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1 Introduction

The cosmological observations which leads to the recent accelerating expan-
sion of the universe are weak lensing [1], large scale structure [2], cosmic
microwave background (CMB) radiation [3, 4], Type Ia Supernovae [5] and
baryon acoustic oscillations [6]. To explain the cosmic acceleration of the
universe, two classical approaches are followed: first is to use General Rel-
ativity (GR) and introduce dark energy [7, 8]; and the second is modified
theories of gravity, e.g., f(R) gravity. The modified gravity theories have
attain a great attention to study the current cosmic acceleration [3].

The first studies in black hole thermodynamics was done in 1970s, where
physicists were thinking that there must be some connection among Einstein
equations and thermodynamics because of the linkage between horizon area
(geometric quantity) and entropy (thermodynamical quantity) of black hole.
At that time, those thermodynamic studies were focused in the context of
black hole in which the surface gravity (geometric quantity) is associated
with its temperature (thermodynamical quantity) and the first law of ther-
modynamics (FLT) is satisfied by these quantities [9]. Using that the entropy
is proportional to the horizon area of the BH and the first law of thermody-
namics δQ = TdS, Jacobson [10] was surely capable to derive the Einstein
equations in 1995. By his assumption the expression of FLT is valid for
all Rindler causal horizons by every spacetime where T and δQ denote the
Unruh temperature and energy flux which were watched by an accelerated
observer within the horizon.

For radiation dominated (FRW) universe, Verlinde discovered that the
Friedmann equation can be recomposed in the form like the Cardy-Verlinde
formula [11]. In high-dimensional spacetime, this formula represents an en-
tropy relation for a conformal field theory. It can be observed that radiation
can be described by a conformal field theory. Therefore, thermodynamics of
radiation in the universe has been formulated with the help of entropy for-
mula can also be write in the form of friedmann equation, which describes the
dynamics of spacetime. These two equations conflict one another [12], par-
ticularly when the Hubble entropy bound is saturated. Further, Verlinde dis-
covered the relation between thermodynamics and Einstein equations. The
discussion related to the relation between thermodynamics and the Einstein’s
equation was done in [13].

By the discovery of black hole thermodynamics, it was shown [14] that
gravitation and thermodynamics are deeply connected. The Hawking tem-
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perature of apparent horizon is proportional to Ksg surface gravity, and hori-
zon entropy S = A/4G fulfil the first law of thermodynamics [9, 15]. The
Bekenstein-Hawking entropy is defined as one quarter of the area of the BH’s
event horizon (which is measured in Planck units) [9, 15]. It was discovered
that using an entropy formula related with the area of accelerated horizons
and the first law of thermodynamics, the Einstein’s field equations can be
obtained [10]. After that, this relation was analysed, and it was found an
equivalence between the Friedmann equations and FLT [16]. The relation
between gravitation and thermodynamics has been vastly studied in the lit-
erature, and lastly, this topic has attracted a great interest in studying its
properties in alternatives generalized theories of gravity [17]-[19].

Applying the first law of thermodynamics to the apparent horizon of
FRW universe and assuming the geometric entropy given by a quarter of
the apparent horizon area Cai derived the Friedmann equations which de-
scribes the dynamics of universe with any spatial curvature [20]. The relation
between the Friedmann equations with the first law of thermodynamics for
scalar-tensor gravity and f(R) gravity is discussed by Akbar [21]. To satisfy
the GSL constraints and conditions imposed on cosmological future horizon
Rh, Hubble parameter H, and the temperature T , in a phantom-dominated
universe are described in [22]. Akbar [23] has shown that the differential
form of Friedmann equations of FRW universe filled with a viscous fluid can
be rewritten as a similar form of the first law of thermodynamics at the ap-
parent horizon of FRW universe. Bamba has studied the first and second
laws of thermodynamics of the apparent horizon in f(R) gravity in the Pala-
tini formalism [24]. He also explored both nonequilibrium and equilibrium
descriptions of thermodynamics in f(R) gravity and conclude that equilib-
rium framework is more transparent than the non-equilibrium one. Further
the laws of thermodynamics at the apparent horizon of FRW spacetime in
f(R, T ) gravity are discussed by Sharif and Zubair [18] and found that the
picture of equilibrium thermodynamics is not feasible in f(R, T) gravity, so
the non-equilibrium treatment is used to study the laws of thermodynamics
in both forms of the energy-momentum tensor of dark components. In [26]
the laws of thermodynamics are studied by Wu for the generalized f(R) grav-
ity with curvaturematter coupling in spatially homogeneous, isotropic FRW
universe whose results shows that the field equations of the generalized f(R)
gravity with curvaturematter coupling can be cast to the form of the first law
of thermodynamics with the the entropy production terms and the GSL can
be given by considering the FRW universe filled only with ordinary matter

