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Abstract 

Retrotransposons tune immune reactivity in differentiated cells because when 

they are transcribed, their nucleic acids can be viewed as non-self leading to 

innate immune sensing. Most retrotransposons, however, are subject to 

transcriptional regulation by a multitude of epigenetic pathways, which have 

coevolved with them for millions of years. While a lot is known about the 

epigenetic control of retrotransposons in germ cells and early embryos, 

surprisingly little is understood about these pathways in adult tissues, 

particularly in human cells. Recent evidence suggests that retrotransposon 

repression persists in differentiated cells and is dynamic. Future insight into this 

topic may teach us how to reactivate or silence specific retrotransposon families, 

to promote anti-tumour immunity or dampen autoimmunity through epigenetic 

modulation. 

 

Introduction 

Transposable elements (TEs) are mobile genetic elements aptly named 

“controlling elements” by Barbara McClintock in the 1950s because of their 

ability to control cellular genes [1]. Since their discovery, the advancement of 

genome sequencing and bioinformatics technologies has led to the identification 

of a huge number of TE families, the functions of which are now being unraveled. 

Retrotransposons are particularly relevant TEs because they can replicate 

through an RNA intermediate, allowing them to insert new DNA copies of 

themselves into the genome. This has enabled them to accumulate over millions 

of years and they now comprise more than half of the human genome[2]. Over 
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time, deleterious insertions are negatively selected while those beneficial to the 

host become co-opted and fixed in the genome[3]. Co-opted retrotransposons 

are often from the endogenous retrovirus (ERV) class, which dates back 

hundreds of millions of years [4]. Although retrotransposons are overall 

beneficial as a driving force behind the evolution of new genes and non-coding 

DNA[5, 6], they can also compromise genome and transcriptome integrity [7]. A 

multitude of epigenetic pathways, therefore, act in early development to 

constrain their transcription and some of these strategies remain active in 

differentiated cells. 

 

Epigenetics refers to modifications on chromatin, rather than DNA sequence 

alterations, which lead to heritable effects on gene expression. Chromatin is 

subject to histone modifications and cytosine methylation and distinct epigenetic 

marks are associated with an active and silent gene expression state. For 

example, acetylation of histone 3 at the lysine residue at position 27 (H3K27ac) 

is a chromatin signature associated with active genes and enhancers[8], whereas 

trimethylation of histone 3 at the lysine at position 9 (H3K9me3) correlates with 

heterochromatin and gene silencing[9-11]. Retrotransposons direct both genetic 

and epigenetic heritable traits because they can integrate into our genome in the 

germ line and orchestrate epigenetic alterations through the recruitment of 

transcription factors to their regulatory elements [12]. 

 

Since half of the human genome is derived from retrotransposons, it can be 

viewed as non-self. Although most human retrotransposons are no longer 

mobile, expression of their nucleic acids and proteins can lead to the formation 

of pathogen-associated molecular patterns (PAMPs) and antigens that we refer 

to here as “neo-antigens” that could potentially elicit an immunological response. 

Retrotransposons, are therefore situated at the interface of immune reactivity; 

when enriched in silent chromatin they are transcriptionally inactive and 

immune masked, whereas when expressed they may trigger innate and adaptive 

immunity [13-15]. In this review, we will discuss the mechanisms in place to 

maintain retrotransposons silent in differentiated cells and the implications of 

these pathways. We will focus here on chromatin readers, writers and erasers 
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and the KAP1 and KRAB-ZNF system. The role of small RNAs, while important, is 

beyond the scope of this review and we direct the reader to a recent review 

covering this topic[16].  

 

Epigenetic pathways constraining retrotransposons 

Epigenetic silencing of retrotransposons takes place in early embryos and in 

differentiated tissues, epigenetic states link back to patterns established during 

development[17]. The identification of factors that maintain repression in 

postembryonic tissues and how dynamic chromatin marks are in differentiated 

cell types is a fascinating and emerging area of research. Moreover, existing work 

relies largely on mouse models so it will be crucial to establish parallels in 

human cells, where the precise retrotransposons, their activity and their 

coevolution patterns with genes are distinct[18]. 

 

Chromatin readers, writers and erasers 

Chromatin-associated proteins induce epigenetic changes to either histones or 

DNA and mediate downstream biological functions. Promoter cytosine 

methylation occurs at ERVs and is associated with gene repression [19, 20], 

whereas intragenic methylation prevents spurious transcription initiation [21]. 

