
Crack detection in lithium-ion cells using machine
learning

Lukas Petricha,∗, Daniel Westhoffa, Julian Feinauera, Donal P. Fineganb,
Sohrab R. Daemib, Paul R. Shearingb, Volker Schmidta

aInstitute of Stochastics, Ulm University, D-89069 Ulm, Germany
bElectrochemical Innovation Laboratory, Department of Chemical Engineering, University

College London, WC1E 6BT, London, UK

Abstract

It is an open question how the particle microstructure of a lithium-ion
electrode influences a potential thermal runaway. In order to investigate
this, information on the structural changes, in particular cracked parti-
cles, caused by the failure are desirable. For a reliable analysis of these
changes a reasonably large amount of data is necessary, which necessi-
tates automatic extraction of particle cracks from tomographic 3D image
data. In this paper, a classification model is proposed which is able to
decide whether a pair of particles is the result of breakage, of the image
segmentation, or neither. The classifier is developed using simulated data
based on a 3D stochastic particle model. Its validity is tested by applying
the methodology to hand-labelled data from a real electrode. For this
dataset, an overall accuracy of 73% is achieved.

Keywords: thermal runaway, lithium-ion battery, crack detection,
machine learning, 3D microstructure, stochastic modelling;

1. Introduction and motivation

Lithium-ion batteries combine several beneficial attributes, such as high en-
ergy density and low self-discharge. However, one of the biggest drawbacks is
their vulnerability to thermal runaway [1]. This is when the temperature of the
cell exceeds a certain threshold, e.g. through overcharging, and exothermic de-
composition of the electrodes generates additional heat accelerating the process.
Such catastrophic failures are rare, but devastating.

∗Corresponding author
Email address: lukas.petrich@uni-ulm.de (Lukas Petrich)

Preprint submitted to Elsevier April 27, 2017

- gap distance
 distribution
- specific surface
 area
- sphericity
- …

Simulated data

Features Train/Test

Compare Performance /

Broken

Broken

ParticleSep

…

WatershedSep

Hand-labelled data

Simulation

Tomographic imaging
+ manual labelling

Improve Model

Dataset

Validation

Figure 1: Overview of the model development.

During the thermal runaway particles in the electrode material break, which
then affects the reaction [2]. More precisely, it has been shown that smaller
particle sizes (and thus higher specific surface area) lead to more intense heat
generation with lower onset temperature (see e.g. [3, 4]). However, information
on the broken particles is required for a more detailed analysis of which particles
are more likely to crack and thus worsen the safety of the cell. The main goal
in this paper is to detect these particles and hence to pave the way for further
research.

Finding cracked particles, i.e., particles that broke into two parts, has always
been challenging. Typically this is done by visual inspection. This method
however has several disadvantages. It is time-consuming and processing a large
number of particles is infeasible. Moreover, it is tedious even for smaller particle
systems and often leads to errors. Other approaches are based on advanced
segmentation algorithms [5]. However, such segmentation algorithms often have
to be specifically tailored in order to take into account the given features of the
considered image data. In the present paper, an algorithm based on machine
learning is proposed, where the complex, non-linear nature of our problem makes
supervised machine learning [6, 7] an appropriate tool, since the associated
techniques possess the ability to make predictions based on previously learned
sample data. The classifier, which considers pairs of particles of the post-mortem
cell, decides whether they are the result of breakages. In case a particle broke
into multiple pieces, every pair of (neighbouring) fragments is detected. To the
best of our knowledge, this is the first work of using machine learning for crack
detection in lithium-ion batteries.

To develop our classification model, we use simulated data. We generate a
particle structure based on a parametric stochastic model (see [8]) and extract
pairs of particles with their class labels, which describe the relationship to each
other, e.g. if they are the result of breakage. Then, different features and
classifiers are investigated. The resulting predictive classifier is retrained and
evaluated on hand-labelled data to verify that it is also applicable to real-world

2

data. This process is illustrated in Figure 1. Note that, in contrast to full
hand-labelling, for training of the classifier only a (relatively) small number
of labelled particle pairs is necessary, and thus the enormous effort of hand-
labelling is strongly reduced.

The algorithm distinguishes three classes. We have a class label for particle
pairs which are the result of breakage and one for those which were already
separated in the pristine battery cell. But particles which touch each other can
also be separated by the watershed algorithm [9] in the course of the image
segmentation (cf. Section 2.1). Consequently, we differentiate the following
three classes of particle pairs:

• Broken: The particle pair belonged to the same particle before it broke
apart during the thermal runaway.

