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Coherent superpositions of three states for
phosphorous donors in silicon prepared using
THz radiation
S. Chick1, N. Stavrias2, K. Saeedi2, B. Redlich2, P.T. Greenland3, G. Matmon3, M. Naftaly4, C.R. Pidgeon5,
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Superposition of orbital eigenstates is crucial to quantum technology utilizing atoms, such as

atomic clocks and quantum computers, and control over the interaction between atoms and

their neighbours is an essential ingredient for both gating and readout. The simplest coherent

wavefunction control uses a two-eigenstate admixture, but more control over the spatial

distribution of the wavefunction can be obtained by increasing the number of states in the

wavepacket. Here we demonstrate THz laser pulse control of Si:P orbitals using multiple

orbital state admixtures, observing beat patterns produced by Zeeman splitting. The beats are

an observable signature of the ability to control the path of the electron, which implies we

can now control the strength and duration of the interaction of the atom with different

neighbours. This could simplify surface code networks which require spatially controlled

interaction between atoms, and we propose an architecture that might take advantage of this.
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I
n the silicon donor impurity phosphorus, the outermost
electron is bound to the ion at low temperature with
hydrogen-like states and a level spectrum according to the

Kohn–Luttinger (KL) model1. The energy and length scales are
determined by the dielectric constant and the effective mass, so
the transitions occur in the region of 10 THz and the effective
Bohr radius is a�0 ¼ 3 nm. There is a long history of incoherent
spectroscopy of shallow impurities (P, Bi and so on) in silicon,
normally utilizing the Fourier Transform Infrared technique
(FTIR) (Si:Bi2; Si:P3; and more recently our own high field (30 T)
work4 in Si:P). Si:P can now be positioned and detected with
atomic precision5 to make devices that demonstrate control over
coherent quantum interactions between neighbouring donors6,7

and semiclassical interaction with contacts8. Optical control of
Rydberg orbits of trapped atoms in vacuum has provided high-
fidelity gate interactions9 and fine control over the electron
trajectory10, with applications in atomic clocks and quantum
computing11,12. Similar experiments have been carried out on
optical transitions in semiconductors13, but it is known that in
free space atoms one is able to gain better control by including
many orbital eigenstates in the wavepacket10,13. The importance
of control over neighbouring qubit interactions in silicon has
been shown separately6,7,9,13, and it is also appreciated that
control over interactions is important for the implementation of
surface code error quantum correction14–17. A convenient
radiation source for coherent studies in the THz spectral region
is the free-electron laser. Particularly relevant in this regard are
Rabi oscillations reported on the 1s-2pþ system of hydrogenic
donors in GaAs in a magnetic field18 and the observation of the
excitonic Autler–Townes effect, utilizing InGaAs/AlGaAs
quantum wells19.

The present work bridges these previous studies by investigat-
ing three-eigenstate control of phosphorous orbitals in silicon. An
interferometric experiment is implemented using a free-electron
laser as the source, targeting the 1s(A1)� 2p± orbital transitions
under a small magnetic field. A three-eigenstate superposition is
generated, and its time evolution demonstrated through direct
observation of beats in the interferogram. Measurements in
the Si:P system are compared with the theoretical results for
both the simple hydrogenic sytem and the multi-valley effective
mass approximation appropriate for the crystal. We find that
while the multi-valley effective mass theory is complicated,
given simplifications appropriate for our experimental conditions
the results are directly comparable to the simple and intuitive
hydrogenic picture.

Results
Hydrogen three-level superpositions. Orbital quantum control
of the hydrogenic states of isolated Si:P donors with THz pulses
has so far been restricted to simple two-level superpositions20,21

as in the example of 1s and 2p0 states. We illustrate this with the
simpler hydrogen 1s and 2p0, and their superpositions shown in
Fig. 1a,b; see next section for donor wavefunctions in Si. In a
superposed state, the relative phase of the two contributing
hydrogen eigenstates evolves as a function of time resulting in
oscillation of the centre of mass. Oscillations of different
symmetry may be obtained, for example, with superposition of
1s and 2p� states by a circularly polarized pulse, shown in Fig. 1c.
Building wavepackets out of multiple states provides a greater
variety of possible overlaps and spatio-temporal evolution. For
example the 1s, 2pþ and 2p� states form a three-eigenstate
system that allows freedom of control over the probability density
in the x–y plane. To produce an arbitrary superposition state with
a single pulse requires complete control of the polarisation and
pulse shape. The control can be simplified significantly if the

degeneracy of the 2p± states is lifted with a small applied
magnetic field, in which case a pair of linearly polarised pulses
with variable delay is sufficient for most purposes. The
superposition amplitudes, cj i¼c0 1sj i þc� 2p�j iþcþ 2pþj i,
may be found analytically in the case of long dephasing times.
Consider a Zeeman splitting of the excited state 2:D about a
central frequency, o, and a coherent, resonant, x-polarized pulse
with Rabi frequency O. If the splitting is small (D � O,1/tp,
where tp is the pulse length) then at time td in the dark after
the pulse

