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Abstract  

Thousand-and-one amino acid kinases (TAOKs) 1 and 2 are activated catalytically during 

mitosis and can contribute to mitotic cell rounding and spindle positioning. Here, we characterize 

a compound that inhibits TAOK1 and TAOK2 activity with IC50 values of 11-15 nM, is ATP-

competitive and targets these kinases selectively. TAOK inhibition or depletion in centrosome 

amplified SKBR3 or BT549 breast cancer cell models increases the mitotic population, the 

percentages of mitotic cells displaying amplified centrosomes and multipolar spindles, induces 

cell death and inhibits cell growth. In contrast, non-tumorigenic and dividing bipolar MCF-10A 

breast cells appear less dependent on TAOK activity and can complete mitosis and proliferate in 

the presence of the TAOK inhibitor. We demonstrate that TAOK1 and TAOK2 localize to the 

cytoplasm and centrosomes respectively during mitosis. Live cell imaging shows that the TAOK 

inhibitor prolongs the duration of mitosis in SKBR3 cells, increases mitotic cell death and 

reduces the percentages of cells exiting mitosis, whereas MCF-10A cells continue to divide and 

proliferate. Over 80% of breast cancer tissues display supernumerary centrosomes and tumor 

cells frequently cluster extra centrosomes to avoid multipolar mitoses and associated cell death. 

Consequently, drugs that stimulate centrosome declustering and induce multipolarity are likely to 

target dividing centrosome amplified cancer cells preferentially, whilst sparing normal bipolar 

cells. Our results demonstrate that TAOK inhibition can enhance centrosome declustering and 

mitotic catastrophe in cancer cells and these proteins may therefore offer novel therapeutic 

targets suitable for drug inhibition and the potential treatment of breast cancers, where 

supernumerary centrosomes occur.  
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Introduction 

Thousand-and-one amino acid kinases (TAOKs, also referred to as PSKs) belong to the sterile 20 

(STE20) group of kinases and subfamily members include TAOK1, TAOK2 and TAOK3 (1-6). 

TAOKs can regulate mitogen-activated protein kinase (MAPK) signaling pathways and TAOK1 

or TAOK2, but not TAOK3, stimulate c-Jun N-terminal kinase (JNK) and p38 MAPKs (1-5). 

TAOK1 and TAOK2 also induce apoptotic morphological changes via their activation of JNK 

MAPK and caspases (4, 5). Additional studies have shown that TAOKs can regulate microtubule 

(MT) dynamics and organization (7-9). TAOK1 induces MT instability via activation of MT-

affinity-regulating kinase (MARK/PAR-1) and phosphorylation of the MT-associated protein 

tau, which dissociates from MTs, resulting in their disassembly (8-11). TAOK2 can bind to MTs 

via its C terminus (amino acids 745-1235) and produces stabilized perinuclear MT cables that are 

nocodazole-resistant (7). TAOKs appear to be activated during MT-dependent processes when 

increases in MT dynamics occur, and these events include mitosis and neuritogenesis (12, 13). 

Our recent work using small interfering RNA (siRNA) to deplete TAOK1 or TAOK2 has shown 

that these proteins are required for mitotic cell rounding and spindle positioning, consistent with 

functional roles for these proteins in regulating MTs and mitosis (12).  

Many cancer drugs are anti-proliferative and disrupt MTs during cell division and include the 

original anti-mitotic drugs such as taxanes and vinca alkaloids (14, 15). Perturbation of the 

mitotic spindle results in erroneous chromosome alignment and activation of the spindle-

assembly checkpoint, which prevents mitotic progression and results in cell death (16, 17). 

Mitotic catastrophe provides an onco-suppressive mechanism that is activated during or after 

defective mitosis and results in cell death or senescence that is distinct from apoptosis (18, 19). 

Cell death may occur during mitosis or after premature slippage out of mitosis or alternatively, 

cells may become senescent in the subsequent G1 phase of the cell cycle following mitotic 

slippage (18, 19). Mitotic catastrophe therefore provides a mechanism for avoiding genomic 

instability, however, its induction may also provide a therapeutic opportunity whereby drugs and 

microtubule poisons disrupt the mitotic machinery and induce cancer cell death. Conventional 

MT-targeting drugs such as docetaxel, paclitaxel and epothilones, have proven to be clinically 
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effective and are relatively cancer specific but these compounds are also prone to debilitating 

side effects and patient relapse commonly occurs due to drug resistance (14, 20, 21). 

Consequently, current efforts are underway to develop a new generation of mitosis-selective 

drugs that are designed to inhibit proteins with essential roles in mitosis. Classic mitotic kinases 

such as the cyclin-dependent kinases, Polo-like kinases and Aurora kinases have been targeted 

already and showed efficacy in recent clinical trials, however, these drugs also appear to have 

limited efficacy in solid tumors and can cause severe side effects (22-25).  

Additional strategies are now required to target cancer specific events that are essential for tumor 

cell survival. Many solid and hematological cancers exhibit supernumerary centrosomes and 

tumor cells often cluster extra centrosomes to produce a functional bipolar-like spindle. Drugs 

that induce declustering of centrosomes and stimulate multipolar mitosis and cell death could 

therefore target and kill cancer cells selectively. Here we have characterized a small molecule 

inhibitor of the TAOK family of protein kinases and shown that TAOK inhibition can increase 

centrosome declustering, delay mitotic progression and induce mitotic catastrophe in centrosome 

amplified SKBR3 breast cancer cells. In contrast, non-tumorigenic and bipolar MCF-10A breast 

cells appear more resistant to the TAOK inhibitor and continue to divide in its presence. 