• WatershedSep: The particle pair corresponds to two touching particles
in the tomographic image which are split by the watershed transformation.

• ParticleSep: The particle pair consists of unrelated, separate particles,
i.e. a pair which is neither Broken nor WatershedSep.

Furthermore, these three classes describe the relationship of one particle to
another one. It is hence possible that e.g. a particle which is part of a Broken-
pair, can also belong to a (different) WatershedSep-pair. In Figure 2 and
Figure 3 several examples of particle pairs are shown.

The rest of this paper is structured as follows. In Section 2, we describe
tomographic imaging and the acquisition of the validation dataset. After that,
in Section 3, we present our algorithm to simulate sample data and the clas-
sification model. In Section 4, we follow up with the evaluation results of the
classifier on the simulated and on the validation dataset, and discuss its perfor-
mance. The conclusion in Section 5 provides a summary and further research
opportunities.

2. Description of tomographic data

The tomographic dataset used in this work was retrieved from [2] where a
commercial LiCoO2 cell underwent thermal runaway via high-rate overcharge
electrical abuse. The LiCoO2 sample was extracted post-mortem from an outer
layer of the degraded electrode assembly, and exhibits a significantly reduced
mean particle diameter, relative to an equivalent sample in its fresh state. This
reduction in particle size is described in [2] as being due to the particles crack-
ing when subject to the high temperatures and heating rates associated with
thermal runaway.

2.1. Imaging and data pre-processing
The sample was extracted from the degraded LiCoO2 cell and mounted onto

the top of a pin using quick-setting epoxy (Devcon Epoxy Glue). The sample was
then imaged in a lab-based X-ray nano-CT system (Zeiss Xradia Ultra 810, Carl

3

(a) 2D slice of a
ParticleSep particle

pair.

(b) 2D slice of a Broken
particle pair.

(c) 2D slice of a Broken
particle pair.

(d) 2D slice of a
WatershedSep particle

pair.

(e) 2D slice of a
WatershedSep particle

pair.

(f) 3D rendering of a
Broken particle pair.

Figure 2: Examples of particle pairs from the hand-labelled dataset with their class labels.

(a) WatershedSep particle pair. (b) Broken particle pair.

Figure 3: 3D renderings of the gap (red) between two particles (semi-transparent blue).

4

Zeiss X-ray Microscopy, USA) in absorption mode with a quasi-monochromatic
beam of 5.4 keV. An objective lens giving an optical magnification of 20 was used
with 10.3 X-ray magnification with binning 2×2, giving an effective pixel size of
0.1262 µm. The reconstructed tomogram consisted of 901 radiographs taken over
a 180° rotation, each captured with an exposure time of 15 s. The radiographs
were reconstructed using the Zeiss XMReconstructor software package, which
uses a filtered-back-projection algorithm.

We binarized the tomographic image by assigning voxels to the solid (par-
ticle) phase or to the void phase. For this, the data has been smoothed with a
Gaussian blur filter (σ = 1) reducing the noise of the image (see [10]). Then a
global threshold was applied. The threshold was chosen by visual inspection.

Next, small holes were temporarily removed to keep the watershed transform
more stable and to avoid oversegmentation. In order to do this, we detect
clusters of the pore space with the Hoshen-Kopelman algorithm [11]. All clusters
with less than 10000 voxels are added to the solid phase. This value is chosen
to eliminate small perturbations, but it leaves the general shape of the particles
intact.

We use a marker-based watershed [9] for image segmentation. For that, the
Euclidean distance transformation Idist of the binary Image I is determined,
where the distance from every solid voxel to its nearest void voxel is computed.
Let −Idist be its negation. Filtering out some local minima of −Idist, as de-
scribed in [12], the remaining local minima are used as markers for the watershed
algorithm on −Idist. The basins split the solid phase of the binary image I into
separate particles, where broken particles are represented as two separate ones.

The last step of the pre-processing is to restore the small holes by adding
them to the pore space.

2.2. Labelling of particle pairs
The separate particles were labelled with unique numeric identifiers. Hand-

labelling of particle pairs was performed manually by scrolling through the slices
of the reconstructed tomogram, and noting the numeric labels of the particle
pairs along with their status as Broken, WatershedSep, or ParticleSep,
as judged by visual inspection.

