
Nonlinear Periodic and Solitary Water Waves
on Currents in Shallow Water

By Roger Grimshaw and Zihua Liu

A variable-coefficient Korteweg–de Vries equation is used to model the
deformation of nonlinear periodic and solitary water waves propagating on
a unidirectional background current, which is either flowing in the same
direction as the waves, or is opposing them. As well as the usual form
of the Korteweg–de Vries equation, an additional term is needed when
the background current has vertical shear. This term, which has hitherto
been often neglected in the literature, is linear in the wave amplitude and
represents possible nonconservation of wave action. An additional feature
is that horizontal shear in the background current is inevitably accompanied
by a change in total fluid depth, to conserve mass, and this change in depth
is a major factor in the deformation of the waves. Using a combination of
asymptotic analyses and numerical simulations, it is found that waves grow
on both advancing and opposing currents, but the growth is greater when the
current is opposing.

1. Variable-coefficient Korteweg–de Vries equation

It is well-known that deep water waves propagating into a unidirectional
current of increasing strength, are diminished in amplitude when the current
is the same direction as the waves, but grow in amplitude when the current
is in the opposite direction, see for instance the text by Phillips [1], the re-
view article by Peregrine [2] and the literature on rogue waves, for instance,
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the early work by Smith [3] and the recent book by Kharif et al. [4]. The
simplest explanation for slowly varying linear waves is through conservation
of waves and wave action. Thus the linear dispersion relation for deep water
waves with wavenumber k > 0 and frequency ω0 > 0 propagating in the
positive x-direction on a current U is ω0 = Uk + ω∗, ω∗ = √

gk and we
suppose that U = 0 for x ≤ 0 where k = k0. When U varies slowly with
x , with |U | increasing in the positive x-direction, then ω0 is a constant, and
so this determines the consequent variation of k. For an advancing current
U > 0, this implies that k decreases and the group velocity cg = U + ω∗

k
increases, but for an opposing current U < 0, k increases and the group
velocity decreases. The wave amplitude a is then determined from the
conservation of wave action flux, cg|a|2/ω∗ is constant. Thus in advancing
current |a| decreases, but on an opposing current |a| increases, and indeed
becomes infinite at the stopping velocity where cg = 0, or U = −c0/4
where c0 = ω0/k0 is the phase velocity at x = 0, and this linear theory fails.

In this work, we examine the analogous situation for shallow water
waves with a focus on oceanic applications. Although conservation of
wave action again plays an essential role, there are two major differences.
First in the long wave limit where dispersion is small it is necessary to
take account of nonlinearity a priori. This implies that an appropriate
model is a Korteweg–de Vries (KdV) equation. Second, in shallow water,
it is necessary to take account of the total depth changes associated with
background current variations. The relevant variable-coefficient Korteweg–de
Vries (vKdV) equation has been derived in a general setting for both surface
and internal waves, see Grimshaw [5], Zhou and Grimshaw [6],

ηt + cηx + cQx

2Q
η + μηηx + δηxxx + ση = 0. (1)

Here, η(x, t) is the amplitude of the wave, and x, t are space and time
variables, respectively, c(x) is the relevant linear long wave speed, and Q(x)
is the linear magnification factor, defined so that Qη2 is the wave action flux
density for linear long waves. The coefficients c, Q, μ, δ are determined by
the waveguide properties of the specific physical system being considered,
and they are slowly varying functions of x . The final term ση represents
nonconservative effects arising from dissipative or forcing terms in the
underlying basic state, see Grimshaw [7] for s general discussion of how
this term arises when considering issues about wave action conservation.
The derivation of (1) assumes the usual KdV balance that the nonlinear
term has the same order as the dispersion, that is ηηx has the same order
of magnitude as ηxxx, and in addition assumes that the waveguide properties,
that is, the coefficients c, Q, μ, δ, vary slowly so that, for instance, ηQx/Q
and σ Q are of the same order of magnitude as the nonlinear and dispersive
terms. In this scenario, the first two terms in (1) are the dominant terms, and
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hence we make the transformation

A =
√

Q η, T =
∫ x

0

dx

c
, X = T − t. (2)

Substitution into (1) yields, to the same order of approximation as in the
derivation of (1),

AT + νAAX + λAXXX + σ A = 0, (3)

ν = μ

c
√

Q
, λ = δ

c3
. (4)