Materials and Methods 

Reagents and antibodies  

PRK5-MYC vector, pRK5-MYC-TAOK1, pRK5-MYC-TAOK1 (K57A), pRK5-MYC-TAOK2 

and pRK5-MYC-TAOK2 (K57A) were made as described previously (1, 5). PCMV-FLAG-

JNK1 was a gift from Dr M. Karin (University of California, USA). Small interfering RNA 

(siRNA) oligonucleotide sequences targeting TAOK1 (#1 and #4) or TAOK2 (#1 and #4) were 

described previously (12). Recombinant TAOK1 (1-319) and TAOK2 (1-319) were purchased 

from SignalChem (#T24-11G, #T25-11G). Rabbit TAOK1 or TAOK2 antibodies were obtained 

from Proteintech (#26250, #21188) and TAOK-pS181 antibody was produced by Eurogentec 

(4). Rabbit anti-FLAG and mouse anti-α-tubulin (DM1A) or anti-MYC antibodies and DAPI 

were obtained from Sigma-Aldrich (#F7425, #T9026, #M5546), and rabbit anti-JNK-

pT183/Y185 antibody was purchased from Cell Signaling Technology (#9251). Mouse anti-GFP 

antibodies were obtained from Millipore (#MAB3850). Rabbit anti-pericentrin and anti-α-tubulin 
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antibodies were purchased from AbCam (#ab44481, #ab18251). Goat anti-rabbit Alexa-Fluor568 

and Goat anti-mouse Alexa-Fluor488 antibodies were obtained from ThermoFisher Scientific 

(#A11036, #A11029).  

Cell culture and overexpression or knockdown of TAOKs 

Cell lines were obtained from ATCC (2008) and authenticated with karyotyping and short 

tandem repeat DNA profiling (2014). Cells were frozen within 4 weeks of purchase and used 

within 10 weeks after resuscitation and media checked routinely for mycoplasma using DAPI 

staining. MCF10-A cells were grown in DMEM/F12 Ham medium containing 5% horse serum 

(Sigma-Aldrich, #H1138), 20 ng/ml EGF (Sigma-Aldrich, #E4127), 100 ng/ml cholera toxin 

(Sigma-Aldrich, #C8052), 500 ng/ml hydrocortisone (Sigma-Aldrich, #H4001) and 10 µg/ml 

insulin (Sigma-Aldrich, #I9278). SKBR3 cells were maintained in McCoy’s/5A medium 

supplemented with 10% FCS. COS1 cells were grown in DMEM supplemented with 10% FCS. 

BT549 cells were grown in RPMI containing 10 µg/ml insulin and 10% FCS (ThermoFisher 

#10270). All media contained antibiotics and cultures grown in a humidified atmosphere (10% 

CO2, 37
o
C). For soft agar growth and colony formation assays, cells were plated in growth 

medium and 0.3% SeaPlaque low-melting agarose (Lonza, #50101). The bottom layer was made 

up of growth medium and 0.6% agarose. Colonies were stained with 0.005% crystal violet. For 

transfection, cells were treated with the indicated plasmids and Lipofectamine 2000 according to 

the manufacturer’s instructions (ThermoFisher Scientific, #1166027). For TAOK depletion 

experiments, growing cells were treated with the indicated siRNA (50 nM) oligonucleotides 

targeting TAOKs and HiPerFect (Qiagen, #301705) as described previously and cells on the 

culture plate and in the media pooled to determine cell numbers (12).    

Immunoprecipitation and Western blot analysis 

Transfected COS1 cells were incubated for 22 hours and then extracted in lysis buffer (500 µl) 

(12). For immunoprecipitation, samples were mixed with 15 µl of mouse anti-FLAG-agarose 

beads (Sigma-Aldrich, #A2220) for 2 hours/4
o
C and then washed in lysis buffer (x4) and bead 

pellets extracted in gel sample buffer. Protein extracts were resolved by SDS-PAGE (10%) 

followed by immunoblotting with the indicated antibodies and blot patterns analyzed using ECL 

and densitometry (1).  
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Flow cytometry 

Cells were treated with compound 43 (10 µM or equivalent DMSO) for 24-72 hours. To 

determine the mitotic fraction, cells were fixed with 2% PFA/PBS for 10 minutes, permeabilized 

with 90% methanol and blocked in 0.5% BSA/PBS before staining with Alexa-Fuor488-

histoneH3-pS10 antibody (Cell Signaling Technology #3465, 1 hour). Cells were then washed 

twice and stained with Propidium Iodide (PI). To assess apoptosis, FITC-Annexin V antibody 

(ThermoFisher Scientific #A13201) was used. Cells were resuspended in Annexin-binding 

buffer and stained with 5 µl of FITC-Annexin V antibody and PI for 30 minutes. Fluorescence 

from both assays was measured using a FACS Canto II flow cytometer (BD Technologies). 

Immunostaining, confocal and time-lapse video microscopy 

Growing cells on coverslips were fixed with ice-cold methanol (5 minutes/4 
o
C) or 4% 

paraformaldehyde/PBS (15 minutes/RT). Alternatively, SKBR3 cells containing doxycycline-

inducible pRetroX-TRE3G-GFP-TAOK plasmids were seeded on poly-L-lysine coated 

coverslips and incubated with 10 ng/µl doxycycline (Sigma-Aldrich, #D9891) for 24 hours 

before fixation. Samples were costained with the indicated antibodies and DAPI (3 µM) and 

processed as described previously (12), and cells imaged using a CSU-X1 inverted spinning-disk 

confocal microscope (Nikon) equipped with a EM-CCD camera (Andor iXon3) and a 100x/1.40 

NA oil objective (Nikon). Z-stacks were taken using a 0.3 μm step size. For time-lapse video 

imaging and mitotic cell analysis, MCF-10A or SKBR3 cells expressing GFP-α-tubulin 

constitutively were seeded onto a 24-well plate (Ibidi) and incubated overnight. Cultures were 

treated with compound 43 or DMSO as indicated and imaged at 15 minute intervals over a 48 

hour period. Time-lapse imaging was carried out using an Eclipse Ti-E Inverted microscope 

(Nikon), equipped with a 20x air objective (Nikon), a cooled CCD camera (CoolSNAP HQ2, 

Photometrics) and a climate-controlled chamber (37°C/5% CO2). The time of mitotic duration 

(nuclear envelope breakdown to cytokinesis) and mitotic catastrophe or exit from mitosis was 

determined by visual inspection and scoring of >120 individual cells per condition and for each 

experiment (n = 3).  
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TAOK inhibitor compounds  

Compounds 43 and 63 were synthesized by Evotec Limited (UK) and characterized using 

KinaseProfiler
TM

 services provided by Eurofins (UK) (Supplementary Methods).  

