxel correla-

ion. Specifically, we define the conditional covariance of � D k given
�
 

 k as 

ov (D k,i , D k, j | � O k ) = ρi, j 

√ 

σ 2 
D k,i | � O k 

σ 2 
D k, j | � O k 

, (2) 

here ρ i, j is a pair-wise Pearson correlation coefficient and σ 2 
D k,i | � O k 

s the conditional variance of D k, i given 

�
 O k . 

To model the inter-voxel variability, each D k, i has per-voxel pri-

rs (random variables � O k,i ) defining its marginal probabilities. The

onditional distribution of � O k,i given 

�
 O k is an arbitrary distribution

�
 

 ( � O k ) of probability vectors with mean 

�
 O k . 

.3. Derivation of the sample size formula for segmentation 

The general form of the sample size formula ( Connor, 1987 ), 

 = 

(
t α{ 2 } 

√ 

σ 2 
0 

+ t β{ 1 } 
√ 

σ 2 
alt 

)2 

δ2 
MDD 

, (3) 

elates the sample size ( n ) to the variances ( σ 2 
0 and σ 2 

alt 
) of per-

mage accuracy differences under the null hypothesis ( δ = 0 ) and
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Fig. 3. Illustration of the relationship between the proportion of disagreement ( ψ) 

and the accuracy difference ( δ). In these four examples, segmentation algorithms A 

(blue) and B (yellow) both over-contour the circular object taken as the reference 

standard segmentation L (red), adding different perturbations that lower accuracy. 

When sets of segmentations have higher ψ and lower δ (as in the lower right), it is 

harder to detect accuracy differences. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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alternate hypothesis ( δ � = 0), acceptable study error rates ( α and β),

and the minimum detectable difference ( δMDD ) in population accu-

racy between algorithms A and B to detect with power ( 1 − β).

t α{2} and t β{1} are two- and one-tailed critical values taken from

the inverse cumulative distribution function of the t -distribution

with n − 1 degrees of freedom. Of the parameters in Eq. (3) , most

are selected based on experimental design choices, but the vari-

ances of the per-image accuracy difference are derived from the

statistical model. 

The variance of the per-image accuracy difference σ 2 
D 

can be

derived for any prior distribution of per-image average marginal

probabilities ( � O k ∼ �
 P ( � p ) ) in terms of moments of the prior distri-

bution by marginalizing out � O k and 

�
 O k,i (see Appendix A for a de-

tailed derivation), yielding 

σ 2 
D 

= ρi, j 

(
ψ − δ2 

)
+ 

(
1 − ρi, j 

)
σ 2 

O 1 −O −1 
, (4)

where ψ = p 1 + p −1 is the population-wide probability that algo-

rithms A and B disagree on the labeling of a voxel (see Fig. 3 ),

σ 2 
O 1 −O −1 

(the variance of O k, 1 − O k, −1 for the priors � O k ) is a linear

combination of moments of the prior distribution ( σ 2 
O 1 −O −1 

= σ 2 
O 1 

−
2 σO 1 ,O −1 

+ σ 2 
O −1 

), and ρi, j = 

∑ 

i, j ρi, j 

v 2 is the average of the intra-

image inter-voxel correlation coefficients. 

Substituting σ 2 
alt 

= σ 2 
D | δ= δMDD 

and σ 2 
0 = σ 2 

D | δ=0 
(i.e. substituting

δ = δMDD and δ = 0 into σ 2 
D 

) yields the segmentation sample size

formula for accuracy differences with respect to reference standard

L, 

n = 

(
t α{ 2 } 

√ 

ρi, j ψ + 

(
1 − ρi, j 

)
σ 2 

O 1 −O −1 | δ=0 

+ t β{ 1 } 
√ 

ρi, j 

(
ψ − δ2 

MDD 

)
+ 

(
1 − ρi, j 

)
σ 2 

O 1 −O −1 | δ= δMDD 

)2 / 

δ2 
MDD . 

(5)

It is interesting to note that when there is no inter-voxel corre-

lation (i.e. ρi, j → 1 / v ) and no inter-image variability in marginal
robabilities (i.e. σ 2 
O 1 −O −1 

= 0 ), Eq. (5) approaches the sample size

ormula for McNemar’s two-sample paired proportion test with nv

amples ( Connor, 1987 ). 

.3.1. Sample size with the Dirichlet prior distribution 

To gain further insight into the sample size relationship, con-

ider the special case where the prior distribution of per-image

verage marginal probabilities �
 P ( � p ) is a Dirichlet distribution

i.e. � O k ∼ Dirichlet (ω, � p ) ), which represents inter-image variability

ith a single parameter: the precision ω ( Minka, 20 0 0 ). When ω is

arge, priors � O k are likely to be near � p (i.e. there is little variation

etween images); when ω is small, priors � O k are distributed more

iffusely (i.e. there is more variation between images). The Dirich-

et prior distribution has three properties that make interpretation

f the sample size relationship easier: 

• It is well-characterised as a model for variability in categori-

cal probabilities, because it is the conjugate prior distribution

of the categorical and multinomial distributions and thus com-

monly adopted in Bayesian analysis ( Tu, 2014; Mosimann, 1962;

Zhu, 2002; Zöllei and Wells, 2006 ) 
• Representing inter-image variability with a single parameter

simplifies interpretation and facilitates parameter fitting with

small pilot data sets. 
• σ 2 

O 1 −O −1 
for the Dirichlet prior distribution is proportional to

ψ − δ2 which simplifies the sample size formula. 

or the Dirichlet prior distribution, σ 2 
O 1 

= 

p 1 −p 2 
1 

ω+1 , σO 1 ,O −1 
= 

−p 1 p −1 
ω+1 ,

nd σ 2 
O −1 

= 

p −1 −p 2 −1 
ω+1 ; therefore σ 2 

O 1 −O −1 
= 

ψ−δ2 

ω+1 . Substituting

2 
O 1 −O −1 

into Eq. (4) and simplifying algebraically gives the

ariance of the per-image accuracy under a Dirichlet prior: 

2 
D 

= 

1 + ω ρi, j 

ω + 1 

(
ψ − δ2 

)
. (6)

ince σ 2 
D 

is expressed in terms of δ, we can readily substitute
2 
alt 

= σ 2 
D | δ= δMDD 

and σ 2 
0 

= σ 2 
D | δ=0 

into Eq. (3) to get the sample size

ormula 

 = 

1 + ω ρi, j 

ω + 1 

(
t α/ 2 

√ 

ψ/δ2 
MDD 

+ t β
√ 

ψ/δ2 
MDD 

− 1 

)2 

. (7)

everal aspects of this formula link to previous work. The term
1+ ω ρi, j 

ω+1 is a type of design factor denoted hereafter as f (analo-

ous to the design factor in cluster-randomized trials ( Kish, 1965 )),

odelling the inter- vs intra-image variability in accuracy differ-

nces (i.e. each image being one correlated cluster of voxel sam-

les). When there is no inter-voxel correlation (i.e. ρi, j = 1 / v ),
q. (7) simplifies to the formula found in our preliminary analy-

is ( Gibson et al., 2015 ). The term ψ / δ2 is the squared coefficient of

ariation of D under the idealized assumption of completely inde-

endent voxels (i.e. f = 1 / v ) — or equivalently, the statistical effi-

iency of estimating δ ( Everitt and Skrondal, 2002 ). We thus refer

o ψ / δ2 hereafter as the idealized efficiency . 

.4. Incorporating reference standard quality 

Conducting segmentation accuracy comparison studies using

 lower-quality reference standard introduces an additional chal-

enge: selecting the appropriate minimum detectable difference.

n one hand, for the generic sample size formula ( Eq. (3) ) to

e valid, δMDD must be measured with respect to the reference

tandard used in the study. On the other hand, the selection of

MDD depends on external clinical or technical requirements. Ide-

lly, these requirements would be defined with respect to a high-

uality reference standard H (with the MDD denoted δMDD, H ), to

ost closely approximate the true requirement. If the high-quality



E. Gibson et al. / Medical Image Analysis 42 (2017) 44–59 49 

r  

c  

q  

b  

t  

o  

h

 

o  

i  

s  

a  

a

δ

w

B  

a  

s  

r  

t  

T  

i  

u  

r

3

 

o  

s  

h  

o  

a  

a  

b  

t  

t

 

s  

a  

i

 

t  

s  

w  

h

o  

s  

r  

e  

d  

e  

i  

S

 

t  

f  

s  

σ  

p  

a  

u  

m  

v  

f  

U  

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

2  

c  

s  

s  

t  

w  

f  

u  

p  

o  

W  

t  

e

3

 

a  

t  

q  

m

 

p  

p

w  

a  

m

c

T  

2

eference standard can be used for the entire study, there is no

onflict and δMDD, H can be used directly. If, however, a lower-

uality reference standard is used, an appropriate δMDD needs to

e selected. To resolve this dilemma, we have derived a formula

o express δMDD for a low-quality reference standard as a function

f δMDD, H , by characterizing the differences between the low- and

igh-quality reference standards (e.g. on a small pilot dataset). 

The derivation, detailed in Appendix B , expresses δMDD in terms

f the joint probability of segmentation labels of A, B, L and H;

solates the terms of this expression that equate to δMDD, H ; and

implifies the remaining terms. This yields an equation for δMDD as

 function of δMDD, H and estimable parameters representing devi-

tion of δMDD from δMDD, H : 

MDD = δMDD,H + 2(p(a ) − p(b ))(p(l ) − p(h )) 

+ 2 cov (A − B, L − H) , (8) 

here p( x ) = p(X = 1) for a randomly selected voxel and cov (A −
, L − H) is the covariance between errors in L (with respect to H)

nd differences between A and B. The second term of this expres-

ion reflects error induced by over- or under-contouring by L (with

espect to H). If L tends to over-contour compared to H, algorithms

hat assign more voxels as foreground will appear more accurate.

he third term is the covariance cov (A − B, L − H) reflecting errors

n L that are biased in favour of A or B. This expression can be

sed to estimate the δMDD to use for a study using a low-quality

eference standard. 