3



enclosed by the dynamical apparent horizon with the Hawking temperature.
In this paper, the horizon entropy is constructed from the first law of

thermodynamics corresponding to the Friedmann equations in the context of
f(R,RαβR

αβ, φ). We explore the generalized second law of thermodynamics
(GSLT) and find out the necessary condition for its validity. The paper
is organized as follows: In Sec. 2, we review f(R,RαβR

αβ, φ) gravity and
formulate the field equations of FRW universe. Sec. 3 is devoted to study
the first and second laws of thermodynamics. In Sec. 4, the validity of GSLT
for different models are discussed. Finally in Sec. 5 we conclude our results.
Throughout the paper we will use the metric signature (−,+,+,+), c = 1
and that the Ricci tensor Rµν = Rσ

µσν .

2 f (R,RαβR
αβ, φ) gravity

Scalar tensor modified theories of gravity which are based on non-minimal
coupling between matter and the geometry, have had very interesting appli-
cations in the thermodynamics context (See for instance []). Let us consider
a very general theory based on a smooth arbitrary function f(R,RαβR

αβ, φ)
on its arguments, where R, RαβR

αβ ≡ Y and φ are the Ricci scalar, the Ricci
invariant and the scalar field respectively within a scalar tensor context. The
action of this modified theory reads [27],

Sm =

∫
d4x
√
−g
[

1

κ2

(
f
(
R,RαβR

αβ, φ
)

+ ω(φ)φ;αφ
;α
)

+ Lm
]
, (1)

where Lm and ω(φ) are the matter Lagrangian density and a generic function
of the scalar field φ respectively.

By varying the action (1) with respect to metric gµν , the field equations
obtained are:

fRRµν −
1

2
(f + ω(φ)φ;αφ

;α) gµν − fR;µν + gµν�fR + 2fYR
α
µRαν

−2[fYR
α
(µ];ν)α + �[fYRµν ] + [fYRαβ];αβgµν + ω(φ)φ;µφ;ν = κ2T (m)

µν , (2)

where � = gµν∇µ∇ν , fR = ∂f/∂R, fY = ∂f/∂Y and κ2 ≡ 8πG. The
energy-momentum tensor for a perfect fluid is defined as

T (m)
µν = (ρm + pm)uµuν + pmgµν , (3)
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where pm, ρm and uµ are the pressure, energy density and the four velocity
of the fluid respectively. Hereafter, we will assume that the matter of the
universe has zero pressure pm = 0 (dust). An effective Einstein field equation
from Eq. (2) can be written as (*error*)

Rµν −
1

2
Rgµν = 8πGeffT

(m)
µν + T (d)

µν , (4)

where

Geff =
G

F
; F = fR, (5)

where Geff is the effective gravitational matter and

T (d)
µν =

1

F

[
− 1

2
RgµνF +

1

2
(f + ω(φ)φ;αφ

;α) gµν + F;µν − gµν�F − 2fY

×Rα
µRαν + 2[fYR

α
(µ];ν)α −�[fYRµν ]− [fYRαβ];αβgµν − ω(φ)φ;µφ;ν

]
, (6)

represents the energy-momentum tensor for dark components (*error*). The
metric describing the FRW universe is

ds2 = hαβdx
αdxβ + r̃2dΩ2, (7)

the 2-dimensional metric hαβ = diag
(
−1, a(t)2

1−kr2

)
with (x0, x1) = (t, r), a(t)

is the scale factor and k = ±1, 0 is the spacial curvature. The second term
is r̃ = a(t)r and dΩ2 = dθ2 + sin θ2dϕ2 is the 2-dimensional sphere with unit
radius. The gravitational field equations for the metric (7) are given by

