UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Proteomics Based Process And Cell Line Development Applied To A Mammalian Therapeutic Enzyme

Migani, D; (2017) Proteomics Based Process And Cell Line Development Applied To A Mammalian Therapeutic Enzyme. Doctoral thesis , UCL (University College London). Green open access

[thumbnail of Final Thesis.pdf]
Preview
Text
Final Thesis.pdf - Submitted Version

Download (20MB) | Preview

Abstract

Recombinant human Acid Alpha Glucosidase (GAA) is the therapeutic enzyme used for the treatment of Pompe disease, a rare genetic disorder characterised by GAA deficiency in the cell lysosomes. The manufacturing process for GAA can be challenging, in part due to protease degradation. The overall goal of this project was to understand the effects of GAA overexpression on cell lysosomal phenotype and host cell protein (HCP) release, and any resultant consequences for protease levels and ease of manufacture. To do this we first generated a human recombinant GAA producing stable CHO clonal cell line and then developed a two-step bioprocess based on capture chromatographic step anion exchange (IEX) and intermediate hydrophobic interaction (HIC). The purity of GAA after HIC was determined via LC/MSMS to be above 80%. We then collected images of cell lysosomes via transmission electron microscopy (TEM) and compared the resulting data with that from a Null CHO cell line. TEM imaging revealed 72% of all lysosomes in the GAA cell line were engorged indicating extensive cell stress; by comparison, only 8% of lysosomes in the Null CHO had a similar phenotype. Furthermore, comparison of the HCP profile among cell lines [GAA, mAb and Null] capture eluates, showed that while most HCPs released were common across them, some were unique to the GAA producer, implying that cell stress caused by overexpression of GAA has a molecule specific effect on HCP release. Protease analysis via zymograms showed an overall reduction in proteolytic activity after the capture step but also revealed the presence of co-eluting proteases at approximately 80 KDa, which MS analysis putatively identified as dipeptidyl peptidase 3 and prolyl endopeptidase.

Type: Thesis (Doctoral)
Title: Proteomics Based Process And Cell Line Development Applied To A Mammalian Therapeutic Enzyme
Event: University College London
Open access status: An open access version is available from UCL Discovery
Language: English
Keywords: Chinese Hamster Ovary, lysosomal, Acid Alpha Glucosidase, GAA, Pompe, Upstream development, Cloning, stable cell selection, downstream process development, iex, hic, msms, TEM
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Biochemical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/1565171
Downloads since deposit
526Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item