Statistical analysis 

Graphs and statistical analysis one-way or two-way ANOVA followed by a Bonferroni 

correction were performed using GraphPad and results are presented as mean ± SD. 

 

Results 

Identification and synthesis of small molecule inhibitors for TAO kinases 

Our previous studies have used siRNA to demonstrate that TAOK1 and TAOK2 expression in 

HeLa cells is required for mitotic cell rounding and spindle positioning, and these results suggest 

that small molecule TAOK inhibitors are likely to perturb malignant cell division (12). 

Currently, no effective TAOK inhibitors have been reported in the literature however, Exelixis 

Inc. (USA) have patented several compounds that may inhibit TAOKs with IC50 values ≤ 50nM 

(WO2005/040355A2) (26). Two of these compounds were synthesized for this study by Evotec 

(UK) and include N-[2-oxo-2-(1,2,3,4-tetrahydronaphthalen-1-ylamino)ethyl]biphenyl-4-

carboxamide (referred to hereafter as compound 43 using Exelixis Inc. nomenclature) and N-{3-

[(2-{[6-methoxy-1,3-benzothiazol-2-yl]amino}-2-oxoethyl)amino]-3-oxo-1-

phenylpropyl}benzamide (referred to hereafter as compound 63) (Fig. 1A). 

Compounds 43 and 63 inhibit TAOK activity in vitro 

Initial experiments set out to confirm that both compounds could inhibit TAOK catalytic activity 

in in vitro kinase assays. Purified TAOKs were incubated with concentrations of compound 43 

or 63 between 0 and 30 µM; both compounds inhibit MBP phosphorylation by TAOK1 or 

TAOK2 potently (Fig. 1B). Calculated IC50 values for TAOK inhibition by compound 43 were 
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11 nM for TAOK1 and 15 nM for TAOK2 (Fig. 1B). Compound 63 also inhibited TAOK 

activity with IC50 values of 19 nM for TAOK1 and 39 nM for TAOK2 (Fig. 1B).  

 

Compounds 43 and 63 inhibit TAOK activity selectively 

The specificity of compound inhibition for TAOKs was examined by repeating in vitro kinase 

assays using 70 different kinases. TAOK1 or TAOK2 retained 8% and 11% of their activity 

respectively; when incubated in the presence of compound 43 (0.3 µM) and compared to control 

samples (Fig. 1C). Of the other kinases examined here, TAOK3 was inhibited and retained 13% 

activity. Three structurally related STE20 family members, LOK (48% activity retained), TAK1 

(53% activity retained) and PAK2 (79% activity retained) were also inhibited by compound 43, 

albeit to a lesser extent than the TAOKs. In addition, EphB4 (61% activity retained) and Aurora-

B (82% activity retained) are inhibited partially by this small molecule, however, the remaining 

62 kinases tested here retained ≥ 80% of their activity in the presence of compound 43 (Fig. 1C 

and Supplementary Table S1). TAOK1 or TAOK2 also retained 11% of their activity, when 

incubated with compound 63 (0.3 µM) and compared to control samples (Fig. 1C). Of the other 

kinases analyzed, TAOK3 was inhibited and retained 13% of activity whereas ALK retained 

64% activity, CDK9 retained 67% activity, SAPK2a and RSK1 retained 77% activity and 

DRAK1 retained 70% activity, in the presence of compound 63 (Fig. 1C). Sixty two other 

kinases retained ≥ 80% of their activity when incubated with compound 63 (Fig. 1C and 

Supplementary Table S1). Notably, the mitotic kinases Aurora A and B, Plk1 and 3, as well as 

CDK1 and 2 retain ≥ 80% of their catalytic activity with either compound (Fig. 1C). These 

results demonstrate that compounds 43 and 63 inhibit the catalytic activity of TAOKs 

selectively, when compared to their effects on alternative kinases.  

Compounds 43 and 63 are ATP-competitive inhibitors of TAOK activity 

ATP-competitive binding assays were carried out to investigate the mechanism of action for both 

TAOK inhibitors. In vitro kinase assays were repeated using nine concentrations of either 

compound 43 or 63 (between 0 and 1 µM), ATP (1, 10 or 155 µM) and purified TAOK1 or 

TAOK2. For compound 43, increasing [ATP] from 10 to 155 µM raised the calculated IC50 

values from 5 to 139 nM for TAOK1, and from 7 to 137 nM for TAOK2 (Supplementary Fig. 
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S1A). For compound 63, increasing [ATP] from 10 to 155 µM raised the calculated IC50 values 

from 20 to 170 nM for TAOK1, and from 28 to 221 nM for TAOK2 (Supplementary Fig. S1B). 

Both compounds are therefore ATP-competitive inhibitors of TAOK1 or TAOK2 activity.  

Compound 43 inhibits TAOK stimulation of JNK in cells 

Exogenous TAOK1 or TAOK2 can stimulate the phosphorylation and activation of JNK MAPK 

in cells, and this downstream response to these kinases was used here to test whether the 

compounds could inhibit TAOK activity in cells (1, 5). COS1 cells were cotransfected with 

FLAG-tagged JNK and MYC-tagged TAOK1 or TAOK2 and cultures incubated with 

compound. FLAG-tagged JNK was immunoprecipitated from cell lysates and changes in the 

phosphorylation and activation of FLAG-JNK determined by immunoblotting samples with the 

anti-active phospho-JNK-pT183/Y185 antibody. Exogenous TAOK1 or TAOK2 stimulation of 

JNK phosphorylation was inhibited by compound 43 at ≥ 10 µM and the levels of JNK-

pT183/Y185 reduced to those present in control cells transfected with empty vector or kinase-

defective TAOK1 (K57A) or TAOK2 (K57A) (Fig. 2A-B). These results demonstrate that 

compound 43 can inhibit TAOK stimulation of JNK phosphorylation in cells. In contrast, 

compound 63 was unable to prevent the stimulation of JNK phosphorylation by exogenous 

TAOK1 or TAOK2 in transfected cells indicating that this small molecule may not be suitable 

for targeting and inhibiting TAOK activity in cells (Supplementary Fig. S1C). Consequently, all 

further experiments were carried out using compound 43. 