3

(
H2 +

k

a2

)
= 8πGeffρm +

1

F

[
1

2
(RF − f)− 1

2
ω(φ)φ̇2 − 3H∂tF − 6H

(
2Ḣ + 3H2 +

k

a2

)
∂tfY − fY

(
...
H + 4HḦ + 6ḢH2 − 2H4 − 4kH2

a2

)]
, (8)

−
(

2Ḣ + 3H2 +
k

a2

)
=

1

F

[
1

2
(f −RF)− 1

2
ω(φ)φ̇2 + ∂ttF + 2H∂tF

+

(
4Ḣ + 6H2 +

2k

a2

)
∂ttfY + 4H

(
Ḣ + 3H2 +

2k

a2

)
∂tfY + fY

(
4

...
H

+20HḦ + 10ḢH2 + 16Ḣ2 − 18H4 − 18kḢ

a2
− 20kH2

a2
− 18k2

a4

)]
. (9)
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Here, dots represents derivation with respect to the cosmic time t and H =
ȧ/a is the Hubble parameter. These equations can be rewritten as

3

(
H2 +

k

a2

)
= 8πGeff (ρm + ρd), (10)

−2

(
Ḣ − k

a2

)
= 8πGeff (ρm + ρd + pd) , (11)

where ρd and pd are the energy density and pressure of dark components with
G = FGeff , are given by

ρd =
1

8πG

[
1

2
(RF − f)− 1

2
ω(φ)φ̇2 − 3H∂tF − 6H

(
2Ḣ + 3H2 +

k

a2

)
×∂tfY − fY

(
...
H + 4HḦ + 6ḢH2 − 2H4 − 4kH2

a2

)]
, (12)

pd =
1

8πG

[
1

2
(f −RF)− 1

2
ω(φ)φ̇2 + ∂ttF + 2H∂tF +

(
4Ḣ + 6H2

+
2k

a2

)
∂ttfY + 4H

(
Ḣ + 3H2 +

2k

a2

)
∂tfY + fY

(
4

...
H + 20HḦ

+10ḢH2 + 16Ḣ2 − 18H4 − 18kḢ

a2
− 20kH2

a2
− 8k2

a4

)]
. (13)

3 Generalized Thermodynamics laws

3.1 First Law of Thermodynamics

Here we analyse the validity of the first law of thermodynamics at the appar-
ent horizon of FRW universe in f(R, Y, φ) gravity. The dynamical apparent
horizon is derived by the relation hαβ∂αr̃∂β r̃ = 0 from which we have the

radius of apparent horizon r̃A =
(
H2 + k

a2

)− 1
2 . Taking time derivative of r̃A

and using Eq. (11), we have

Fdr̃A = 4πGHr̃3
A(ρ̂ν + p̂ν)dt, (14)

where ρ̂ν = ρ̂m + ρ̂d and p̂ν = p̂d. dr̃A represents the infinitesimal change in
radius of the apparent horizon during a time interval dt. The temperature
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of apparent horizon is defined as Th = |Ksg |
2π

, where Ksg [20] is the surface

gravity and is defined as Ksg = − 1
r̃A

(1 − ˙̃rA
2Hr̃A

). In GR, the Bekenstein-
Hawking defined the horizon entropy by the relation Sh = A/4G, where A
is the area of the apparent horizon defined by A = 4πr̃2

A [9, 14, 15]. In
the literature of modified theories of gravity , Wald [28] defined the horizon
entropy with Noether charge. It can be obtained by varying the Lagrangian
density of modified gravitational theories with respect to Riemann tensor.
Wald entropy is defined as Ŝh = A/4Geff [29], where Geff is the effective
gravitational coupling. The Wald entropy in f(R, Y, φ) gravity is defined as

Ŝh = AF/4G, (15)

where F = fR. Differentiating Eq. (15) and using (14), we have

1

2πr̃A
dŜh = 4πr̃3

A (ρ̂ν + p̂ν)Hdt+
r̃A
2G

dF . (16)