. Applying the sample size formula 

The sample size formula derived above supports the design

f segmentation accuracy comparison studies by estimating the

ample size needed to detect a specified accuracy difference with

igh probability. As with all sample size calculations, three types

f parameters have to be determined to apply the formula: the

cceptable study error rates, the minimum detectable difference,

nd the variance parameters. Some of these parameters are chosen

ased on experimental, technical or clinical requirements outside

he study design, while others are estimated from related litera-

ure or pilot data. We denote the estimate of parameter x as ˆ x . 

The acceptable error rates are generally set using heuristics by

tudy designers: α = 0 . 05 (i.e. a 5% probability of falsely detecting

 difference when there is none) and β = 0 . 2 (i.e. an 80% probabil-

ty of detecting a true difference). 

The minimum detectable difference ( δMDD ) is typically set by

echnical or clinical requirements outside the study design to be the

mallest difference that is large enough to be important to detect

ith high probability. Specifically, if the true difference is δMDD or

igher, the study should give a true positive with probability 1 − β
r higher. If the study will use a sufficiently high-quality reference

tandard, δMDD can be chosen directly. If the technical or clinical

equirements are expressed with respect to a high-quality refer-

nce standard, but the study uses a lower-quality reference stan-

ard, then δMDD, H can be chosen and the equivalent ˆ δMDD can be

stimated from the low-quality correction equation ( Eq. (8) ), us-

ng parameter estimation equations ( Eqs. (9) and (10) ) given in

ection 3.1 . 

The variance parameters depend on the distribution of the data;

hey are not chosen a priori, but can be estimated using values

rom related literature, or using pilot data. In the moment-based

ample size equation ( Eq. (5) ), the variance parameters are ψ , ρi, j ,
2 
O 1 −O −1 | δ=0 

and σ 2 
O 1 −O −1 | δ= δMDD 

. In the Dirichlet-prior-based sam-

le size equation ( Eq. (7) ), the variance parameters are ψ , ρi, j ,

nd ω. In general, estimating these variance parameters individ-

ally can be challenging because the model is parameterized by

ultiple parameters that affect the intervoxel covariance of per-

oxel accuracy differences, and because the moments of the prior
or the per-image average marginal probabilities may depend on δ.

nder some assumptions, however, we can estimate variance pa-

ameters. 

• If we assume σ 2 
0 

= σ 2 
alt 

= ˆ σ 2 
D 
, which may be appropriate when

δ and δMDD are sufficiently small, we can estimate ˆ σ 2 
D 

from the

pilot data (using Eq. (13) in Section 3.1 ), and apply the generic

sample size equation ( Eq. (3) ) directly. 
• If we assume a parametric distribution for the per-image av-

erage marginal probabilities, it may be possible to express

σ 2 
O 1 −O −1 

in terms of δ (as shown for the Dirichlet distribution

in Eq. (6) ) and estimate σ 2 
O 1 −O −1 | δ=0 

and σ 2 
O 1 −O −1 | δ= δMDD 

from

ˆ σ 2 
D 

. For the Dirichlet distribution, the resulting variance could

be characterized by a design factor modeling the combined ef-

fect of parameters ρi, j , and ω. An estimation equation for the

design factor is given in Section 3.1 Eq. (14) . 
• If there is a need to estimate the effects of the variance param-

eters individually (e.g. to explore the effect of increased intra-

image inter-voxel correlation on a planned study), and we as-

sume that the intra-image inter-voxel correlation is spatially

constrained (e.g. if voxels separated by a specified distance are

effectively uncorrelated given 

�
 O k ), then we can estimate ˆ ω us-

ing spatially sparse sampling and then estimate ˆ ρi, j from ˆ ω and

ˆ σ 2 
D 

. This approach is outlined for a Dirichlet prior in Section 3.1 .

The optimal size for a pilot study data set has not been well-

stablished in general, and depends on many factors ( Hertzog,

008 ), including the particular population being studied. In prin-

iple, the precision of the estimated sample size depends on the

ensitivity of the formula to parameter estimation errors (see

upplementary material) and the variances of the parameter es-

imators (which decrease as the pilot data set grows), both of

hich vary depending on the population being studied. In practice,

ormal sample size calculations for such pilot studies are rarely

sed ( Hertzog, 2008 ); instead, heuristics, such as using 10 sam-

les ( Nieswiadomy, 2011 ), 12 samples ( Julious, 2005 ) or using 10%

f the anticipated size of the full study ( Connelly, 2008; Lackey and

ingate, 1986 ) for larger studies, can be used. The risk of parame-

er estimation error can be mitigated using conservative parameter

stimates, as described in Section 3.1 for ˆ σ 2 
D 

. 

.1. Parameter estimation equations 

To estimate parameters from pilot data, a small data set of im-

ges must be collected and segmented by algorithms A and B, by

he reference standard L to be used for the study, and by the high-

uality reference standard H. Given a segmented pilot data set, for-

ula parameters can be estimated as follows. 

To estimate ˆ δMDD in terms of δMDD, H , we first estimate the pro-

ortion of positive voxels segmented by A across all images in the

ilot data: 

ˆ p (a ) = 

1 

n 

′ v 

n ′ ∑ 

k =1 

v ∑ 

i =1 

a k,i , (9) 

here n ′ is the number of images in the pilot data set. ˆ p (b ) , ˆ p (l ) ,

nd ˆ p (h ) can be estimated similarly. ˆ cov (A − B, L − H) can be esti-

ated as 

ˆ ov (A − B, L − H) = 

1 

n 

′ v − 1 

n ′ ∑ 

k =1 

v ∑ 

i =1 

(a k,i − b k,i − ˆ p (a ) 

+ 

ˆ p (b ))(l k,i − h k,i − ˆ p (l ) + 

ˆ p (h )) . (10) 

hen, from Eq. (8) , ˆ δMDD = δMDD,H + 2( ̂  p (a ) − ˆ p (b ))( ̂  p (l ) − ˆ p (h )) +
 

ˆ cov ( A − B, L − H ) . 
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The probability of disagreement can be estimated using the

sample mean as 

ˆ ψ = 

1 

n 

′ v 

n ′ ∑ 

k =1 

v ∑ 

i =1 

| a k,i − b k,i | . (11)

The population average accuracy difference can be estimated

using the sample mean as 

ˆ δ = 

1 

n 

′ v 

n ′ ∑ 

k =1 

v ∑ 

i =1 

(| b k,i − l k,i | − | a k,i − l k,i | 
)
. (12)

The variance in per-image accuracy differences can be esti-

mated using the unbiased sample variance as 

ˆ σ 2 
D 

= 

1 

(n 

′ − 1) 

n ′ ∑ 

k =1 

( d k − ˆ δ) 2 , (13)

where d k = 

1 
v 

∑ v 
i =1 (| b k,i − l k,i | − | a k,i − l k,i | ) . However, sample vari-

ance estimates from small pilot studies are imprecise and

skewed ( Browne, 1995 ), which inflates the probability of having an

underpowered study. To mitigate this effect, Browne (1995) recom-

mended using the upper bound of a γ % confidence interval on the

variance to guarantee the specified power with γ % probability. This

can be estimated using a double bootstrap method (e.g. Lee and

Young, 1995 implemented for Matlab as ibootci ( Penn, 2015 )). 

When modeling the per-image marginal probability prior as a

Dirichlet distribution, the design factor encoding the combined ef-

fect of parameters ρi, j , and ω can be estimated from Eq. (6) using

sample estimates: 

ˆ f = ˆ σ 2 
D 
/ ( ˆ ψ − ˆ δ2 ) , (14)

and the idealized efficiency can be estimated as ˆ ψ /δ2 
MDD . 

To estimate the effects of the variance parameters individually,

we can model the per-image marginal probability prior as a Dirich-

let distribution and assume that the intra-image inter-voxel corre-

lation is spatially constrained (i.e. voxels more than x pixels away

are effectively uncorrelated given 

�
 O k ). Sampling d k, i from voxels

spaced x voxels apart gives counts from a Dirichlet-multinomial

distribution, and we can estimate the precision parameter ˆ ω using

an iterative approach described by Minka (20 0 0) . The average cor-

relation coefficient can then be estimated from Eq. (6) using sam-

ple estimates as 

ˆ ρi, j = 

ˆ σ 2 
D 
( ̂  ω + 1) − ( ˆ ψ − ˆ δ2 ) 

( ˆ ψ − ˆ δ2 ) ̂  ω 

. (15)

4. Simulations 

Three sets of Monte Carlo simulations were used to evaluate the

accuracy of the sample size formulae under three different condi-

tions: 

1. with simulated images and segmentations from the assumed

statistical model, to test the validity of the model; 

2. with real-world data (the PROMISE12 prostate MRI segmenta-

tion data set described in Section 4.2.1 ) using a high-quality ref-

erence standard, to test the applicability of the Dirichlet-based

sample size formula ( Eq. (7) ) to real data; and 

3. with real-world data using a low-quality reference standard

while expressing the minimum detectable difference in terms

of a high-quality reference standard, to test the applicability of
the low-quality correction equation ( Eq. (8) ) to real data. i  
.1. Simulations with simulated data from the assumed statistical 

odel 

In order to characterize the validity of the model described in

ection 2.2 , we performed sets of simulations with controlled vari-

tion of a subset of model parameters (hereafter referred to as a

imulation set). Recall that Eq. (7) defines the sample size needed

o detect a significant accuracy difference with probability 1 − β
f the underlying population difference were δMDD . To test this, we

et δMDD to the specified population accuracy difference, and com-

are the proportion of simulated studies yielding significant accu-

acy differences to 1 − β . Note that this approach to select δMDD 

s appropriate for validating the sample size formula, but not for

esigning real segmentation comparison studies: in practice, δMDD 

hould be chosen based on clinical or technical requirements. 

