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Summary

Many increasingly prevalent diseases share a common risk factor:

age. However, little is known about pharmaceutical interventions

against aging, despite many genes and pathways shown to be

important in the aging process and numerous studies demon-

strating that genetic interventions can lead to a healthier aging

phenotype. An important challenge is to assess the potential to

repurpose existing drugs for initial testing on model organisms,

where such experiments are possible. To this end, we present a

new approach to rank drug-like compounds with known mam-

malian targets according to their likelihood to modulate aging in

the invertebrates Caenorhabditis elegans and Drosophila. Our

approach combines information on genetic effects on aging,

orthology relationships and sequence conservation, 3D protein

structures, drug binding and bioavailability. Overall, we rank 743

different drug-like compounds for their likelihood to modulate

aging. We provide various lines of evidence for the successful

enrichment of our ranking for compounds modulating aging,

despite sparse public data suitable for validation. The top ranked

compounds are thus prime candidates for in vivo testing of their

effects on lifespan in C. elegans or Drosophila. As such, these

compounds are promising as research tools and ultimately a step

towards identifying drugs for a healthier human aging.
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Introduction

Age is a major risk factor for many increasingly prevalent diseases. Thus,

understanding the process of aging and finding manipulations leading to

a healthier aging phenotype are highly desirable. Many pathways shown

to be important in aging, for example the insulin/IGF-1 signalling

pathway, are also central to other biological processes and diseases, for

example cancer or diabetes. Research into these diseases is often carried

out in mammalian systems or cell lines closely related to humans. In

particular, drugs are developed mostly for humans and tested in other

mammals, where their target proteins are well characterized. Several of

these mammalian targets have orthologues in invertebrates which are

known to be involved in aging.

While model organisms closely related to humans would be ideal

from the standpoint of transferring gained knowledge, the length of

time required for observing long-term effects and changes in lifespan

and other differences in aging phenotypes are often prohibitive, for both

ethical and financial reasons. Cell cultures are not ideal because

mechanisms of cellular senescence are probably distinct from organismal

aging. Instead, aging research is often carried out in the invertebrate

model organisms Caenorhabditis elegans and Drosophila melanogaster

due to their experimentally more amenable lifespans. Thus, we propose

a method to transfer knowledge on small-molecule binding from higher

organisms, where data on compound binding are available, to lower

organisms, which are common model organisms in aging, to enable

direct testing of the compounds’ effects on longevity and aging. This first

step is almost opposite to the more common goal of transferring

knowledge from lower to higher organisms, for example in drug

discovery from mice and rats to humans. Positive effects on aging in

invertebrates would suggest drugs with potential positive effects against

human aging, which would warrant further evaluation in mammalian

models. Thus, prioritizing and testing such compounds in invertebrates

could be a first step towards drug repurposing for aging. Overall, the aim

was thus to create a list of compounds rank ordered by decreasing

likelihood of modulating aging in C. elegans and D. melanogaster,

which incorporates both likely conserved activity and targets that are

likely to ameliorate aging.

Here, we propose such a ranking procedure based on information on

genes and proteins associated with aging in different organisms,

homology and sequence conservation between them, 3D protein

structures, compound activity information and bioavailability predictions.

For each ligand, we have produced a report card describing the factors

which contribute to its score and subsequent ranking.

Results

An overview of our approach to identify and rank those ligands most

likely to affect aging in D. melanogaster and C. elegans is shown in

Fig. 1. We collected genes and proteins implicated in aging from various

sources as well as their orthologues for C. elegans, D. melanogaster,

M. musculus, R. norvegicus, H. sapiens (see Methods for details). This

resulted in a total of 13834 UniProt IDs of aging-associated proteins

(2123 in C. elegans, 1864 in D. melanogaster, 3663 in M. musculus,

1589 in R. norvegicus and 4595 in H. sapiens, for lists of these IDs see

Table S1, Supporting information). To estimate whether the compound’s

activity might be conserved between orthologues of known structure

and invertebrate target species, we examined the overall protein

conservation and especially the conservation in the binding site.

Therefore, we collected information about 3D protein structures and

drug-like molecules shown to bind them. These large data acquisition
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procedure resulted in 1480 3D protein structures with a bound drug-like

ligand. The structure–ligand complexes represent 743 different drug-like

compounds fulfilling our data requirement criteria binding to 247

different aging-associated target proteins.

