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Abstract

The aim of this article is to provide a simple sampling procedure to reconstruct
any monotone path from its signature. For every N , we sample a lattice path of
N steps with weights given by the coefficient of the corresponding word in the
signature. We show that these weights on lattice paths satisfy the large deviations
principle. In particular, this implies that the probability of picking up a “wrong” path
is exponentially small in N . The argument relies on a probabilistic interpretation of
the signature for monotone paths.
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1 Introduction

1.1 The signature of a path

A path γ is a continuous map from a fixed interval J into a normed vector space
(V, ‖ · ‖V ). The length of γ is defined by

‖γ‖ := sup
D(J)

∑
j

‖γ(uj+1)− γ(uj)‖V ,

where the supremum is taken over all dissections D(J) = {uj} of the interval J . We say
γ has bounded variations if ‖γ‖ < +∞. In what follows, we consider V = Rd. Note that
although the choice of the norm on Rd affects the actual length of γ, it does not affect
whether γ has bounded variations or not.

Let {e1, . . . , ed} denote the standard basis of Rd. For every integer n ≥ 0, a word
of length n is an ordered sequence of n letters from the set {e1, . . . , ed} (with repeti-
tion allowed). We use |w| to denote the length of the word w, that is, the number of
letters consisting of the word. For two words w1 = ei1 . . . ein and w2 = ej1 . . . ejm , their
concatenation w1 ∗ w2 is a new word of length n+m defined by

w1 ∗ w2 = ei1 . . . einej1 . . . ejm .

We use ∅ to denote the empty word, which is the unique word of length 0. The signature
of a bounded variations path is defined as follows.
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Signature inversion for monotone paths

Definition 1.1. Let γ : [0, 1]→ Rd be a continuous path of bounded variations. For every
integer n ≥ 0 and every word w = ei1 . . . ein , let

Cγ(w) =

∫
0<u1<···<un<1

dγi1(u1) · · · dγin(un),

where γi is the i-th component of γ. The signature of γ is the formal power series

X(γ) =

+∞∑
n=0

∑
|w|=n

Cγ(w) · w,

where the second sum is taken over all words of length n, and we have set Cγ(∅) = 1 by
convention.

We call the collection {Cγ(w) : |w| = n} the n-th level coefficients in the signature.
The signature is a definite integral over the fixed interval where γ is defined. Changing
the parametrisation or the size of the interval does not change the signature of γ.
For bounded variation path γ, one can re-parametrise at constant speed (or natural
parametrisation) so that ‖γ̇‖ ≡ L where the length is measured with respect to the given
norm on Rd. In particular, under natural parametrisation, γ is Lipschitz, and hence we
can write

Cγ(w) =

∫
0<u1<···<un<1

γ̇i1(u1) · · · γ̇in(un)du1 · · · dun.

The signature contains important information about the path. For example, the collection
{Cγ(w) : |w| = 1} reproduces the increment of the path, and the second level coefficients
{Cγ(w) : |w| = 2} represents the (signed) areas enclosed by the projection of the path on
ei − ej planes.

It was proved by Hambly and Lyons ([5]) that bounded variation paths are uniquely
determined by their signatures up to tree-like pieces.1 In [6], Lyons and one of the
authors developed a procedure based on the use of symmetrisation that enables one
to reconstruct every C1 path (when at natural parametrisation) from its signature.
The purpose of this article is to give a significant simplification of the reconstruction
procedure in the case when γ is monotone.

1.2 Monotone paths and the main result

From now on, we fix our path γ : [0, 1]→ Rd that is monotone. If γ is decreasing in any
of its components, can we can reflect γi to −γi in that component and the corresponding
change in the signature is immediate according to Definition 1.1. Thus, we can assume
without loss of generality that γ is monotonically increasing so that

γ̇i(t) ≥ 0, ∀t ∈ [0, 1], ∀i = 1, . . . , d.

