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disease type, and cerebral microbleeds
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ABSTRACT

Objective: We evaluated recurrent intracerebral hemorrhage (ICH) risk in ICH survivors, stratified
by the presence, distribution, and number of cerebral microbleeds (CMBs) on MRI (i.e., the pre-
sumed causal underlying small vessel disease and its severity).

Methods: This was a meta-analysis of prospective cohorts following ICH, with blood-sensitive
brain MRI soon after ICH. We estimated annualized recurrent symptomatic ICH rates for each
study and compared pooled odds ratios (ORs) of recurrent ICH by CMB presence/absence and
presumed etiology based on CMB distribution (strictly lobar CMBs related to probable or possible
cerebral amyloid angiopathy [CAA] vs non-CAA) and burden (1, 2–4, 5–10, and.10 CMBs), using
random effects models.

Results: We pooled data from 10 studies including 1,306 patients: 325 with CAA-related and
981 CAA-unrelated ICH. The annual recurrent ICH risk was higher in CAA-related ICH vs CAA-
unrelated ICH (7.4%, 95% confidence interval [CI] 3.2–12.6 vs 1.1%, 95%CI 0.5–1.7 per year,
respectively; p 5 0.01). In CAA-related ICH, multiple baseline CMBs (versus none) were associ-
ated with ICH recurrence during follow-up (range 1–3 years): OR 3.1 (95% CI 1.4–6.8; p 5

0.006), 4.3 (95% CI 1.8–10.3; p 5 0.001), and 3.4 (95% CI 1.4–8.3; p 5 0.007) for 2–4, 5–
10, and .10 CMBs, respectively. In CAA-unrelated ICH, only .10 CMBs (versus none) were
associated with recurrent ICH (OR 5.6, 95% CI 2.1–15; p 5 0.001). The presence of 1 CMB
(versus none) was not associated with recurrent ICH in CAA-related or CAA-unrelated cohorts.

Conclusions: CMB burden and distribution on MRI identify subgroups of ICH survivors with higher
ICH recurrence risk, which may help to predict ICH prognosis with relevance for clinical practice
and treatment trials. Neurology® 2017;89:820–829

GLOSSARY
CAA 5 cerebral amyloid angiopathy; CI 5 confidence interval; CMB 5 cerebral microbleed; GRE 5 gradient-recalled echo;
ICH 5 intracerebral hemorrhage; OR 5 odds ratio.

Spontaneous (nontraumatic) primary intracerebral hemorrhage (ICH) presumed due to cerebral
small vessel disease1 is a catastrophic form of stroke associated with high morbidity and mor-
tality2 and a substantial recurrence risk.2 ICH location is associated with the risk of subsequent
ICH recurrence,2 probably because of the type and severity of the underlying small vessel
diseases (microangiopathies), which include arteriolosclerosis, lipohyalinosis, and cerebral amy-
loid angiopathy (CAA).3 The arteriopathy associated with systemic arterial hypertension affects

From the Stroke Research Centre (A.C., Y.Y., S.M.G., H.R.J., D.J.W.), Department of Brain Repair and Rehabilitation, UCL Institute of
Neurology and The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK; Hemorrhagic Stroke Research Program,
Department of Neurology (A.C., A.B., E.E.S., A.V., S.M.G.), Massachusetts General Hospital Stroke Research Center, Harvard Medical School,
Boston; Department of Neurosurgery (T.I.), Kushiro City General Hospital, Hokkaido, Japan; Degenerative & Vascular Cognitive Disorders (S.M.,
B.C., C.C.), Univ Lille, Inserm, CHU Lille, France; Centre for Clinical Brain Sciences (N.S., R.A.-S.S.), University of Edinburgh, UK; Department
of Neurology (A.P.), Cliniques Universitaires UCL Saint Luc; Department of Neurology (Y.V., P.L.), CHU Dinant Godinne, Université
Catholique de Louvain; Institute of Neuroscience (Y.V., P.L.), Université Catholique de Louvain, Brussels, Belgium; Department of Clinical
Neurosciences (J.-C.B.), University of Cambridge, Addenbrooke’s Hospital, UK; UMR 894 INSERM-Université Paris 5 (J.-C.B.), Sorbonne Paris
Cité, Paris, France; Department of Neurology (M.H.-G., J.M.), Hospital Vall d’Hebron, Vall d’Hebron Research Institute, Universitat Autònoma
de Barcelona, Spain; Department of Neurology (D.-W.K., J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South
Korea; Department of Neurology (H.N.), Hiroshima Prefectural Hospital, Japan; and Hotchkiss Brain Institute (E.E.S.), University of Calgary,
Canada.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
The Article Processing Charge was funded by RCUK.