Next, we proceeded to rank the ligands using properties of the

compounds and their target proteins in the model organism of interest.

We developed an empirical scoring function, with the relevant factors

multiplicatively linked. In this way, each of the factors is important and

cannot be compensated by another factor, as would be the case in an

additive scoring function. These factors include relevance to aging, the

conservation of the protein domain or domains containing the binding

site, the conservation of the binding site itself, the binding affinity and

bioavailability. The resulting base score is then modulated by the

following additional terms: drug likeness, according to Lipinski’s rule of

five, the promiscuity of the compound, its approval status as a drug and

the availability to purchase the compound. In the methods section, we

provide the reasoning, technical description and parameter values of

each factor and term.

The ranking

For D. melanogaster, 697 compounds, known to bind an aging-

associated protein or an annotated orthologue, were ranked. Com-

pounds scored between 0 (worst) and 1 (best), with a distribution shown

in Fig. 2A, with the top 15 compounds scoring above 0.91 and the top

10% scoring above 0.81. For C. elegans, 591 compounds were ranked

(Fig. 2B), with the top 15 compounds scoring above 0.56 and the top

10% scoring above 0.40 (for score distribution without the bioavailability

term see Fig. S1, Supporting information).

The overall lower scores for C. elegans as compared to D. me-

lanogaster originate from two main factors: first, the larger evolutionary

distance between C. elegans and mammals and, second, the inclusion of

the bioavailability predictions score, which is often lower than the

arbitrary bioavailability substitute used in D. melanogaster, for which

such data are not available. The bimodal distribution in D. melanogaster

is a consequence of the “aging implication“ score, which has a complex

distribution. In C. elegans, the lower bioavailability values reduce the

total scores to give a single peak. Therefore, rankings rather than

absolute scores should be compared. Table 1 shows the top 15 ranked

compounds for D. melanogaster (A) and C. elegans (B), of which six

(Fig. 3) are ranked highly in both organisms and described briefly below.

Several compounds target the same protein and a list of the top 15

compounds targeting different proteins is given in Table S2 (Supporting

information). For each compound, we provide a report card including

ranking, target protein and its conservation, a graphical representation,

images of the 3D compound-target interaction and some additional

annotations with links to relevant external resources. The full list of

compounds with their respective scores and score components for both

D. melanogaster and C. elegans and all report cards are provided in

Tables S3 and S4, Data S1 (Supporting information) and interactively

online under https://www.ebi.ac.uk/thornton-srv/software/repurposing/.

The webpage also enables the user to create tailored rankings by

excluding certain criteria or giving different weights.

The six compounds ranked highly in both organisms exemplify some

of the most promising compounds highlighted by the ranking procedure.

All six compounds are protein kinase inhibitors, many of them orally

available, approved drugs. Others are drug-like probes, not yet approved

for the clinic. Despite their common biochemical class, these compounds

target a range of different proteins associated with aging. In general,

kinases are often highly conserved between even diverse organisms

especially in the compound binding site, which the table shows are even

better conserved than the rest of the protein. These compounds rank so

highly in part because of the extensive structural work performed for

kinases, which is essential for this ranking. In contrast, structural data for

the membrane bound receptors (which are also often associated with

aging) are scarce and therefore such targets are rarely identified here.

STI, also known as imatinib or Gleevec (Fig. 3A), is an orally available

approved drug for treatment of multiple cancers, especially Philadelphia

chromosome-positive chronic myelogenous leukaemia (CML). It is a

tyrosine kinase inhibitor targeting a broad range of kinases, amongst

which ABL1 is a primary target (Fig. 4A). Human ABL1 has been

annotated to be involved in aging in GENAGE release 17 (Tacutu et al.,

2013). As kinases all belong to one family, their inhibitors often bind

more than one kinase. For example, a second target of imatinib

annotated to be involved in aging is mitogen-activated protein kinase 14

(MK14) (Fig. 4B), also known as Mpk2 or p38a in D. melanogaster,

which is annotated in UniProt with the GO term for determination of

adult lifespan (GO:008340). Additionally, there are alleles of the

C. elegans orthologue pmk-1, which are annotated as lifespan variants

in WormBase (Harris et al., 2014). The imatinib binding sites on ABL1

and on MK14 are very well conserved between human and the

invertebrates, suggesting a good chance of conserved binding. Addi-

tionally, a predicted maximal binding affinity of 100 nM, in mammals, is

relatively strong, and for C. elegans, the bioavailability prediction

indicates very likely successful bioaccumulation in the worm.