We also equip Rd with the `1 norm, so the length of a monotone path is then simply the
sum of all its first level coefficients in the signature. Thus, we can assume without loss of
generality that L = 1; otherwise one can just simply recover L using the first term in the
signature and rescale the path by L−1 so that the new path has length 1. Finally, since
the signature is invariant under re-parametrisation, we also assume γ is parametrised at
unit speed so that

d∑
i=1

γ̇i(u) = 1, ∀u ∈ [0, 1]. (1.1)

1Roughly speaking, two paths α and β are tree-equivalent if the path α ∗ β−1, obtained by running α first
and then β backwards, is a “null-path” in the sense that all the trajectories cancel out themselves. Please refer
to [4] for a precise definition.
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Signature inversion for monotone paths

Also, since we fix our path γ throughout the article, we will omit the letter γ and simply
write C(w) for the signature of γ.

Since γ is monotonically increasing, we have C(w) ≥ 0 for every word w. A direct
computation then gives ∑

|w|=N

C(w) =
LN

N !
=

1

N !

for every integer N , where we have also used the assumption that L = 1. This suggests
that for every N , the quantities {N !Cγ(w) : |w| = N} constitute a probability measure on
the words of length N , giving each word w with |w| = N the “probability” N !C(w). Now,
for every word with length N , we associate to it a lattice path XN with step size 1

N such
that XN is a monotone lattice path parametrised at unit speed, and moves in exactly the
same direction as the word w. More precisely, if w = ei1 · · · eiN , then we define the path
XN associated to w by

XN =
1

N

(
ei1 ∗ · · · ∗ eiN

)
,

and we equip it with natural parametrisation. Here, “*” denotes the concatenation of
two paths, and we have had an abuse of the notation eik also to denote the one-step
lattice path moving in the eik direction. Now, for every N ≥ 0, we assign the N -step
paths {XN : |w| = N} “probabilities” N !C(w). This gives us a sequence of laws on the
space of lattice paths. The main result of our article is the following.

Theorem 1.2. The laws on {XN} above satisfies a large deviations principle on the
space of continuous function from [0, 1] to Rd.

The above theorem implies that one can reconstruct any monotone path from its
signature by sampling directly from the lattice paths with weights given by the corre-
sponding terms in the signature. More precisely, for fixed large N , one “samples” a
lattice path SNw according to the “probabilities” {C(w) : |w| = N}. The large deviations
principle for these laws in Theorem 1.2 then ensures that the chance of picking a wrong
lattice path is exponentially small in N .

The proof of this theorem relies on a probabilistic interpretation of the signature of
monotone paths. Once this observation is made, the rest follows directly from standard
large deviations techniques. On the other hand, unfortunately, the rate function for the
LDP for {XN} does not have a closed form. However, an observation by [3] suggests
that we can add another random process TN (to be defined below) to {XN}, so that the
pair (XN , TN ) satisfies LDP with a rate function of closed form. These will be made more
precise in Section 2.2 below.

2 Sampling path large deviations

2.1 Probabilistic interpretation

We first give the probabilistic interpretation of the signature of a monotone path.
Let γ : [0, 1] → Rd be a monotone path parametrised at unit speed with respect to `1

norm in the sense of (1.1), and it has length 1 under this assumption. We can associate
it with a probability measure on random lattice paths in the following way. Consider d
independent Poisson processes run simultaneously on the time interval [0, 1] respectively.
The intensity for the i-th coordinate component of this Poisson process is γ̇i(t). Let
W (t) be the word of ordered letters that arrive up to time t. For example, if at times
0 < u1 < · · · < u5 < t, the letters e3, e2, e2, e1, e3 arrives, then

W (t) = e3e2e2e1e3, W (v) = e3e2, v ∈ [u2, u3).
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Signature inversion for monotone paths

One can make the process W (·) into a lattice path in the following way. Suppose the
arrival times are τj for j = 1, 2, . . . with the convention that τ0 = 0, then W can be
defined as a lattice path by setting W (τ0) = 0, and

W (t) = W (τj) + (t− τj)eij ,

where eij is the arriving letter at time τj , and the right hand side above should be
understood as the sum of two d-dimensional vectors. We have thus associated to γ a
random lattice path W .