3. Classification of particle pairs

We consider two different datasets. One consists of the hand-labelled tomo-
graphic image of a post-mortem battery cell described in Section 2 and the other
one is computer simulated. The latter dataset gives us an arbitrarily large num-
ber of samples which are guaranteed to have the correct labels and thus allows
us to do accurate feature engineering.

The steps for the investigation of the simulated data are as follows:

1. Realise a random pristine particle system.

5

2. Break some particles while remembering the relationship (class label) of
all pairs.

3. Build a list of particle pairs with their corresponding class labels.

4. Compute the feature vector for each particle pair.

5. Train and evaluate the classifier.

When we use hand-labelled data we start with step 4. In the next sections these
steps are explained in more detail.

3.1. Simulated particle pairs
For the computer generated data we simulate a particle system for a pris-

tine battery cell. Some of its particles are then broken to mimic the effect of
overcharging in the real cell. From this artificial “post-mortem” particle system
we build a list of particle pairs. For the implementation of this technique, the
GeoStoch library [13] is used.

3.1.1. Pristine particle system
We start with simulating a system of pristine particles with the methods

introduced in [8, 14]. All consecutive steps are illustrated in Figure 4. In the
following, we give a short summary of the algorithm, details can be found in [8].

To begin with, a marked point process, namely a random sequential absorp-
tion process, is realised, see [15]. Based on that the corresponding Laguerre
tessellation (cf. [16]) is calculated which provides convex polyhedrons defining
the habitat of the particles.

The connectivity of the particles is roughly described by a random graph. It
is based on the connectivity graph of the polyhedrons, which is then reduced to
a spanning tree. The tree is determined such that it is maximal with respect to
the surface areas of the corresponding polyhedron faces. Additional edges are
included with a certain probability that increases with the same surface areas,
see [8]. For more details on graph theory we also refer to [17].

The particles are modelled by means of Gaussian random fields on the sphere.
For that random spherical harmonics particles (cf. [18]) are generated in the
polyhedrons. The particles obey the connectivity graph in such a way that
particles are connected where the connectivity graph indicates so. Furthermore,
for each particle the ratio of its volume to the volume of the corresponding
polyhedron matches the volume fraction of the material.

Then we only keep the system of spherical harmonics particles omitting
Laguerre tessellation and connectivity graph.

Since we consider the same type of battery, the same model parameters as
in [8] are used.

6

(a) Compute the
Laguerre tessellation.

(b) Realise the random
connectivity graph.

(c) Realise the random
spherical harmonics

particles.

(d) Delete the Laguerre
tessellation and the
connectivity graph.

Figure 4: Steps for simulating the pristine particle system.

3.1.2. Extracting labelled particle pairs
Every particle in the pristine system is voxelized and a certain percentage

of the particles is additionally broken apart (see Section 3.1.3). Note that the
result of this procedure is analogous to the binary image of the experimental
data described in Section 2.1.

For the purpose of keeping track of the class labels we define a graph G whose
vertices represent the voxelized particles and its edges are marked with the type
of the corresponding particle pair. All breakages are added as Broken-edges
to the (initially empty) graph G. Furthermore, we consider the union of all
voxelized particles as an image I. For every intersecting pair of particles (which
we interpret as two particles touching each other) we add an edge to the graph
with a WatershedSep label.

In order to separate the particles that touch each other in the voxelized
image (which will be the input for the crack detection algorithm), we apply a
watershed-based segmentation [9]. However, we slightly deviate from the seg-
mentation procedure for the experimental data to ensure that particles are not
wrongly separated, i.e., we choose exactly one watershed marker for each par-
ticle. To determine this marker, we compute the Euclidean distance transform

7

(a) Consider the pristine
particle system.

(b) Break some particles
apart.

(c) Write all particles in
one image and remember

the intersections.

(d) Apply the watershed
algorithm.

Broken

Broken

ParticleSep

…

WatershedSep

(e) Collect all adjacent
particles with their

classes.

Figure 5: Steps for extracting the sample particle pairs using a graph to memorise the class
labels.

of the binary image I and search for the maximum in each particle.
Finally, we create a list of particle pairs that contains all particle pairs that

have a distance smaller than some threshold dpair to each other in the voxelized
image. The associated class label is retrieved as the mark of the corresponding
edge in the graph, or if no edge is present, the ParticleSep-class is chosen.
Note that each particle can occur in several particles pairs. The whole process
is depicted in Figure 5.