In each simulation, we repeatedly simulated a segmentation

valuation study by sampling per-voxel accuracy differences for

 n  v -voxel segmentations and reference standards (where � n  de-

otes the smallest integer ≥ n ) using the assumed model and test-

ng for an accuracy difference using a Student’s t -test. In each sim-

lation, we compared the observed proportion of positive statisti-

al tests with the predicted probability (i.e. the statistical power

 − β) for sample size � n  . To clarify the impact of this error in

ower, we also substituted the observed power into the Dirichlet-

ased sample size formula ( Eq. (7) ) to calculate the equivalent er-

or in the predicted sample size n and detectable difference δMDD .

n each simulation, we ran 25,0 0 0 repetitions in order to estimate

he probability of a positive outcome with a 95% confidence inter-

al with a width of 1%. 

Each per-image accuracy difference d was computed by sam-

ling the derived per-voxel accuracy differences d k, i directly as fol-

ows: 

• the marginal probability priors of per-voxel accuracy differences

were drawn from a Dirichlet prior using the rdirichlet ( Warnes

et al., 2015 ) function in R version 3.1.1 ( R Core Team, 2013 ), 
• a correlation matrix ρi, j = exp(−Dist i, j /σ

2 
ρ ) was constructed

where Dist i, j is the intervoxel distance in a 
√ 

v × √ 

v voxel im-

age and σ 2 
ρ is a scale parameter controlling the spatial extent

of the correlation 

• d k, i were sampled using the ordsample ( Barbiero and Ferrari,

2015 ) function in R. While this is equivalent to drawing sam-

ples from the algorithm and reference standard segmentations

and computing d k, i , it facilitates the direct control of the d k, i 

correlation matrix needed in these experiments. 

he scripts used to generate these samples are available at https:

/github.com/eligibson/MedIA2016 . 

The baseline parameter values in the simulation sets and the

anges of varied parameters are given in Table 4 . Note that the sim-

lations varying v, ω, σρ and ψ were conducted at two baseline δ
alues. The parameter ranges for these simulations were chosen to

alance the applicability of parameter values to medical image seg-

entation problems against practical constraints. The range of ω
ncompassed both highly consistent and highly variable prior dis-

ributions. Ranges of δ and ψ reflected plausible algorithm differ-

nces based on previous experience. Due to limitations on the ord-

ample algorithm the range of v and σρ were constrained: v was

imited to 100 because of the computational complexity of sam-

ling high-dimensional correlated discrete random variables, and

ρ was constrained to 0.7 because of algorithmic constraints. The

aseline parameter values were chosen to reflect typical sample

izes in segmentation studies ( ∼ 10 − ∼ 200 ). Because the popu-

ation parameters derived in Section 2.4 ( δH , p ( a ), p ( b ), p ( l ), p ( h )

nd cov (A − B, L − H) ) are linked to statistical power through their

nfluence on the parameter δ, simulations were run as a function

https://github.com/eligibson/MedIA2016
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Table 4 

Simulation parameters used to estimate the accuracy of the model. Note that the simulations varying v, ω, σρ and ψ were conducted 

twice at two baseline δ values. 

# voxels population 

accuracy difference 

Dirichlet precision spatial correlation 

width 

population probability 

of disagreement 

v δ ω σρ ψ 

Baseline 36 3% / 6% 128 0.7 15% 

Minimum 9 2% 64 0 15% 

Maximum 100 10% 1024 0.7 45% 

Increment 
√ 

v by +1 + 1% × 2 + 0.1 + 5% 
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f δ, instead of simulating many combinations of parameters that

ap to the same δ. 

.2. Simulations with real-world data 

To evaluate the applicability of sample size formula ( Eq. (7) )

nd the low-quality correction equation ( Eq. (8) ) to a real-world

ata set, we simulated segmentation accuracy comparison studies

sing bootstrapped samples from the PROMISE12 data set. 

The PROMISE12 challenge is an ongoing resource for comparing

any state-of-the-art prostate segmentation algorithms against a

ommon reference standard. The challenge images comprise 100

2W prostate MR images collected from 4 centres, split into 50

raining images (with publicly available reference segmentations)

nd 30 testing images (with reference segmentations withheld).

he reference segmentations were manually segmented by an ex-

erienced clinical reader, and verified by another independent clin-

cal reader. In order to establish a standardised scoring system for

ultiple metrics, the challenge had a non-clinical graduate stu-

ent manually segment the images and her metric scores were

sed to normalize the metric scores of the algorithms. Although

he PROMISE12 challenge principally used the high-quality refer-

nce standard for evaluation, the second segmentation is analo-

ous to a presumably lower-quality reference standard that could

e considered as a lower cost option. Thus, the clinical manual

egmentations will represent the high-quality reference standard

, the graduate student manual segmentations will represent the

ow-quality reference standard L, and two algorithms from the

hallenge will represent A and B. Using 10 algorithms from the

ROMISE12 challenge, the simulations were repeated for all 45

ossible pairs of algorithms. 

As in Section 4.1 , we set δMDD to the population accuracy dif-

erence (treating the PROMISE12 test data set as the entire popu-

ation) and compare the proportion of simulated studies yielding

ignificant accuracy differences to 1 − β . 

.2.1. Simulations with high-quality real-world data 

To evaluate the applicability of the Dirichlet-based sample size

ormula ( Eq. (7) ) to a real-world data set, each simulated study in

his experiment compared two algorithms to the high-quality ref-

rence standard. For every pair of algorithms, we estimated the

opulation accuracy difference ( ̂  δH ) and variance parameters us-

ng all 30 test cases from the PROMISE12 test data set. Using

= 0 . 05 , β = 0 . 20 , δMDD = 

ˆ δH , and the estimated variance param-

ters, we computed the predicted sample size n using Eq. (7) . We

hen simulated 10 0,0 0 0 segmentation accuracy comparison stud-

es using bootstrap sampling by sampling � n  images with replace-

ent from the PROMISE12 images and testing the per-image accu-

acy differences using a paired Student’s t -test. We compared the

roportion of positive tests to the power predicted by the model

or � n  samples. 

.2.2. Simulations with low-quality real-world data 

To evaluate the applicability of the low-quality correction equa-

ion ( Eq. (8) ) to a real-world data set, each simulated study in
his experiment compared two algorithms to the low-quality refer-

nce standard, with 

ˆ δMDD calculated from Eq. (8) and the observed
ˆ 
H . Simulation using bootstrap sampling and evaluation proceeded

s in Section 4.2.1 except that ˆ δMDD = 

ˆ δH + 2( ̂  p (a ) − ˆ p (b ))( ̂  p (l ) −
ˆ p (h )) + 2 ˆ cov (A − B, L − H) , and the variance parameters were es-

imated with respect to low-quality reference standard L. 

. Results 

.1. Simulations under the statistical model 

The variance of accuracy differences predicted by the model

 σ 2 
D 

) was within 2% relative error of the Monte Carlo simulations

cross all simulation sets (RMS relative error 0.5%). The predicted

ower was within 4% error (simulated – predicted power) of the

onte Carlo simulations across all simulation sets with 95% confi-

ence. 

Fig. 4 shows the absolute error in the predicted power (i.e., sim-

lation - model power) under varying model parameters. The pa-

ameter with the largest impact on the accuracy of power predic-

ion was δ. For simulations with baseline δ = 3% and δ = 6% , the

redicted power was within 2% and 3% absolute error, respectively,

f the simulations with 95% confidence. A larger positive bias in

he power prediction error across all values of v, ω and σρ was

bserved for simulations with δ = 6% , compared to simulations

ith δ = 3% , suggesting that the positive bias can be primarily at-

ributed to the baseline accuracy difference. The simulation with

= 10% had the largest absolute error of 4%. 

A proportion of the observed error can be attributed to skew

n the distribution of per-image accuracy differences, deviating

rom the normality assumption of the t -test used in this work.

he largest skew amongst our experiments (corresponding to the

argest power prediction error) occurred when δ = 10% ; this is il-

ustrated in a histogram of the accuracy differences, shown in

ig. 4 . The effect of the deviation from normality is exacerbated in

he simulations with large δ due to the lower sample size ( n = 8 ),

or which the t -test is more sensitive to violations of its assump-

ions. To illustrate the expected impact of skew alone on the error

n predicted power, Fig. 4 shows the error of the standard paired

 -test power calculation for a correspondingly skewed population

Pearson distribution with skew matching the simulation) overlaid

n blue. 

The impact of these errors in predicted power on the sample

ize and minimum detectable difference is illustrated in Figs. 5 and

 . 

.2. Simulations with high-quality real-world data 

When the minimum detectable difference was defined and

ested relative to the high-quality reference standard in the

ROMISE12 data set, the simulated power was < 4% higher than

he power specified by the model (approximately 80%) for the

ajority of algorithm comparisons (range 0–20%). The error was

trongly correlated with the skew of per-image accuracy differ-

nces in the population (Spearman’s ρ = 0 . 77 ; p < 1 × 10 −8 ). The
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Fig. 4. Model accuracy (95% confidence interval (shown in red for baseline δ = 3% and in cyan for baseline δ = 6% ) on the absolute difference between the simulated and 

model power) for each simulation set. For example, with δ = 10% , the model predicted 82% power, 4% below the 86% power observed in the simulation. Each accuracy graph 

shows a blue line representing the expected error due to the observed skew alone (for the simulation varying δ and the baseline δ = 6% ) based on applying the regular t -test 

sample size formula to a skewed Pearson distribution. The similar shape of this curve to the observed errors suggests that the skew is a considerable contributor to the error. 

The histogram (lower right) shows the distribution of accuracy differences for the simulation with δ = 10% , illustrating the slight but significant skew in the distribution, 

which contributes to the observed error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. The equivalent error in predicted sample size (calculated from the observed error in power). Each plot shows the 95% confidence interval (shown in red for baseline 

δ = 3% and in cyan for baseline δ = 6% ) on the absolute difference between the sample size needed to achieve the simulated power and the sample size needed to achieve 

the modeled power. For example, with δ = 10% , the model would overestimate by 1 the number of subjects needed to achieve the 84% power observed in the simulation. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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model did not over-estimate the power in any comparison, sug-

gesting that it is conservative (i.e. avoiding predictions that result

in underpowered studies) in the presence of skew. The errors for

each pair of algorithms are reported in Table 5 . 