We are interested in the laws of W conditional on the total number of arrivals up to
time 1. Thus, we let N (t) be the process counting the total number of arrivals up to time
t. Since γ is parametrised at unit speed, N (t) is a homogeneous Poisson process on [0, 1]

with intensity 1.
Now, we condition on the event N (1) = N , that is, there are totally N arrivals up to

time 1 (when the path runs out). Let

PN (·) := P
(
· |N (1) = N

)
denote the conditional probability. Thus, for every word w with |w| = N , with the abuse
of notation that W denoting the word generated by the processes, we have precisely the
relation

C(w) =
1

N !
PN
(
W = w

)
=

1

N !
P
(
W = w|N (1) = N

)
. (2.1)

This is the probabilistic interpretation of the signature for monotone paths.

2.2 Lattice path sampling and large deviations

From now on, we always condition on N (1) = N . Let W (t) be the random lattice path
generated by the conditional Poisson process, and WN (t) = 1

NW (t). Thus, under PN ,
every realisation of WN is a lattice path with step size 1

N and total length 1 (N steps).
It should be clear that WN → γ in probability in the space of continuous paths with

uniform topology, although we do not know any reference explicitly stating that. Our
aim is to show the large deviations principles for the processes WN and its random
time change version. For this, we first introduce the proper function spaces that the
processes live in. Let C denote the set of continuous functions from [0, 1] to R with the
uniform topology, and let Cd be d copies of C. Also, we let

A =
{
ψ : [0, 1]→ R s.t. ψ(0) = 0, ψ continuous and non-decreasing

}
,

and

Ada =
{
ψ = (ψ1, . . . , ψd) : ψi ∈ A,

d∑
i=1

ψi(1) = a
}
.

It is clear that ψ ∈ A implies ψ is absolutely continuous with ψ̇ ≥ 0. For the set Ada, we
will mainly use it for a = 1. Note that here and below, we will use plain letters for scalars
(or scalar-valued functions) and boldface letters for vectors. For example, we use ψ
denote the Rd valued function in Ada, while ψi denote its one-dimensional components.

We now define the function I : R+ ×R+ → R to be

I(x, y) = x log(x/y), x, y > 0. (2.2)

Our first aim is to show that the conditional laws

µN = L
(
W (·)|N (1) = N

)
obey a large deviations principle for processes. In order to derive the rate function, we
need the following lemma for its finite dimensional approximations.

ECP 22 (2017), paper 42.
Page 4/11

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP70
http://www.imstat.org/ecp/


Signature inversion for monotone paths

Lemma 2.1. Let k ≥ 1. For every {0 = u0 < u1 < · · · < uk = 1}, the conditional laws

L
(
WN (u1)−WN (u0), . . . ,WN (uk)−WN (uk−1)|N (1) = N

)
satisfy the large deviations principle with scale N and good rate function

Ik(z) =

d∑
i=1

k∑
j=1

(uj − uj−1) · I
(
zij − zij−1
uj − uj−1

,
γiuj
− γiuj−1

uj − uj−1

)
when z = (z1, . . . , zk) ∈ (Rd)k satisfies zj ≥ 0, and

d∑
i=1

zik = 1, zij ≤ zij+1, ∀i = 1, . . . , d, j = 1, . . . , k,

where we have used the convention that z0 = 0. Otherwise Ik(z) =∞.

Proof. Fix k ≥ 1 and 0 = u0 < · · · < uk = 1, and let ΛN be the logarithmic moment-
generating function of the multi-vector

(
WN (u1) −WN (u0), . . . ,WN (uk) −WN (uk−1)

)
,

conditioned on N (1) = N . Here, each component is a d-dimensional vector, and this
should be understood as a random vector in (Z/N)dk. Then, the conditional distribu-
tion (on N (1) = N ) of this random vector is precisely multinomial with N trials and
probabilities

pij = γiuj
− γiuj−1

.

Here, pij denotes the probability of the outcome of the trial being “W i
N (uj)−W i

N (uj−1)”.
Also, the pij ’s are already normalised as a probability since we have assumed L = 1.
Hence, for θ = {θij} ∈ Rdk, we have

1

N
ΛN (Nθ) =

1

N
logE exp

(
N
∑
i,j

θij
(
W i
N (uj)−W i

N (uj−1)
))

= log
(∑
i,j

(
γiuj
− γiuj−1

)
eθ

i
j

)
,

where the second equality follows from the moment-generating function for multinomial
distribution, and the sum is taken over the range

i = 1, . . . , d, j ∈ 1, . . . , k.