This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

820 Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

mailto:d.werring@ucl.ac.uk
http://neurology.org/lookup/doi/10.1212/WNL.0000000000004259
http://neurology.org/lookup/doi/10.1212/WNL.0000000000004259
http://creativecommons.org/licenses/by/4.0/


small deep perforating arteries supplying the
basal ganglia and deep white matter, resulting
in ICH in deep and lobar brain regions.3 By
contrast, CAA causes progressive vascular
deposition of b-amyloid in small cortical and
leptomeningeal arterial walls, and is associated
with lobar (but not deep) ICH, especially in
the elderly.4–6 Some studies suggest that CAA-
related lobar ICH carries a significantly higher
risk for recurrence compared to deep ICH due
to hypertensive arteriopathy.7–10

Cerebral microbleeds (CMBs), seen on
blood-sensitive MRI sequences (e.g., T2*-
weighted gradient-recalled echo [T2*-GRE]
and susceptibility-weighted imaging), are
a radiologic biomarker of cerebral small vessel
disease, present in 52% of patients with first-
ever ICH and 83% of those with recurrent
ICH.11–13 Since CMBs sometimes represent
blood leakage from hemorrhage-prone small
vessels, and their prevalence is higher in recur-
rent vs first-ever ICH, CMB have been
hypothesized to predict increased recurrent
ICH risk.14 Moreover, the distribution of
CMBs can reflect the likely underlying micro-
angiopathy: a strictly lobar distribution (along-
side other clinical factors) is highly specific for
CAA diagnosis within the Boston criteria.15,16

If the risk of ICH recurrence is related to the
underlying microangiopathies and their sever-
ity, CMB distribution and burden may help to
identify patients at high risk of recurrence.

Therefore, we sought published prospective
ICH cohorts with MRI (including blood-
sensitive sequences) at baseline, to investigate
the association of CMB burden and distribu-
tion with recurrent ICH in a meta-analysis
of aggregate summary-level data, stratified by
the presumed underlying microangiopathy
(CAA vs CAA-unrelated ICH).

METHODS This systematic review and meta-analysis was

undertaken using an in-house developed protocol (A.C. and

D.J.W.).

Search strategy, selection criteria, and data extraction.
Two authors (A.C. and D.J.W.) searched PubMed between

January 1, 1999, andOctober 1, 2015, using several combinations

of medical subject heading terms and text words: (microbleed* or

microhemorrhag* or microhaemorrhag*) and (intracerebral hem-

orrhage) or (intracerebral haemorrhage) or (brain hemorrhage) or

(brain bleed*) and (MRI or MR imaging) and (recurren* or out-

come or survival or predict*). Reference lists from all included

articles, relevant review articles, and the authors’ own files were

also searched. Studies were eligible if they included adult patients

with spontaneous symptomatic ICH confirmed by imaging and

presumed due to sporadic cerebral small vessel disease; had a pro-

spective design, with at least 3 months of follow-up; assessed the

risk of recurrent symptomatic spontaneous ICH (main outcome)

during follow-up; had data for the presence of CMBs on baseline

T2*-GRE MRI; and were published in English. In cases of

multiple publications from the same or overlapping cohorts, only

the most recent comprehensive results from the report with the

largest sample size were used in the analysis. We excluded case-

control and cross-sectional studies, case reports, and case series.