Multiplying both sides of above equation by
(

1− ˙̃rA
2Hr̃A

)
, we obtain

ThdŜh = −4πr̃3
A (ρ̂ν + p̂ν)Hdt+ 2πr̃2

A (ρ̂ν + p̂ν) dr̃A +
πr̃2

ATh
G

dF . (17)

Now, we are defining the energy of the universe inside the apparent horizon.
The Misner-Sharp energy defined in [30] is E = r̃A

2G
and for f(R, Y, φ) gravity

we can write it as [16, 31]

Ê =
r̃A

2Geff

, (18)

using volume V = 4
3
πr̃3

A, we can write it as

Ê =
3V

8πGeff

(
H2 +

k

a2

)
= V ρ̂ν , (19)

which is the total energy inside the sphere of radius r̃A. If we choose the
effective gravitational coupling constant as positive in f(R, Y, φ) gravity then
we have Geff = G/F > 0, from which we can conclude that Ê > 0. From
Eq’s (10) and (19) we can write

dÊ = 4πr̃2
Aρ̂νdr̃A − 4πr̃3

A (ρ̂ν + p̂ν)Hdt+
r̃A
2G

dF . (20)
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Using Eq. (20) in (17), it follows that

ThdŜh = dÊ − ŴdV − (1− 2πr̃ATh) r̃AdF
2G

, (21)

which involves the work density Ŵ = 1
2

(ρ̂ν − p̂ν) [32]. The above equation
can be rewritten as

ThdŜh + ThdiŜh = dÊ − ŴdV, (22)

where

diŜh =
(1− 2πr̃ATh) r̃AdF

2GTh
=

(
Ê − ŜhTh

)
ThF

dF . (23)

Comparing the f(R, Y, φ) gravity with GR, Lovelock gravity and Gauss-
Bonnet gravity [33]-[35], we see an additional term diŜh in the first law of
thermodynamics. We can call it the entropy production term which occurred
due to the non-equilibrium behavior of f(R, Y, φ) gravity. From this result
we have first law of thermodynamics for non-equilibrium behavior of f(R)
gravity [24] by setting f(R, Y, φ) = f(R). By choosing f(R, Y, φ) = R, we
can achieve the standard first law of thermodynamics in GR.

3.2 Generalized Second Law of Thermodynamics

In the circumstance of modified gravitational theories the GSLT has been
discussed frequently [24, 25, 31, 36]. To check its validity in f(R, Y, φ) gravity,
we have to prove the inequality [31]

˙̂
Sh + di

˙̂
Sh +

˙̂
Sν ≥ 0, (24)

where Ŝh, di
˙̂
Sh = ∂t(diŜh) and Ŝν are horizon entropy, entropy due to all the

matter inside the horizon and entropy due to energy sources inside the hori-
zon. Now we continue with the Gibbs equation which includes the entropy
of matter and energy fluid is given by [37]

TνdŜν = d(ρ̂νV ) + ρ̂νdV, (25)

where Tν denote the temperature within the horizon. we are assuming here
a relation between temperature within horizon and temperature of apparent
horizon i.e., Tν = bTh, where 0 < b < 1 which guarantee the positivity of
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temperature and it is smaller than the horizon temperature. Substituting
Eq’s. (22) and (25) in Eq. (24), we obtain

Ŝtot =
˙̂
Sh + di

˙̂
Sh +

˙̂
Sν =

2πΣ

r̃AbR
≥ 0, (26)

where

Σ = (1− b) ˙̂ρνV + (1− b

2
)(ρ̂ν + p̂ν)V̇ ,

which is the general condition to satisfy the GSLT in modified gravitational
theories [31]. Using Eq’s. (10) and (11), condition (24) is reduced to

2πΞ

Gb
(
H2 + k

a2

) (
Ḣ + 2H2 + k

a2

) ≥ 0, (27)

where

Ξ = (b− 1)∂tfR

(
H2 +

k

a2

)
+ 2HfR(b− 1)

(
Ḣ − k

a2

)
+ (b− 2)

×fRH
(
Ḣ − k

a2

)2(
H2 +

k

a2

)−1

. (28)

To protect the GSLT the condition (26) is equivalent to Ξ ≥ 0.