Summarizing, the procedure for generating the voxelized particle system and
the corresponding class labels can be described as follows:

1. Let G be an undirected graph whose vertices correspond to the voxelized
particles and whose edges represent potential particle pairs marked with
their class labels.

2. For each spherical harmonics particle pshp:

(a) Voxelize pshp to pvoxel.
(b) With probability qb, break pvoxel and add both fragments as vertices

to G connected with a Broken-marked edge. Otherwise add only

8

pvoxel as vertex.

3. Let I be the union of all voxelized particles. If two particles p and p′

intersect, add a WatershedSep-marked edge from p to p′.

4. Compute the Euclidean distance transformation Idist of I, where for every
solid voxel the distance to its nearest void voxel is determined.

5. Let Imarker be the image which represents the regional maximum in each
voxelized particle w.r.t. Idist.

6. Separate the particles in I using the watershed transform of −Idist based
on the marker image Imarker.

7. Arrange all particles in pairs which are within a distance smaller than
dpair of each other.

8. List the particle pairs together with the class label of the matching edge
in the graph, or ParticleSep if there is no edge.

We choose the probability for a particle to break to be 0.3, but since we only
use a subset of the particle pairs in order to have the same number of instances
for each class (see Section 3.2.2), this parameter has no real impact. For the
pairing distance threshold dpair, we use the same value as for the gap distance
histogram threshold dhist in Section 3.2.1, namely 15.

3.1.3. Particle breakage
The main focus of the breakage algorithm is to be simple on the one hand

but to produce results which are not too easy for a classifier to identify on the
other hand. Note that the proposed method does not aim to reproduce the
underlying physics of particle breakage.

First, we realise a random plane through the particle’s centroid and remove
every solid voxel touching it. This guarantees a separation. However, doing
only this would be trivial for a classifier to detect since the gap between the
two fragments of the particle has constant width (cf. Section 3.2.1). Thus we
roughen the breakage surface with a Boolean model [15]. For that, we realise
a homogeneous Poisson point process on the separation plane. The points act
as centres of balls whose radii are Gamma distributed with constant variance
and mean that grows linearly with the distance to the centroid. The broken
particle pair consists of all voxels of the original particle which do not touch the
plane nor any ball of the Boolean model. But, because the balls can become
arbitrarily large, we have to make sure that none of the particle fragments
is completely covered and we end up with only one fragment. In this case, we
restart the algorithm for the current particle. The entire procedure is illustrated
in Figure 6.

In the following, the breakage algorithm for a particle with centroid cpart is
summarized.

9

(a) Consider a voxelized
particle.

(b) Remove all voxels
which touch the plane or
are in the Boolean model.

(c) Consider both
fragments as new

particles.

Figure 6: Steps for breaking particles.

1. Realise a random plane P through the centroid cpart whose normal vector
is uniformly distributed on the unit sphere.

2. Simulate a homogeneous Poisson process {Sn} on P with intensity λb.

3. Mark every point Sn with an independent gamma-distributed random
variable Rn such that IE [Rn] = αb‖Sn − cpart‖ and Var [R]n = σ2

b .

4. Let the Boolean model B be the union of balls with midpoints Sn and
radii Rn.

5. Add every solid voxel in p which touches P or is contained in B to the
void phase.

6. If there are not exactly two connecting components, restart with step 1.

Note that in experimental data particles can also break into more than two
fragments. As our classification algorithm works on particle pairs, it is not
necessary to represent this property in the simulated data, as cracks would be
identified individually for each pair of the parts of the broken particle.

We choose the parameters to be λb = 0.4, αb = 0.075 and σ2
b = 0.2, which

lead to optically reasonable results.

3.2. Classification
Now we assume to have a list of labelled particle pairs. The following pro-

cedure does not differ between simulated or hand-labelled data. In both cases
we first extract the features from the particle pairs before we train and test the
classifier.

The samples are chosen such that every class occurs with the same frequency.
If one class has more instances than another one, we use only a random subset
of these instances (a procedure called random undersampling). For a dataset
with balanced classes the performance metrics will weight every class equally
(see Section 4). This is important since we do not want to make assumptions
on the frequency of the classes in the tomographic image.

10

(a) Detailed view on the
gap between two
voxelized particles.

1

1

√2 1√5

2

√2

1

1

1

1

1√2√5√10

3 2

23

3 2

23

√10 √5

√8

√10√17

√13

(b) Euclidean distances
to the nearest voxel of
the first particle (values
of boundary voxels in

red).