NIL, also known as nilotinib or Nexavar (Fig. 3B), is an orally available

approved drug for treatment of imatinib-resistant CML. Like imatinib, it

is an inhibitor targeting a broad range of kinases including ABL1.

Nilotinib also binds to mitogen-activated protein kinase 11 (MK11), while

Fig. 1 Schematic of principal steps in data gathering and filtering (with number of

proteins, structures and drug-like compounds) and the use of these data in

determining the components of the ranking procedure. The ranking properties are

calculated per model organisms.
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imatinib binds to MK14. As MK11 and MK14 are closely related, MK11’s

role in aging is implied through the UniProt annotation of the common

D. melanogaster orthologue Mpk2. Nilotinib has a stronger predicted

binding affinity (23 nM) than imatinib and a similarly good predicted

bioavailability in C. elegans. However, nilotinib violates two of the

Lipinski rules, resulting in a slightly lower ranking compared to imatinib.

BAX, or sorafenib (Fig. 3C), is another orally available, approved drug

for treatment of different cancers, including advanced renal cell

carcinoma. Sorafenib is a tyrosine kinase inhibitor of several targets

including the Raf kinases and MK14. While the binding site of Sorafenib

on MK14 is partly overlapping with that of imatinib, it makes contact

with four more amino acids and has a similarly strong predicted binding

affinity (35 nM). However, this is contrasted by less favourable, albeit still

reasonable, predicted bioavailability in C. elegans and one violated

Lipinski rule.

TAK, also known as dorsomorphin (Fig. 3D) or compound C, is not an

approved drug, but an experimental compound (as listed in DrugBank)

and available from a number of vendors. Dorsomorphin has been shown

to inhibit bone morphogenetic protein (BMP) signalling, causing cancer

initiating cells to lose some stem-cell-like features and induce a

proliferation-like process (Garulli et al., 2014). Dorsomorphin has also

been shown to inhibit AMP-activated protein kinase catalytic subunit

alpha-2 (Handa et al., 2011; Fig. 4C), which is known as AMPKa or

SNF1A in D. melanogaster and as aak-2 in C. elegans. AMPK is a well-

known intracellular energy sensor, involved in the target-of-rapamycin

(TOR) signalling pathway. It has also been shown to be involved in aging

in a multitude of experiments in different organism. The binding site is

completely conserved between human and D. melanogaster and con-

tains only one changed amino acid (Y2H) in C. elegans. The predicted

binding affinity (63 nM) is quite strong, while the predicted bioavailability

for C. elegans is only moderate, and no additional information about

oral availability is present.

GVP (Fig. 3E) is classified by DrugBank as an experimental antineo-

plastic agent and commercially available. It inhibits RAC-beta serine/

threonine–protein kinase, also known as AKT2 or protein kinase B beta

(Fig. 4D), which is a part of the insulin/IGF-1 and TOR signalling

pathways. The C. elegans orthologue akt-2 is annotated in UniProt with

the term determination of adult lifespan (GO:008340). More specifically,

RNAi inhibition of Akt in D. melanogaster and akt-1 and akt-2 in

C. elegans extends lifespan (Tullet et al., 2008; Biteau et al., 2010). The

binding site contains 4–5 conservative changes (91% similarity between

human and either invertebrate). The predicted binding affinity (23 nM) is

quite strong, with reasonable predicted bioavailability for C. elegans.

Finally, JNF (Fig. 3F) is also an experimental compound listed in

DrugBank and commercially available. It is a kinase inhibitor targeting

the mitogen-activated protein kinase 10 (MK10) (Fig. 4E), whose

C. elegans orthologue jnk-1 is annotated in UniProt with the GO term

“determination of adult lifespan”. More specifically, moderate RNAi of

the D. melanogaster orthologue Bsk in adult animals extended lifespan,

while mutants of C. elegans jnk-1 exhibited decreased lifespan (Oh

et al., 2005; Biteau et al., 2010). The reasons for the different lifespan

effects, besides possible organismal differences, are likely to be a

detrimental developmental effect in C. elegans jnk-1 mutants as well as

a likely dosage dependency of the effect of modulating MK10. The

predicted binding affinity is relatively strong (120 nM); however, the

predicted bioavailability in C. elegans is significantly lower than for the

other compounds described above.