Two reviewers (A.C. and Y.Y.) determined study eligibility,

resolving any disagreements or uncertainties with a third reviewer

(D.J.W.) by consensus.

For each study, we extracted data on the country of the study;

time period; clinical setting; population size; demographic data

(including mean age, sex, and vascular risk factors); use of antith-

rombotic agents; T2*-GRE MRI parameters; number of partic-

ipants with at least one CMB at baseline; method and duration of

follow-up; and the number of participants with the outcome

event of interest. The outcome event of interest was recurrent

symptomatic ICH assessed using clear, predefined criteria:

namely, symptomatic stroke syndrome associated with neuroi-

maging evidence of a corresponding ICH. For included cohorts,

we sought information from the authors on total person-years of

follow-up and outcome events (recurrent ICH) stratified by

CMB burden (1, 2–4, 5–10, and .10 CMBs) and distribution

(lobar [in the cortex or subcortical areas of the cerebral hemi-

spheres], deep, or both [mixed]).

We classified the study cohorts and subcohorts as CAA-

related ICH (including probable and possible CAA, based on

the presence of strictly lobar macrobleeds and microbleeds, ac-

cording to the original Boston criteria) or CAA-unrelated ICH

(i.e., including patients with a strictly deep or mixed pattern of

CMBs not fulfilling the original Boston criteria,17 based on pub-

lished information and correspondence with authors.

The risk of bias of each included study was assessed against 6

key quality indicators: clearly defined populations, standardized

MRI measures, CMB clearly defined per criteria, standardized

rating scale used for CMBs rating, standardized definition of out-

come (ICH), and completion of follow-up (.90%).

Statistical analysis. We estimated recurrent symptomatic ICH

(%/year) and corresponding 95% confidence intervals (CIs) for

each study from a Poisson regression model and exact Poisson in-

tervals. We calculated pooled rates using the inverse variance

method, stratified by study population (CAA-related ICH vs

CAA-unrelated ICH). We compared the log (incidence) of

recurrent ICH events between these groups using a significance

test with the appropriate degrees of freedom.

We meta-analyzed recurrent ICH risks across studies, using

a random effects model with DerSimonian-Laird weights,18 quan-

tifying the strength of any association using odds ratios (OR) and

95% CI in patients without CMBs vs different CMB burden

categories. We analyzed the association between CMBs and

ICH recurrence using OR rather than hazard ratios because indi-

vidual patient data including follow-up time were not available

for this meta-analysis. To maximize the power of our analyses, for

comparisons with zero events in both groups, we added 0.5 to

each group, considered OR 5 1, and calculated the SE, logOR,

and SE logOR by using the 2-variable input method. We assessed

heterogeneity by I2 and x2 statistics and also visually through

inspection of the forest plot and checking for overlapping CIs.

We explored publication bias with funnel plots and the Harbord

regression tests for funnel plot asymmetry. We stratified all
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analyses by baseline ICH presumed cause (CAA-related vs CAA-

unrelated ICH). We used meta-regression to explore whether

certain confounders could have affected our results.

All meta-analyses were performed using Stata 11.2 (Stata-

Corp, College Station, TX). We prepared this report with refer-

ence to the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses19 guidelines.

RESULTS Ten unique hospital-based studies and 1
population-based study with a total of 1,306 ICH
patients met our predefined inclusion criteria (figure
1).20–29 The studies comprised 5 CAA-related ICH
cohorts (n 5 325)20,23,24,28,29—3 of which were
unselected, and also included CAA-unrelated
ICH24,28,29—and 5 CAA-unrelated ICH cohorts
(n 5 981).21,22,25–27 Studies had slightly different
inception points, variation in the proportion of pa-
tients with first-ever vs recurrent ICH, and different
prospective and retrospective methods of follow-up
(table 1). The risk of bias assessment is summarized
in table e-1 at Neurology.org. All studies used T2*-
GRE MRI at 1.5T to detect CMBs at baseline,
although imaging measures, including echo time and
slice thickness, varied slightly. Differences in demo-
graphic, clinical, and imaging characteristics between
the subgroups with and without CMB are also
described in table 1. Overall, compared to CAA-
unrelated ICH patients, CAA-related ICH patients
in general were older, more often had a prior ICH,

and had greater prevalence of white matter
hyperintensities (table 1).