c0 ¼ c and c� ¼ � ise� i otd �Dtdð Þ=
ffiffiffi
2
p

ð1Þ
where, c ¼ cos Otp=

ffiffiffi
2
p� �

, s ¼ sin Otp=
ffiffiffi
2
p� �

. We applied the
rotating wave approximation and ignored a global phase and all
dephasing/relaxation. Figure 1d shows the evolution of |ci in the
dark for the case where s¼ 1/O2. The fast oscillation at frequency
o is shown across each row on Fig. 1d, and the slower evolution
at frequency D, from row to row. As is clear from Fig. 1d, the
transverse component of the dipole moment of the superposition
is hmyi ¼ m0sc sinotdsinDtd, where m0 is a constant, so the
intensity of the transverse luminescence at frequency o oscillates
slowly in the manner known as quantum beating22, often used for
extraction of D through its Fourier transform (FT)23. Greater
flexibility in state preparation is provided by a second pulse. If it
is identical to the first and arrives at time td, it produces

c0 ¼ 1� s2 1þCe� iotdÞ; c� ¼ s � S� ic Cþ eiotd
� �� �

e� i otd þot�Dtð Þ=
ffiffiffi
2
p�

ð2Þ
where C ¼ cos Dtdð Þ, S ¼ sin Dtdð Þ, and t is the time in the dark
after the second pulse. In this case the quantum beat may be
observed in the absorption, which is proportional to

1� c0j j
2¼ s2 2c2 cosDtd cosotd� s2 cos2Dtd� s2þ 2

� �
ð3Þ

As an aside, we note that the usual transverse luminescence
observation of quantum beats has the same form as the second
term. It allows both extraction of D, and may also be used for
discrimination between quantum beats and polarisation
interference24 between two independent oscillators in situations,
where the system is not well understood (not the case for the
donors here). Quantum beating where the difference frequency is
of the order 1 THz has been observed in semiconductor
wells and dots using interband (near-IR) pumps13,25–27.
Terahertz pulses can also induce other quantum coherent
effects such as the Autler–Townes splitting28, and ac Stark
effect29. Here, we investigate a GHz beat induced by THz pump
pulses, in this case using neutral donor orbital Rydberg states in
silicon, thus extending the analogy with quantum beat
experiments carried out for free atomic vapours and atoms in
vacuum traps.

Our aim is to demonstrate the flexibility in state preparation
provided a pair of pulses. The state (equation (3)) is described by
the phases Otp=

ffiffiffi
2
p

, Dtd, otd, Dt, ot. Even if D and o are fixed,
the fact that D � o means we still have near complete freedom
to choose Dtd independent of otd and Dt independent of ot.
This is sufficient control to take an atom from the 1s ground
state to most of the Hilbert space spanned by 1s and 2p± at
well-determined times (the value of |c0|2 can be varied from
0 to 1, but the maximum |c±|2 is 27/32). Complete control may
be gained by allowing variable polarisation and amplitude of each
pulse in the pair (see Methods).

Theory of donor wavefunctions in silicon. Silicon is an indirect
gap semiconductor with 6 anisotropic conduction band minima
lying near the X-points at [±kx, 0, 0], [0, ±ky, 0], [0, 0, ±kz],
where kE0.85 2p/a and a is the lattice constant. The KL
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approach to the silicon donor1,30 is to begin with the solutions of
the Schrödinger equation for a single minimum at k¼ 0. The
single valley 1s, 2p0 and 2p± state wavefunctions are, to a good
approximation, hydrogen-like with extent approximately equal
to the effective Bohr radius a�0, but display a contraction along
the valley axis due to the anisotropy in the effective mass
(see Methods for more details). This anisotropy lifts the
degeneracy between the 2p0 and 2p±.

The quantum defect of the donor atom and local strains
produce a central cell correction (CCC) potential. The CCC
makes the 1s state more tightly bound, that is, shrinks its extent.
Although its precise form is unknown, the CCC has tetrahedral
symmetry, which produces inter-valley mixing of the 1sx,y,z, and
in Si:P (and most other shallow donors in silicon) one resulting
multi-valley linear combination (called 1s(A1) by KL and referred
to here as |0i for brevity) has significantly lower energy than the
other five:

0j i � 1s A1ð Þj i ¼ 1ffiffiffi
3
p 0xj i þ 0yj i þ 0zj i½ � ð4Þ

where

0j
�� 	 � ffiffiffi

2
p

cos kjð Þf j
1s rð Þ ð5Þ

is the ground state function translated from k¼ 0 to the X-points
along the j axis, where j runs over x, y, z. There is a similar set of
functions where the crystal part of the envelope is sin(kj), but as
they only appear in the higher energy multi-valley components of
1s (called 1s(T2) by KL), we ignore them here.

The excited states that have non-zero dipole moment overlap
with |0i, that is, those with odd parity, are almost unaffected by
the CCC due to its short range. We let

ij
�� 	 � ffiffiffi

2
p

cos kjð Þf j
2pi

rð Þ ð6Þ

for the excited state where i and j both run over x, y, z, so that for

example, xzj i is the 2px state in the z-valley and so on. Again,
there is a similar set of states with crystal part sin(kj) that are
degenerate with our set ijj i, but they are dipole forbidden for
transitions from 0j i and again we ignore them here.