1

1

1

1

1

1

1

√21

√2

2

2

√5 √10

√51

3

3 4

4

√17

2 3 4

2 3 4

2 3 4

2 3 4

√17√10

(c) Euclidean distances
to the nearest voxel of
the second particle
(values of boundary

voxels in red).

0.0

2.5

5.0

7.5

0.0 2.5 5.0 7.5 10.0
distance

co
un

t

(d) Distribution of the distance
values of all boundary voxels.

Figure 7: Steps to compute the gap distance distribution.

3.2.1. Features
Good features are probably the most crucial component of every machine

learning application [6, 7]. Thus, we considered multiple features, but the one
with the most predictive power describes the gap between the particles.

The idea is as follows: A particle can be part of pairs with different class
labels. Thus, the geometries of only the individual particles themselves are not
sufficient to determine the type of a pair they belong to. The shape of the space
between two particles contains much more information.

In order to determine the gap distance distribution we consider voxelized
particle pairs. In a first step we collect the (smallest) distances from every
boundary voxel of one particle to the other one. Here, a boundary voxel is a
voxel that belongs to the solid phase but has a common face with a pore space
voxel. This process is illustrated in Figure 7. The distribution of the distance
values can be represented in two different ways. First we compute the moments
up to the fourth one and second we determine a normalized histogram where
each bin has a width of one. Since most classifiers expect feature vectors to have

11

(a) Original particle pair (grey) and
its dilation (light blue).

(b) Dilated particle pair (light blue)
and its erosion (cyan blue).

Figure 8: Morphological closing of a particle pair with a ball of radius rcomb = 2

a common dimension, we truncate the histogram at a certain threshold dhist.
Combining both leads to a (dhist+1)+4 dimensional feature vector to describe
the gap of a particle pair. We choose dhist = 15.

We also try to combine the two particles and investigate how various shape
characteristics change. In order to get a stable result we reorder the particle
pairs such that the first particle has a larger volume than the second one. The
combination is achieved through a morphological closing with a ball of radius
rcomb. For that, both particles are first enlarged with radius rcomb (dilation)
and then shrunken with the same radius (erosion). See Figure 8 and confer [15]
for more details. This removes the small openings, in particular narrow cracks.
However, if the closing radius is chosen too large, to many details are smoothed
out. That is why we settled for rcomb = 2.

Considering the two particles individually and additionally their combina-
tion, we compute their specific surface areas and their sphericities. The latter
measures how similar the shape of a particle is to a sphere. Furthermore, let
V1, V2, Vcomb be the volumes, and A1, A2, Acomb the surface areas of the corre-
sponding particles. We also include the following fractions in the feature vector:

V2
V1
,
Vcomb

V1 + V2
,
A2

A1
,
Acomb

A1 +A2

All in all, our feature vector contains 30 values for each pair of particles.

3.2.2. Classifier
For the classification, we use a so-called multilayer perceptron (MLP). We

give a brief introduction, but for a more comprehensive discussion on MLPs and
machine learning in general, we refer to [6] and [7].

The MLP is a feed-forward neural network with one hidden layer (cf. Fig-
ure 9). It tries to solve the problem of mapping a feature vector (x1, . . . , xd)
to one of k class labels (y1, ..., yk) by imitating biological nerve cells. For that,
every unit (neuron) weights its inputs and adds them together. This activation

12

Input
Layer

Hidden
Layer

Output
Layer

⋮ ⋮
⋮

Figure 9: Illustration of a multilayer perceptron for a d-dimensional feature vector and k
class labels with m hidden units.

value is then applied to a sigmoid function which acts as a threshold and lets
the neuron “fire” if the weighted sum of inputs exceeds the threshold. The result
is passed to the next layer as its input. The class label l which corresponds to
the output unit yl with the highest value is chosen as the prediction.

The neural net is trained by finding weights w = (w(1),w(2)) which min-
imise the cross-entropy (or log) loss function [7] plus the (squared) L2 norm of
the vector w weighed with α > 0 (L2 regularisation). We solve this optimisa-
tion problem using the limited-memory Broyden-Fletcher-Goldfarb-Shanno al-
gorithm (L-BFGS) which is a variant of the quasi-Newton method BFGS using
only a limited amount of computer memory, see [19].