The coefficients ν, λ are functions of T alone. Note that although T is a
variable along the spatial path of the wave, we subsequently refer to it as
the “time,” noting that it has the dimensions of time. Similarly, although
X is a temporal variable (in a reference frame moving with speed c), we
subsequently refer to it as the “space” variable. Finally, since we can assume
λ > 0 in practice, it is useful to make a further transformation yielding the
canonical form

Aτ + αAAX + AXXX + β A = 0, (5)

where τ =
∫ T

0
λ dT =

∫ x

0

δ

c4
dx, α = ν

λ
, β = σ

λ
. (6)

We call Eq. (5) the vKdV equation. For the subsequent numerical
simulations, a further transformation is useful

A = EB, Bτ + αEBBX + BXXX = 0, E = exp

(
−

∫ T

0
β dT

)
. (7)

Then, Eq. (7) is solved numerically using a pseudo-spectral code and
exponential time differencing with a fourth-order Runge–Kutta scheme, see
[8] for some further details.

The vKdV equation (5) has two conservation laws

∂M

∂τ
= −βM, M =

∫ ∞

−∞
A dX , (8)

∂ P

∂τ
= −2β P, P =

∫ ∞

−∞
A2 dX (9)

for mass and wave action flux, respectively. These express the conservation
of M, P in the conservative case when β = 0, and also the conservation of
B, B2 in the transformed equation (7), respectively.
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Although the focus in this paper is on water waves, it is useful to
describe here the general derivation for both surface and internal waves. The
application to internal waves will follow in a subsequent paper. Thus, we as-
sume that in the ocean, the background state varies slowly in the horizontal
direction due to varying depth, and slow variations in the basic state hydrol-
ogy and background currents. That is, the depth h = h(x), the background
horizontal current u0 = u0(z; x) with a corresponding vertical velocity field
w0(z, x), a density field ρ0(z; x), a corresponding pressure field p0(z; x),
and a free surface displacement η0(x). This basic state satisfies the full
steady-state Euler equations, with the exception of the momentum equations
where there are body forces F0(z; x), G0(z; x), respectively. That is,

ρ0(u0u0x + w0u0z) + p0x = F0, (10)

[ρ0(u0w0x + w0w0z)] + p0z + gρ0 = [G0], (11)

u0ρ0x + w0ρ0z = 0, (12)

u0x + w0z = 0, (13)

w0 + u0hx = 0 at z = −h(x), (14)

p0 = 0, at z = η0, (15)

u0η0x = w0, at z = η0. (16)

Because the x-dependence is slow, technically ∂/∂x ∼ ε3, w0 ∼ ε3, F0 ∼ ε3,
and G0 ∼ ε6, the dominant balance in the vertical momentum equation is
hydrostatic and the terms in [·] can be omitted. This basic state is then
perturbed by the wave field, where at the leading order the vertical particle
displacement is given by

ζ ∼ η(x, t)φ(z; x). (17)

Here, the modal function φ(z; x) together with the linear long wave speed
c(x) is defined by the boundary-value problem

{ρ0(c − u0)2φz}z − gρ0zφ = 0, for − h < z < η0, (18)

φ = 0 at z = −h, (c − u0)2φz = gφ at z = η0. (19)
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Continuation of this asymptotic expansion to the next order than yields
the vKdV equation (1), see Grimshaw [5], Zhou and Grimshaw [6] or the
reviews by Grimshaw [9], Grimshaw et al. [10]. The coefficients are given
by

Iμ = 3
∫ η0

−h
ρ0(c − u0)2φ3

z dz, (20)

I δ =
∫ η0

−h
ρ0(c − u0)2φ2 dz, (21)

where I = 2
∫ η0

−h
ρ0(c − u0)φ2

z dz, (22)

and Q = c2 I, Iσ = −
∫ η0

−h
φφz F0zdz. (23)

These expressions are well-known and much used, except for the coefficient
σ expressing nonconservative effects, whose derivation can also be obtained
directly from the general theory for wave action presented in the review by
Grimshaw [7].

As above, in this paper we focus only on the application of this general
theory to water waves, where we assume that the background density is
a constant, but in the presence of a background current. The application
to internal waves will be presented in a subsequent paper. In Section 2,
we first review the asymptotic theory for modulated periodic and solitary
waves, emphasizing the effect of the hitherto neglected coefficient β. Then
in Section 3, we examine the interaction of water waves with a background
current, for the two cases when the background current has either no
vertical shear, or a constant vertical shear. We conclude in Section 4.