5.3. Simulations with low-quality real-world data 

When the minimum detectable difference was defined rela-

tive to the high-quality reference standard and tested relative to

the low-quality reference standard in the PROMISE12 data set, the

model predicted the simulated power with a median error of 5%

(simulated – predicted power; range -29–16%) and a median ab-

solute error of 6% (|simulated – predicted power|). The two algo-

rithm pairs with the smallest δ (0.1% and 0.2% accuracy differ-
MDD 
nces) and largest sample sizes (5714 and 3721) had the largest

rrors, overestimating power by 27% and 29%, respectively. The

rror was correlated with the skew of per-image accuracy differ-

nces (Spearman’s ρ = 0 . 34 ; p = 0 . 02 ), and excluding the 2 cases

ith the smallest δMDD , the correlation was stronger (Spearman’s

= 0 . 67 ; p ≈ 1 × 10 −6 ). The errors for each pair of algorithms are

eported in Table 6 . 

. Case study 

The direct application of the sample size formula to calculate

he sample size is described in Section 3 . The formula can also be

sed indirectly to guide other aspects in the design of segmenta-

ion comparison studies. In this case study, we illustrate one such
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Fig. 6. The equivalent error in predicted minimum detectable difference (calculated from the observed error in power). Each plot shows the 95% confidence interval (shown 

in red for baseline δ = 3% and in cyan for baseline δ = 6% ) on the absolute difference between the minimum difference detectable with simulated power and the minimum 

difference detectable with the modeled power. For example, with δ = 10% , the model would predict that a minimum detectable difference of 10.5% would result in the 84% 

power observed in the simulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 5 

Differences between the proportion of positive findings and the predicted power for simulated studies from 

the PROMISE12 data set using the high-quality reference standard. The required sample sizes predicted by the 

model are given in parentheses. 

B C D E F G H I J 

A 3 (108) 1 (41) 12 (28) 2 (31) 14 (11) 1 (50) 2 (101) 13 (8) 7 (22) 

B 10 (15) 1 (163) 1 (26418) 1 (35) 1 (1.8E6) 10 (28) 0 (14) 0 (157) 

C 12 (11) 4 (10) 14 (9) 11 (12) 0 (42) 17 (5) 9 (6) 

D 4 (102) 2 (50) 3 (115) 13 (14) 1 (15) 2 (3357) 

E 7 (19) 1 (14084) 2 (11) 12 (8) 3 (95) 

F 5 (23) 12 (10) 1 (312) 5 (48) 

G 7 (16) 8 (10) 0 (97) 

H 20 (5) 15 (8) 

I 2 (17) 

Table 6 

Differences between the proportion of positive findings and the predicted power for simulated studies from the 

PROMISE12 data set using the low-quality reference standard. The required sample sizes predicted by the model are 

given in parentheses. 

B C D E F G H I J 

A 6 (43) −2 (167) 12 (22) −5 (133) 2 (11) −5 (25) −27 (5714) 15 (7) 9 (21) 

B 8 (14) −6 (403) 8 (71) −5 (67) 12 (3598) 12 (24) −5 (17) −29 (3721) 

C 11 (12) 11 (34) 8 (11) 7 (13) 2 (50) 10 (6) 13 (8) 

D 6 (31) 2 (87) 4 (165) 13 (16) 0 (17) 6 (508) 

E 0 (15) 2 (41) −1 (76) 11 (6) 6 (34) 

F 0 (37) 5 (13) 4 (159) 4 (58) 

G 4 (17) 6 (12) −8 (466) 

H 13 (6) 16 (11) 

I 5 (16) 
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pplication: evaluating the cost (in terms of sample size vs cost

er subject) of using a lower-quality reference standard manually

egmented by a non-clinical graduate student instead of one gener-

ted by clinical collaborators. For illustration, this case study sim-

lates the availability of a pilot data set by using two algorithms

nd the 30 test data sets from the PROMISE12 challenge. 

To evaluate the cost of the two approaches, we can compare the

ample sizes under the two reference standard strategies. The error

ates and minimum detectable difference δMDD, H will be the same

or both scenarios. We use commonly accepted Type I and II error

ates: α = 0 . 05 and β = 0 . 20 . The appropriate δMDD, H depends on

he clinical or technical requirements; for example, in the context
 (  
f prostate segmentation, the MDD could represent the minimal

mprovement in prostate segmentation accuracy that would make

n automated prostate MRI computer-aided detection (CAD) sys-

em (e.g. Litjens et al., 2014a ) clinically suitable as a first reader.

n this case study, we suppose that an analysis of an existing CAD

ystem suggests an improvement in accuracy of 5% (with respect

o a high-quality reference standard) would be sufficient to make

he system clinically suitable. 

The variance parameters differ between the scenarios. To assess

he scenario where the study uses a high-quality reference stan-

ard, we can estimate ˆ ψ , ˆ δ and ˆ σ 2 
D 

using A, B and H. Using Eqs.

11) –(13) with h k, i in place of l k, i gives ˆ ψ = 13 . 4% , ˆ δ = 4 . 02% and
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ˆ σ 2 
D 

= 0 . 00231 . Since ˆ δ and δMDD are small relative to ˆ ψ , assum-

ing σ 2 
0 

= σ 2 
alt 

= ˆ σ 2 
D 

will yield similar results to assuming a Dirich-

let prior ( σ 2 
0 

= 0 . 00234 and σ 2 
alt 

= 0 . 00229 ). The resulting sample

size to detect a difference δMDD,H = 5% was 9 subjects. To assess

the scenario where the study uses a low-quality reference stan-

dard instead, we first estimate ˆ δMDD using A, B, L and H. Parameter

estimation equations ( Eqs. (9) and (10) ) gives ˆ p (a ) = 0 . 246 , ˆ p (b ) =
0 . 195 , ˆ p (l ) = 0 . 210 , ˆ p (h ) = 0 . 214 , and 

ˆ cov (A − B, L − H) = −0 . 29% ,

yielding ˆ δMDD = 0 . 0348 . Using Eqs. (11) –(13) gives ˆ ψ = 13 . 4% , ˆ δ =
3 . 37% , and ˆ σ 2 

D 
= 0 . 00253 . The resulting sample size to detect a dif-

ference δMDD,H = 5% was 12 subjects. 

Based on this analysis, we estimate that a study using this

lower-quality reference standard would require 30% more subjects

to detect a 5% improvement in accuracy than one using the high-

quality reference standard. Since the cost per subject of generating

the lower-quality reference standard is typically much lower, this

could be a suitable approach for comparing these algorithms. 

7. Discussion 

In this work, we derived a sample size formula for studies com-

paring the segmentation accuracy of two algorithms, and also a

relationship describing the effect of using lower-quality reference

standards on the minimum detectable difference in segmentation

accuracy. The formula accuracy was evaluated using Monte Carlo

simulations, yielding errors in predicted power of less than 4%

across a range of model parameters. The applicability of the for-

mulae to real-world data was evaluated using bootstrap sampling

from the PROMISE12 prostate MRI segmentation data set yielding

median errors in predicted power less than 6%, but showed the er-

ror to be sensitive to skewed distributions and small sample sizes.

A case study was also analyzed to illustrate the use of the formulae

in a realistic context. 

7.1. Validation in segmentation comparison studies 

Improvements in the methodology for the validation and com-

parison of segmentation algorithms span a wide variety of ap-

proaches. 

One avenue to improve segmentation validation is to develop

improved metrics. Simple segmentation metrics such as accu-

racy, Dice overlap, Cohen’s Kappa, mean absolute boundary dis-

tances and Hausdorff distances compare segmentations to a sin-

gle reference standard and are commonly used ( Taha and Han-

bury, 2015 ). Newer metrics allow comparisons to multiple refer-

ence standards (e.g. the validation index ( Juneja et al., 2013 )) or

comparisons that consider application specific utility (e.g. accuracy

of quantitative measurements in segmented ROIs ( Jha et al., 2012 )).

This latter concept can be taken further by validating segmenta-

tion through its impact on a larger system, such as the accuracy of

a computer-assisted detection pipeline ( Guo and Li, 2014 ). Model

observers have also been developed to assess aspects of segmen-

tation quality without a reference standard ( Frounchi et al., 2011;

Kohlberger et al., 2012 ); effectively creating a learned reference-

standard-independent segmentation metric. 

Another avenue to improve segmentation validation is to im-

prove the reference standard quality. Label fusion algorithms, such

as STAPLE ( Warfield et al., 2004 ) and SIMPLE ( Langerak et al., 2010 )

enable the generation of higher-quality reference standards that

combine information from multiple experts. Improvements in mul-

timodal registration ( Shah et al., 2009; Gibson et al., 2012 ) enable

reference standards based on information that is less dependent

on the image being segmented. 

A third avenue is to increase the size of reference standards

by reducing the cost per image, or via data augmentation. Ac-
ive learning ( Konyushkova et al., 2015; Top et al., 2011 ) and other

nteractive annotation tools, reduce the cost of generating expert

egmentations by partially automating the process. Crowdsourc-

ng non-expert segmentations ( Maier-Hein et al., 2014; Irshad et al.,

015 ) can cheaply generate many reference standards on many im-

ges, using the large numbers to offset the potential loss in qual-

ty. For some anatomy, artificial data with reference segmentations

an be generated by simulating the imaging process ( Cocosco et al.,

997 ) or perturbing the geometry and image signal of existing im-

ges ( Hamarneh et al., 2008 ). 

This work, in contrast, aims to improve validation by enabling

esearchers to design efficient and appropriately powered studies.

his work focuses on a particular analysis used in segmentation

omparison studies: comparing the proportion of voxels where

ach of two segmentation algorithms agree with a single refer-

nce standard. The presented formulae can be directly applied by

esearchers developing new segmentation algorithms to facilitate

he design of their studies. More broadly, this work has particu-

ar importance for work focused on improving reference standard

uality and reference standard size by providing a framework for

nderstanding the tradeoffs between quality and quantity in seg-

entation reference standards. 