Since the performance of the MLP is sensitive to the scaling of the inputs, we
apply standardisation, that is, we centre every component of the feature vector
to mean zero and scale it such that its standard deviation is one. However, to
ensure that we do not divide by zero we have to remove features which have zero
variance (primarily the first two bins of the gap distance histogram). Thus, our
classifier consists of removing constant features, standardisation and the actual
MLP classification.

The hyperparameters (i.e. the number of hidden unitsm and the weight α of
the L2 regularisation) are determined by a grid search maximising the accuracy
which is estimated through a 5-fold stratified cross-validation. The accuracy is
defined as the proportion of correctly classified instances.

In summary, a given dataset is first split into training and test data. Then
the following steps are performed.

1. Find the hyperparameters which maximise the accuracy, i.e., for each
value:

(a) Determine the average accuracy using a 5-fold stratified cross-vali-
dation on the training data, i.e. for each split:
i. Train the classifier w.r.t. the specified hyperparameters.
ii. Determine the accuracy using the part of the training data that

has not been exploited so far.

2. Refit the classifier with the entire training set.

13

3. Evaluate the performance on the test set.

The implementation of the classifier used in this paper is based on the soft-
ware library scikit-learn [20].

4. Results

For the performance evaluation of the classifier we randomly choose a quarter
of the undersampled dataset for testing, but leaving the ratio of the instances
for each class equal. The other 75% are used for training and hyperparameter
tuning as described in Section 3.2.2.

4.1. Performance on the simulated data
The simulated dataset consists of 3693 samples and therefore 924 instances

for testing. The result of the hyperparameter fitting is given as follows: α = 0.1
for the weight of the L2 regularisation term, and m = 5 for the the number of
hidden units.

On the test set, the classifier achieves an overall accuracy of 82.1%. The con-
fusion matrix (see Figure 10a) suggests that the Broken instances are classified
quite accurately. The result for the ParticleSep samples is also acceptable.
However, it has a hard time figuring out if an instance is the result of the water-
shed transformation. Virtually all false positives and false negatives are related
to this class.

This also affects the precision and recall. For a class label l the precision is
an estimate for the probability that an instance classified as l, actually belongs
to l. On the other hand, a high recall score indicates that a true l-instance is
probably classified as such. Good predictions must have both high precision
and high recall. That is why the F1 score, their harmonic mean, is considered.

BROKEN WATERSHED_SEP PARTICLE_SEP

Predicted label

P
A

R
TI

C
LE

_S
E

P
W

A
TE

R
S

H
E

D
_S

E
P

B
R

O
K

E
N

Tr
ue

 la
be

l

0.01 0.15 0.84

0.14 0.73 0.14

0.89 0.097 0.01

(a) Simulated data.

BROKEN WATERSHED_SEP PARTICLE_SEP

Predicted label

P
A

R
TI

C
LE

_S
E

P
W

A
TE

R
S

H
E

D
_S

E
P

B
R

O
K

E
N

Tr
ue

 la
be

l

0.04 0.083 0.88

0.36 0.62 0

0.68 0.33 0

(b) Hand-labelled data.

Figure 10: Normalized confusion matrices for the simulated and the hand-labelled data.

14

precision recall F1 support
Broken 0.859 0.893 0.876 308
WatershedSep 0.749 0.727 0.738 308
ParticleSep 0.852 0.844 0.848 308
average / total 0.820 0.821 0.821 924

Table 1: Performance metrics for the classifier based on the simulated test data.

precision recall F1 support
Broken 0.630 0.680 0.654 25
WatershedSep 0.600 0.625 0.612 24
ParticleSep 1.000 0.880 0.936 25
average / total 0.745 0.730 0.736 74

Table 2: Performance metrics for the classifier based on the hand-labelled test data.

All three metrics are listed in Table 1 in addition to the number of instances per
class. The difficulty of the classifier to distinguish samples with WatershedSep
label causes the relatively low F1 score for this class.

4.2. Validation on the hand-labelled data
The validation of the classification model is based on the hand-labelled data

and should answer the question if features designed for the simulated particle
pairs are directly applicable to those from a real battery cell.

The entire dataset comprises 294 samples, which leads to a test set of 74
instances. Here, the best hyperparameters turned out to be α = 0.0001 and
m = 19.

The accuracy over all classes is 73.0%. As can be seen in Figure 10b the
classifier is able to clearly detect ParticleSep pairs, but about one third of
the Broken-instances are mistaken for WatershedSep-particle pairs and vice
versa. This is still roughly twice as good as a random prediction.