Overall, these six compounds exemplify the promising candidates for

modulating lifespan in both D. melanogaster and C. elegans highlighted

by the ranking procedure.

Evaluating the ranking

Modelling and docking

In the above high-throughput approach, binding of the compounds to

the model organism proteins is estimated indirectly, through conserva-

tion of sequence. Here, we tested this assumption further by modelling

the orthologues in D. melanogaster and C. elegans for one hit (com-

pound P37 to human MK14) and docking the compound directly. P37 is

a compound classified by DrugBank as experimental and does not violate

any of the Lipinski rules. Its structure was determined by X-ray

crystallography in complex with human MK14 at 2.10�A (PDB:3GFE,

Wurz et al., 2009). The closest homologues in D. melanogaster and

C. elegans include p38a and pmk-1, respectively, which are 67% and

61% identical. We successfully modelled the protein structures of the

homologues having removed the P37 ligand before modelling, not to

bias the modelling procedure. P37 was docked into the two models, and

their binding affinity was predicted 7.65 log Kd/Ki (D. melanogaster),

7.90 log Kd/Ki (C. elegans). This affinity was very similar to that

predicted from the structure of the human complex: 7.75 log Kd/Ki

(Human). This is also evident from a superposition of the binding sites of

human crystal structure and D. melanogaster or C. elegans protein

structure model (Fig. 5). The structurally determined conservation in

binding is in very good agreement with the sequence-based binding-site

conservation score of 0.951 (D. melanogaster) and 0.914 (C. elegans)

using the 3D information only to determine the amino acids in contact

with the ligand.

Literature mining for the top ranked compounds

We conducted a thorough literature search for articles examining any of

the top 25 ranked compounds with respect to lifespan effects. Searching

the PubMed database with the compound names and their synonyms in

combination with aging keywords and terms for C. elegans and

D. melanogaster resulted in 38 hits. Querying the PubMed Central

database of full-text articles resulted in 473 relevant hits of which only
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four publications describe relevant lifespan experiments, with variable

results.

Liu et al. (2011) tested Sorafenib (BAX), for effects in Parkinson’s

models in C. elegans and D. melanogaster. They reported that sorafenib

at 1 and 10 lM increased survival and reduced locomotor impairment in

ddc-GAL4; UAS-G2019S-LRRK2 flies, while none of the concentrations

tested was reported to alter lifespan of controls. Furthermore, C. elegans

treated with Sorafenib showed positive effects on neuronal survival,

while overall lifespan was reported unchanged. However, this study tried

to exclude effects from cellular processes associated with aging, stating

“these effects were maintained to a minimum in our studies” (Liu et al.,

2011).
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Fig. 3 Molecular structures of top overlapping chemical compounds. (A) STI or imatinib (B) NIL or nilotinib (C) BAX or sorafenib (D) TAK or dorsomorphin/compound c (E)

GVP (F) JNF.
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Fig. 4 Binding sites of top overlapping compounds. (A) STI or imatinib binding to human tyrosine kinase ABL1 (B) STI or imatinib binding to human mitogen-activated

protein kinase 14 (MK14).(C) TAK or dorsomorphin binding to AMP-activated protein kinase catalytic subunit alpha-2 (D) GVP binding to RAC-beta serine/threonine–protein
kinase AKT2 (E) JNF binding to mitogen-activated protein kinase 10, also known as JNK3.
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Yang et al. (2015) evaluated the effect of b-guanidinopropionic acid

and dorsomorphin (TAK) on wild-type D. melanogaster lifespan. While

the effect of dorsomorphin on wild-type flies was not discussed, the

survival curves showed, probably significant, lifespan shortening, which

is in line with what would be expected by inhibiting AMPK and confirms

the lifespan changing effects of one of our top ranked compounds.

The third publication tested the lifespan effect of genistein (40,5,7-
trihydroxyisoflavone) in C. elegans. While genistein is not in our list of

compounds, it was found because the highly similar compound 3’,4’,7-

trihydroxyisoflavone (PDB HET code: 47X) is ranked 21st in C. elegans

(for comparison of binding of 47X and genistein see Fig. S2, Supporting

information). It remains unclear how similar their biological effect is, but

Lee et al. (2015) report genistein to significantly increase lifespan and

stress tolerance of wild-type C. elegans lifespan at 50 and 100 lM
concentrations.