.2. Accuracy and applicability of the sample size formulae 

In typical study designs, the statistical power, i.e. the probabil-

ty of detecting an accuracy difference of a specified size, is fixed

euristically at 80%, specifying that a 20% risk of missing a true

ffect is acceptable. Other study design parameters are optimized

nder this constraint, balancing costs and effect sizes. A study de-

ign with statistical power substantially above the acceptable risk

s using resource inefficiently, while one with lower power gives

n unacceptable risk of false negatives. In our model, the largest

rrors observed in the model were for large accuracy differences.

he variance predicted by the model matches the simulations to

ithin 2%, suggesting that model errors are not primarily due to an

ncorrect variance prediction. Rather, the distribution of the accu-

acy differences in these simulation sets suggests that the error can

e attributed to a combination of two factors: low sample size and

kewness. The accuracy difference distribution under our statistical

odel, when using a Dirichlet prior, generally has non-zero skew

hen there are accuracy differences (i.e. | δ| > 0) and inter-image

ariability ( ω < ∞ ), and the simulations show a skew as high as

.3 in these simulation sets. The t -test, however, assumes samples

re drawn from a normal distribution with 0 skew. While the t -test

s robust to such deviations from normality at large sample sizes,

arge accuracy differences are more easily detectable and thus re-

uire small sample sizes. This suggests that segmentation compar-

son studies should be careful in their application of the t -test for

tudies with small sample sizes; in such cases, a McNemar test ad-

usted for clustered sampling ( Gönen, 2004; Durkalski et al., 2003 )

ay be more appropriate. 

When applied to real-world data, the errors were generally

arger than observed under the statistical model. The errors were

trongly correlated with the skew of the distribution of per-image

ccuracy differences, which is consistent with our observations on

imulated data. This effect was particularly evident when the pre-

icted sample size was low: five of the six largest observed er-

ors (where the model underestimated power by 13–20%) corre-

ponded to simulated studies with n < 10, which is also consistent

ith our observations on simulated data. In general, the model

nderestimated the simulated power which could lead to ineffi-

ient resource usage, but would not lead to failed studies caused

y insufficient power. When using a low-quality reference stan-

ard with δMDD defined with respect to a high-quality reference

tandard, the error was also correlated with skew. However, in this
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Table 7 

Number of images required to detect a desired segmentation accu- 

racy difference. When compensating for the use of a lower-quality 

reference standard, use Eq. (8) to estimate the minimum detectable 

difference ( δMDD ) first. 

Design factor ( f ) 

0.01 0.05 0.1 

Small differences ( δMDD = 2% ) 

ψ = 2% ( ψ/δ2 
MDD = 50 ) 6 ∗ 21 41 

ψ = 11% ( ψ/δ2 
MDD = 275 ) 24 110 218 

ψ = 20% ( ψ/δ2 
MDD = 500 ) 41 198 394 

Medium differences ( δMDD = 5% ) 

ψ = 5% ( ψ/δ2 
MDD = 20 ) 3 ∗ 10 17 

ψ = 12 . 5% ( ψ/δ2 
MDD = 50 ) 6 ∗ 21 41 

ψ = 20% ( ψ/δ2 
MDD = 80 ) 8 ∗ 33 65 

Large differences ( δMDD = 10% ) 

ψ = 10% ( ψ/δ2 
MDD = 10 ) 3 ∗ 6 ∗ 10 

ψ = 15% ( ψ/δ2 
MDD = 15 ) 3 ∗ 8 ∗ 14 

ψ = 20% ( ψ/δ2 
MDD = 20 ) 3 ∗ 10 17 

∗ Small samples sizes calculated from Eq. (7) are reported here; 

however, studies with such small sample sizes may be highly sen- 

sitive to violations of the assumptions of the t -test, and are not rec- 

ommended. 
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1 Because of this, care should be taken when estimates of this bias ( Eq. (10) ) are 

not substantially smaller than δH . 
ontext, another source of error must be considered: error in the

stimation of δMDD . When the estimated minimum detectable dif-

erence was very small ( | ̂  δMDD | < 0 . 2% ), small absolute estimation

rrors ( | δ − ˆ δMDD | < 0 . 06% ) led to large relative estimation errors,

esulting in large errors in the predicted power. When using a low-

uality reference standard, the model over-estimated the simulated

ower for 10/45 of the algorithm pairs, suggesting that additional

ubjects may be needed when using this model to avoid under-

owered studies. 

The proposed approach for using low-quality reference stan-

ards presumes that a high-quality data set can be obtained, if

nly for a small pilot data set, and that clinical or technical re-

uirements on accuracy differences specified with respect to that

eference standard are useful. In some medical segmentation tasks

such as prostate cancer delineation on MRI ( Gibson et al., 2016 )

r mitosis detection on histology images ( Chowdhury et al., 2006 )),

ven expert segmentations are highly variable. For some tasks, it

ay be appropriate to combine segmentations from multiple ex-

erts by consensus or using a label fusion algorithm such as STA-

LE to generate a high-quality reference standard on a pilot study;

owever, care should be taken to consider whether requirements

pecified with respect to the resulting reference standard will be

ractically useful. 

.3. Model interpretation 

Although the sample size relationship is a continuous function

n multiple parameters, it can be useful to break the parameters

nto coarse categories to see emerging trends (see Table 7 ). In par-

icular, we focus on the special case of modeling the prior as a

irichlet random variable and examine the parameters that com-

rise the idealized efficiency ψ / δ2 and on the design factor f . 

δMDD can be coarsely categorized into small ( δMDD ≤ 2%),

edium (2% < δMDD < 10%), and large ( δMDD ≥ 10%) differences. De-

ecting small differences can require large (often infeasible) sam-

le sizes, whereas detecting large differences may be limited not

y δMDD but by the assumptions of the statistical analysis. 

Within these effect size categories, the likelihood of disagree-

ent between algorithms ( ψ) plays an important role. ψ has the

ange δ ≤ ψ ≤ δ + 2 min (p(A � = L ) , p(B � = L )) . When ψ ≈ δ, it im-

lies that most of the difference between the algorithm correspond

o the more accurate algorithm correcting the errors of the less ac-

urate one, while making few new errors. When ψ � δ, the more
ccurate algorithm is making new errors on voxels where the less

ccurate algorithm was correct. Table 7 shows three levels of dis-

greement: minimal disagreement ( ψ = δMDD ), large disagreement

 ψ = 20% ) and a midpoint between them. When δMDD is small, the

evel of disagreement can introduce an order of magnitude differ-

nce in required sample sizes. 

The idealized efficiency is modulated by the design factor. The

esign factor ranges from 1/ v (denoting that each voxel gives

n independent estimate of accuracy differences) to 1 (denoting

hat each image gives an independent estimate of accuracy dif-

erences, but voxel segmentations are perfectly correlated). For re-

listic medical image segmentation algorithms, however, either of

hese extremes is unlikely. Table 7 shows three levels of the design

actor: low correlation ( f = 0 . 01 ), medium correlation ( f = 0 . 05 )

nd high correlation ( f = 0 . 1 ). 

Our derivations show that sample sizes for studies compar-

ng the accuracy of segmentation algorithms principally depend

n the idealized efficiency ψ/δ2 
MDD which relates the probability

f voxel-wise disagreement ( ψ) between algorithms to the mini-

um detectable difference δMDD , and the design factor f which re-

ects increased variability due to intervoxel correlation and inter-

mage variability. The sample size is approximately proportional

o the idealized efficiency ψ/δ2 
MDD 

. ψ has the range δ ≤ ψ ≤ δ +
 min (p(A � = L ) , p(B � = L )) , which suggests that it is easier, in gen-

ral, to detect a given accuracy difference when at least one of the

lgorithms is highly accurate (lowering the upper bound on ψ).

urthermore, it is easier to detect a given accuracy improvement

hen algorithm A principally corrects errors made by algorithm B

where ψ ≈ δ minimizing the idealized efficiency) than when algo-

ithm A has errors that are independent from B. 

Although intuition would suggest that using lower-quality ref-

rence standards should consistently increase the required sample

ize, our derivations and simulations suggest a more complex rela-

ionship. The impact of errors in the reference standard is reduced

y using a paired analysis which excludes variance due to factors

hat affect both algorithms in the same way, such as reference

tandard errors in voxels where the algorithms agree. Reference

tandard errors in regions of disagreement, however, do affect the

ariance of per-image accuracy differences ( σ 2 
D 

= 

1+ ω ρi, j 

ω+1 

(
ψ − δ2 

)
rom Eq. (6) ). In the rightmost term of this equation, ψ (which

oes not depend on the reference standard) is generally much

arger than δ2 (see Table 7 ), suggesting that the impact of refer-

nce standard errors on variance is predominantly via changing

he design factor. Reference standard errors also affect the sample

ize ( Eq. (8) ) by altering the detectable accuracy difference when

he reference standard has errors that are biased in favour of one

lgorithm or when it has systematic over- or under contouring

nd one algorithm contours more foreground than the other. Rel-

tively speaking, systematic over- or under contouring will have

nly a small impact on the detectable accuracy differences, unless

he algorithms’ foreground proportions are very different: for ex-

mple, if A contours 5% more foreground than B, then 10% over-

ontouring by L (25 × that observed in the PROMISE12 data) will

hange the measured accuracy difference by only 0.5%, unless the

ontouring errors are biased towards one algorithm. Furthermore,

rrors in the reference standard that are biased towards one al-

orithm do not necessarily decrease power: reference standard er-

ors biased towards the more accurate algorithm will exaggerate

he true difference, increasing power at the expense of increased

ype I error. 1 These observations were reflected in our analysis of

he PROMISE12 challenge data (see Tables 5 and 6 ). Comparing the

ow-quality to the high-quality reference standard, the root-mean-
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ˆ f was 4%, compared to 0.3% for ˆ ψ − ˆ δ2 .