Patients with CAA-related ICH had a higher
pooled annual risk of recurrent ICH compared to
those with CAA-unrelated ICH (7.39%, 95% CI
3.2–12.6 vs 1.1%, 95% CI 0.5–1.7 per year, respec-
tively; p 5 0.01), but with considerable statistical
heterogeneity (figure 2).

In the CAA-unrelated ICH cohorts, among pa-
tients with CMBs, 30/656 (4.6%, 95% CI 3.1%–

6.5%) experienced recurrent ICH, compared to 4/
325 (1.2%, 95% CI 0.3%–3.1%) patients without
CMBs. The presence of CMBs was associated with an
increased risk of recurrent ICH (OR 2.48, 95% CI
1.0–5.9; p 5 0.04) (figure 3). Although ICH risk
seemed to increase with increasing CMB burden, on-
ly patients with .10 CMBs had a statistically signif-
icant increase in risk compared to patients without
CMB (OR 5.6, 95% CI 2.1–15; p 5 0.001) (figure
3). When we pooled data based on CMBs location,
the presence of mixed CMBs (but not strictly lobar
or strictly deep) was associated with higher risk of
recurrent ICH (data not shown). The results were
consistent from study to study (test for heterogeneity
p . 0.10).

In the CAA-related ICH cohorts, 55/192 (28.7%,
95% CI 22.4%–35.6%) patients with CMBs and 15/
133 (11.3%, 95% CI 6.5%–17.9%) patients without

Figure 1 Flow chart of study selection
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Table 1 Study design and patient characteristics of included studies

Study Country/setting

T2*-GRE
MRI
measures
(field
strength/
TE/ST)

Patient no.
(% men) Inception point

Mean
age, y
(SD) HTN, %

Previous
ICH, %

Antithrombotic users
Advanced
WMC
(grade ‡2),
%

CMB
prevalence,
%

Significant
differences, CMB1
vs CMB2 groups

Patient-years of
follow-up, follow-up
methodsa

Antiplatelets,
%

OAC,
%

CAA-unrelated ICH
cohorts

PITCH study29 France, single-
center

1.5T/22.8
ms/5 mm

200 (59) Discharged;
followed up for
least 3 mo

65 (13) 66 5 24 10 58.5 60.5 Age: 66.4 vs 60.6,
p 5 0.004

506, Prospective,
patient/proxy interview

Samarasekera
et al.28

United Kingdom,
population-based

1.5T/15
ms/5 mm

48 (58.3) ICH onset 66 (2) 60.4 6.3 27.1 12.5 25 60.4 No 48.47, Prospective,
multiple sources

Kang et al.21 South Korea,
multicenter

1.5T/30,
20, 23
ms/1-2 mm

97 (60.8) ICH onset
(within 3 days)

59 (12) 84.5 5.2 14.4 0 42.2 76.3 Age: 62 (26–81) vs 53
(38–77); p 5 0.059,
advanced WMH: 52.7%
vs 8.7%; p , 0.001

315.67, Prospective,
patient interview,
telephone

Imaizumi et al.22 Japan, single-center 1.5T/26
ms/7.5 mm

187 (57.8) ICH onset
(within 7 days)

68 (12) 67.4 9.1 5.9 3.2 28.9 71.1 No 509.58, Retrospective,
multiple sources

Jeon et al.25 South Korea, single-
center

1.5T/30
ms/2 mm

63 (66.7) ICH onset
(within 10 d)

58
(range
38–81)