Finally, Wilson et al. (2008) reported modest, albeit not significant,

beneficial effects (15% increased median lifespan) in C. elegans with

piceatannol (PDB HET code: P01, ranked 73rd in C. elegans). P01 binds to

ribosomal protein S6 kinase alpha-1, whose binding site is completely

conserved between human and invertebrates.

Rapamycin

Of the well-known drugs examined for their effect on lifespan in

invertebrates, only rapamycin (PDB HET code: RAP) is included in our

ranking due to the data requirements. Rapamycin was shown to extend

lifespan in many organisms including C. elegans, where it is ranked,

however, only 395th according to the method presented here. This is

because rapamycin violates three of the four Lipinski rules as well as

being predicted by the Burns et al. (2010) methodology to have low

bioavailability in C. elegans. Furthermore, four of the ten amino acids

forming the binding site on TOR are not conserved between human and

C. elegans. However, rapamycin has a highly unusual mode of action of

disrupting a protein–protein interaction between TOR and FKBP and thus

also unusual properties. If rapamycin had a bioavailability score of 0.9,

instead of 0.2 it would rank 16th in C. elegans, clearly demonstrating

the impact of bioavailability. In D. melanogaster, with no bioavailability

prediction available, rapamycin ranks 95th, classifying it as a promising

compound. A different promising kinase inhibitor PI-103 (PDB HET code:

X6K), also targeting TOR, is, however, ranked 5th in C. elegans and 17th

in D. melanogaster. In contrast to rapamycin, PI-103/X6K has no

violations of Lipinski’s rules for likely drugs, a high predicted bioavail-

ability in C. elegans, a completely conserved binding site in both

invertebrate species and high predicted binding affinity. While our

ranking only considered the effect on TOR, PI-103/X6K also inhibits

phosphoinositide 3-kinase (PI3K), which is also strongly associated with

aging (Fan et al., 2006), suggesting that it is a promising candidate for

trials.

Unbiased C. elegans lifespan screen

Finally, we found a single unbiased screen of a set of compounds for

effects on lifespan in C. elegans where complete experimental results

are reported. The study by Ye et al. (2014) tested the library of

pharmacologically active compounds (LOPAC), comprising 1280 differ-

ent compounds at a fixed concentration of 33 lM in liquid culture. Of

these compounds, only four were included in our C. elegans ranking,

ranking 220th or lower in our calculations. None of them significantly

affected lifespan (P ≥ 0.05) according to Ye et al. (2014). Furthermore,

15 of the compounds tested are included in our D. melanogaster

ranking (the 11 additional compounds had no annotated C. elegans

orthologues in Compara and thus could not be ranked in C. elegans).

Three (B43, STR and TCD) of the 15 compounds are reported to

significantly affect lifespan (P < 0.05; B43 extends and STR and TCD

shorten lifespan), these include the two highest ranked of this list. This is

a significant enrichment for lifespan changing compounds by rank

(hypergeometric test P < 0.03 for overlap of lifespan extending com-

pounds with compounds ranked in the top 250 of the overall list).

Discussion

In this proof-of-principle study, we show that, by combining different

types of information, it is possible to create a ranked list of compounds

with respect to their likelihood to modulate aging in invertebrates. The

ranking demonstrated strong differences between potential candidates

for compound testing compared to random selection of any compound

binding an orthologue of a known modulator of aging.

The pipeline developed is fast and conservative, choosing to focus on

those compounds with strongest supporting evidence for an effect on

aging. The pipeline could be “relaxed“ to include more distant

orthologues or compounds and proteins without any human complex

structural data. Furthermore, the ranking procedure presented here also

serves as a blueprint for similar approaches, where individual factors or

terms can be omitted or substituted with alternative methods of

preference. It is interesting that most of the drugs at the top of the list

were developed to target cancers, perhaps reflecting the increased

occurrence of cancer with age.