Hence, the sequence {Λn} satisfies the assumption of Gärtner-Ellis theorem ([2, Theorem
2.3.6]). Let

Λ(θ) := log
(∑
i,j

(
γiuj
− γiuj−1

)
eθ

i
j

)
,

then the laws

L
(
WN (u1)−WN (u0), . . . ,WN (uk)−WN (uk−1)|N (1) = N

)
satisfy the large deviations principle with the rate function

Λ∗(z) := sup
θ∈Rdk

(∑
i,j

θij
(
ziuj
− ziuj−1

)
− Λ(θ)

)
=
∑
i,j

(
ziuj
− ziuj−1

)
log
( ziuj

− ziuj−1

γiuj
− γiuj−1

)
,

which is precisely the stated form.

ECP 22 (2017), paper 42.
Page 5/11

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP70
http://www.imstat.org/ecp/


Signature inversion for monotone paths

We are now ready to give the large deviations principle for the conditional laws on
the rescaled paths WN .

Theorem 2.2. For every N ≥ 0, let

µN = L
(
WN |N (1) = N

)
.

Then, as a family of laws on Cd, {µN} satisfies a large deviations principle with scale N
and good rate function

IW (ψ) =

d∑
i=1

∫ 1

0

I
(
ψ̇i(t), γ̇i(t)

)
dt

when ψ ∈ Ad1, and IW (ψ) =∞ otherwise.

Proof. By Lemma 2.1, any finite dimensional distribution of difference of the processes
WN satisfies the large deviations principle. Thus, by [1, Theorem 1], the laws of the
processesWN (·)’s also satisfy the large deviations principle with good rate function

IW (ψ) =

d∑
i=1

∫ 1

0

I
(
ψ̇i(u), γ̇i(u)

)
du, ψi ∈ A s.t.

d∑
i=1

ψi(1) = 1,

and∞ otherwise.

Note that the above large deviations principle are for the processes {WN (·)}, where
the time parametrisation is random and cannot be observed from the signature. We thus
need to parametrise the paths WN ’s at unit speed. For this reason, we introduce the
random time change below.

We still condition on N (1) = N . For j = 1, . . . , N , let τj ∈ [0, 1] denote the arrival time
of the j-th word in the process W , so we have

N (t) = j, t ∈ [τj , τj+1).

Let the random map TN : [0, 1]→ [0, τN ] be such that

TN (q) = τj + (Nq − j)(τj+1 − τj), q ∈
( j
N
,
j + 1

N

]
.

This says TN (j/N) is the arrival time of the j-th word, and linearly interpolate in between.
Thus, TN is almost surely a strictly increasing map with inverse QN : [0, τN ] → [0, 1]

defined by

QN (t) =
j

N
+

t− τj
N(τj+1 − τj)

, t ∈
(
τj , τj+1

]
.

Thus, for every realisation such thatN (1) = N , the random path WN ◦TN is parametrised
at unit speed. The intuition is that the map

WN ◦ TN : [0, 1]→ (Z/N)d, q 7→WN (TN (q))

takes the (Nq)-th arrival of the N letters to the position “q” of the path WN . We let

XN = WN ◦ TN ,

which is nothing but the lattice path WN re-parametrised at unit speed. To investigate
the LDP for XN , note that TN = Q−1N , and the operations

(WN , QN ) 7→ (WN , TN ) 7→WN ◦ TN

are both continuous. Thus, by contraction principle, it suffices to prove the LDP for
(WN , QN ). We give it in the following lemma.
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Lemma 2.3. The laws for (WN , QN ) ∈ Cd × C conditioned on N (1) = N satisfy the large
deviations principle with scale N and good rate function

I(W,Q)(ψ, φ) =

d∑
i=1

∫ 1

0

I
(
ψ̇i(t), γ̇i(t)

)
dt

for ψ ∈ Ad1, φ ∈ A such that
∑
i ψ

i = φ, and I(W,Q) =∞ otherwise.

Proof. The definition of QN ensures that

QN (t) =
∑
i

W i
N (t)

for every t ∈ [0, 1], so the rate function for the pair (W,Q) is the same as IW except that
one further requires

∑
i ψ

i = φ. Note that this constraint, together with ψ ∈ Ad1, forces
φ(1) = 1.