2. Modulated periodic and solitary waves

When the coefficient α in (5) is a constant, and the coefficient β = 0, the
resulting KdV equation supports a periodic traveling wave, A(X − V τ ), the
well-known cnoidal wave solution

A = a {b(m) + cn2(γ θ ; m)} + d, θ = k(X − V τ ), (24)

where αa = 12mγ 2k2. b(m) = 1 − m

m
− E(m)

mK (m)
, (25)
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V − αd = αa

3

{
2 − m

m
− 3E(m)

mK (m)

}
= 4γ 2k2

{
2 − m − 3E(m)

K (m)

}
. (26)

Here, cn(x ; m) is the Jacobian elliptic function of modulus m, 0 < m < 1,
and K (m) and E(m) are the elliptic integrals of the first and second kind.
The expression (24) has period 2π in θ so that γ = K (m)/π , while the
spatial period is 2π/k. The (trough-to-crest) amplitude is a and the mean
value over one period is d. It is a three-parameter family with parameters
k, m, d say. As the modulus m → 1, this becomes a solitary wave, since
then b → 0 and cn(x) → sech(x), while γ → ∞, k → 0 with γ k = � fixed.
As m → 0, b → −1/2, γ → 1/2, cn(x) → cos (x), and it reduces to a
sinusoidal wave (a/2) cos (θ ) of small amplitude a ∼ m and wavenumber k.

We now allow this cnoidal wave to vary slowly with τ ; that is, the param-
eters k, m, d vary slowly with τ . The required modulation equations can be
derived by an asymptotic expansion, or more directly from the available con-
servation laws, as in the original derivation by [11, 12]. As three modulation
equations are needed, and there are only two conservation laws available, we
supplement (8, 9) with the equation for conservation of waves

kτ + (kV )X = 0. (27)

Since here we are allowing only τ -modulations, it follows that k is a
constant. The remaining two modulation equations are obtained by inserting
the cnoidal wave solution into the conservation laws (8, 9) and averaging
over the phase θ . The outcomes are

dτ = −βd, (28)

Pτ = −2βP, P =< A2 >, (29)

where the < · · · > denotes a 2π -average over θ . The expression P is given
by

P = d2 + a2{C4 − b2},

C4 = 1

3m2K (m)
{3m2K (m) − 5mK (m) + 4m E(m) + 2K (m) − 2E(m)}. (30)

Note that the equation for the mean level (28) is uncoupled from (29) and
can be solved independently. Here, we choose d = 0.

In the solitary wave limit m → 1 and then b ∼ −1/K (m) and
C4 ∼ 2/3K (m). The cnoidal wave expression (24), with d = 0, becomes

A = a sech2(�θ )}, θ = X − V τ, V = αa

3
= 12�2 (31)
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with one parameter to be determined. This is obtained from a reduction of
(29) as m → 1, or more directly by averaging the wave action conservation
law (9) directly for a solitary wave, see Grimshaw [13] and the discussion
in El et al. [14], Grimshaw and Yuan [8],

{
a2

�

}
τ

= −2β

{
a2

�

}
. (32)

Then, using the expressions in (31), this becomes

Aτ = −2βA, A =
{

a3

α

}1/2

, (33)

a3

a3
0

= α

α0
exp

(
−4

∫ τ

0
βdτ

)
, (34)

where the “0” subscript denotes the value at τ = 0. In terms of the original
vKdV equation (1) the amplitude of the solitary wave is as = aQ−1/2 and
taking account of (4), (34) becomes

a3
s

a3
s0

= κ

κ0
exp

(
−4

∫ T

0
σ dT

)
, κ = c2μ

Q2δ
. (35)

The case of a periodic wave modulated only in τ was studied by
Grimshaw [9, 15] and is reproduced briefly here. We recall that here d = 0,
and then, using the expressions in (25), (29) becomes

F(m)

F(m0)
= α2

α2
0

exp

(
−2

∫ τ

0
β dτ

)
, (36)

where F(m) = K (m)2{(4 − 2m)E(m)K (m) − 3E(m)2 − (1 − m)K (m)2}.
(37)