Interestingly, human ERV-K (HERV-K) genomic sequences have undergone 

selection to mutate CpG dinucleotides, presumably to escape repression through 

DNA methylation [22]. De novo methylation is carried out by DNMT3A, DNMT3B, 

the newly discovered rodent-specific DNMT3C, and the cofactor DNMT3L [23-

26] and maintained by DNMT1 through cell divisions [27, 28]. Defective DNMT1 

leads to DNA hypomethylation and ERV overexpression and plays a causative 

role in the onset of cancer and autoimmune disease [29, 30]. Interestingly, the 

reactivation of ERVs observed following treatment of cells with DNA-

demethylating agents, such as 5-azacytidine (5-AZA) [31] has been proposed to 

be responsible for driving anti-tumour immunity in cancer patients treated with 

these drugs through innate sensing of ERV nucleic acids [13, 14]. 5-AZA drugs 

are thought to target mainly DNMT3A and DNMT3B, which can be increased in 

expression upon differentiation [32], in contrast to DNMT3L, which is not 

expressed in differentiated cells [33]. 
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Histone methyltransferases (HMTs) including SETDB1 (also known as ESET), 

SUV39h and G9a (also known as EHMT2) mediate retrotransposon repression 

through histone methylation [9, 10, 34]. The most relevant to this review is 

SETDB1 because it is required for retrotransposon repression in postembryonic 

tissues [35, 36]. Indeed, the finding that SETDB1 represses ERVs in committed 

mouse B-lineage cells, has led to a new paradigm that SETDB1 and potentially 

other histone modifiers remain important in differentiated cells [35]. 

Interestingly, loss of silent chromatin at SETDB1-regulated ERVs is not sufficient 

for their activation and the precise panel of ERVs reactivated in specific cell types 

depends on the transcription factors available [35]. HP1 too, which interacts 

with H3K9me3 [37, 38] and participates in heterochromatin spreading [39] has 

been implicated in silencing of ERVs including in differentiated cells [40, 41].  

 

The KAP1 and KRAB-ZNF repertoire 

The KAP1 and KRAB-ZNF (KRAB-zinc finger protein) system silences 

retrotransposons in early embryos and embryonic stem cells (ESCs) [12, 42, 43]. 

It has likely evolved in response to retrotransposon invasions [44] because 

KRAB-ZNF transcription factors are largely specific for transposon sequences 

[45-47] but now this pathway also participates in gene regulation [45, 48, 49]. 

KAP1 is recruited to transposons through the interaction of its RING, B-box and 

coiled–coil (RBCC) domain with the KRAB domain of KRAB-ZNFs. 

Transcriptional repression is mediated through co-factors such as SETDB1[50-

52], which prevents binding of transcriptional activators[53, 54]. There are 

several hundred KRAB-ZNFs [55], which can be viewed as a panel of effector 

proteins specific for foreign DNA in the same way that an antibody repertoire is 

specific for foreign antigens. While many KRAB-ZNFs have recently been 

matched to their target sequences through chromatin immunoprecipitation 

experiments [45-47], only a few have been functionally characterized. These 

include human ZNF91 and ZNF93, which recognize specific SVA and LINE1 

subfamily sequences, respectively [56]. The KAP1 and KRAB-ZNF pathway is 

functional in human and mouse ESCs and neural progenitor cells [42, 57-59] but 

little is known about its role in differentiated cells. However, one study showed 
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that KAP1 binds to certain ERV-K elements in human primary CD4+ T cells [59]. 

It was also reported that KAP1 and KRAB-ZFPs bind to several ERVs in mouse 

liver. Interestingly, while KAP1 knockout in the liver had little impact on the 

expression of these ERVs, several co-regulated cellular genes were affected [48]. 

This suggests that redundant mechanisms may converge to silence ERVs in 

differentiated cells [48]. Surprisingly, HSP90 has recently been implicated in the 

formation of a KAP1 repressor complex at ERVs [60]. Like KAP1, HSP90 is 

necessary to maintain silent chromatin at ERVs and prevent aberrant 

transcription of genes close to the ERVs that it regulates [49, 60]. Most 

interestingly, this is true not only in ESCs but also in differentiated macrophages 

[60]. The nucleosomal and remodeling deacetylase (NuRD) complex, which 

interacts with KAP1 has also been implicated in retrotransposon repression in 

differentiated cells [61]. 

 

Of note, not all ERV-derived sequences are subject to epigenetic silencing as 

some have been co-opted because their non-coding DNA regulatory elements, 

nucleic acids or even gene products benefit their hosts [5, 6, 62, 63]. Whether co-

opted ERVs are subject to spatial or temporal repression by KAP1 remains an 

open question. However, certain KRAB-ZNFs have been found to bind to co-

opted ERVs and to recruit transcriptional activators and pioneer factors, 

suggesting that these ZNFs function to switch on rather then switch off certain 

gene networks [45, 47]. 