Corollary 2.4. The laws L(XN |N (1) = N) on Cd satisfies a large deviations principle.

The rate function for X can be expressed in terms of I(W,Q) using the Contraction
Principle [2] but it does not have a closed form. A nice observation from [3] suggests that
we can add the component TN so that the pair (XN , TN ) satisfies the large deviations
principle with a closed form rate function. This is the content of the following theorem.

Theorem 2.5. The conditional laws

νN = L
(
(XN , TN )|N (1) = N

)
satisfy a large deviations principle with scale N and good rate function

I(X,T )

(
ζ, ξ
)

= I(W,Q)

(
ζ ◦ ξ−1, ξ−1

)
=

d∑
i=1

∫ 1

0

I
(
ζ̇i(q), (γi ◦ ξ)′(q)

)
dq (2.3)

for ζi, ξ ∈ A such that
∑
i ζ̇
i ≡ 1, and I(X,T ) =∞ otherwise.

Proof. Since TN = Q−1N , it follows directly from the large deviations for inverse processes
(see e.g. [3, Theorem 4]) and Lemma 2.3 that

I(X,T )

(
ζ, ξ
)

= I(W,Q)

(
ζ ◦ ξ−1, ξ−1

)
=

d∑
i=1

∫ 1

0

I
((
ζi ◦ ξ−1

)′
(t), γ̇i(t)

)
dt.

To derive the specific form of the rate function (the second equality in (2.3)), we note
that for each i, we have

(
ζi ◦ ξ−1

)′
(t) =

ζ̇i(ξ−1(t))

ξ̇(ξ−1(t))
,

where for the purpose of the display, we have made an abuse use of notation with both ′

and · to denote the derivative of a path. A change of variable q = ξ−1(t) then gives∫ 1

0

I
((
ζi ◦ ξ−1

)′
(t), γ̇i(t)

)
dt =

∫ 1

0

I
( ζ̇i(ξ−1(t)

)
ξ̇
(
ξ−1(t)

) , γ̇i(t))dt
=

∫ 1

0

I
( ζ̇i(q)
ξ̇(q)

, γ̇i(ξ(q))
)
dξ(q)

=

∫ 1

0

ζ̇i(q) log
( ζ̇i(q)

γ̇i(ξ(q))ξ̇(q)

)
dq.
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Signature inversion for monotone paths

The constraint that ξ ∈ A is obvious. For the constraint on ζ, we notice that by Lemma
2.3, we need

d∑
i=1

ζi(ξ−1(q)) = ξ−1(q), ∀q ∈ [0, 1].

This is equivalent as
∑
i ψ

i(t) = t for all t, or
∑
i ψ̇

i ≡ 1.

2.3 Connections with the symmetrisation procedure

In [6], the authors used a procedure of symmetrisation to produce a deterministic
sequence of piecewise linear approximations from the signature of a C1 path to the
true path. The construction of that sequence requires rather complicated operations
beyond symmetrisation between terms in the signatures. The aim of this subsection is
to show that, in the case of monotone paths, these piecewise linear paths can also be
“sampled” in a straightforward way after symmetrisation. This turns out to be a simple
consequence of the large deviations principle for lattice path sampling.

We first briefly recall the symmetrisation procedure on signatures used in [6], and
will mainly follow the notations there. For every integer N ≥ 0 and k ≥ 0, let PN,k denote
the set of k-partitions of N ; that is,

PN,k =
{
n =

(
n1, . . . , nk

)
: nj ≥ 0,

k∑
j=1

nj = N
}
.

For n ∈ PN,k, let

Ln
k =

{
` =

(
`1, . . . , `k

)
: `j =

(
`1j , . . . , `

d
j

)
,

d∑
i=1

`ij = nj , ∀j = 1, . . . , k
}
.

Now, for n ∈ PN,k and ` ∈ Ln
k , define the set of wordsWn

k (`) by

Wn
k (`) =

{
w = w1 ∗ · · · ∗ wk : |wj |ei = `ij , ∀i = 1, . . . , d, j = 1, . . . , k

}
,

where |wj |ei denotes the number of the letter ei in the word wj . We then define the
symmetrised signatures by

Snk (`) := N !
∑

w∈Wn
k (`)

C(w).