Although no direct experimental validation is available, we provide

various lines of evidence indicating the success of the ranking and

making the top ranked compounds interesting candidates for

Fig. 5 Interaction between the

superimposed P37 ligand and the amino

acids in the active binding site (A) in human

(orange and pink) and D. melanogaster

(grey and blue) (B) in human (orange and

pink) and C. elegans (grey and blue).
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experimental in vivo testing. Due to uncertainty about compound

dosage, such experiments would require testing at multiple concentra-

tions, for example three concentrations spanning three orders of

magnitude. In C. elegans, the use of a specific drug-sensitive mutant

strain (partial loss-of-function bus-8 mutant) has been suggested for

drug screening (Partridge et al., 2008). A complication in C. elegans

drug screening can be the live E. coli bacteria contained in the most

commonly used food, which might metabolize compounds (Cabreiro

et al., 2013; Zheng et al., 2013).

Two recently published studies also aim to prioritize possible

compounds against aging using alternative computational approaches.

Calvert et al. (2016) use similarity of gene expression profiles caused by

compounds in human cell lines to those observed for a rat caloric

restriction model as prioritization criteria for C. elegans, while Snell et al.

(2016) employed a ligand homology modelling approach on individual

proteins to prioritize compounds for testing in Rotifers. Both approaches,

however, do not consider interspecies differences and bioavailability

constraints, which are critical.

Pharmacological interventions can be an extremely helpful research

tool, which enable time-restricted intervention in a dosage dependent

way, thereby allowing a more precise control than genetic interventions.

Furthermore, various compounds can be easily administered in combi-

nation and further combined with established genetic or environmental

intervention. As such, pharmacological interventions are an orthogonal

manipulation system which will help to further deconvolute the

pathways and processes relevant to aging. The recently established

Caenorhabditis Intervention Testing Program (CITP) for robustly testing

pharmacological interventions for their effect on aging across different

Caenorhabditis strains and species further demonstrates the relevance

and timeliness of our computational ranking procedure.

Neither C. elegans nor D. melanogaster are typical model organisms

for pharmaceutical research, but successful examples in drug screenings

exist (Desalermos et al., 2011, Pandey & Nichols, 2011) and demonstrate

the feasibility of large-scale compound screens. Clearly, successful

evaluation of compounds against aging in either invertebrate model

would require subsequent testing in mammalian models, for example in

the National Institute on Aging Interventions Testing Program (Warner

et al., 2000), in order to determine the most likely compounds to

influence human aging.

Experimental procedures

Data sources and mapping

Genes and proteins associated with aging were obtained from the

GENAGE database (Tacutu et al., 2013) as well as from general databases

(UniProt (UniProt Consortium 2014) and Ensembl (Flicek et al., 2014))

and organism-specific databases (RGD (Dwinell et al., 2009), MGI (Eppig

et al., 2012), FlyBase (St Pierre et al., 2014) and WormBase (Harris et al.,

2014)) using the Gene Ontology term for aging (GO:0007568). We

considered five selected species of interest: C. elegans, D. melanogaster,

M. musculus, R. norvegicus and H. sapiens. All results were mapped to

the corresponding Ensembl and UniProt entries, and all entries were

cross-mapped between Ensembl and UniProt. For each gene/protein

associated with aging, all orthologues in the five species were identified

using Ensembl Compara. PDB codes corresponding to these proteins

were retrieved from UniProt, Ensembl and the PDBsum database (de

Beer et al., 2014). DrugBank IDs (Law et al., 2014) and ChEMBL IDs

(Gaulton et al., 2012; release 15) of compounds binding aging-

associated proteins were collected from UniProt, PDBsum and ChEMBL.

Compound IDs were cross-referenced with UniChem (Chambers et al.,

2013) and, where possible, mapped to the ZINC (Irwin et al., 2012) and

eMolecules databases (http://www.emolecules.com/) of commercially

available compounds, ChEBI (Hastings et al., 2013) and to PDB HET

codes, the compound identifiers used in PDB structures. PDB HET codes

were used to identify PDB files of aging-associated proteins with bound

drug-like ligands of the DrugBank and ChEMBL set and at least one

orthologue in C. elegans or D. melanogaster. All targets with no

homologue in C. elegans or D. melanogaster were filtered out, because

these are the target species. Additionally, for each homologue family

and species, only the homologues with the smallest number of gaps in

the binding site and the highest binding-site identity or similarity were

kept.