Because the low-quality reference standard had substantial agree-

ment with the high-quality one (96% ± 1% mean ± SD accuracy), the

effect of sam ple biases in ref erence standard errors were observ-

able: for 17/45 pairs of algorithms, the studies designed to use the

low-quality reference standard actually needed fewer subjects than

studies using the high-quality reference standard; in all of these

cases, there were slight sample biases in the low-quality reference

standard towards the more accurate algorithm (primarily, as ex-

pected, in the covariance term in Eq. (8) ). This increased | δMDD |

relative to | δH | (i.e. the underlying differences between the algo-

rithms were exaggerated and thus easier to detect). Because the

experimental design for evaluating the model on real data required

δMDD = δH , which was very small for some comparisons ( < 2% in

20/45 algorithm pairs and < 0.5% in 4 algorithm pairs), this effect

was magnified. Overall, our analysis of the PROMISE12 data aligns

well with our theoretical model. Based on our analysis, using refer-

ence standards that are lower quality but unbiased may be a suit-

able approach for comparing segmentation algorithm accuracy. 

7.4. Limitations 

The contributions of this work should be considered in the

context of its limitations. First, the sample size calculation pre-

sented in this work is specific to the statistical analysis (the paired

Student’s t -test) and to the accuracy metric (proportion of voxels

matching the reference standard). Further work is needed to de-

velop these formulae for other analyses and metrics. Second, our

correlation model is over-parameterized, representing inter-image

variability and intra-image inter-voxel correlation separately, when

their effect on the covariance of � D k is coupled. This complicates the

estimation of parameters, but yields formulae expressed in con-

cepts familiar to the image analysis community. Third, due to con-

straints on sampling from specified high-dimensional correlated

discrete distributions, we were unable to generate Monte Carlo

simulations testing the extremes of some parameter ranges (e.g.

high numbers of voxels and high intervoxel correlation). Because

the metric analysed in the study D k is a mean over voxels (which

becomes more precise with higher v ) and because we did not ob-

serve an increase in error as v increased from 9–100, we do not

anticipate notable differences in model performance with larger v .

Fourth, our application of the formulae to real segmentation stud-

ies was limited by the public availability of data sets with high-

and low- quality reference standards; the PROMISE12 data set used

in our case study is a rare example of such data. Finally, the sen-

sitivity of the formula to violations of its underlying assumptions

was not estimated; future work in this area could clarify which of

these assumptions are critical to the accuracy of the formula and

which could be relaxed. 

8. Conclusions 

In this work, we derived formulae to address two interrelated

questions in the design of studies comparing segmentation algo-

rithms: How many validation images are needed to evaluate a seg-

mentation algorithm? and How accurate does the reference stan-

dard need to be? The sample size formula predicted the power

of simulated segmentation studies to within 4% across a range of

model parameters, and when applied to the PROMISE12 prostate

segmentation challenge data, predicted the power to within a me-

dian error of 6%. In addition to their direct application in calcu-

lating sample sizes, the formulae offer several insights for study

design. First, it is generally easier to detect a given accuracy dif-

ference when at least one algorithm is highly accurate, as this re-

duces accuracy variability. Second, it is generally easier to detect a

given accuracy difference when one algorithm principally corrects
he errors of another, compared to when two algorithm make in-

ependent errors. Third, systematic over- or under-contouring by a

ow-quality reference standard does not impact accuracy measure-

ents substantially unless one algorithm tends to contour more

oxels as foreground than the other, but correlation between refer-

nce standard errors and algorithm differences can bias accuracy

easurements. These formulae, and parameter estimation equa-

ions and guidelines that facilitate their use, hold the potential to

nable researchers to make statistically motivated decisions about

heir study design and their choice of reference standard and to

ake the most efficient use of limited research resources. 
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ppendix A. Derivation of the variance of the accuracy 

ifference 

The variance of the per-image difference in accuracy σ 2 
D 

affects

he statistical power of segmentation accuracy comparison exper-

ments. This appendix derives an expression for σ 2 
D 

based on the

tatistical model described in Section 2 for any prior distribution of

er-image average marginal probabilities ( � O k ∼ P ( � p ) ) in terms of

oments of the prior distribution. 

1. Statistical segmentation model and notation reiterated 

The per-image difference in accuracy is D k = 

1 
v 

∑ v 
i =1 D k,i , where

 is the number of voxels and random variable D k, i is the per-

oxel segmentation accuracy difference for the i th voxel in the k th

mage defined as D k,i = | B k,i − L k,i | − | A k,i − L k,i | . Random variables

 k, i , B k, i and L k, i are segmentation labels for the i th voxel in the

 th image from segmentation algorithms A and B and reference

tandard L, respectively. 

The statistical model, motivated and described in Section 2 ,

odels the distribution of the random vector of per-voxel accu-

acy differences � D k = 

〈
D k, 1 , . . . , D k, v 

〉
as a v -dimensional correlated

ategorical distribution with three categories (1, 0, and −1 ). The

arginal probabilities � O k,i = < O k,i, 1 , O k,i, 0 , O k,i, −1 > of the categori-

al distribution are identically distributed random probability vec-

ors with mean 

�
 O k = < O k, 1 , O k, 0 , O k, −1 >, but no other constraint

n the shape of the distribution. The covariance of the categori-

al distribution given 

�
 O k is defined such that cov (D k,i , D k, j | � O k ) =

i, j 

√ 

σ 2 
D k,i | � O k 

σ 2 
D k, j | � O k 

, where σ 2 
D k,i | � O k 

is the conditional variance of

 k, i given 

�
 O k . Priors �

 O k are independently and identically dis-

ributed random variables sampled for each image with mean 

�p

the population mean probability vector). 

2. Derivation of σ 2 
D 

in terms of moments of priors � O k 

To derive σ 2 
D 

under this model, we express the covariance ma-

rix of variables D k, i in terms of E(D k,i | � O k,i ) = O k,i, 1 − O k,i, −1 and

(D 

2 
k,i 

| � O k,i ) = O k,i, 1 + O k,i, −1 , marginalize out prior parameters � O k 

nd 

�
 O k,i to give an expression in terms of moments of � O k , and ex-

ress σ 2 
D 

as the average of covariance matrix elements. 

Because D k = 

1 
v 

∑ v 
i =1 D k,i , σ

2 
D 

can be expressed as 

2 
D 

= 

1 

v 2 
∑ 

i, j 

cov (D k,i , D k, j ) , (A.1)

http://dx.doi.org/10.13039/501100000289
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or a random image k . By the law of total covariance, cov ( D k, i , D k, j )

an be expressed in terms of conditional probabilities given 

�
 O k as

he sum of two components, 

2 
D 

= 

1 

v 2 
∑ 

i, j 

cov (E(D k,i | � O k ) , E(D k, j | � O k )) 

+ E[ cov (D k,i , D k, j | � O k )] , (A.2) 

here E ( X | Y ) denotes the conditional expectation of X given Y , and

ov ( X, Y | Z ) denotes the conditional covariance of X and Y given Z .

he two components can be expressed in terms of moments of � O k 

y 

1. expressing each component in terms of marginal probabilities
�
 O k,i , 

2. marginalizing them over � O k,i to express them in terms of � O k 

and 

3. marginalizing them over � O k to express them in terms of mo-

ments of � O k . 

t is helpful to first note that E(D k, j | � O k ) = E(D k,i | � O k ) and σ 2 
D k,i | � O k 

=
2 
D k, j | � O k 

, since � O k,i and 

�
 O k, j are identically distributed given 

�
 O k . The

rst term of Eq. (A.2) represents the covariance due to variability

f the prior, and can be simplified following the three steps above

shown in Eqs. (A.3) , (A.4) and (A.5) ) with details shown below: 

ov (E(D k,i | � O k ) , E(D k, j | � O k )) 

= v ar(E(D k,i | � O k )) 

= v ar 

(∫ 
E(D k,i | � O k,i ) p( � O k,i | � O k ) d � O k,i 

)
(A.3) 

= v ar 

(∫ (
O k,i, 1 − O k,i, −1 

)
p( � O k,i | � O k ) d � O k,i 

)
= v ar(O k, 1 − O k, −1 ) (A.4) 

= σ 2 
O 1 

+ σ 2 
O −1 

− 2 σO 1 ,O −1 
, (A.5) 

here σ 2 
O 1 

and σ 2 
O −1 

are the variances of O 1 and O −1 and σO 1 ,O −1 

s the covariance of O k , 1 and O k, −1 . 

The second component of Eq. (A.2) represents the covariance

ue to sampling the marginal probability and per-voxel accuracy

ifference variables, and can be simplified following the three

teps above (shown in Eqs. (A .6) , (A .7) and (A .8) ) with details

hown below: 

[ cov (D k,i , D k, j | � O k )] 

= E[ ρi, j σD k,i | � O k 
σD k, j | � O k 

] 

= E[ ρi, j σ
2 
D k,i | � O k 

] 

= ρi, j E 
[
E(D 

2 
k,i | � O k ) − E(D k,i | � O k ) 

2 
]

= ρi, j E 

[ ∫ 
E(D 

2 
k,i | � O k,i ) p( � O k,i | � O k ) d � O k,i 

−
(∫ 

E(D k,i | � O k,i ) p( � O k,i | � O k ) d � O k,i 

)2 
]

(A.6) 

= ρi, j E 

[ ∫ (
O k,i, 1 + O k,i, −1 

)
p( � O k,i | � O k ) d � O k,i 

−
(∫ (

O k,i, 1 − O k,i, −1 

)
p( � O k,i | � O k ) d � O k,i 

)2 
]

= ρi, j E 

[ 
O k, 1 + O k, −1 −

(
O k, 1 − O k, −1 

)2 
] 

(A.7) 

= ρi, j (E[ O k, 1 ] + E[ O k, −1 ] − E[ O 

2 
k, 1 ] 

+ 2 E[ O k, 1 O k, −1 ] − E[ O 

2 
k, −1 ]) 
= ρi, j (p 1 + p −1 − E[ O 

2 
k, 1 ] + 2 E[ O k, 1 O k, −1 ] − E[ O 

2 
k, −1 ]) 