4 Validity of GSLT

We are using here some f(R, φ) models and the model constructed from
f(R, Y, φ) gravity using power law method, and check the validity of Ŝtot ≥ 0.

4.1 Model constructed from de-Sitter Universe

To explain the current cosmic era in cosmology the dS solutions are very
importance. In dS universe scale factor, Hubble parameter, Ricci tensor and
scalar field are defined as a(t) = a0e

H0t, H = H0, R = 12H2
0 and φ(t) ∼ a(t)β,

[38]. Substituting these terms we have constructed the model in our paper
[40]

f(R, Y, φ) = α1α2α3e
α1Reα2Y φγ1 + γ2φ

γ3 + γ4φ
γ5 ,
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where α′is are constants of integration and

γ1 =
18βα1H

2
0 − 108βα2H

4
0 − 5 + 6α1H

2
0 − 84α2H

4
0

6 (H2
0α1β − 6βα2H4

0 )

γ2 = ω0β
2H2

0 , γ3 = m+ 2, γ4 = −2κ2ρ0a
3
0, γ5 = − 3

β
.

Introducing this model in (26) we have equation of the form

Ŝtot =
2π

Gb

[
−12kH0(b− 1)α3

1α2α3a
βγ1
0 eα1R+α2Y

(
a2

0H
2
0 + ke−2H0t

)
e−2H0t

×eβγ1H0t − 24

a2
0

kH0(b− 1)
(
a2

0H
2
0 + ke−2H0t

) (
3a0H

2
0e
−3H0t + 2ke−4H0t

)
α2

1

×α2
2α3a

βγ1
0 eα1R+α2Y eβγ1H0t + βH0(b− 1)α2

1α2α3γ1a
β+2
0 eβH0t

(
a2

0H
2
0 + k

e−2H0t
)
eα1R+α2Y a

β(γ1−1)
0 eβ(γ1−1)H0t − 2kH0a

2
0(b− 1)α2

1α2α3e
−2H0taβγ10

eα1R+α2Y eβγ1H0t + 2k2H0a
2
0

(
b

2
− 1

)
α2

1α2α3

(
a2

0H
2
0 + ke−2H0t

)−1
e−4H0t

eα1R+α2Y aβγ10 eβγ1H0t
] (
a2

0H
2
0 + ke−2H0t

)−1 (
2a2

0H
2
0 + ke−2H0t

)−1 ≥ 0. (29)

The GSLT constraint of dS f(R, Y, φ) depends on five parameters α1, α2,
α3, β and t. In this perspective, we are fixing two parameters and observe
the feasible region by varying the possible ranges of other parameters. We
are fixing α1 and α2 and show the results for Ŝtot. Herein, we set the present
day values of Hubble parameter and cosmographic parameters as H0 = 73.8,
q = −0.81, j = 2.16, s = −0.22 [39]. The feasible regions for all the possible
cases for dS f(R, Y, φ) model are presented in Table 1.

Initially, we vary α1 and α2 to check the validity of Ŝtot for different values
of α3, β and t. If we set both α1 and α2 as positive then Ŝtot is valid for t,
however β needs some particular ranges as (α3 ≥ 0, β ≤ −0.78) and (α3 ≤ 0,
β ≥ 0). If α1 < 0 and α2 > 0, Ŝtot is valid for all values of t with (α3 ≥ 0,
β ≤ −0.78) or (α3 ≤ 0, β ≥ 0). For (α1 > 0, α2 < 0), Ŝtot is valid for all
values of α3, β and t. For (α1 > 0, α2 < 0) and (α1 < 0, α2 < 0), Ŝtot is
valid for all values of α3, β and t. Evolution of GSLT constraint is shown
here verses the parameters α3, β and t by fixing α1, α2.