In other words, Snk (`) is the sum of the coefficients of all words w such that w = w1∗· · ·∗wk,
and the number of letters ei in wj is `ij .

Note that in [6], the symmetrisation procedure is taken with nj ≡ n for all j, and
N = kn, so the set-up above is a slight generalisation of that in [6]. Recall the random
word W generated by the Poisson process associated to the path γ; we have

PN
(
W ∈ Wn

k (`)
)

= Snk (`).

Thus, eachWn
k corresponds to a random piecewise linear path, which we call Y n

k . We
have the following theorem.

Theorem 2.6. For every N ≥ 0, let k = k(N) and n ∈ PN,k(N) be such that

k(N)→ +∞, and sup
1≤j≤k(N)

nj
N
→ 0

as N → +∞. Then, the sequence (Y n
k , TN ) satisfies the large deviations principle with

the same rate function as in Theorem 2.5.
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Proof. It suffices to show that Y n
k and XN are exponentially equivalent. In fact, for every

realisation of the lattice path XN , Y n
k is its polygonal approximation such that its j-th

piece connects the points XN

(
n̄j−1/N

)
and XN

(
n̄j/N

)
, where

n̄j =

j∑
`=1

n`.

Thus, the difference between the j-th piece of Y n
k and the corresponding part in XN is

at most nj

N , and hence

‖Y n
k (q)−XN (q)

)
‖∞ ≤ sup

j

nj
N
.

Thus, we have

PN
(
‖Y n

k −XN‖∞ ≥ δ
)
≤ PN

(
sup
j

nj
N
≥ δ
)

= 0

for all sufficiently large N . This proves the exponential equivalence of (Y n
k , TN ) and

(XN , TN ), and hence the LDP follows.

3 A numerical example

In this section, we will provide a numerical example for the sampling scheme (with
some modification) introduced above. The example (path) that we are using is the
following.

Example 3.1. Let γ : [0, 1]→ R2 be the path

γ(t) = te1 + t2e2 = (t, t2), ∀t ∈ [0, 1].

Thus, γ is a two-dimensional monotone path with length 2.

Ideally, in order to test the practical efficiency of the sampling scheme in Section
2.2, one would like to compute the level-N signature of γ and use them as “weights” for
lattice paths with N steps. But such a procedure is hard to be visualised when N is large.
Thus, for the convenience of simulation and display, instead of trying to sample a lattice
path of N steps, we will show the accuracy of the recovery of some of the points in the
path.

The procedure we use below is actually a further simplification to the symmetrisation
procedure in Section 2.3. Following the notations in Section 2.3, we use nj ≡ n, and we
will illustrate reconstructing the path in Example 3.1 in the following two cases:

1. Fix k = 2, and vary n = 3, . . . , 8;

2. Fix n = 4, and take k = 2, 3, 4.

In the first case, we aim to recover the middle point and test the accuracy for different
values of n’s. For the second one, we fix the length of each block (n = 4), and will see
that the approximation becomes better when the number of blocks increase.

As for the computation of signature of γ, we compute the truncated signature of the
piecewise linear approximation of γ with the time mesh 0.01, and apply the inversion
algorithm outlined in the above section. In the first case when we fix k = 2, we obtain
for each n the weights for the possible (n+ 1)2 two-piece path2. Again, for the simplicity
of visualisation, instead of displaying the weights for all (n+ 1)2 paths, we only draw the
path that has the maximum weight for each n (which we call an MLE path).
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Figure 1: MLE estimators of γ for k = 2 and 3 ≤ n ≤ 8

Figure 2: MLE estimators of γ for n = 4 and k = 2, 3, 4

The two-piece linear paths with the biggest weight for k = 2 and n = 3, . . . , 8

are plotted in Figure 1. One sees that the MLE estimator is closer to the true path
γ(t) = (t, t2) as n increases. For the second case, we also display the MLE paths for
different values of k’s in Figure 2, and we see that the approximation is better when k
increases.

2Recall that the symmetrisation procedure recovers the direction of each segment (or the ratio between the
increments in d Euclidean directions). In our two dimensional example, when the block size is n, there are
(n+ 1)2 possible ratios in total, as both the numerator and denominator take value in {0, 1, . . . , n}.
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