= ρi, j (p 1 + p −1 − (σ 2 
O 1 

+ μ2 
O 1 

) 

+ 2(σO 1 ,O −1 
+ μO 1 μO −1 

) − (σ 2 
O −1 

+ μ2 
O −1 

)) 

= ρi, j (p 1 + p −1 − σ 2 
O 1 

+ 2 σO 1 ,O −1 
− σ 2 

O −1 
− (p 1 − p −1 ) 

2 ) . (A.8) 

ubstituting Eqs. (A.5) and (A.8) into Eq. (A.2) yields the variance

f the per-image accuracy in terms of moments of the prior � O k : 

2 
D 

= ρi, j 

(
p 1 + p −1 − ( p 1 − p −1 ) 

2 
)

+ 

(
1 − ρi, j 

)(
σ 2 

O 1 
− 2 σO 1 ,O −1 

+ σ 2 
O −1 

)
, (A.9) 

here ρi, j = 

1 
v 2 

∑ 

i, j ρi, j is the average of the intra-image inter-

oxel correlation coefficients. For conciseness, we introduce two

erms: ψ = p 1 + p −1 is the population-wide probability that algo-

ithms A and B disagree on the labeling of a voxel, and σ 2 
O 1 −O −1 

=
2 
O 1 

− 2 σO 1 ,O −1 
+ σ 2 

O −1 
is the variance of O 1 − O −1 for the prior � O k .

his substitution yields a more concise expression (identical to Eq.

4) ): 

2 
D 

= ρi, j 

(
ψ − δ2 

)
+ 

(
1 − ρi, j 

)
σ 2 

O 1 −O −1 
. (A.10) 

ppendix B. Derivation of the accuracy difference in terms of 

he high-quality reference standard 

The minimum detectable difference δMDD must be defined with

espect to the study’s reference standard, while clinical or technical

equirements may be better defined with respect to a high-quality

eference standard ( δMDD, H ). This appendix derives an equation to

xpress the population average accuracy difference with respect to

ne reference standard (L) as a function of the population average

ccuracy difference with respect to another reference standard (H),

nd uses this to express δMDD as a function of δMDD, H when a low-

uality reference standard is used. 

1. Model and notation 

As we did for A, B and L, we consider the segmentation labels

f the high-quality reference standard H as random variables. We

enote the population average accuracy difference with respect to

 as δ, and that with respect to H as δH . We abbreviate the proba-

ility of a particular combination of segmentation labels for a ran-

omly selected voxel as the conjunction of events ā , b̄ , l̄ and h̄

hen the respective labels are 0 and a, b, l and h when the re-

pective labels are 1. For example, p( a ̄b l ) denotes the probability

hat A gives the label 1, B gives the label 0 and L gives the label 1

or the randomly selected voxel. 

2. Derivation 

As described in Section 2.4 , the derivation of δ as a function of

H uses the following approach: 

1. Express δ in terms of the joint probability of segmentation la-

bels of A, B, L and H 

2. Isolate the terms of this expression that equate to δH , and sim-

plify the remaining terms 

3. Express δ in terms of the joint probability of segmentation labels 

f A, B, L and H 

Since events where A = B do not affect the difference in accu-

acy, δ is the probability of events where A = L and B � = L minus the

robability of events where A � = L and B = L . δ can be expressed in

erms of the probabilities of specific combinations of segmentation

abels for A, B and L for a randomly selected voxel: 

= p( a b l ) + p( a b l ) − p( a bl ) − p( a b l ) . (B.1) 
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We then express each term in Eq. (B.1) in terms of H with a sub-

stitution p( xy ) = p( xz ) − p( x ̄y z ) + p( xy ̄z ) , where x represents a ̄b

(for term 1 and 4) or ā b (for term 2 and 3) and y and z represent

l and h (for term 1 and 3) or l̄ and h̄ (for term 2 and 4): 

δ = (p( a ̄b h ) − p( a ̄b ̄l h ) + p( a ̄b l ̄h )) 

+ (p( ̄a b ̄h ) − p( ̄a bl ̄h ) + p( ̄a b ̄l h )) 

− (p( ̄a bh ) − p( ̄a b ̄l h ) + p( ̄a bl ̄h )) 

− (p( a ̄b ̄h ) − p( a ̄b l ̄h ) + p( a ̄b ̄l h )) . (B.2)

B4. Isolate the terms of this expression that equate to δH , and 

simplify the remaining terms 

The difference in accuracy with respect to H is δH = p( a ̄b h ) +
p( ̄a b ̄h ) − p( ̄a bh ) − p( a ̄b ̄h ) . Isolating these terms in Eq. (B.2) gives

the sum of δH and an error term: 

δ = δH + 2(p( a ̄b l ̄h ) − p( a ̄b ̄l h ) + p( ̄a b ̄l h ) − p( ̄a bl ̄h )) . (B.3)

To simplify the error term, we first expand each term with the sub-

stitution p( x ̄y ̄z ) = p(x ) − p( xyz ) − p( xy ̄z ) − p( x ̄y z ) , where x rep-

resents the non-complemented terms, and ȳ and z̄ represent the

complemented terms, giving 

δ = δH + 2(p( al ) − p( ablh ) − p( a ̄b lh ) − p( abl ̄h )) 

− 2(p( ah ) − p( ablh ) − p( a ̄b lh ) − p( ab ̄l h )) 

+ 2(p( bh ) − p( ablh ) − p( ̄a blh ) − p( ab ̄l h )) 

− 2(p( bl ) − p( ablh ) − p( abl ̄h ) − p( ̄a blh )) , (B.4)

and then cancel out duplicated terms, giving 

δ = δH + 2(p( al ) − p( ah ) + p( bh ) − p( bl )) . (B.5)

If A, B, L , and H are encoded as 0 (for background) and 1 (for fore-

ground), this error term can be expressed as 2(p(a ) − p(b ))(p(l ) −
p(h )) + 2 cov (A − B, L − H) in the full equation: 

δ = δH + 2(p(a ) − p(b ))(p(l ) − p(h )) + 2 cov (A −B, L −H) . (B.6)

By substituting δ = δMDD and δH = δMDD,H into Eq. (B.6) , we can

express δMDD as a function of δMDD, H when a low-quality reference

standard is used (identical to Eq. (8) ): 

δMDD = δMDD,H + 2(p(a ) − p(b ))(p(l ) − p(h )) 

+ 2 cov (A − B, L − H) . (B.7)

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at 10.1016/j.media.2017.07.004 

References 

Barbiero, A., Ferrari, P. A., 2015. GenOrd: simulation of discrete random variables

with given correlation matrix and marginal distributions. http://CRAN.R-project.
org/package=GenOrd . R package version 1.4.0. 

Beiden, S.V. , Campbell, G. , Meier, K.L. , Wagner, R.F. , 20 0 0. The problem of ROC anal-
ysis without truth: The EM algorithm and the information matrix. In: SPIE Med-

ical Imaging, pp. 126–134 . 
Browne, R.H. , 1995. On the use of a pilot sample for sample size determination. Stat.

Med. 14 (17), 1933–1940 . 

Caballero, J. , Bai, W. , Price, A.N. , Rueckert, D. , Hajnal, J.V. , 2014. Application-driven
MRI: Joint reconstruction and segmentation from undersampled MRI data.

In: Medical Image Computing and Computer-Assisted Intervention; MICCAI, 1,
pp. 106–118 . 

Chowdhury, N. , Pai, M.R. , Lobo, F.D. , Kini, H. , Varghese, R. , 2006. Interobserver vari-
ation in breast cancer grading: a statistical modeling approach. Anal. Quant. Cy-

tol. Histol./the International Academy of Cytology [and] American Society of Cy-
tology 28 (4), 213–218 . 

Cocosco, C.A. , Kollokian, V. , Kwan, R.K.-S. , Pike, G.B. , Evans, A.C. , 1997. Brainweb:

Online interface to a 3D MRI simulated brain database. In: Proceedings of Func-
tional Mapping of the Human Brain; NeuroImage, 5, p. 425 . 

Connelly, L.M. , 2008. Pilot studies. Medsurg Nursing 17 (6), 411–413 . 
Connor, R.J. , 1987. Sample size for testing differences in proportions for the

paired-sample design. Biometrics 43 (1), 207–211 . 
urkalski, V.L. , Palesch, Y.Y. , Lipsitz, S.R. , Rust, P.F. , 2003. Analysis of clustered
matched-pair data.. Stat. Med. 22 (15), 2417–2428 . 

veritt, B.S. , Skrondal, A. , 2002. The Cambridge Dictionary of Statistics. Cambridge
University Press . 

Frounchi, K. , Briand, L.C. , Grady, L. , Labiche, Y. , Subramanyan, R. , 2011. Automat-
ing image segmentation verification and validation by learning test oracles. Inf.

Softw. Technol. 53 (12), 1337–1348 . 
ibson, E., Bauman, G. S., Romagnoli, C., Cool, D. W., Bastian-Jordan, M., Kassam, Z.,

Gaed, M., Moussa, M., Gómez, J. A., Pautler, S. E., Chin, J. L., Crukley, C., Haider,

M. A., Fenster, A., Ward, A. D., 2016. Toward prostate cancer contouring guide-
lines on MRI: dominant lesion gross and clinical target volume coverage via

accurate histology fusion.. (1), 188–196. doi: 10.1016/j.ijrobp.2016.04.018 . 
ibson, E. , Crukley, C. , Gaed, M. , Gómez, J.A. , Moussa, M. , Chin, J.L. , Bauman, G.S. ,

Fenster, A. , Ward, A.D. , 2012. Registration of prostate histology images to ex
vivo MR images via strand-shaped fiducials. J. Magn. Reson. Imaging 36 (6),

1402–1412 . 

ibson, E. , Huisman, H.J. , Barratt, D.C. , 2015. Statistical Power in Image Segmen-
tation: Relating Sample Size to Reference Standard Quality. In: Medical Image

Computing and Computer-Assisted Intervention; MICCAI. Springer, pp. 105–113 . 
Gönen, M. , 2004. Sample size and power for McNemar’s test with clustered data..