TAOKs localize to the cytoplasm and centrosomes during mitosis 

Supernumerary centrosomes are a common feature of high grade and invasive cancers and a 

number of breast cancer cell lines were screened to identify appropriate models to represent this 

aberrant phenotype (27, 28). Cultures were fixed and costained with antibodies to detect 

pericentrin (centrosomes) and α-tubulin (MTs) plus  DAPI (DNA), and significant centrosome 

amplification (CA, > 2) was observed in dividing SKBR3 (38 ± 2% of mitotic cells) and BT549 

(31 ± 1.6%) breast cancer cells (Supplementary Fig. S2A). In contrast, non-tumorigenic MCF-

10A breast cells were predominantly bipolar and 6 ± 2% of the cell population displayed CA 

(Supplementary Fig. S2A). Each cell model was also immunostained for phosphorylated and 

catalytically active TAOK-pS181 (12, 29), which was detected in the cytoplasm and at the 
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centrosomes of mitotic cells but absent in interphase cells (Supplementary Fig. S2B). Noticeably, 

TAOK-pS181 associated with additional vesicular structures in MCF-10A cells, which are cell 

type specific but remain to be identified (Supplementary Fig. S2B). TAOK1 and TAOK2 

localization in mitotic SKBR3 cells was investigated further by inducing the expression of 

exogenous GFP-tagged TAOK proteins. TAOK1 and TAOK-pS181 colocalize in the cytoplasm 

(Fig. 3A) whereas TAOK2 and TAOK-pS181 colocalize with pericentrin at centrosomes (Fig. 

3B). TAOK1 and TAOK2 are therefore both catalytically active during mitosis but localize to 

different cellular sites. 

The TAOK inhibitor increases the mitotic population and enhances centrosome and 

spindle abnormalities in CA cells 

The requirement for TAOK activity during mitosis was investigated by treating centrosome 

amplified (CA) or bipolar cell models with compound 43 and determining changes in cell cycle 

distribution using flow cytometry. The percentages of total CA SKBR3 cells in mitosis increased 

from 1.28 ± 0.22% to 13.54 ± 0.27% after 24 hours of incubation with the TAOK inhibitor and 

declined thereafter (Fig. 4A, bar chart). The percentages of CA BT549 cells in mitosis also 

increased from 3.01 ± 0.67% to 9.42 ± 1.0% following treatment with compound 43 for 24 hours 

(Fig. 4A). In contrast, the percentages of bipolar and non-tumorigenic MCF-10A cells in mitosis 

were 3.82 ± 0.43% when cultures were incubated for 24 hours with compound 43 (Fig. 4A). 

Analysis of immunostained mitotic cells by confocal microscopy showed that the percentages of 

mitotic SKBR3 and BT549 cells displaying abnormal centrosomes (> 2) or multipolar spindles 

also increased following treatment with compound 43, whereas no significant change in either 

phenotype were observed when the TAOK inhibitor was added to MCF-10A cells (Fig. 4B-C). 

Furthermore, siRNA depletion of TAOK1 and TAOK2 expression together but not separately, 

increased the percentages of mitotic SKBR3 or BT549 cells exhibiting abnormal centrosomes (> 

2), whereas knockdown of either TAOK1 or TAOK2 was sufficient to enhance the occurrence of 

multipolar spindles (Fig. 4D-E). None of these changes were apparent in mitotic MCF-10A cells 

with depleted expression of TAOK1 and/or TAOK2 (Fig. 4D-E). Knockdown of TAOK 

expression was confirmed in all experiments by immunoblotting cell lysates (Supplementary Fig. 

S3). CA SKBR3 and BT549 breast cancer cells therefore appear more dependent on TAOK 

activity during mitosis than non-tumorigenic and bipolar MCF-10A cells.  
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The TAOK inhibitor prolongs mitosis and promotes cell death in dividing SKBR3 cells 

To investigate the effects of the TAOK inhibitor during mitosis, we prepared MCF-10A and 

SKBR3 cell lines expressing GFP-α-tubulin constitutively and used time-lapse video 

microscopy. Detailed image analysis showed that SKBR3 cells displayed a mixed mitotic 

phenotype where 38 ± 1.2% of dividing cells exhibited supernumerary centrosomes and the 

remaining 62 ± 2% of cells contained two centrosomes and were bipolar. Consequently, bipolar 

or multipolar SKBR3 cells were scored separately. Each cell culture well was imaged for 48 

hours, and the length of time taken between nuclear envelope breakdown and cytokinesis 

measured for individual cells. Both cell models divide and proliferate under control conditions, 

although the time taken to complete mitosis was longer in SKBR3 than MCF-10A cells (Fig. 

5A). Live cell imaging also showed that MCF-10A cells divide and progress through mitosis in a 

normal time frame when incubated with or without compound 43 in the culture medium (Fig. 5B 

and Supplementary Movies S1 and S2 showing representative videos). In contrast, addition of 

the TAOK inhibitor to SKBR3 cells caused significant increases in the average duration of 

mitosis in bipolar SKBR3 cells from 89.7 to 465.8 minutes and from 168.3 to 634.3 minutes in 

multipolar SKBR3 cells (Fig. 5B and Supplementary Movies S3 and S4 showing representative 

videos). Further analysis of these videos recording the progression of individual SKBR3 cells 

through mitosis, showed that compound 43 caused 19 ± 12% of bipolar cells or 53 ± 14% of 

multipolar cells to undergo death in mitosis, whilst the remaining cells exited mitosis and some 

of these cells are likely to undergo cell death or senescence in the subsequent G1 phase (Fig. 

5C). Notably, the average length of time that MCF-10A cells spend in mitosis did not change 

significantly in the presence of compound 43 (55 ± 4.4 minutes) and these cells remained viable 

and continued to proliferate (Fig. 5B and Supplementary Movies S1 and S2). 