Precision and recall are shown in Table 2. As expected, the F1 score for
ParticleSep is higher than that for the other classes.

4.3. Discussion
Of course, it is not surprising that the accuracy of the algorithm is better for

simulated data compared to real data, as the simulated data are much simpler
and in a sense more regular, which simplifies the learning procedure of the
classifier. However, the still comparable accuracies and the similarity of the
two confusion matrices shows that the choice of features is reasonable also for
real-world data.

As can be seen in Figure 11, it is even for a human eye quite hard to dis-
tinguish WatershedSep from Broken particle pairs only by looking at 2D-
slices of the segmented image. The reason that performances for the Broken-
instances differ for real and simulated data could be the simplified breakage

15

(a) true: Broken,
predicted:

WatershedSep

(b) true: Broken,
predicted:

WatershedSep

(c) true:
WatershedSep,

predicted: Broken

(d) true: Broken,
predicted: Broken

(e) true:
WatershedSep,

predicted:
WatershedSep

(f) true: ParticleSep,
predicted: ParticleSep

Figure 11: Six examples of particle pairs with their true and predicted class label.

algorithm which does not capture all properties of real broken particle pairs.
Moreover, in many cases, cracks do not separate the particle completely and
are then split by the watershed algorithm, which results in a WatershedSep
particle pair that exhibits characteristics of both classes, WatershedSep and
Broken. Corresponding examples are depicted in Figure 11b and 11c.

5. Conclusion and outlook

In the present paper we used machine learning to detect cracks in the anode
of a lithium-ion battery after thermal runaway. The classifier considers pairs
of particles and distinguishes three causes for their separation: breakage during
the thermal runaway, image segmentation and disjointness in the pristine cell.
The decision is mostly based on the shape of the gap between the particles. We

16

facilitated the classifier development by using simulated anode material which
generates an arbitrary amount of correctly labelled sample data.

The validity of the classifier is tested by applying the methodology to hand-
labelled data from a real electrode. For this dataset, an overall accuracy of 73%
is achieved.

We found that the main difficulty for the classifier is to differentiate between
particles that touch each other and were split by the watershed segmentation
algorithm, and pairs of two parts of a broken particle. This might be due to
the fact that some cracks do not separate the particle completely, but lead
to the particle being completely split by the watershed algorithm. Thus, for
further developments, it is interesting to enhance the algorithm such that the
WatershedSep class is divided in two subclasses, one containing particle pairs
that touch each other, and one containing particles that are already slightly
cracked, but not completely broken.

In the future, we expect algorithms of this nature to become more com-
monplace in the analysis of battery tomography data, enhancing the automated
segmentation process and contributing to our understanding of microstructure
evolution effects as a result of cracking due to calandering or lithiation stress.

Acknowledgement

This work was partially funded by BMBF under grant number 05M13VUA
in the programme “Mathematik für Innovationen in Industrie und Dienstleis-
tungen”.

17

References

[1] D. P. Finegan, M. Scheel, J. B. Robinson, B. Tjaden, I. Hunt, T. J. Ma-
son, J. Millichamp, M. D. Michiel, G. J. Offer, G. Hinds, D. J. Brett,
P. R. Shearing, In-operando high-speed tomography of lithium-ion bat-
teries during thermal runaway, Nature communications 6 (2015) 6924.
doi:10.1038/ncomms7924.

[2] D. P. Finegan, M. Scheel, J. B. Robinson, B. Tjaden, M. D. Michiel,
G. Hinds, D. J. L. Brett, P. R. Shearing, Investigating lithium-ion bat-
tery materials during overcharge-induced thermal runaway: an operando
and multi-scale X-ray CT study, Physical Chemistry Chemical Physics 18
(2016) 30912–30919. doi:10.1039/c6cp04251a.

[3] J. Jiang, J. Dahn, Effects of particle size and electrolyte salt on the thermal
stability of Li0.5CoO2, Electrochimica Acta 49 (16) (2004) 2661–2666. doi:
10.1016/j.electacta.2004.02.017.

[4] J. Geder, H. E. Hoster, A. Jossen, J. Garche, D. Y. Yu, Impact of active
material surface area on thermal stability of LiCoO2 cathode, Journal of
Power Sources 257 (2014) 286–292. doi:10.1016/j.jpowsour.2014.01.
116.