Stat Med 23 (14), 2283–2294 . 
Guo, W. , Li, Q. , 2014. Effect of segmentation algorithms on the performance of com-

puterized detection of lung nodules in CT. Med. Phys. 41 (9), 091906 . 

amarneh, G. , Jassi, P. , Tang, L. , 2008. Simulation of ground-truth validation data
via physically-and statistically-based warps. In: Medical Image Computing and

Computer-Assisted Intervention; MICCAI. Springer, pp. 459–467 . 
Hertzog, M.A. , 2008. Considerations in determining sample size for pilot studies.

Res. Nurs. Health 31 (2), 180–191 . 
rshad, H. , Montaser-Kouhsari, L. , Waltz, G. , Bucur, O. , Nowak, J. , Dong, F. ,

Knoblauch, N.W. , Beck, A.H. , 2015. Crowdsourcing image annotation for nucleus

detection and segmentation in computational pathology: evaluating experts, au-
tomated methods, and the crowd. In: Pacific Symposium on Biocomputing. Pa-

cific Symposium on Biocomputing. NIH Public Access, p. 294 . 
Jha, A.K. , Kupinski, M.A. , Rodríguez, J.J. , Stephen, R.M. , Stopeck, A.T. , 2012. Task-based

evaluation of segmentation algorithms for diffusion-weighted mri without using
a gold standard. Phys. Med. Biol. 57 (13), 4425 . 

ulious, S.A. , 2005. Sample size of 12 per group rule of thumb for a pilot study.

Pharm. Stat. 4 (4), 287–291 . 
uneja, P. , Evans, P.M. , Harris, E.J. , 2013. The validation index: a new metric for vali-

dation of segmentation algorithms using two or more expert outlines with ap-
plication to radiotherapy planning.. IEEE Trans. Med. Imaging 32 (8), 1481–1489 .

ish, L. , 1965. Survey Sampling. Wiley, New York . 
ohlberger, T. , Singh, V. , Alvino, C. , Bahlmann, C. , Grady, L. , 2012. Evaluating seg-

mentation error without ground truth. In: Medical Image Computing and Com-

puter-Assisted Intervention; MICCAI. Springer, pp. 528–536 . 
onyushkova, K. , Sznitman, R. , Fua, P. , 2015. Int roducing geometry in active learning

for image segmentation. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 2974–2982 . 

ackey, N. , Wingate, A. , 1986. The pilot study: one key to research success.. Kans.
Nurse 61 (11), 6–7 . 

Langerak, T.R. , van der Heide, U.A. , Kotte, A.N. , Viergever, M.A. , van Vulpen, M. ,
Pluim, J.P. , 2010. Label fusion in atlas-based segmentation using a selective and

iterative method for performance level estimation (SIMPLE). IEEE Trans. Med.

Imag. 29 (12), 20 0 0–20 08 . 
ee, S.M. , Young, G.A. , 1995. Asymptotic iterated bootstrap confidence intervals. Ann.

Stat. 1301–1330 . 
itjens, G. , Debats, O. , Barentsz, J. , Karssemeijer, N. , Huisman, H. , 2014. Comput-

er-aided detection of prostate cancer in MRI.. IEEE Trans. Med. Imaging 33 (5),
1083–1092 . 

Litjens, G. , Toth, R. , van de Ven, W. , Hoeks, C. , Kerkstra, S. , van Ginneken, B. , Vin-

cent, G. , Guillard, G. , et al. , 2014. Evaluation of prostate segmentation algorithms
for MRI: the PROMISE12 challenge. Med. Image Anal. 18 (2), 359–373 . 

ace, A.E. , 1964. Sample-Size Determination. Reinhold, New York . 
Maier-Hein, L. , Mersmann, S. , Kondermann, D. , Bodenstedt, S. , Sanchez, A. , Stock, C. ,

Kenngott, H.G. , Eisenmann, M. , Speidel, S. , 2014. Can masses of non-experts
train highly accurate image classifiers? In: Medical Image Computing and Com-

puter-Assisted Intervention; MICCAI. Springer, pp. 438–445 . 

Minka, T.P. , 20 0 0. Estimating a Dirichlet distribution. Technical Report. M.I.T. . 
Mosimann, J.E. , 1962. On the compound multinomial distribution, the multivariate

β-distribution, and correlations among proportions. Biometrika 49 (1/2), 65–82 .
ieswiadomy, R.M. , 2011. Foundations in Nursing Research. Pearson Higher Ed . 

enn, A., 2015. ibootci. https://www.mathworks.com/matlabcentral/fileexchange/
52741 . 

 Core Team, 2013. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.
org/ ISBN3-90 0 051-07-0. 

osner, B. , 2015. Fundamentals of Biostatistics. Nelson Education . 
hah, V. , Pohida, T. , Turkbey, B. , Mani, H. , Merino, M. , Pinto, P.A. , Choyke, P. ,

Bernardo, M. , 2009. A method for correlating in vivo prostate magnetic
resonance imaging and histopathology using individualized magnetic reso-

nance-based molds. Rev. Sci. Instrum. 80 (10), 104301 . 

aha, A .A . , Hanbury, A . , 2015. Metrics for evaluating 3D medical image segmenta-
tion: analysis, selection, and tool. BMC Med. Imaging 15 (1), 29 . 

Top, A. , Hamarneh, G. , Abugharbieh, R. , 2011. Active learning for interactive 3d im-
age segmentation. In: Medical Image Computing and Computer-Assisted Inter-

vention; MICCAI. Springer, pp. 603–610 . 

http://dx.doi.org/10.1016/j.media.2017.07.004
http://CRAN.R-project.org/package=GenOrd
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0001
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0001
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0001
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0001
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0001
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0002
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0002
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0003
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0003
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0003
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0003
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0003
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0003
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0004
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0004
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0004
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0004
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0004
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0004
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0005
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0006
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0006
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0007
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0007
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0008
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0008
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0008
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0008
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0008
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0009
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0009
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0009
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0010
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0010
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0010
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0010
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0010
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0010
http://dx.doi.org/10.1016/j.ijrobp.2016.04.018
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0011
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0011
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0011
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0011
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0011
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0011
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0011
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0011
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0011
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0011
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0012
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0013
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0013
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0014
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0014
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0014
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0015
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0015
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0015
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0015
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0016
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0016
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0017
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0018
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0018
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0018
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0018
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0018
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0018
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0019
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0019
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0020
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0021
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0021
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0022
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0022
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0022
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0022
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0022
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0022
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0023
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0023
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0023
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0023
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0024
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0024
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0024
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0025
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0026
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0026
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0026
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0027
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0028
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0029
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0029
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0030
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0031
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0031
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0032
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0032
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0033
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0033
https://www.mathworks.com/matlabcentral/fileexchange/52741
http://www.R-project.org/
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0034
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0034
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0035
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0035
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0035
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0035
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0035
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0035
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0035
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0035
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0035
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0036
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0036
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0036
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0037
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0037
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0037
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0037


E. Gibson et al. / Medical Image Analysis 42 (2017) 44–59 59 

T  

 

W  

 

W  

Z
Z  

 

u, S., 2014. The dirichlet-multinomial and dirichlet-categorical models for bayesian
inference. Computer Science Division, UC Berkeley, Tech. Rep.[Online]. Available:

http://www.cs.berkeley.edu/ ∼stephentu/writeups/dirichlet-conjugate-prior.pdf . 
arfield, S.K. , Zou, K.H. , Wells, W.M. , 2004. Simultaneous truth and performance

level estimation (STAPLE): an algorithm for the validation of image segmenta-
tion. IEEE Trans. Med. Imag. 23 (7), 903–921 . 
arnes, G. R., Bolker, B., Lumley, T., 2015. gtools: Various R Programming Tools. R
package version 3.5.0. 

hu, Y., 2002. Correlated multinomial data. Encyclopedia of Environmetrics. 
öllei, L. , Wells, W. , 2006. Multi-modal image registration using Dirichlet-encoded

prior information. In: International Workshop on Biomedical Image Registration.
Springer, pp. 34–42 . 

http://www.cs.berkeley.edu/stephentu/writeups/dirichlet-conjugate-prior.pdf
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0038
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0039
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0039
http://refhub.elsevier.com/S1361-8415(17)30112-3/sbref0039

	Designing image segmentation studies: Statistical power, sample size and reference standard quality
	1 Introduction
	2 Sample size calculations in segmentation evaluation studies
	2.1 Notation
	2.2 Statistical model of segmentation
	2.2.1 Accuracy difference measures
	2.2.2 Model distribution

	2.3 Derivation of the sample size formula for segmentation
	2.3.1 Sample size with the Dirichlet prior distribution

	2.4 Incorporating reference standard quality

	3 Applying the sample size formula
	3.1 Parameter estimation equations

	4 Simulations
	4.1 Simulations with simulated data from the assumed statistical model
	4.2 Simulations with real-world data
	4.2.1 Simulations with high-quality real-world data
	4.2.2 Simulations with low-quality real-world data


	5 Results
	5.1 Simulations under the statistical model
	5.2 Simulations with high-quality real-world data
	5.3 Simulations with low-quality real-world data

	6 Case study
	7 Discussion
	7.1 Validation in segmentation comparison studies
	7.2 Accuracy and applicability of the sample size formulae
	7.3 Model interpretation
	7.4 Limitations

	8 Conclusions
	 Acknowledgements
	Appendix A Derivation of the variance of the accuracy difference
	A1 Statistical segmentation model and notation reiterated
	A2 Derivation of  in terms of moments of priors 

	Appendix B Derivation of the accuracy difference in terms of the high-quality reference standard
	B1 Model and notation
	B2 Derivation
	B3 Express  in terms of the joint probability of segmentation labels of A, B, L and H
	B4 Isolate the terms of this expression that equate to H, and simplify the remaining terms

	 Supplementary material
	 References