The TAOK inhibitor induces cell death and inhibits growth of SKBR3 cells 

The live imaging results suggest that CA SKBR3 cells are more dependent on TAOK activity for 

their survival and division than MCF-10A cells. Consequently, the effects of the TAOK inhibitor 

on MCF-10A and SKBR3 cell viability were investigated next using Annexin V staining and 

flow cytometry. Treatment with compound 43 caused a significant increase in the percentages of 
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total SKBR3 cells undergoing cell death from 14.8 ± 1.9% (control) to 30.5 ± 5.4% (24 hours) 

and 42.4 ± 4.9% (48 hours) (Fig. 6A, bar chart). In contrast, the percentages of total MCF-10A 

cells undergoing apoptosis were 13.0 ± 3.4% (control) and increased to 15.1 ± 2.9% (24 hours) 

and 22.6 ± 3.8% (48 hours) after treatment with the TAOK inhibitor (Fig. 6A). The effect of the 

TAOK inhibitor on the growth of MCF-10A, SKBR3 and BT549 cells was also investigated. 

Each cell line was incubated with or without compound 43 and cell numbers determined after 72 

hours. Compound 43 reduced SKBR3 and BT549 cell numbers per dish by 94 ± 3% or 82 ± 

1.9% respectively, when compared to untreated control cultures (Fig. 6B). In comparison, MCF-

10A cell numbers were reduced by 46 ± 10.3%, when compared to untreated cells (Fig. 6B). 

SiRNA depletion of either TAOK1 or TAOK2 expression also caused significant reductions in 

SKBR3 and BT549 cell numbers when compared to control cultures (Fig. 6C) whereas  MCF-

10A cell numbers were not significantly reduced following depletion of TAOK1 and/or TAOK2 

and these cells continued to grow (Fig. 6C and Supplementary Fig. S3). SiRNAs targeting 

TAOK1 and TAOK2 did not completely abolish protein expression and this approach was less 

effective than compound 43 in inhibiting CA cell growth (Supplementary Fig. S3). The effect of 

compound 43 on soft agar growth of MCF-10A and SKBR3 cells was also compared over 21 

days; the TAOK inhibitor decreased colony numbers by 28% or 94% respectively (Fig. 6D). 

Taken together, these results show that CA SKBR3 or BT549 breast cancer cells are more 

dependent on TAOK activity for their viability and growth when compared to non-tumorigenic 

and bipolar MCF-10A breast cells. 

Discussion 

Previous reports describing small molecule inhibitors for TAOKs are limited but have indicated 

that the protein kinase C inhibitor staurosporine inhibits TAOK2 with an IC50 value of 3 µM and 

the mammalian STE20-like kinase 1 inhibitor 9E1 reduces TAOK2 activity with an IC50 value of 

0.3 µM (30, 31). However, staurosporine and 9E1 were shown to inhibit many other kinases 

more potently. A recent high throughput screen has also identified two compounds, SW034538 

and SW083688, that inhibit TAOK2 activity with IC50 values of 300 nM and 1.3 µM respectively 

however, further biological characterization of both small molecules is required (32). In this 

study, we have shown that compounds 43 and 63 act potently to inhibit the activity of TAOK1 

and TAOK2 with IC50 values of 11-15 nM and 19-39 nM respectively, are ATP-competitive and 
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inhibit the catalytic activity of these kinases preferentially in an assay of 70 kinases. Moreover, 

activation of JNK MAPK by exogenous cellular TAOK1 or TAOK2 was inhibited by compound 

43 demonstrating that this small molecule is an effective inhibitor for TAOKs. 

Supernumerary amplified centrosomes typify high grade or invasive breast cancer tissues, and 

appropriate cell models were selected here to represent the aberrant or normal phenotypes (27, 

28, 33, 34). Immunostaining experiments showed that TAOKs are phosphorylated and activated 

specifically during mitosis and that TAOK1 and TAOK2 localized to the cytoplasm or 

centrosomes respectively (12). Inhibition or depletion of TAOKs increased the mitotic 

population and enhanced the occurrence of supernumerary centrosomes and multipolar spindles 

in dividing CA SKBR3 and BT549 cells. In contrast, bipolar and non-tumorigenic MCF-10A 

cells remained bipolar and continued to proliferate. Live cell imaging of SKBR3 cells treated 

with compound 43 showed that the duration of mitosis increased and that these cells either failed 

to exit mitosis and underwent cell death in mitosis or exited mitosis after a significant delay. A 

subpopulation of SKBR3 cells that undergo bipolar mitosis was also susceptible to the TAOK 

inhibitor and a significant proportion of these cells also underwent prolonged mitosis and died. 

In contrast, MCF-10A cells appeared less dependent on TAOK activity and completed mitosis in 

the presence of compound 43 in a normal time frame and a bipolar manner, before dividing.  

A strong correlation exists between CA and genomic instability (CIN) in breast cancer indicating 

that this abnormal phenotype is likely to contribute to chromosome missegregation and 

tumorigenesis (28, 34, 35). Supernumerary centrosomes also cause multipolar mitosis and 

produce nonviable progeny cells owing to lethal gain or loss of chromosomes (17, 36). 

Malignant and CA cells can however enhance their survival by clustering extra centrosomes to 

form a pseudo-bipolar spindle, which reduces multipolarity and associated lethal chromosome 

segregation defects (17, 36, 37). Such cells frequently delay metaphase to allow sufficient MT-

kinetochore capture and/or tensions to occur to satisfy the spindle assembly checkpoint, whilst 

supernumerary centrosomes are also clustered prior to the onset of anaphase (17, 36, 38). In this 

study and consistent with these previous observations, the duration of mitosis is longer in 

SKBR3 cells than MCF-10A cells. The TAOK inhibitor prolonged the length of mitosis in 

SKBR3 cells associated with multipolar mitosis, probably due to centrosome declustering, and 

enhanced cell death in mitosis. In contrast, MCF-10A cells completed mitosis in a normal time 
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frame and a bipolar manner in the presence of compound 43, and these cells continued to divide 

and proliferate. SKBR3 cells required TAOK activity for mitotic progression to avoid enhanced 

multipolarity and associated cell death.  