 

Implications for immune regulation 

ERVs have been implicated in multiple cancers and autoimmune diseases, 

including ovarian and breast cancer, systemic lupus erythematosus and multiple 

sclerosis [64, 65]. There is some convincing evidence that ERVs can play a 

causative role in cancer when their LTRs escape epigenetic repression [66] and 

interestingly, this involves mainly primate-specific ERVs [67]. For example, 

cryptic enhancers and promoters that reside within ERVs can drive expression of 

oncogenes[66, 68]. 
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ERVs regulate the immune system in several ways. For example, double stranded 

RNA (dsRNA) produced from retrotransposons, following treatment of cancer 

cells with DNA methyltransferase inhibitors activates interferon through MDA5, 

MAVS and IRF7 [13, 14]. Cytoplasmic DNA resulting from reverse transcription 

also serves as an additional PAMP because it is detected by the cytosolic DNA 

sensor cGAS to activate type I interferon through STING [63, 69-72]. Likewise, 

Toll-like receptors contribute to ERV nucleic acid sensing [73]. Mutations within 

genes involved in nucleic acid metabolism including TREX1 are associated with 

autoimmune diseases [74], although such factors block classes of 

retrotransposons that are constitutively transcribed rather than those 

embedded within silent chromatin. In addition to innate immunity, ERVs can 

stimulate adaptive immunity too because their encoded gene products, which 

are necessary for their mobilization are subject to standard antigen processing 

and presentation pathways. For example, tumour-associated antigens (TAAs) 

can be derived from HERV-K envelope protein[75]. Such neo-antigens can evoke 

adaptive T cell and antibody responses [76], both of which have been 

demonstrated to regulate ERVs [15, 75].  

 

Overall, ERV regulatory sequences including solo LTRs have been described to 

contribute to cancer by driving oncogenes, whereas longer ERVs if resurrected 

(for example through 5-AZA treatment) may promote anti-tumour immunity 

through their nucleic acids and proteins. Exactly how sensing of ERV nucleic 

acids leads to anti-tumour immunity is not fully understood but remarkably, it 

has been shown that if cancer initiating cells are pretreated with 5-AZA drugs 

before their injection into mice, they form less tumours and this phenotype is 

dependent on MAVS[14]. Likewise, if B16 melanoma cells are pretreated with 5-

AZA before their injection into mice that receive anti-CTLA-4, they can stimulate 

complete tumour clearance[13]. Furthermore, interferon-responsive genes are 

upregulated in cancer patients treated with 5-AZA[77]. Interferon signaling is 

important presumably to promote apoptosis of cancer cells and to help to recruit 

cytotoxic T cells recognizing neo-antigens and other immune effectors to clear 

the tumour. It has also been shown that cytosolic RNA and DNA sensing of ERVs 

is necessary to induce T-independent B cell responses in mice[63]. This latter 
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work illustrates that ERVs have coevolved with their hosts to play a natural role 

in modulating the immune system. Overall, ERVs lie at the intersection of innate 

and adaptive immunity, due to their intrinsic immunogenicity. 

 

Concluding remarks 

While it was previously thought that histone marks are primarily required to 

silence retrotransposons only early in development[10, 50, 78, 79], where DNA 

methylation is reprogrammed[80, 81], recent evidence has led to a new 

paradigm whereby diverse epigenetic modifiers exert continuous roles in adult 

tissues. Here we discuss evidence that SETDB1, DNMTs, HP1, HSP90, the NuRD 

complex and potentially KAP1 and KRAB-ZNFs are some of these factors. 

Importantly, most of these regulators have only been studied in mouse models 

so far. A future understanding of the pathways operating in adult human tissues 

is essential for the development of innovative drugs. Targeted epigenetic 

modulation might prove a potent tool in the future to reactivate certain 

retrotransposons so that their nucleic acids and proteins could serve as natural 

PAMPs to signal danger to their host. Such drugs may be valuable to stimulate 

immunosurveillance in cancer patients in which immune activation pathways 

may be subdued or could be used in conjunction with standard vaccines in place 

of an adjuvant. Caution should be applied, however, to prevent unwanted effects 

of reactivated ERVs on the genome or transcriptome. 
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Figure 1: Epigenetic factors repress retrotransposons in differentiated 

tissues, preventing transcription and sensing of non-self nucleic acids. In 

differentiated cells, epigenetic silencing of retrotransposons is maintained by 

incompletely characterized mechanisms. Factors implicated in maintaining 

histone and DNA methylation at retrotransposons are shown. See text for details. 

Uncharacterized factors are depicted in blue to illustrate that this is an emerging 

area of research. The addition of 5-AZA-based drugs results in the generation of 

dsRNA from retrotransposons and potentially cDNA as well through reverse 

transcription, both of which lead to innate immune activation. 