Since k is large, the crystal part of the wavefunction oscillates
rapidly compared with the slowly varying part of the envelope,
f j(r), even in the case of the 1s state. This simplifies calculation of
matrix elements of slowly varying operators; inter-valley matrix
elements are negligible, and intra-valley matrix elements such as
the dipole moment matrix elements may be approximated thus:

d� ¼ 0z xj jxzh i ¼
ZZZ

dxdydz 2 cos2 kzð Þf z
1s rð Þxf z

2px
rð Þ

	
ZZZ

dxdydzf z
1s rð Þxf z

2px
rð Þ ð7Þ

in the example of a transition between 1s and the 2px state in the
z-valley and so on. We find d±¼ 0.65a*0. For light polarised with
electric field along e¼ [ex, ey, ez], the multi-valley 2p± state that
couples to 1s(A1) is

ej i ¼ ex
xyj i þ xzj iffiffiffi

2
p þ ey

yzj i þ yxj iffiffiffi
2
p þ ez

zxj i þ zyj iffiffiffi
2
p ð8Þ

as shown in Fig. 2 for e¼ [001]. The appropriate Rabi frequency
for any e is ‘O ¼ 0h jr ej i 
 F¼

ffiffiffiffiffiffiffiffi
2=3

p
d� F, where F is the electric

field amplitude of the light wave.
In the presence of a magnetic field the static Hamiltonian is

H¼H0þ m�BB 
 LþO m�2B B2=E�R
� �

ð9Þ
where, H0 is the zero field Hamiltonian that includes the
anisotropic mass effects. m�B¼ e:/2m*¼ 0.30 meV T� 1 is the
effective Bohr magneton and E�R ¼ 19.9 meV is the effective
Rydberg energy. In our experiment, BooE�R/m�B (B66 T) so
the quadratic terms are negligible. The 2p± excited states have
their angular momentum, L, quantized along the valley axis
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Figure 1 | Control of hydrogen orbital wavefunctions using superposition states. Heat maps of the probability density function are shown (a,b are

cross-sections in the x–z plane and c,d are in the x–y plane). The probability density was normalized in each frame so that the probability of finding the

electron in a region with PZ1 is 50%. The red contour thus encloses 50% of the integrated probability density. Blue crosses show the origin and red

crosses are located at (0, ±2a�o) and (±2a�o, 0) in-plane for reference where a�o is the Bohr radius. (a) The ground state 1s and 2p0 excited state are

examples of states which can be superposed using an intense light pulse. (b) An example of the 1s and 2p0 in an equal admixture, generated after applying

a z-polarized p/2-pulse shown as a function of time. The superposition phase, j¼ot, where :o is the energy separation between the two basis states.

(c) Time evolution of an equal admixture between the 1s and 2p� states, which could be produced with a s� circularly polarized light pulse shown as a

function of time. (d) Admixture between the 1s, the 2p� and the 2pþ following a short pulse with area Otp¼O2p/4 (starting from 1s) shown as a function

of time. The fast oscillation along the rows evolves with phase ot and the slow rotation from row to row evolves with phase Dt, where :o is the average

transition energy (9.47 THz) and 2:D is the difference between the excited states.
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(along h001i directions) and so for B parallel to [111] the linear
B term is the same for all valleys: the 2pþ states in all valleys
obtain the same Zeeman energy :D, while the 2p� states
all obtain energy –:D. Figure 3a shows the calculated level
spectrum in the low field limit with B along [111] using the
Lanczos method described elsewhere4. These calculations

produce D/2pB¼ 42 GHz T� 1. Other field directions give rise
to a more complex spectrum (see for example, ref. 4).

For the three levels produced by B along [111], we find
(see Methods) that the time dependence of the amplitudes of the
states may be taken directly from the preceding hydrogen theory
equations (1–3), and Fig. 3b, which shows the time evolution
according the equation (3), is appropriate for either situation.
The 1s ground state of hydrogen is replaced by the silicon
1s(A1) state, and the excited states by the silicon equivalents of
the 2pþ and 2p� . The wavepacket components are

0xjch i
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xyjch i
0zjch i
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where, e0 ¼ � i

ffiffiffiffiffiffiffiffi
2=3

p
. Figure 3c shows the evolution of the

density after a pulse polarised along [11–2] appropriate for our
experiment. The density has been averaged over a volume (2p/k)3

corresponding to one oscillation period of the crystal part of the
wavefunction,

cj j2

 	

periodðrÞ ¼
X

j

X
a

aj
��c
 	

f j
aðrÞ

�����
�����

2

ð11Þ

Figure 1 shows a hydrogen atom, and the Si:P donor Fig. 3c has a
larger scale as already mentioned but is otherwise equivalent—
differing essentially by some cubic distortions (the [111] plane
shown has hexagonal symmetry) and a relatively more compact
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distortions of the wavefunction evident in the planar cut at the bottom.
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Si:P for a magnetic field direction of [111]. (a) The calculated level spectrum in the low field limit and B along [111]. (b) The absorption equation (3)

(no dephasing) as a function of delay for a pair of linearly polarized pulses of equal area Otp¼ ay0 each, where y0¼O2p/4 for different values of a
according to the legend (a¼ 1 corresponds to both pulses having area equal to the illustration in Figs 1d and 3c, and a¼ 1/8 corresponds to the

experimental condition in Figs 4,6 and 7 below). (For clarity, the fast oscillation at 9.47 THz has been aliased down by a factor 50 by under sampling).