Centrosome amplification can occur due to endoreduplication, cytokinesis failure, cell-cell 

fusion, PCM fragmentation or dysregulation of the centrosome cycle (28). However, the 

mechanisms involved in clustering supernumerary centrosomes are poorly defined. SiRNA 

screens and live cell imaging studies have implicated functional roles for components of the 

spindle checkpoint (e.g. Mad2, Bub1 and CENP-E), which are likely activated by incorrect 

kinetochore-MT attachments and/or tensions, and subsequently delay metaphase to allow 

centrosome clustering to take place (17, 36, 38). Clustering of centrosomes also requires 

additional proteins involved in regulating the actin-MT cytoskeleton and spindle positioning (e.g. 

Myo10A/Myo15 and CLIP190), as well as MAPs and motor proteins, which bundle MTs at the 

spindle poles (e.g. HSET/KIFC1, Ncd) (38, 39). An additional siRNA screen has identified 

centrosome clustering roles for E3 ubiquitin ligase APC/C subunits and their cofactors Cdh1 and 

Cdc20 and their substrates (e.g. Eg5 motor protein), dynein/dynactin and SKA1-3 complexes 

(40). The screen suggested potential roles for TAOKs, the TAOK binding protein testis-specific 

kinase (TESK) 1 and LIM domain kinase (LIMK) 2 in the regulation of centrosome clustering 

(40, 41). TESKs and the related LIMKs can downregulate activity of the actin-severing protein 

cofilin via phosphorylation, and a mechanism whereby centrosome clustering is inhibited via 

cofilin-mediated destabilization of cortical actin has been reported (42).  

TAOKs can regulate MT dynamics and organization and their activity is required for mitotic cell 

rounding and spindle positioning in HeLa cells (7-9, 12). The evaluation of a first generation 

TAOK inhibitor here has implicated additional roles for these proteins in regulating the 

clustering of supernumerary centrosomes to produce a functional pseudo-bipolar spindle in CA 

breast cancer cells, and a requirement for TAOK activity for such cells to survive and grow. The 

exact role of TAOK inhibition in centrosome declustering requires further mechanistic 

dissection. MT poisons or inhibitors of mitotic kinases such as Aurora and Polo-like kinases or 

motor proteins (e.g. Eg5) can provide effective cancer therapy, however, such inhibitors are also 

associated with extreme toxicity and adverse side effects (14, 15, 23-25, 43). Inhibitors of 

monopolar spindle kinase 1 and the spindle assembly checkpoint have also entered clinical trials 
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although these compounds appear to exhibit only moderate efficacy as single agents and are 

more effective when used in combination with drugs such as paclitaxel (44-46). Additional 

therapeutic strategies are now required to target cancer specific events and drugs that stimulate 

centrosome declustering and multipolarity are likely to kill CA cancer cells selectively, whilst 

sparing normal cells (47). The results reported here provide the first indication that TAOKs may 

provide suitable targets to inhibit and kill CA breast cancer cells selectively. Additional studies 

are now required for further evaluation of TAOKs as potential drug targets for cancer therapy. 

Acknowledgements  

We thank Julian Blagg, Daniel Weekes, Nirmesh Patel, Kostas Drosopoulos, Sarah Pinder, 

Jeremy Carlton and Ji Ho Rhim for their helpful advice during this study and Laura Price for a 

donation to support this work. 

References 

1. Moore TM, Garg R, Johnson C, Coptcoat MJ, Ridley AJ, Morris JD. PSK, a novel 

STE20-like kinase derived from prostatic carcinoma that activates the c-Jun N-terminal kinase 

mitogen-activated protein kinase pathway and regulates actin cytoskeletal organization. J Biol 

Chem. 2000;275:4311-22. 

2. Hutchison M, Berman KS, Cobb MH. Isolation of TAO1, a protein kinase that activates 

MEKs in stress-activated protein kinase cascades. J Biol Chem. 1998;273:28625-32. 

3. Chen Z, Hutchison M, Cobb MH. Isolation of the protein kinase TAO2 and identification 

of its mitogen-activated protein kinase/extracellular signal-regulated kinase kinase binding 

domain. J Biol Chem. 1999;274:28803-7. 

4. Zihni C, Mitsopoulos C, Tavares IA, Baum B, Ridley AJ, Morris JD. Prostate-derived 

sterile 20-like kinase 1-alpha induces apoptosis. JNK- and caspase-dependent nuclear 

localization is a requirement for membrane blebbing. J Biol Chem. 2007;282:6484-93. 

5. Zihni C, Mitsopoulos C, Tavares IA, Ridley AJ, Morris JD. Prostate-derived sterile 20-

like kinase 2 (PSK2) regulates apoptotic morphology via C-Jun N-terminal kinase and Rho 

kinase-1. J Biol Chem. 2006;281:7317-23. 

6. Tassi E, Biesova Z, Di Fiore PP, Gutkind JS, Wong WT. Human JIK, a novel member of 

the STE20 kinase family that inhibits JNK and is negatively regulated by epidermal growth 

factor. J Biol Chem. 1999;274:33287-95. 

7. Mitsopoulos C, Zihni C, Garg R, Ridley AJ, Morris JD. The prostate-derived sterile 20-

like kinase (PSK) regulates microtubule organization and stability. J Biol Chem. 

2003;278:18085-91. 

8. Timm T, Li XY, Biernat J, Jiao J, Mandelkow E, Vandekerckhove J, et al. MARKK, a 

Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J. 

2003;22:5090-101. 

9. Liu T, Rohn JL, Picone R, Kunda P, Baum B. Tao-1 is a negative regulator of 

microtubule plus-end growth. J Cell Sci. 2010;123:2708-16. 



16 
 

10. Timm T, Matenia D, Li XY, Griesshaber B, Mandelkow EM. Signaling from MARK to 

tau: regulation, cytoskeletal crosstalk, and pathological phosphorylation. Neurodegener Dis. 

2006;3:207-17. 

11. Tavares IA, Touma D, Lynham S, Troakes C, Schober M, Causevic M, et al. Prostate-

derived sterile 20-like kinases (PSKs/TAOKs) phosphorylate tau protein and are activated in 

tangle-bearing neurons in Alzheimer disease. J Biol Chem. 2013;288:15418-29. 

12. Wojtala RL, Tavares IA, Morton PE, Valderrama F, Thomas NS, Morris JD. Prostate-

derived sterile 20-like kinases (PSKs/TAOKs) are activated in mitosis and contribute to mitotic 

cell rounding and spindle positioning. J Biol Chem. 2011;286:30161-70. 