4.2 Model constructed from power Law method

Power solutions are very useful to discuss the different phases of cosmic evo-
lution e.g., dark energy, matter and radiation dominated epochs. We are
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Figure 1: Variation of GSLT constraint for dS f(R, Y, φ) model with α1 > 0
and α2 > 0 and show the variation for all α3 and β.

discussing here just one power law solution for f(R, Y, φ) gravity. For power
law the scale factor is defined as [39, 44]

a(t) = a0t
n, H(t) =

n

t
, R = 6n(1− 2n)t−2, (30)

where n > 1 shows the accelerating picture of the universe, 0 < n < 1 leads
to decelerated universe, (n = 2

3
) leads to dust dominated and (n = 1

2
) for

radiation dominated. We have constructed the model f(R, φ) in our paper
[40]. Here we are using this model to show the validity of GSLT

f(R, φ) = α1α2φ
γ1Rγ2 + γ3φ

γ4 + γ5φ
γ6 ,

where α′is are constants of integration and

γ1 =
α1

3n− 1
+
n− 3

nβ
− 2(3n− 1)2

n2β2α1

, γ2 =
n(n− 3)βα1

(3n− 1)2
,

γ3 = ω0β
2n2a

2
n
0 , γ4 = m+ 2− 2

nβ
, γ5 = −2κ2ρ0a

3(1+w)
0 , γ6 = − 3

β
.
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Substituting this model in (26) we get

Ŝtot =
2π

Gb

[
H0(b− 1)α1α2γ2(γ2 − 1)aβγ10 tnβγ1

(
(j − q − 2)H2

0 +
k

a2
0t

2n

)
×
(

(1− q)H2
0 +

k

a2
0t

2n

)γ2−2

+ βH0α1α2γ1γ2

(
(1− q)H2

0 +
k

a2
0t

2n

)γ2−1

×(b− 1)aβγ10 tnβγ1 − 2H0(b− 1)α1α2γ2a
βγ1
0 tnβγ1

(
(1− q)H2

0 +
k

a2
0t

2n

)γ2−1

×

{
1 +

qH2
0

H2
0 + k

a20t
2n

}
+ 2H0α1α2γ2a

βγ1
0 tnβγ1

(
(1− q)H2

0 +
k

a2
0t

2n

)γ2−1

×
(
b

2
− 1

)(
1 +

qH2
0

H2
0 + k

a20t
2n

)2 ](
(1− q)H2

0 +
k

a2
0t

2n

)−1

≥ 0. (31)

The above constraint have five parameters α1, α2, n, β and t. We are checking
the validity of Ŝtot for different values of n, β and t by fixing α1, α2. All
possible cases of this model are discussed in Table 1.

Lets Start with α1 > 0 and check the viabe ranges of α2, β and t. In this
case we have three cases depending on the choice α2, (i) α2 < 0, n ≥ 3 with
(β ≤ −35.8, t ≥ 1) or (β ≥ 2.81, t ≥ 0.94), (ii) α2 = 0, n > 1 & ∀ t with
β > 0 or β < 0, (iii) α2 > 0 with (n ≥ 8.6, 0 < β ≤ 20, t ≥ 0.8) or (n ≥ 12.7,
−20 ≤ β < 0, t ≥ 0.9). Next we take α1 < 0 and again we have three cases
based on the selection of α2, i α2 < 0 with (n ≥ 8.6, −20 ≤ β < 0, t ≥ 0.8)
or (n ≥ 12.7, 0 < β ≤ 20, t ≥ 0.9), (ii) α2 = 0, n > 1 & ∀ t with β > 0 or
β < 0, (iii) α2 > 0, n ≥ 3 & ∀ t with (β ≤ −28.1) or (β ≥ 35.7). It can be
noted that taking α1 and α2 with same sign Ŝtot is not valid for initial values
of t and n and β is restricted to β ≤ 20 & β ≥ −20. To show the feasible
regions of this model we show the plot of GSLT inequality.

4.3 f(R, φ) Models

1. f(R, φ) = R−2Λ(1−eBφκ3R)
κ2

2. f(R, φ) = R

(
ω0β2n2a

2/n
0 (mnβ+2nβ+6n−2)

mnβ+2nβ−2

)
φm+2− 2

nβ

3. f(R, φ) = R(1 + ξκ2φ2)
4. f(R, φ) = φ(R + αR2)
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Figure 2: Plot of GSLT constraint for PL-f(R, φ) versus the parameters n,
β and t with α1 > 0, α2 = 5.