96.8 NA 6.4 0 NA 68.3 Hypocholesterolemia
37.2% vs 5%;
p 5 0.013

110.3, Prospective,
patient interview

Naka et al.26 Japan, single-center 1T/26
ms/5 mm

83 (65.1) Hospital
discharge

64 (12) 83.1 18.1 2.4 2.4 28.9 48.2 Advanced WMH: 45%
vs 14%; p 5 0.002

143.28, Prospective,
patient interview

Imaizumi et al.27 Japan, single-center 1.5T/26
ms/8 mm

199 (50.8) Days after
onset

66 (11) 84.4 9.1 1 0 NA 77.4 Age: 67.3 6 10.8 vs
61.4 6 11.2;
p 5 0.0013

374.78, Multiple
sources

CAA-related ICH
cohorts

PITCH study France, single-
center

1.5T/22.8
ms/5 mm

49 (63.2) 57%
probable CAA

Discharged;
followed up for
least 3 mo

74 (7) 46.9 6.1 46.9 20.4 71.4 49 No 900, Prospective,
patient/proxy interview

Samarasekera
et al.28

United Kingdom,
population-based

1.5T/15
ms/5 mm

28 (35.7) 39%
probable CAA

ICH onset 74 (2) 39.3 10.7 21.4 14.3 35.7 32.1 No 28.38, Prospective,
multiple sources

Charidimou
et al.20

United Kingdom/
Belgium, multicenter

1.5T/15-70
ms/5 mm

104 (48.1)
80% probable
CAA

MRI (median 17
days post ICH)

71 (10) 59 28.9 20 2 44.1 65.4 No 258.49, Retrospective,
multiple sources

Domingues-
Montanari et al.23

Spain, single-center 1.5T/29
ms/?

40 (45) 62%
probable CAA

1 month after
onset

75 (7) 43.6 45 NA NA 51.3 70 Previous ICH: 53.6%
vs 16.7%; p 5 0.041

72.67, Prospective,
patient interview

Biffi et al.24 United States,
single-center

1.5T/50
ms/5-6 mm

104 (58.7)
82% probable
CAA

90 days after
onset

73 (8) 58.2 7.7 15.4 10.6 71.2 60.6 HTN: 63.4% vs 36.6%;
p 5 0.007

353.2, Prospective,
multiple sources

Abbreviations: CAA 5 cerebral amyloid angiopathy; CMB 5 cerebral microbleed; HTN 5 hypertension; ICH 5 intracerebral hemorrhage; NA 5 not available; OAC 5 oral anticoagulation; PITCH 5 Prognosis of
Intracerebral Hemorrhage cohort study; ST 5 slice thickness; T2*-GRE 5 T2*-weighted gradient recalled echo; TE 5 echo time; WMC 5 white matter changes; WMH 5 white matter hyperintensity.
aMultiple sources of follow-up denotes a combination of overlapping ascertainment methods including patient records review, follow-up imaging review, patient interview, and hospital registry review.
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CMBs had recurrent ICH during follow-up. CMB
presence was associated with recurrent ICH risk (OR
2.7, 95% CI 1.4–5.1; p 5 0.003) (figure 4). The
presence of a single CMB was not associated with
a higher risk of recurrence compared to CAA patients
without any CMBs. However, there was a substantial
risk of recurrent ICH with greater CMB burden
categories (figure 4).

We used meta-regression to see whether certain
confounders could have affected our results. No sig-
nificant difference was noted in our estimates when
we included age, sex, hypertension at baseline, history
of previous ICH, white matter hyperintensities, or
prior use of antithrombotic medication (antiplatelets
or anticoagulants) in the model for our main out-
comes. Sensitivity analyses involving sequential
removal of each individual study in turn yielded very
similar results for all comparisons. Estimation of pub-
lication bias via the Egger test and the Begg test re-
turned nonsignificant results (all analyses p . 0.20).

DISCUSSION In this meta-analysis of 10 cohorts
involving more than 1,300 survivors of symptomatic
spontaneous ICH who underwent blood-sensitive
MRI, pooled estimates demonstrated a 7-fold
increase in the risk of recurrent ICH after CAA-
related ICH compared to CAA-unrelated ICH. We

found a consistent association between CMB pres-
ence at baseline and future ICH recurrence, but the
strength of the association of CMBs and the magni-
tude of recurrent ICH risk differed according to
underlying microangiopathy.