[5] L. Gillibert, D. Jeulin, 3D reconstruction and analysis of the fragmented
grains in a composite material, Image Analysis & Stereology 32 (2) (2013)
107–115. doi:10.5566/ias.v32.p107-115.

[6] C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[7] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning,
2nd Edition, Springer, 2009.

[8] J. Feinauer, T. Brereton, A. Spettl, M. Weber, I. Manke, V. Schmidt,
Stochastic 3D modeling of the microstructure of lithium-ion battery anodes
via Gaussian random fields on the sphere, Computational Materials Science
109 (2015) 137–146. doi:10.1016/j.commatsci.2015.06.025.

[9] S. Beucher, F. Meyer, The morphological approach to segmentation: The
watershed transformation, in: E. Dougherty (Ed.), Mathematical Morphol-
ogy in Image Processing, CRC Press, 1992, pp. 433 – 481.

[10] R. Szeliski, Computer Vision: Algorithms and Applications, Springer, 2011.

[11] J. Hoshen, R. Kopelman, Percolation and cluster distribution. I. cluster
multiple labeling technique and critical concentration algorithm, Physical
Review B 14 (8) (1976) 3438 – 3445. doi:10.1103/physrevb.14.3438.

[12] A. Spettl, R. Wimmer, T. Werz, H. Heinze, S. Odenbach, C. Krill,
V. Schmidt, Stochastic 3D modeling of ostwald ripening at ultra-high
volume fractions of the coarsening phase, Modelling and Simulation in

18

http://dx.doi.org/10.1038/ncomms7924
http://dx.doi.org/10.1039/c6cp04251a
http://dx.doi.org/10.1016/j.electacta.2004.02.017
http://dx.doi.org/10.1016/j.electacta.2004.02.017
http://dx.doi.org/10.1016/j.jpowsour.2014.01.116
http://dx.doi.org/10.1016/j.jpowsour.2014.01.116
http://dx.doi.org/10.5566/ias.v32.p107-115
http://dx.doi.org/10.1016/j.commatsci.2015.06.025
http://dx.doi.org/10.1103/physrevb.14.3438

Materials Science and Engineering 23 (6) (2015) 065001. doi:10.1088/
0965-0393/23/6/065001.

[13] J. Mayer, V. Schmidt, F. Schweiggert, A unified simulation framework for
spatial stochastic models, Simulation Modelling Practice and Theory 12
(2004) 307 – 326. doi:10.1016/j.simpat.2004.02.001.

[14] J. Feinauer, A. Spettl, I. Manke, S. Strege, A. Kwade, A. Pott, V. Schmidt,
Structural characterization of particle systems using spherical harmonics,
Materials Characterization 106 (2015) 123–133. doi:10.1016/j.matchar.
2015.05.023.

[15] S. N. Chiu, D. Stoyan, W. S. Kendall, J. Mecke, Stochastic Geometry and
Its Applications, 3rd Edition, Wiley, 2006.

[16] A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, Spatial Tessellations: Con-
cepts and Applications of Voronoi Diagrams, 2nd Edition, Wiley, 2000.

[17] R. Diestel, Graph Theory, 4th Edition, Graduate Texts in Mathematics,
Springer, 2010.

[18] G. B. Arfken, H.-J. Weber, F. E. Harris, Mathematical Methods for Physi-
cists: A Comprehensive Guide, 7th Edition, Elsevier, 2012.

[19] J. Nocedal, S. J. Wright, Numerical Optimization, 2nd Edition, Springer
Series in Operations Research and Financial Engineering, Springer, 2006.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn:
Machine learning in Python, Journal of Machine Learning Research 12
(2011) 2825 – 2830.

19

http://dx.doi.org/10.1088/0965-0393/23/6/065001
http://dx.doi.org/10.1088/0965-0393/23/6/065001
http://dx.doi.org/10.1016/j.simpat.2004.02.001
http://dx.doi.org/10.1016/j.matchar.2015.05.023
http://dx.doi.org/10.1016/j.matchar.2015.05.023

	Introduction and motivation
	Description of tomographic data
	Imaging and data pre-processing
	Labelling of particle pairs

	Classification of particle pairs
	Simulated particle pairs
	Pristine particle system
	Extracting labelled particle pairs
	Particle breakage

	Classification
	Features
	Classifier

	Results
	Performance on the simulated data
	Validation on the hand-labelled data
	Discussion

	Conclusion and outlook