(c) The probability density shown in the plane perpendicular to the field. The superposition is initiated at t¼0 by a delta-function pulse polarized along

[11–2], reducing the probability of occupation of the ground state to 50% which may be produced by a uniform illumination of pulse of energy of 10mJ

duration 10 ps, and spot size of 1 cm (equivalent to the unfocussed laser beam). The density has been spatially averaged over the quickly varying

oscillations due to valley interference. The probability density was normalized in each frame so that the probability of finding the electron in a region

with PZ1 is 50%. Thus the red contour encloses 50% of the integrated probability density. The labelled times td are shown in ps, equivalent to the phases

shown in Fig. 1, that is, Dtd¼ np/2 and otd¼mp/2, where n and m index rows and columns, respectively, and range from 0 to 3. In this example, the

Zeeman splitting is 2D¼ 24.2 GHz, which occurs for |B|¼0.285 T.
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ground state wavefunction due to the CCC. The change in ground
state size due to the CCC is behind the relatively low contrast in
changes along rows in Fig. 3c compared to Fig. 1d.

Evolution of superposition wavefunctions in silicon. The first
term in equation (3) is normally very difficult to access, but for
Si:P o is in the THz region of the spectrum, and thus we are easily
able to produce control over otd with high precision (0.05 radians
was our instrument limit) using ordinary stepper motors. We are
therefore not restricted to investigation solely of dynamics on the
scale of Dtd, and so are able to probe the beat directly via the first
term in equation (3).

The parameter-space is large so we restrict our investigation to
the td dependence, which exhibits variation in two of the five
phases in equation (2). We chose to use weak pulses (OtpBp/20)
to avoid multi-photon effects, since we are anyway interested in
the s2 term in equation (3) rather than the s4 terms. The latter are
more susceptible to intensity jitter and were unobserved.
Reducing s clearly changes only the amplitudes of the
td-dependent terms, equation (3) (Fig. 3b).

Experiment. The transmitted light through the sample was
measured as a function of the pulse delay for different magnetic
field strengths. The FT of equation (3) (with respect to td)
contains a doublet at o±D (as well as a zero frequency term and
a term at 2D) and Fig. 4 shows the FTs of the experimental
interferograms in which the doublet is clearly observed, with
D/2pB¼ 42 GHz T� 1 as expected from the level splitting
calculated in Fig. 3b.

These experiments are similar to a variety of pulsed-laser
spectroscopies where a short optical pulse is used to excite an
oscillation, and correlations between copies of these oscillations

are measured by taking advantage of interference effects. Our
technique is distinct primarily in that the free-electron laser (FEL)
source used allows THz pulses with a selective, narrower band
corresponding to a few hundred coherent field oscillations. As for
other experiments of this type, and in contrast to incoherent
frequency domain spectroscopies such as FTIR, the interference is
most intuitively understood in terms of the time-domain
behaviour: the second pulse interferes with the long-lived
excitation produced by the first pulse. The time-domain
interference pattern is the autocorrelation of the sample impulse
response, so its Fourier transform is its frequency spectrum.

The characteristic resolving power of our time-domain
interferometer was tested by measuring the transmission fringes
induced by an optically polished slab of high purity float-zone
silicon at room temperature, shown in Fig. 5. The results were
compared with the transmission measured by high-resolution
FTIR with resolution 0.01 cm� 1 (0.0003 THz), and excellent
agreement was produced.

The features in the transmission are superimposed on a
background due to the system response (red data on Fig. 4),
which includes the bandwidth-limited laser spectrum31 and an
absorption line from some residual water vapour in the beam
path, containing a few cm of air between the evacuated optical
setup and the cryostat. This means that the raw time-domain data
include oscillations with several periodicities and are therefore
not interpretable by direct inspection. It is preferable to expose
the quantum level splittings by examination of the proportion
of excited atoms within the sample rather than the transmitted
field pattern at a point far from the sample. This is for the
simple reason that the transmitted light spectrum is the product
of the transmission spectrum with the system response spectrum
(as in Fig. 4), which contains a complicated background, while
the product of the absorption spectrum and the system response
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spectrum is background-free, that is, it contains just the atomic
transition features. One method, contactless photothermal
ionization spectroscopy (PTIS), relies on a small degree of
phonon-induced ionisation from the excited state, which
generates a small number of free charge carriers. These
conduction electrons may be detected via the AC dielectric
properties of the sample32,33. The number of donors ionized is
proportional to the average population in the excited states21.