A plot of the normalized F(m) (the left-hand side of (36)) when m0 = 0.98
(a strongly nonlinear wave) and m0 = 0.85 is shown in Fig. 1. We see
that when β = 0, then as |α| increases/decreases, so does the modulus m.
Substitution into the expression (25) for the wave amplitude yields

a

a0
= mK (m)2 α0

m0 K (m0)2 α
. (38)

This expresses the normalized amplitude in terms of the modulus m and
α, and m in turn varies with α according to (36). A plot of (38) when
β = 0 is shown in Fig. 2 when m0 = 0.98, 0.85, and shows that as |α|
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Figure 1. (color online) A plot of the normalized F N = F(m)/F(m0) (36) versus m
when m0 = 0.98 (lower curve, black, solid) and m0 = 0.85 (upper curve, blue, dash).

Figure 2. (color online) A plot of the normalized amplitude AM P = a/a0 (38) versus m
when m0 = 0.98 (lower curve, black, solid) and m0 = 0.85 (upper curve, blue, dash).

increases/decreases then so does the amplitude. In both cases, there is a
surprisingly small variation of the amplitude a until m → 1. As for the
solitary wave, in terms of the original KdV equation (1), the amplitude of
the periodic wave ap = aQ−1/2 and α = c2μ/Q1/2δ.
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3. Water waves on a background current

3.1. Current with zero background shear

For this application, we put ρ0(z; x) = ρ1, a constant, and assume that the
basic current u0(z; x) = U (x) does not depend on z. Then the basic state
equations (10)–(16) reduce to

ρ1(UU x + gη0x ) = F0, (39)

p0 = gρ1(η0 − z), (40)

HU = M0, H = h + η0, (41)

where M0 is the constant mass flux. Importantly, note that F0 does not
depend on z and so σ = 0 in this case, see (23). The modal function (18,
19) and the coefficients (20)–(23) are now given by

φ = z + h

H
, for − h < z < η0, (42)

where c = U + c0, c0 = (gH)1/2, (43)

and so μ = 3c0

2H
, δ = c2

0H

6
, I = 2c0

H
, Q = 2gc2

c0
, σ = 0. (44)

Note that φ(z) is normalized so that φ(z = η0) = 1 and then η is the surface
wave amplitude. We assume that c > 0 and so the waves move in the
positive x-direction.

For application to the slowly varying solitary wave, the expression (35)
for the amplitude of a solitary wave reduces to

a3
s

a3
s0

= κ

κ0
, κ = 9

4gc2 H 2
. (45)

Using the expression (41) this becomes

a3
s

a3
s0

= κ

κ0
, κ = 9

4g
{
g1/2 H 3/2 + M0

}2
. (46)

When U = 0, M0 = 0 and this is the usual well-known law that as ∝ H−1.
In an advancing current, U > 0, M0 > 0, as increases as U increases and H
decreases, but the rate of increase is reduced from that when U = 0. On the
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other hand in an opposing current, U < 0, M0 < 0, as again increases as |U |
increases and H decreases, but now the rate of increase is enhanced, and
as → ∞ when c → 0, U → −(g|M0|)1/3. Note that this limit corresponds
to critical flow, as then the Froude number |U |/c0 → 1 and we infer that
the breakdown corresponds to the failure of the quasi-steady hypothesis at
criticality. However, note that this occurs as c → 0 and then arises only as
T → ∞, see (2).

For a periodic wave, we use the expressions (36, 38) where

α = 9c c1/2
0

(2g)1/2 H 3
= 9

{
g1/2 H 3/2 + M0

}
(4g)1/4 H 15/4

,

ap = a c1/2
0

(2g)1/2c
= a H 5/4

(4g)1/4
{
g1/2 H 3/2 + M0

} . (47)