4.3.1 Model-I

Myrzakulov et al. [41] has examined the spectral index and tensor-to-scalar
ratio to describe the inflation in f(R, φ) theories and observed the results
using the recent observational data. Here we are using the model

f(R, φ) =
R− 2Λ(1− eBφκ3R)

κ2
,

where κ3 is introduced for dimensional reasons and b is a dimensionless num-
ber of order unity. Inserting the model in (26) the inequality becomes

Ŝtot =
2π

Gb

[
2H0(b− 1)ΛB2a2β

0 t
2nβκ4ReBa

β
0 t
nβκ3R + 2ΛBκ(b− 1)βH0a

β
0 t
nβ

(1 +Baβ0 t
nβκ3R)eBa

β
0 t
nβκ3R − 2

κ2
H0(b− 1){1 + 2ΛBaβ0 t

nβκ3eBa
β
0 t
nβκ3R}(

1 +
qH2

0

H2
0 + k

a20t
2n

)
+

2H

κ2

(
b

2
− 1

){
1 + 2ΛBaβ0 t

nβκ3eBa
β
0 t
nβκ3R

}
(

1 +
qH2

0

H2
0 + k

a20t
2n

)2 ](
H2

0 (1− q) +
k

a2
0t

2n

)−1

, (32)

where R = 6
(

(1− q)H2
0 + k

a20t
2n

)
. Now we discuss the above constraint,

which is depending on four parameters B, n, β and t. We find that Ŝtot is

13



satisfied for two cases depending on the choice of B: (i) B = 0 with n > 1,
t ≥ 0.96 & ∀ β, (ii) B > 0 with n > 1, β ≤ −0.6 & ∀ t and n ≥ 2.5, β ≥ 6
& t ≥ 2.5.

4.3.2 Model-II

We have derived f(φ) from Klein-Gordon equation by inserting ω(φ) = ω0φ
m

and φ = a(t)β given in [27] and compose the model of the form f(R, φ) =
Rf(φ) is given by

f(R, φ) = R

(
ω0β

2n2a
2/n
0 (mnβ + 2nβ + 6n− 2)

mnβ + 2nβ − 2

)
φm+2− 2

nβ ,

where ω0 and a0 are constants. Introducing this model in (26) we find the
constraint

Ŝtot =
2π

Gb

[
β2H0(b− 1)ω0n (mnβ + 2nβ + 6n− 2) a

β(m+2)
0 tmnβ+2nβ−2

−2H0(b− 1)
ω0β

2n2a
2/n
0 (mnβ + 2nβ + 6n− 2)

mnβ + 2nβ − 2
a
β(m+2− 2

nβ )
0 tmnβ+2nβ−2{

1 + qH2
0 (H2

0 +
k

a2
0

t2n)−1

}
+ 2

(
b

2
− 1

)
H0a

β(m+2− 2
nβ )

0 tmnβ+2nβ−2

ω0β
2n2a

2/n
0 (mnβ + 2nβ + 6n− 2)

mnβ + 2nβ − 2

(
1 +

qH2
0

H2
0 + k

a20t
2n

)2 ]
(
H2

0 (1− q) +
k

a2
0t

2n

)−1

. (33)

One can see that the inequality of this model is depending on four parameters
β, m, n and t. We will discuss the viability of Ŝtot for different values of β and
m by fixing n. For n > 1 and ∀ t we have two cases: m ≥ 2 with β ≤ −1.5
and m ≤ −3.2 with β ≥ 5. We show the plot of GSLT constraint verses the
parameters m, β and t by fixing n > 1.