We show in Fig. 6 a set of contactless PTIS interferograms
which display a beat in the excited state probability. Again, we
kept the intensity low (OtpBp/20) to avoid multi-photon effects.
When there is no applied field and the excited states are
degenerate (D¼ 0), a single lobe is observed in the interferogram
at zero time delay, which decays on a time-scale determined by
the inverse of the inhomogeneous line width. The single lobe
becomes a characteristic beat pattern upon the application of a
magnetic field. Figure 6d–f also shows the FTs of these
interferograms, the peak positions of which correlate directly to
the absorptions observed in Fig. 4 and predicted by equation (3).
We performed fits in the frequency domain using the FT of
equation (3) convolved with a gaussian broadening, and the
results are shown in grey. The inverse FTs of the fits are also
shown in the time domain. The beat period is clearly controllable
with the magnetic field, Fig. 7, hence the beating behaviour is
induced by the energy level splitting in the atoms according to
equations (2) and (3).

Figure 6a shows the laser autocorrelation interferogram
aquired simultaneously with the zero field PTIS. It dies off much
more rapidly than the PTIS (in spite of a slight lengthening in
the time-domain due to the sharp water vapour line); in other
words we have shown that the coherent excitation in the sample
is significantly longer lived than the light pulse duration.
Our experiment of Fig. 6c demonstrates control over the relative
phase and amplitude of the 2pþ and 2p� states using a pair of
identical linearly x-polarized pulses, which we illustrate by
comparison to Fig. 3b. The antinodes of the beat pattern in

Fig. 6c are points at which the second pulse arrives when both
excited states are in phase or 180� out of phase with each other
(first and third rows of Figs 1d and 2a); they are equally doubled
(maxima in the rapid oscillations at the average frequency) or
destroyed (minima). The nodes in Fig. 6c, on the other hand, are
points where the second pulse arrives when both excited states
are 90� out of phase (second and fourth rows of Figs 1d and 3a);
the second pulse transfers amplitude from one component to the
other with no change in the total excited state population.

Discussion
We have used a coherent time-domain analogue of FTIR to
examine the magnetic field split 1s–2p± transition in Si:P. We
have made a calculation for donor wavefunctions in Si in small B
along the [111] crystal axis; simultaneous pumping of two
Zeeman split transitions induces beating, thus demonstrating
control over a three-state admixture. This control provides an
additional tuning parameter, that is, the relative admixture of the
three states, for production of Si:donor-based quantum logic
gates. Utilization of the orbital motion in the x–y plane could
have great advantages for surface code networks14–17. Suppose
there are physical (spin) qubits positioned at the red cross
positions in Fig. 1, and that we position a fiducial donor qubit of a
different species (P in our case) at the centre; the radius of the
wavefunction for the spin qubits is much less than the separation
between them so as to avoid direct overlap in the ground state.
The central donor can be excited to the 2pþ state by a THz pulse,
while the surrounding qubits remain unexcited because the
associated Rydberg levels are at different energies. The excited
donor electron now spends time in the vicinity of the logical
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Photon energy (THz)

S
pe

ct
ra

l p
ow

er
 d

en
si

ty
 (

a.
u.

)

10.75 10.8 10.85 10.9 10.95

FTIR-based model

Figure 5 | Calibration of the experimental setup using a Si optical flat.

Red: A reference transmission measurement of the optical flat was obtained

using a high-resolution FTIR spectrometer, and multiplied by the system

response (red data on Fig. 4) to give a model of the expected transmission

profile of the FELIX measurement. Black: FT of the FELIX transmission

interferogram for the optical flat. Good agreement is seen within the noise,

which is limited by the beam-time available.

M
ea

n 
ph

ot
ov

ol
ta

ge
(1

0–
2  

V
)

R
M

S
 c

ur
re

nt
 (

10
–4

 A
)

Time delay (ps)

0.285 T

0.000 T

Autocorrelation

–100 0 100 200
0

2.5

5.0

0

2.5

5.0

0

5

10 a

b

c

d

e

f

Frequency (THz)
9.4 9.55

Frequency (THz)
9.4 9.55

Frequency (THz)
9.4 9.55

Figure 6 | Quantum beats in absorption. (a) Laser pulse autocorrelation

interferogram from detector at (1) in Fig. 4e, showing the overlap of the

laser pulses. (b,c) Absorption (PTIS) interferogram for different applied

magnetic fields (noted in the figure). (d–f) FTs of the interferograms shown

in (a–c). The grey envelopes in the frequency domain are fits with the FT of

equation (3) convolved with a Gaussian lineshape (in the case of the laser

autocorrelation we included a residual water vapour line at 9.45 THz).

The inverse FTs of these fits are shown in grey on the time-domain a–c.

In the case of (d) (the autocorrelation), the laser lineshape is shown shaded

light grey; a darker shade is used to show the effect of subtracting the fitted

water line.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms16038

6 NATURE COMMUNICATIONS | 8:16038 | DOI: 10.1038/ncomms16038 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


qubits during which it experiences exchange interaction,
and acquires a phase depending on their state. Projecting the
fiducial qubit back onto z at an appropriate time and then
observing it is equivalent to evaluating a weighted sum of
surrounding qubits, which is the required operation for error
detection. The strength of the exchange interaction available in
the excited state has been considered by ref. 34. Controlling
the orbital trajectory by controlling superpositions of 2pþ and
2p� gives additional control, which could allow a bigger variety
of fiducial measurement strategies. Finally, we note that our THz
quantum beat spectroscopy technique opens up the possibility of
high-resolution spectroscopies for GHz splittings of excited states.