When U = 0, M0 = 0 and then α ∝ H−9/4. Thus as the depth H decreases,
the modulus m increases toward 1, the amplitude a increases, and the
wave develops into a solitary wave train. In this case, the amplitude
ap ∝ aH−1/4 and also increases. In an advancing current, U > 0, M0 > 0,
the increase in α with decreasing depth H is enhanced, and so again the
modulus m increases toward 1 and the amplitude a increases. Indeed, as
m → 1, F(m) ≈ 2K (m)3, see (37), and the expression (47) reduces to
the solitary wave law (46). On the other hand, in an opposing current,
U < 0, M0 < 0, the expression (47) shows that when H 3/2 > 5|M0|/3g1/2

and the depth H decreases, α increases toward a maximum of C1g/|M |3/2,
C1 = (3/5)1/227/25, the modulus m increases toward 1, the solitary wave
limit (46) may be reached and so the amplitude increases. However, when
H 3/2 < 5|M0|/3g1/2, α decreases, the modulus m decreases and indeed
becomes 0 when H 3/2 = |M0|/g1/2, that is c = 0, although this limit is only
reached as τ → ∞. In this regime, then F(m) ∼ m2 and the expression
(38) shows that the amplitude a tends to a constant. However, the physical
amplitude ap increases and becomes infinite as m → 0.

In Fig. 3, we show two typical numerical simulations of the vKdV equa-
tion (5) for cases when U > 0 and U < 0. The initial condition is the soli-
tary wave (31) with nondimensional amplitude a = 0.1 and nondimensional
� = 0.14. In these simulations, we use nondimensional coordinates such
that h = 1, g = 1 and choose U = ±(0.1 + 0.2 tanh (0.001τ )), M0 = ±0.1,
respectively, corresponding to an advancing or opposing current in x > 0.
Note that as τ → ∞. H → 1/3. Then α is given by (47) using the
relation (41); note that when H = 1, α = 7.00, 5.73, respectively, at the
initial location τ = 0, and in both cases increases as |U | increases and H
decreases, reaching α = 107.1, 35.6 at τ = 2000. Thus, in the case U > 0,
α is much larger than for the case U < 0, and consequently the solution for
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Figure 3. (color online) A numerical simulation of the vKdV equation (5) for cases when
U > 0 (top) and U < 0 (bottom). The initial condition is the solitary wave (31) (black,
dot), the numerical solution is A (blue, dash), and the physical solution is η (red, solid).

the transformed variable A is larger and shows more fissioning when U > 0
than when U < 0 due to the enhanced nonlinearity. However, the solution
magnitude for the physical variable η is η = AQ−1/2 (2) where here Q is
given in (44). In the case U > 0, Q varies very little, for Q = 1 at τ = 0
to Q = 1.09 at τ = 2000, and the decrease from A to η is less than 5%.
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However, in the case U < 0, Q decreases from Q = 1 at τ = 0 to Q = 0.2
at τ = 2000 and consequently there is a substantial increase from A to η.
This is primarily due to the factor c2 in Q, as here c decreases toward zero
as |U | increases. However, note that this effect of the factor

√
Q influences

only the magnitude and does not change the fissioning dynamics.

3.2. Linear shear

For this application, we now again put ρ0(z; x) = ρ1 is a constant, but
assume that the basic current u0(z; x) = Ub(x) + �(x)(z + h) has a linear
vertical shear, and Ub(x) is the bottom velocity. Now the basic state
equations (10)–(16) reduce to

ρ1(UbUbx + Ub�x (z + h) + ��x
(z + h)2

2
+ gη0x ) = F0, (48)

p0 = gρ1(η0 − z), (49)

U H = M0, H = h + η0, U = Ub + �H

2
, (50)

where U is the depth-averaged velocity and M0 is again the constant mass
flux. However, now F0 depends on z

F0z = �x u0, (51)

and so σ (23) is not zero. Note here that a factor ρ1 has been omitted. The
modal function (18, 19) and the coefficients (20)–(23) are now given by

φ = (c − Ub − �H )(z + h)

(c − u0)H
, for − h < z < η0, (52)

ĉ = c − U, ĉ = {
c2

0 + �2 H 2/4
}1/2

, φz = c2
0

H (c − u0)2
, I = 2ĉ

H
, (53)

μ = 3c2
0 + �2 H 2

2Hĉ
, δ = (ĉ − �H/2)2 H 2

6ĉ
, Q = 2gc2ĉ

c2
0

, (54)

σ = �x H

4ĉ
(−U + ĉF), β = �τ H

4cĉ
(−U + ĉF),

where F = −1 + (1 − ω2)

ω

{
1 + 1 − ω

2ω
log

(1 − ω)

(1 + ω)

}
, ω = �H

2ĉ
. (55)
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Figure 4. A plot of the F(ω)(55).