13. de Anda FC, Rosario AL, Durak O, Tran T, Graff J, Meletis K, et al. Autism spectrum 

disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex. Nat 

Neurosci. 2012;15:1022-31. 

14. Marzo I, Naval J. Antimitotic drugs in cancer chemotherapy: promises and pitfalls. 

Biochem Pharmacol. 2013;86:703-10. 

15. Janssen A, Medema RH. Mitosis as an anti-cancer target. Oncogene. 2011;30:2799-809. 

16. Rieder CL, Maiato H. Stuck in division or passing through: what happens when cells 

cannot satisfy the spindle assembly checkpoint. Dev Cell. 2004;7:637-51. 

17. Ganem NJ, Godinho SA, Pellman D. A mechanism linking extra centrosomes to 

chromosomal instability. Nature. 2009;460:278-82. 

18. Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for 

avoiding genomic instability. Nat Rev Mol Cell Biol. 2011;12:385-92. 

19. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G. Cell death by 

mitotic catastrophe: a molecular definition. Oncogene. 2004;23:2825-37. 

20. Ghersi D, Wilcken N, Simes RJ. A systematic review of taxane-containing regimens for 

metastatic breast cancer. Br J Cancer. 2005;93:293-301. 

21. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 

2004;4:253-65. 

22. Traynor AM, Hewitt M, Liu G, Flaherty KT, Clark J, Freedman SJ, et al. Phase I dose 

escalation study of MK-0457, a novel Aurora kinase inhibitor, in adult patients with advanced 

solid tumors. Cancer Chemother Pharmacol. 2011;67:305-14. 

23. Steeghs N, Eskens FA, Gelderblom H, Verweij J, Nortier JW, Ouwerkerk J, et al. Phase I 

pharmacokinetic and pharmacodynamic study of the aurora kinase inhibitor danusertib in 

patients with advanced or metastatic solid tumors. J Clin Oncol. 2009;27:5094-101. 

24. Hofheinz RD, Al-Batran SE, Hochhaus A, Jager E, Reichardt VL, Fritsch H, et al. An 

open-label, phase I study of the polo-like kinase-1 inhibitor, BI 2536, in patients with advanced 

solid tumors. Clin Cancer Res. 2010;16:4666-74. 

25. Bavetsias V, Linardopoulos S. Aurora Kinase Inhibitors: Current Status and Outlook. 

Front Oncol. 2015;5:278. 

26. Baly DL GA, Ibrahim MA, Jaeger C, Kearney P, Leahy JW, et al. , inventor Tao kinase 

modulators and methods of use. World Intellectual Property Organization International 

Bureau2005. 

27. Lingle WL, Barrett SL, Negron VC, D'Assoro AB, Boeneman K, Liu W, et al. 

Centrosome amplification drives chromosomal instability in breast tumor development. Proc 

Natl Acad Sci U S A. 2002;99:1978-83. 



17 
 

28. Denu RA, Zasadil LM, Kanugh C, Laffin J, Weaver BA, Burkard ME. Centrosome 

amplification induces high grade features and is prognostic of worse outcomes in breast cancer. 

BMC Cancer. 2016;16:47. 

29. Zhou T, Raman M, Gao Y, Earnest S, Chen Z, Machius M, et al. Crystal structure of the 

TAO2 kinase domain: activation and specificity of a Ste20p MAP3K. Structure. 2004;12:1891-

900. 

30. Zhou TJ, Sun LG, Gao Y, Goldsmith EJ. Crystal structure of the MAP3K TAO2 kinase 

domain bound by an inhibitor staurosporine. Acta Biochim Biophys Sin (Shanghai). 

2006;38:385-92. 

31. Anand R, Maksimoska J, Pagano N, Wong EY, Gimotty PA, Diamond SL, et al. Toward 

the development of a potent and selective organoruthenium mammalian sterile 20 kinase 

inhibitor. J Med Chem. 2009;52:1602-11. 

32. Piala AT, Akella R, Potts MB, Dudics-Giagnocavo SA, He H, Wei S, et al. Discovery of 

novel TAOK2 inhibitor scaffolds from high-throughput screening. Bioorg Med Chem Lett. 

2016;26:3923-7. 

33. Pannu V, Mittal K, Cantuaria G, Reid MD, Li X, Donthamsetty S, et al. Rampant 

centrosome amplification underlies more aggressive disease course of triple negative breast 

cancers. Oncotarget. 2015;6:10487-97. 

34. Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL. Centrosome hypertrophy in 

human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci U 

S A. 1998;95:2950-5. 

35. Nigg EA. Centrosome aberrations: cause or consequence of cancer progression? Nat Rev 

Cancer. 2002;2:815-25. 

36. Godinho SA, Kwon M, Pellman D. Centrosomes and cancer: how cancer cells divide 

with too many centrosomes. Cancer Metastasis Rev. 2009;28:85-98. 

37. Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS. Spindle multipolarity is 

prevented by centrosomal clustering. Science. 2005;307:127-9. 

38. Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, et al. 

Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 

2008;22:2189-203. 

39. Chavali PL, Chandrasekaran G, Barr AR, Tatrai P, Taylor C, Papachristou EK, et al. A 

CEP215-HSET complex links centrosomes with spindle poles and drives centrosome clustering 

in cancer. Nat Commun. 2016;7:11005. 

40. Drosopoulos K, Tang C, Chao WC, Linardopoulos S. APC/C is an essential regulator of 

centrosome clustering. Nat Commun. 2014;5:3686. 

41. Johne C, Matenia D, Li XY, Timm T, Balusamy K, Mandelkow EM. Spred1 and TESK1-

-Two New Interaction Partners of the Kinase MARKK/TAO1 That Link the Microtubule and 

Actin Cytoskeleton. Mol Biol Cell. 2008;19:1391-403. 

42. Konotop G, Bausch E, Nagai T, Turchinovich A, Becker N, Benner A, et al. 

Pharmacological Inhibition of Centrosome Clustering by Slingshot-Mediated Cofilin Activation 

and Actin Cortex Destabilization. Cancer Res. 2016. 