Methods
Experimental methods. The magnetic field was provided by a Newport Type C
water cooled electromagnet, which was calibrated using a Hall probe. The
maximum field measured was 0.285 T at an applied current of 2 A. Our Si:P sample
was ordinary commercial float-zone grown silicon (natural isotope composition),
with growth direction o1104. The dopant density was 2� 104 cm� 3. It was
mounted in a an Oxford Instruments Microstat, in vacuum, cooled by liquid
helium to B10 K. The cryostat containing the sample was placed between the
poles of the magnet, such that the sample surface normal was approximately
perpendicular to the magnetic field, which was parallel to a o1114 direction.

The sample was suspended strain-free, between a pair of capacitor plates
formed using pockets of copper foil which did not wrap tightly around the sample,
and a PCB. No DC electrical conduction was measurable through the system either
at room temperature or under cryogenic conditions. The electronic measurement
was obtained by supplying a 1 V peak–peak sine wave (15 MHz) generated using a
HAMES 50 MHz HMF2550 arbitrary waveform generator, and measuring the
supplied current to the circuit. The current was amplified using a FEMTO
DHCPA-100 transimpedance amplifier with 102 V A� 1 gain and 200 MHz
bandwidth, and measured through a National Instruments PXIe-5162 oscilloscope.
Figure 4 shows the r.m.s. current for |B|¼ 0 and 0.285 T, a fuller field
dependence (at taken with lower resolution due to laser beam-time restraints) is
shown in Fig. 7.

Laser pulses from the Dutch terahertz Free-Electron Laser FELIX were passed
through a variable delay Mach–Zender interferometer arrangement. Figure 4e
shows an optical layout diagram of the experiment, with the location of each
detector and the sample. A pellicle beam-splitter was used to split the FELIX
beam into a pair of equal Ramsey pulses, as in ref. 21, and recombined using a
pellicle beam-splitter in a Mach–Zender arrangement. The laser beams were
linearly polarized perpendicular to the plane of the bench, and normally incident
on the sample with electric field perpendicular to the static magnetic field
(Voigt geometry). To measure an interferogram, the optical path difference
between the pulses was varied using a computer controlled delay stage. At each
value of path difference, the electronic waveform from each detector was recorded
over one FELIX macropulse (B110 micropulses). Datapoints were obtained from

the mean or RMS of the waveform over the stable part of the macropulse, to
minimize noise.

The laser was tuned to resonance with the 1s(A1)–2p± orbital transition, that is,
optical frequency 9.48 THz. The FELIX pulses had a spectral linewidth FWHM
0.47% and are bandwidth limited, corresponding to a temporal power FWHM of
9.8 ps. The measured micropulse energy at the sample per beam was 30–50 mJ
before the cryostat window. The light intensity transmitted through the sample
was measured using a liquid helium cooled Ga:Ge detector. The laser
autocorrelation spectrum was taken simultaneously using wasted light at the other
output of the downstream beam-splitter (Fig. 4e) using a pyroelectric detector. The
beam-splitters are not 50:50 and the fringe contrast of the autocorrelation signal is
poorer than for the output directed towards the sample, but it has the same
temporal profile.

Optical signals were averaged over the FELIX macropulse, and the r.m.s. was
measured for the electrically detected signal. The interferograms of Fig. 6 are
unprocessed. Further data processing was applied to the interferograms before their
Fourier transform was taken to reduce machine precision errors, including:
running median background subtraction, normalization and correction for
systematic errors along the time axis (on the order of 0.02%). To minimize data
collection time, under sampling was employed such that the Nyquist frequency was
1 THz, and high frequency information was extracted by unfolding the spectrum in
a standard manner.

The characteristic resolving power of our interferometer was tested by measuring
the Fabry–Perot transmission fringes induced by an optically polished slab of high
purity float-zone silicon at room temperature. The slab was of thickness 3.05 mm
and a calibration standard was set by transmission measurement in a high-resolution
FTIR IFS125HR with resolution 0.01 cm� 1 (0.0003 THz). We compare the FT of the
transmission interferogram of the FELIX pulse through the slab, with the product of
the FELIX autocorrelation spectrum and the reference spectrum in Fig. 5. The results
compare favourably, so we set an upper bound for the resolution at 0.0146 THz,
which is given by the peak spacing of the fringes. The lower bound is 0.0003 THz,
limited by the length of the delay line34.

The fidelity of the fringes in Fig. 6 was calculated as (median�minimum)/
median in the centre 10% of the interferogram data set. It was 95% for 0.000 T and
82% for 0.285 T. The readout fidelity in these measurements is limited most
strongly by the under sampling of the interferogram, and a more densely sampled
measurement would produce a stronger fidelity.