Here, φ(z) is again normalized so that φ(z = η0) = 1 and so η is the surface
wave amplitude. We have chosen a plus sign in (53) so that ĉ > 0. Note
that μ, δ, ĉ depend only on �, H , and the speed U enters explicitly only
into Q, β. In particular, the expression F in (55) depends only on the
nondimensional shear ω where |ω| < 1. In the limit of weak shear when
ω → 0, F → 0 and so

β → −�τ HU

4cc0
, as ω → 0. (56)

Thus, in this limit β < 0 in an advancing current (U > 0) when the shear
gradient is increasing (�τ > 0), while β < 0 in an opposing current (U < 0)
when the shear gradient is decreasing (�τ < 0); otherwise β > 0. In
general, a plot of F(ω) is shown in Fig. 4, and we see that F varies between
a minimum −1 at ω = ±1 and a maximum of 0.03936 at ω = −0.2288.
Furthermore, F > 0 only in the range −0.4393 < ω < 0 and F < 0
elsewhere. It follows that in advancing current U > 0, the conclusion based
on (56) that β < 0 when �τ > 0 still holds for all −1 < ω < −0.4393 and
0 < ω < 1, and can be reversed only if −0.4393 < ω < 0 and only then if
also U < 0.03936ĉ. On the other hand in an opposing current U < 0, the
conclusion based on (56) that β < 0 when �τ < 0 still holds only when
−0.4393 < ω < 0, but may be reversed if −1 < ω < −0.4393 or 0 < ω < 1
provided that also |U | < ĉ.
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For the application to the slowly varying solitary wave, the expression
(35) reduces to

a3
s

a3
s0

= κ

κ0
exp

(
−4

∫ x

0

σdx

c

)
, κ = c2μ

Q2δ
= 3

4Hc2ĉ2

(
3c2

0 + �2 H 2
)

(ĉ − �H/2)2
. (57)

In the absence of a background shear (� = 0, ĉ = c0) this reduces to (46)
and so the main interest now is the effect of including shear. Thus we exam-
ine the effect of � with H, U fixed. In the adiabatic term κ increasing |�|
increases ĉ, according to the term �2 H 2/c2

0 (53), but this term is typically
quite small, being O(ω2). The main effect is due to the term 1/(ĉ − �H/2)2

which increases as ω increases, and is greater or less than 1/c0 according as
ω > 0 or ω < 0. An additional effect of the shear is in the nonconservative
term since now σ �= 0 and there is amplitude growth or decay according as
σ < 0 or σ > 0, where the dependence on ω has been discussed above.

For a periodic wave, we use the expressions (36, 38) where now

α == 3c

H 5/2(2ĉ)1/2

(
3c2

0 + �2 H 2
)

(ĉ − �H/2)2
, ap = ac0

c(2gĉ)1/2
(58)

in the absence of a background shear (� = 0, ĉ = c0) this reduces to (47).
The effect of the shear when U, H are fixed is quite small. The main effect
on α is through the term (ĉ − �H/2)2 which decreases as ω increases, and
is less or greater than c0 according as ω > 0 or ω < 0. There is now an
additional effect of the shear in the nonconservative term and this is the
same as that described above for a solitary wave.

In Figs. 5 and 6, we show some typical numerical simulations
of the vKdV equation (5) for cases when U > 0, �τ > 0(< 0), and
U < 0, �τ > 0(< 0). As for the case when � = 0 shown in Section
3.1, we use nondimensional coordinates such that h = 1, g = 1 and choose
U = ±(0.1 + 0.2 tanh (0.001τ )), M0 = ±0.1, respectively, corresponding to
an advancing or opposing current in x > 0. The initial condition is again
the solitary wave (31) with nondimensional amplitude a = 0.1 and nondi-
mensional � = 0.14. Here, we also now choose � = ±0.2 tanh (0.001τ )
for each choice of U . Note that as τ → ∞, |U | → 0.3, |�H | → 0.0667,
and |ω| → 0.058 , and so the approximation (56) is a good indication
of the possible signs of β. Then α is given by (58) using the relation
(50); note that since � = 0 at τ = 0 then α = 7.00, 5.73 at the initial
location τ = 0, according as U > 0(< 0). The effect of � is rather small,
and, as above for the case � = 0, α increases as τ increases. When
τ = 2000, α = 121, 97, 41, 33 according as U > 0, � > 0, U > 0, � < 0,
U < 0, � > 0, U < 0, � < 0, respectively. When �τ > 0(< 0), β > 0(< 0)
and in all cases |β| is quite small, of order 10−4. However, the effect
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Figure 5. (color online) A numerical simulation of the vKdV equation (5) for cases when
U > 0, �τ > 0 (top) and �τ < 0 (bottom). The initial condition is the solitary wave (31)
(black, dot), the numerical solution is A (blue, dash) and the physical solution is η (red,
solid).