Our finding of high ICH risk in probable CAA-
related ICH is in line with most previous stud-
ies10,30–32 and systematic reviews2,7 that found ICH
recurrence is more common following lobar ICH
(whether related to CAA or not) than nonlobar
ICH. However, few previous studies of ICH progno-
sis have used MRI to systematically phenotype the
likely underlying small vessel arteriopathy.2,7 MRI
has emerged as the most useful noninvasive method
to diagnose the microangiopathies associated with
spontaneous ICH. Our data suggest that MRI may
also be valuable in assessing prognosis.

The differential stroke risks in ICH survivors have
implications for prognosis and secondary prevention
decisions, especially antithrombotic treatment, an
increasingly common clinical dilemma.33,34 Our data
suggest that MRI could identify a specific subgroup of
patients with ICH at highest risk for further hemor-
rhagic events. A decision analysis based on a 69-year-
old survivor of a lobar CAA-related ICH and newly
diagnosed nonvalvular atrial fibrillation suggested
that such patients should not be anticoagulated with

Figure 2 Pooled risks of recurrent symptomatic intracerebral hemorrhage (ICH) during follow-up in included
studies

Weights are shownby the point estimate area. CAA5 cerebral amyloid angiopathy; CI5 confidence interval; rICH5 recurrent ICH.
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Figure 3 Meta-analysis of the associations between cerebral microbleeds (CMBs) presence or burden and the
risk of recurrent symptomatic spontaneous intracerebral hemorrhage (ICH) in cerebral amyloid
angiopathy (CAA)–unrelated ICH cohorts

Weights are shown by the point estimate area. I2 is used to test statistical heterogeneity between the subgroup pooled
estimates across the different studies. CI 5 confidence interval; OR 5 odds ratio.

Neurology 89 August 22, 2017 825



warfarin across the spectrum of thromboembolic and
hemorrhagic risks.35 However, the value of MRI in
stratifying patients according to their risks for recur-
rent ICH and ischemic events needs to be tested in
randomized controlled trials.

We did not find a significantly elevated risk for
recurrent ICH associated with the presence of a single
CMB relative to the absence of CMB in any of the
cohorts. The pathophysiologic significance of a single
CMB is unclear as it might indicate a less severe

Figure 4 Meta-analysis of the associations between cerebral microbleeds (CMBs) presence or burden and the risk of recurrent spontaneous
intracerebral hemorrhage (ICH) in cerebral amyloid angiopathy (CAA)–related ICH cohorts

Weights are shown by the point estimate area. I2 is used to test statistical heterogeneity between the subgroup pooled estimates across the different
studies. CI 5 confidence interval; OR 5 odds ratio.

826 Neurology 89 August 22, 2017



microangiopathy than in patients with multiple
CMBs. Furthermore, rating of a single CMB may
be less reliable than multiple CMBs. It is important
to note that all the included studies used standard
clinical T2*-GRE MRI and on 1.5T systems. The
use of higher magnetic field strength and of
susceptibility-weighted imaging increase sensitivity
to CMB detection,36 and it is therefore conceivable
that these techniques might have detected additional
CMBs, affecting the preselected cutoffs used for mi-
crobleeds grouping.

We have confirmed previous reports suggesting
that lobar CMB burden at baseline predicts recurrent
ICH on clinical follow-up,24 making CMBs promis-
ing prognostic biomarkers in CAA clinical practice
and research studies. In previous studies, the occur-
rence of CAA-related recurrent lobar ICH was lower
than the rate of new CMB development.37 Different
vasculopathic features and environmental exposures
may determine whether a vessel rupture will result
in a CMB or a larger macrobleed. In non-CAA-
related ICH cohorts, our results indicate that more
than 10 CMBs predict recurrent ICH risk.