Theory of three-level quantum optics. The state vector w with components
|2p�i, |1si, |2pþi, and with amplitudes c� , c0, cþ ,

cj i ¼ c� 2p�j iþc0 1sj i þcþ 2pþj i; ð12Þ

evolves according to the time-dependent Schrödinger equation Hw¼ i‘@w/@t.
The off-diagonal matrix elements of the perturbation for a wave of frequncy o and
phase y, polarized along x is V¼‘Ocos(ot� y), where the Rabi frequency is
O¼ mxFx/‘ , the electric field amplitude is Fx, and mx is the dipole moment, and the
Hamiltonian for a basis order of 2p� , 1s, 2pþ is

H ¼
E� V 0
V E0 V
0 V Eþ

2
4

3
5 ð13Þ
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We make a transformation w¼Uv to a rotating frame in which

wj i ¼ w� 2p�j iþ w0 1sj i þ wþ 2pþj i ð14Þ
and

U ¼ exp � iE0t
‘

� � exp � iotð Þ 0 0
0 1 0
0 0 exp � iotð Þ

2
4

3
5 ð15Þ

The time-dependent Schrödinger equation in the rotating frame is @v/@t¼ � iWv,
where

W ¼ 1
2

� 2D Oeiy 0
Oe� iy 0 Oe� iy

0 Oeiy 2D

2
4

3
5 ð16Þ

after use of the rotating wave approximation. Here, 2:D¼ Eþ � E� is the Zeeman
splitting of the excited state. The drive frequency is assumed to be half way between
the 1s to 2p± transitions, but for short pulses this restriction is unimportant. The
result of integrating @v/@t is vfinal¼T(t)vinitial where

T tð Þ ¼ exp � iWtð Þ ¼ I� i sin O0tð ÞW=O0 � 1� cos O0tð Þ½ �W2=O02 ð17Þ
and O02¼ O2=2þD2. The result for a delta-function pulse (pulse duration
tpooD� 1) on an atom starting in the ground state is

w0 ¼ c; w� ¼ � is=
ffiffiffi
2
p

ð18Þ
where, c ¼ cos Otp=

ffiffiffi
2
p� �

, s ¼ sin Otp=
ffiffiffi
2
p� �

. In the dark, a time td after the pulse,
the result is

w0 ¼ c; w� ¼ � ise� iDtd=
ffiffiffi
2
p

ð19Þ
and returning to the laboratory frame, w¼Uv produces equation (1) (ignoring the
global phase factor in front of U). The effect of a second, identical pulse (arriving at
time td) and a further wait in the dark of time t is equation (2). The state is
described by the phases Otp/

ffiffiffi
2
p

, Dtd, otd, Dt, ot. Even if D and o are fixed, the
fact that D � o means we still have near complete freedom to choose Dtd

independent of otd and Dt independent of ot.

Theory of donor wavefunctions in silicon. The KL1 multi-valley wavefunction
(excluding the atomic part of the Bloch function) is

c rð Þ ¼
X6

v¼1
bv exp ikv 
 rð Þf vðrÞ ð20Þ

where for valley v, kv is the wavevector at the valley minimum, thus kv.r runs
over ±kx, ±ky, ±kz, where k¼ 0.85 2p/a and a is the lattice constant. The
single-valley envelope function fv(r) is the same for valleys in opposite directions.

As mentioned in the main text, the single valley odd parity excited state
wavefunctions are, to a very good approximation, hydrogen-like with a length
scale, L, that is approximately equal to the effective Bohr radius a�0, and with a
contraction along the valley axis by a factor

ffiffiffiffi
G
p

, where GEg¼mt/ml, the ratio of
effective masses transverse and longitudinally along the valley axis (Table 1). This
anisotropy lifts the degeneracy between the 2p0 and 2p±. The wavefunctions may
be obtained from a Lanczos procedure4 or variational calculations1,30. The z-valley
variational envelope functions are given in Table 1.

For a superposition the density is

cj j2ðrÞ ¼
X

j

ffiffiffi
2
p

cos kjð Þ
X
a

aj
��c
 	

f j
aðrÞ

�����
�����

2

ð21Þ

where f j
aðrÞ is the spatial profile of state ajj i. Neglecting the inter-valley terms

cj j2ðrÞ 	
X

j

2 cos2 kjð Þ
X
a

aj
��c
 	

f j
aðrÞ

�����
�����

2

ð22Þ

Averaging over a volume (2p/k)3 corresponding to one oscillation period of the
crystal part of the wavefunction:

cj j2

 	

periodðrÞ ¼
X

j

X
a

aj
��c
 	

f j
aðrÞ

�����
�����

2

ð23Þ

The 0j i ground state contains contributions from all valleys, and in general has

non-zero dipole moment matrix element with the excited states in more than one
valley. The dipole moment matrix elements are of the form 0i bj jajh i with i, j, a, b
running over x, y, z. From symmetry arguments

if a ¼ j 2p0 statesð Þ then 0i bj jaa

 	

¼ d0 if a ¼ b ¼ i and zero otherwise ð24Þ

if aa j 2p� statesð Þ then 0i bj jaj

 	

¼ d� if a ¼ b and i ¼ j and zero otherwise

ð25Þ

For an electric field F¼ F [ex, ey, ez], where [ex, ey, ez] is the normalized polarization
direction and [ex, ey, ez] 
 F¼ |F|¼ F, we can construct a normalized excited
state ej i whose dipole moment matrix element 0 rj jeh i is parallel to F. In the case of
the 2p0:

ej i ¼ ex xxj iþ ey yyj i þ ez zzj i ð26Þ

) 0 rj jeh i 
 F ¼ 0h j x; y; z½ � ej i 
 F ¼ 1ffiffiffi
3
p exd0; eyd0; ezd0
� �


 F ¼ 1ffiffiffi
3
p d0F ð27Þ

so the Rabi frequency is O¼ d0F/
ffiffiffi
3
p

‘, while for the 2p± it is

ej i ¼ ex
xzj i þ xyj iffiffiffi

2
p þ ey

yxj i þ yzj iffiffiffi
2
p þ ez

zyj i þ zxj iffiffiffi
2
p ð28Þ

) 0h jr ej i 
 F ¼ 0h j x; y; z½ � ej i 
 F ¼ 1ffiffiffi
6
p 2exd� ; 2eyd� ; 2ezd�
� �


 F ¼
ffiffiffi
2
3

r
d� F

ð29Þ

so the Rabi frequency is O ¼
ffiffiffi
2
p

d� F=
ffiffiffi
3
p

‘ . It is easy to show that 0 rj je0h i 
 F ¼ 0
for all other excited states e0j i such that eje0h i ¼ 0, that is, they are not involved in
dipole excitation and can be ignored. Figure 2 shows the 2p± excited state
superposition appropriate for z-polarized light, that is,:

ex ; ey ; ez
� �

¼ 001½ �‘ cj j2

 	

period rð Þ ¼ 1
2

f x
2pz
ðrÞ

��� ���2 þ 1
2

f y
2pz
ðrÞ

��� ���2 ð30Þ

For B parallel to [111], all the 2pþ states in all the valleys obtain the same Zeeman
energy :D, while the 2p� states all obtain energy –:D, so to find the time evolution
we resolve the superposition into its 2pþ and 2p– components. We therefore
change to a basis of 2pþ and 2p� states in each valley:

þ zj i ¼ � xzj i þ i yzj iffiffiffi
2
p ; � zj i ¼ xzj i � i yzj iffiffiffi

2
p ð31Þ

and cyclic permutations of x, y, z, and resolve the excited state into two
components |þi and |–i:

�j i ¼
X

j

� j
�� 	

� j ej

 	

ð32Þ

At this point, all the three-level quantum optics theory from the preceding section
now follows as before, so after a delta-function pulse and a wait in the dark,
cj i ¼ c0 0j i þcþ þj iþc� �j i, where the amplitudes are given by c0¼ c,
c� ¼ � ise� i o�Dð Þtd . To find the density, we require the amplitudes jk

��c
 	
. It is

convenient to change basis again

Xj i ¼ �j i� þj iffiffiffi
2
p ; Yj i ¼ i

�j iþ þj iffiffiffi
2
p ð33Þ

so that cj i ¼ c0 0j i þcX Xj i þcY Yj i;

0 cjh i
X cjh i
Y cjh i

2
64

3
75 ¼

c0

cX

cY

2
64

3
75 ¼

1 0 0

0 � 1ffiffi
2
p 1ffiffi

2
p

0 � iffiffi
2
p iffiffi

2
p

2
64

3
75

c0

cþ
c�

2
64

3
75 ¼

c

� se� iotd sin Dtdð Þ
� se� iotd cos Dtdð Þ

2
64

3
75

ð34Þ

Table 1 | KL wavefunctions and parameter.

State, a Single valley components fj
aðrÞ for j¼ z L/a�0 C

1s fz
1sðrÞ¼ pL3

� �� 1=2G� 1=4expð� L� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ y2þ z2=G

p
Þ 0.78 0.33

2p0 fz
2pz
ðrÞ¼ 32pL5ð Þ� 1=2G� 3=4z expð� 1

2 L� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2=G

p
Þ 0.59 0.37

2p± fz
2px
ðrÞ¼ 32pL5ð Þ� 1=2G� 1=4x expð� 1

2 L� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2=G

p
Þ 0.88 0.38

Single valley KL variational wavefunctions and parameters30, in which mt¼0.1905m0, ml¼0.9163m0, er¼ 11.4, and consequently the renormalized Bohr radius a�0 ¼ 3.17 nm and g¼mt/ml¼0.208.
In fj

aðrÞ the superscript indicates the valley axis, and 2p0¼ 2pz and 2p±¼ –(2px±i2py)/O2. fz
2py

x; y; zð Þ¼fz
2px

y; x; zð Þ.
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and now

0xjch i
yx jch i
zx jch i
0y jch i
zy jch i
xy jch i
0z jch i
xz jch i
yz jch i

2
6666666666664

3
7777777777775

¼ iffiffiffi
2
p

e0 0 0
0 ez ey

0 � ey ez

e0 0 0
0 ex ez

0 � ez ex

e0 0 0
0 ey ex

0 � ex ey

2
6666666666664

3
7777777777775

c0
cX
cY

2
4

3
5 ð35Þ

where, e0 ¼ � i
ffiffiffiffiffiffiffi
2=3

p
. Figure 3a shows the evolution of cj j2


 	
period after a pulse

polarized along [11–2] appropriate for our experiment.

Data availability. The data for Figs 3a,4a–d,5,6a–f and 7a–d are available online35.
Data in more verbose formats are available upon request to the corresponding
author.
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