Xing, H;
Kang, X;
Wong, K-K;
Nallanathan, A;
(2017)
Optimizing DF Cognitive Radio Networks With Full-Duplex-Enabled Energy Access Points.
IEEE Transactions on Wireless Communications
, 16
(7)
pp. 4683-4697.
10.1109/TWC.2017.2701377.
Preview |
Text
Wong_07924326.pdf - Published Version Download (1MB) | Preview |
Abstract
With the recent advances in radio frequency (RF) energy harvesting (EH) technologies, wireless powered cooperative cognitive radio network (CCRN) has drawn an upsurge of interest for improving the spectrum utilization with incentive to motivate joint information and energy cooperation between the primary and secondary systems. Dedicated energy beamforming is aimed at remedying the low efficiency of wireless power transfer, which nevertheless arouses out-of-band EH phases and thus low cooperation efficiency. To address this issue, in this paper, we consider a novel CCRN aided by full-duplex (FD)-enabled energy access points (EAPs) that can cooperate to wireless charge the secondary transmitter while concurrently receiving primary transmitter’s signal in the first transmission phase, and to perform decode-and-forward relaying in the second transmission phase. We investigate a weighted sum-rate maximization problem subject to transmitting power constraints as well as a total cost constraint using successive convex approximation techniques. A zero-forcing-based suboptimal scheme that requires only local channel state information for the EAPs to obtain their optimum receiving beamforming is also derived. Various tradeoffs between the weighted sum-rate and other system parameters are provided in numerical results to corroborate the effectiveness of the proposed solutions against the benchmark ones.
Type: | Article |
---|---|
Title: | Optimizing DF Cognitive Radio Networks With Full-Duplex-Enabled Energy Access Points |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1109/TWC.2017.2701377 |
Publisher version: | http://doi.org/10.1109/TWC.2017.2701377 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Cognitive radio, cooperative communication, full-duplex, decode-and-forward, D.C. programming, successive convex approximation, power splitting, energy harvesting |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Electronic and Electrical Eng |
URI: | https://discovery.ucl.ac.uk/id/eprint/1567673 |
Archive Staff Only
View Item |