Our meta-analysis has limitations. Some studies
had a small sample size, variable follow-up duration
and methods, and few outcome events, leading to
wide CIs around risk estimates. In these studies,
inception points and methods of outcome assessment
varied. Imaging measures, for example echo time, var-
ied across studies, potentially affecting the detection
of CMBs, although the consistent prevalence does
not suggest measurement error, especially since all co-
horts were scanned at 1.5T using T2*-GRE, proba-
bly making variation minimal. Furthermore, the
cohorts included may have been subject to selection
bias (since not all ICH patients can have MRI), so our
findings can only be generalized to ICH survivors
who undergo T2*-GRE MRI in clinical practice.
Since our meta-analysis included group-level data,
we were unable to test the influence of CMB count
on a continuous scale; instead, we have used prespe-
cified clinically relevant CMB burden groups. Ische-
mic stroke was not specifically identified or reported
by all of the cohorts, making these data unreliable.
Confounding may explain some of the difference
between the risks of recurrent ICH in CAA-related
and CAA-unrelated cohorts, since the CAA-related
cohorts were older, had a higher frequency of prior
ICH, and had more white matter disease (table 1).
However, all studies showed a consistent direction of
association between CMBs and recurrent ICH, even
when adjusted for these potential confounders.
Finally, we compared groups using ORs rather than
hazard ratios, based on numbers of events in each
group during variable periods of follow-up for indi-
vidual patients.

Despite our best efforts, including meta-regression
analyses, there is likely still some residual confound-
ing of our estimates. For example, ethnicity (Asian
vs non-Asian cohorts) may contribute to heterogene-
ity, considering that Asian populations have a higher
overall risk of ICH and different vascular risk factors.
Of note, all CAA cohorts included mainly non-Asian
patients, in line with CAA accounting for a smaller
proportion of ICH due to the higher prevalence of
hypertensive arteriopathy in Asian populations.38

Hence heterogeneity could be more relevant in the
non-CAA ICH cohorts, which requires further study.
Moreover, factors other than CMB burden may also
play a role in ICH recurrence risk, including other
hemorrhagic markers of small vessel disease (cortical
superficial siderosis in particular39), blood pressure
variability and control,40 and antithrombotic drug
use. The interaction between CMB counts and these
factors on the risk of recurrent ICH are also of inter-
est, but these data were not available for our analysis;
this is an active area of research. In CAA-related ICH,
patients with 5–10 CMBs had a higher OR (4.3,
95% CI 1.8–10.3; p 5 0.001) for ICH recurrence
than patients with .10 CMBs (3.4, 95% CI 1.4–
8.3; p 5 0.007), which might be due to a ceiling
effect for .5 CMBs. Well-designed multicenter pro-
spective pooled studies of individual patient data with
systematic and standardized follow-up are required to
fully explore the influence and interactions of clinical
variables, MRI markers, and vascular risk factor treat-
ment strategies.

Spontaneous ICH originates from a variety of
cerebral microangiopathies with potentially distinct
future stroke risks (including recurrent ICH and
ischemic stroke). Our findings suggest that using
MRI to determine the presumed microangiopathies
underlying spontaneous ICH can improve estimation
of future recurrent ICH risk. This is important to
inform patients and caregivers, plan clinical services,
and design clinical trials. Our data suggest that the
presence and burden of CMBs on blood-sensitive
MRI sequences are important for stratifying patients
more prone to recurrent ICH, but their role in iden-
tifying patients at higher risk for ischemic stroke
could not be addressed. Whether the balance of risk
of recurrent ICH and ischemic stroke after ICH
changes over time, and how antithrombotic drugs
(antiplatelet and anticoagulant agents) influence this,
remain important questions for randomized con-
trolled trials, such as the ongoing RESTART (regis-
tered ISRCTN71907627) and APACHE-AF
(EudraCT number: 2014-000112-33) trials testing
whether a policy of starting antiplatelet or anticoagu-
lant drugs results in a beneficial net reduction of seri-
ous vascular events compared with a policy of
avoiding antithrombotic drugs.
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