4.3.3 Model-III

Now we are presenting the model which is applied to describe the cosmologi-
cal perturbations for non-minimally coupled scalar field dark energy in both

14



Figure 3: Variation of GSLT constraint for Model-II versus the parameters
m, β and t with n = 1.1.

metric and Palatini formalisms [42].

f(R, φ) = R(1 + ξκ2φ2),

where ξ is the coupling constant. Using this model in (26) we have

Ŝtot =
2π

Gb

[
2βH0ξκ

2(b− 1)a2β
0 t

2nβ − 2H0(b− 1)
(

1 + ξκ2a2β
0 t

2nβ
)
×{

1 + qH2
0

(
H2

0 +
k

a2
0

t2n
)−1

}
+ 2

(
b

2
− 1

)
H0

(
1 + ξκ2a2β

0 t
2nβ
)

(
1 +

qH2
0

H2
0 + k

a20t
2n

)2 ](
H2

0 (1− q) +
k

a2
0t

2n

)−1

.

Here we have four parameters n, ξ, β and t. By fixing n we will find the
values of ξ and β for which Ŝtot is satisfied. For n > 1 it is valid for β ≤ −3.5
with (∀ ξ, t ≥ 4) and for β ≥ 0.15 with (ξ ≤ 0, t ≥ 1).

4.3.4 Model-IV

To reproduce inflation, a very familiar gravitational action is defined as [43]

f(R, φ) = φ(R + αR2),
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Figure 4: validity regions of GSLT constraint for Model-IV verses the pa-
rameters α and β with n = 1.1.

where α is a constant with suitable dimensions. Introducing this model in
(26) we have inequality of the form

Ŝtot =
2π

Gb

[
12αH0(b− 1)aβ0 t

nβ

{
(j − q − 2)H2

0 +
k

a2
0t

2n

}
+ βH0(b− 1)

×aβ0 tnβ
{

1 + 12α

(
(1− q)H2

0 +
k

a2
0t

2n

)}
− 2H0(b− 1)aβ0 t

nβ

{
1 + 12α

×
(

(1− q)H2
0 +

k

a2
0t

2n

)}{
1 + qH2

0

(
H2

0 +
k

a2
0t

2n

)−1
}

+ 2

(
b

2
− 1

)
×

H0a
β
0 t
nβ

{
1 + 12α

(
(1− q)H2

0 +
k

a2
0t

2n

)}(
1 +

qH2
0

H2
0 + k

a20t
2n

)2 ]
(
H2

0 (1− q) +
k

a2
0t

2n

)−1

. (34)

Here we intend to discuss the validity of Ŝtot and constrain the parameters
like n, α, β and t. For n > 1 we have two cases depending on the choice of
α: (i) α < 0 with (β ≥ 0, ∀ t) (ii) α ≥ 0 with (β ≤ −0.25, t ≥ 1). We are
presenting here the evolution of GSLT to show some viable regions in this
case.
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5 Conclusions

To analyse the accelerated cosmic expansion and to estimate the universe des-
tiny, scalar tensor theories of gravity are very effective. f(R,RµνR

µν , φ) is
one of more general modified gravity, which involves the contraction of Ricci
tensors Y = RµνR

µν and scalar field φ. In this paper, the thermodynamic
study is implemented to the more general modified theory f(R,RµνR

µν , φ)
which can be considered as an extended form of f(R) and f(R, φ) grav-
ity. However the laws of thermodynamics for f(R) and f(R, φ) and other
modified theories have been established but there is a remarkable difference
between results of this theory and other modifications. Further we have
consider some models to check the viability of GSLT. The general dS case
f(R, Y, φ) the GSLT constraint is depending on five parameters α1, α2, α3, β
and t. In this perspective, we are fixing α1 and α2 and show the viable region
by varying the other parameters. In power law case f(R, φ) by varying α1,
α2 we have examined the feasible constraints on β, n and t. Next we have
considered four models of f(R, Y, φ) gravity independent of Y , which are of
the form f(R, φ), Rf(φ), φf(R). Model-I is depending on four parameters
B, n, β and t, we have checked the validity of Ŝtot by varying B. Model-II is
a function of four parameters β, m, n and t, by fixing n we will discuss the
viability of Ŝtot for different values of β, m and t. In model-III the constraint
is depending on four parameters n, ξ, β and t. By fixing n > 1 we examined
the possible regions for the other parameters. Next in model-IV we have four
parameters n, α, β and t. For n > 1 we have find the feasible constraints on
other parameters.
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