43. Infante JR, Kurzrock R, Spratlin J, Burris HA, Eckhardt SG, Li J, et al. A Phase I study 

to assess the safety, tolerability, and pharmacokinetics of AZD4877, an intravenous Eg5 

inhibitor in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2012;69:165-72. 

44. Wengner AM, Siemeister G, Koppitz M, Schulze V, Kosemund D, Klar U, et al. Novel 

Mps1 Kinase Inhibitors with Potent Antitumor Activity. Mol Cancer Ther. 2016;15:583-92. 



18 
 

45. Martinez R, Blasina A, Hallin JF, Hu W, Rymer I, Fan J, et al. Mitotic Checkpoint 

Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility. PLoS One. 

2015;10:e0138616. 

46. Janssen A, Kops GJ, Medema RH. Elevating the frequency of chromosome mis-

segregation as a strategy to kill tumor cells. Proc Natl Acad Sci U S A. 2009;106:19108-13. 

47. Ogden A, Rida PC, Aneja R. Let's huddle to prevent a muddle: centrosome declustering 

as an attractive anticancer strategy. Cell Death Differ. 2012;19:1255-67. 

  

 

Figure Legends 

Figure 1.  

Small molecule inhibitors for TAOKs. A, chemical structure of compounds 43 and 63. B, 

calculated IC50 values for compounds 43 and 63 and their inhibition of MBP phosphorylation by 

TAOKs. C, effects of compound 43 or 63 (0.3 µM) on the catalytic activity of different kinases 

and phosphorylation of their substrate relative to control samples (n = 2).  

Figure 2.  

Compound 43 inhibits phosphorylation and activation of JNK by TAOKs in cells. COS1 cells 

were cotransfected with FLAG-JNK and either A, pRK5-MYC (MYC-Empty Vector), pRK5-

MYC-TAOK1 or pRK5-MYC-TAOK1 (K57A) or B, pRK5-MYC, MYC-TAOK2 or MYC-

TAOK2 (K57A), and treated with compound 43 (0-60 µM) as indicated. After 24 hours FLAG-

JNK was immunoprecipitated from cell lysates and bead pellets immunoblotted for FLAG-JNK-

pT183/Y185 or total FLAG-JNK. Cell lysates were also immunoblotted for expression of 

transfected FLAG-JNK, MYC-TAOK1 or MYC-TAOK2. A-B, changes in immunoprecipitated 

FLAG-JNK-pT183/Y185 band intensity relative to total FLAG-JNK (100%) are shown. **, P < 

0.01; n = 3. 

Figure 3.  

TAOK1 and TAOK2 localize to the cytoplasm and centrosomes respectively during mitosis. 

SKBR3 cells expressing A, GFP-TAOK1 or B, GFP-TAOK2 were fixed and costained with 
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antibodies to detect TAOK1, TAOK2, TAOK-pS181, α-tubulin, pericentrin plus DAPI. 

Representative confocal images are shown. Scale bar: 10 µm.  

Figure 4.  

TAOK inhibition increases the mitotic population and the frequency of CA and multipolarity in 

dividing SKBR3 and BT549 cells. MCF-10A, SKBR3 and BT549 cells were treated with or 

without compound 43 (10 µM, 24 or 48 hours, A-C) or transfected with siRNA (48 hours, D-E) 

as indicated. A, cultures were stained with Alexa-Fluor488-histoneH3-pS10 antibody (mitosis) 

and PI (DNA). Flow cytometric profiles of cell cycle distribution are presented in a 

representative Figure and mitotic cells boxed (M). Quantitative analysis of FACS data and 

changes in % of cells in mitosis are shown. B-C, cells were fixed and stained with pericentrin 

and α-tubulin antibodies plus DAPI and % mitotic cells with >2 centrosomes (B) or with 

multipolar spindles (C) determined. D-E, cultures were transfected with nontargeting siRNA 

(siControl) or individual oligonucleotides targeting TAOK1 (siT1-1, siT1-4) or TAOK2 (siT2-1, 

siT2-4). After 48 hours, cultures were fixed and stained with pericentrin and α-tubulin antibodies 

plus DAPI and % mitotic cells with >2 centrosomes (D) or multipolar spindles (E) determined. 

>150 mitotic cells were analyzed in each experiment, *P<0.05, **, P < 0.01  and ***, P < 0.001; 

n = 3.  

 

Figure 5.  

Compound 43 prolongs mitosis and causes death in dividing SKBR3 cells. MCF-10A or SKBR3 

cells expressing fluorescent GFP-α-tubulin were monitored using time-lapse video microscopy 

and individual mitotic cells analyzed. A-B, results showing the time taken for MCF-10A or 

SKBR3 (bipolar or multipolar) cells to complete mitosis in the absence or presence of compound 

43 (5 µM). Scale bar: 10µm. ***, P < 0.001. C, the percentages of dividing SKBR3 cells 

undergoing death in mitosis or exiting mitosis in the presence of compound 43 (48 hours). >120 

mitotic cells were analyzed for each condition and per experiment (n = 3). Representative time-

lapse images are shown in Supplementary Movies S1-S4. 
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Figure 6 

TAOK inhibition reduces SKBR3 cell viability and growth. A, MCF-10A or SKBR3 cells were 

incubated without (control) or with compound 43, fixed and stained with AlexaFluor488-

annexinV (apoptosis) and PI (DNA), and analysed by FACS to identify live cells (V), early (E) 

or late (L) apoptotic cells or necrotic (N) cells. A representative Figure and quantitative analysis 

of FACS data are shown. B, MCF-10A, SKBR3 or BT549 cells were incubated with compound 

43 (10 µM) where indicated and cells detached after 72 hours and counted C, MCF-10A, SKBR3 

or BT549 cells were transfected with nontargeting siRNA (siControl) or individual 

oligonucleotides targeting TAOK1 (siT1-1, siT1-4) or TAOK2 (siT2-1, siT2-4) as indicated and 

cells detached (72 hours) and counted D, MCF-10A or SKBR3 cells were incubated with or 

without compound 43 (10 µM) as indicated. After 21 days, colony numbers per plate were 

determined relative to control cultures (100%). *, P < 0.05, **, P < 0.01 and ***, P < 0.001; n = 

3.  
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