of β is cumulative and of more relevance is E which increases (de-
creases) from 1 at τ = 0 to 1.25, 0.84, 0.973, 1.026 at τ = 2000, according
as U > 0, � > 0, U > 0, � < 0, U < 0, � > 0, U < 0, � < 0, respectively.
Note that the effect of the β term, although small, is much larger when
U > 0 than when U < 0. The magnification factor Q correspondingly varies
from 1 at τ = 0 to 1.105, 1.105, 0.19, 0.19 (note that Q depends only on
� and is independent of the sign of �), and as in the case when � = 0
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Figure 6. (color online) A numerical simulation of the vKdV equation (5) for cases when
U < 0, �τ > 0 (top), and �τ < 0 (bottom). The initial condition is the solitary wave (31)
(black, dot), the numerical solution is A (blue, dash), and the physical solution is η (red,
solid).

is ineffective when U > 0, but very significant when U < 0. Overall then
the simulations are similar to those when � = 0. The dynamical fissioning
is more apparent when U > 0 due to the larger values of α, but the overall
amplitude growth is greater when U < 0 due to the great decrease then
in Q. The dynamical effect of the shear is overall rather small, but more
significant when U > 0 than when U < 0.
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4. Discussion

In this paper, we have used the vKdV equation (5) with both numerical
simulations and some theory to analyze the effect of a background current
on the propagation of nonlinear periodic and solitary water waves. The moti-
vation is to contrast this shallow water scenario with the much more studied
case of deep water waves propagating on currents. Although in both cases
conservation of waves and wave action play an essential role, and in both
cases there is more wave amplification for waves on an opposing current
than for waves on an advancing current, there are some major differences.

First, in this long wave limit, it is necessary to take account of both
nonlinearity and wave dispersion and hence we have used a KdV model, de-
veloped for both surface and internal waves, and applied here only for water
waves. A companion paper will examine the case of internal waves. Second,
the horizontal variation in the background current is supported by a corre-
sponding change in total depth, in order that total mass is conserved, and
this depth change is the main element in the transformation of the waves as
they propagate on the variable current. Third, when the background current
has vertical shear, some body force is needed to maintain that shear, and
this leads to a term in the vKdV equation (1) with coefficient σ representing
nonconservation of wave action; the analogous term in the transformed
equation (5) has coefficient β. Although it transpires that this term is quite
small for the numerical examples we have considered, it is nonetheless an
important and hitherto neglected aspect of waves riding on currents, and this
issue will be further developed when we examine the case of internal waves.

We have examined two typical case. In Section 3.1, the background
current has no vertical shear, and consequently the aforementioned
nonconservative term is absent, that is β = 0. The outcome is that in both
cases of an advancing or opposing current, there is wave amplification, due
to the corresponding decrease in the total depth of fluid, but the increase
is much more marked for the case of an opposing current, see Fig. 3. An
important feature here is that dynamical nonlinearity is more important for
the case of an advancing current, due to the larger value of the nonlinear
coefficient α in the transformed equation (5) and this leads to greater
fissioning of the amplitude A in that case. However, the transformation back
to the physical variable η through the transformation η = AQ−1/2 (2) makes
very little difference for the case of an advancing current, but a substantial
increase in amplitude for the case of an opposing current as Q decreases as
|U | increases, due mainly to the decrease then in the speed c.

In Section 3.2, the background current has uniform background shear �.
The main consequence is that then β �= 0 and for realistic values of � when
the approximation (56) can be used, β < 0 implying wave growth when
U, �τ have the same sign, but β > 0 implying wave decay when U, �τ have
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the opposite sign. However, for realistic values of � this nonconservative
effect is not very large, and the amplitudes evolve on the current in a similar
manner to that described in Section 3.1, see Figs. 5 and 6.
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