The ranking score equations and components

The ranking score is a bounded score between zero and one determined

by five multiplicative factors and four additional terms for bonuses and

losses, defined by the following formula:

Ranking score ¼ max ðmin ðAging implication� Domain conservation

� Binding-site conservation� Binding affinity

� Bioavailabilityþ Lipinski lossþ Promiscuity loss

þ Availability to purchase bonusþ Approveddrug

bonus; 1Þ;0Þ:
Aging implication

This factor represents the certainty of our knowledge associating the

protein target with aging. It is derived from the Gene Ontology

(Ashburner et al., 2000) annotation evidence codes. A distribution of

scores for this and the other terms are available online under https://

www.ebi.ac.uk/thornton-srv/software/repurposing/.

Aging implication ¼ ð1� ðGO evidence scoreþ 0:1� identifier

mappingsÞÞ2

GOevidence score

¼

0:01or 0:02 Experimental EvidenceCodes

0:15

0:16

0:28or 0:29

ComputationalAnalysis EvidenceCodes

AuthororCurator Statement

Automatically assignedorNo -biol.DataorNotRecorded

8>>><
>>>:

Genes implied through being listed in GenAge are assigned a GO

evidence score of 0.01.

Protein domain conservation

This factor and the factor for binding-site conservation represent the

requirements for conservation to maintain binding of the compound to

the protein target. In practice, we use a conservation score for the

protein domains, which contain the binding-site contacts. A multiple

sequence alignment (MSA) of the amino acid sequence from the 3D

structure, the corresponding UniProt entries and their homologues in the

five species of interest was constructed using MAFFT with maxiterate

1000 and localpair options (Katoh & Toh, 2008). Pairwise sequence

identity between the protein of known structure and each homologue,

as well as the pairwise Grantham-based similarity (Grantham, 1974), was

calculated. Grantham-based similarity was defined as

1� Grantham Distance
215 , resulting in a 0 to 1 scaled similarity measure.

Values for amino acid codes B, Z and X were calculated as average of the

D and N, Q and E and all amino acids, respectively (for Grantham-based

similarity matrix see Data S2, Supporting information). We used protein
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domain assignments from Gene3D (Lees et al., 2014) for the UniProt of

the 3D structure. All domains in contact with the bound ligand where

jointly considered. For amino acids contacts, which lay outside annotated

domains, we used a window of �50 amino acids around the contact

instead.

Domain conservation ¼ logistic (Grantham-based similarity of domain

sequence, 0.6, 0.1).

The logistic transformation, logisticðx; l; sÞ ¼ 1
1þe�xþl=s, was applied,

because differences in medium similarities are more important than

equally large differences amongst very low or very high percentage

similarities. For compounds binding to more than one protein, the

maximum values for domain conservation, binding-site conservation and

binding affinity were used.

Binding-site conservation

This factor represents the conservation in the binding site, which is

especially important for conserved activity of the compound. We

obtained the amino acid positions from the MSA that are in contact

with the bound ligand as indicated in PDBsum. As we observed that a

large majority of binding sites contained more than 50% identical amino

acid residues, we based this factor on the Grantham-based similarity

score of 50% most dissimilar positions only, to increase sensitivity of the

factor.

Binding-site conservation ¼ Grantham-based similarity of 50% most

dissimilar binding-site residues.

Binding affinity

While all compounds ranked are shown to bind their target, as evident

from a ligand–protein complex structure, the binding affinity of the

interaction can range from low to high. Clearly, a compound binding

only with millimolar affinity (10�3
M) to a target is less desirable than a

compound binding with nanomolar affinity (10�9
M) for any given

target. In our work we therefore assume that higher starting affinities

also predict a better chance of binding to slightly altered targets. This

factor represents the binding affinity and is derived from the log-binding

affinity predicted by RF-Score v2 (Ballester et al., 2014) based on the

protein–ligand complex structure in 3D. Predicted binding affinities were

used because measured binding affinities were not available for all

complexes and previous validation demonstrated the high accuracy of

RF-Score at this task (Ain et al., 2015). As RF-Score v2 required input

files in PDBbind format, but not all complexes of interest were in the

PDBbind database (Wang et al., 2004), we created and successfully

tested a PDBbind format mimicking pipeline (see Data S3, Supporting

information).

Binding affinity = logistic(RFScore, 5, 1).

Bioavailability

In order for any compound to be able to exert an effect, it needs be able

to interact with its, mostly intracellular, targets. Thus, bioavailability is an

essential prerequisite. In C. elegans, bioavailability has been found to be

very limited (<10%) in standard approaches (Burns et al., 2010). After

evaluating the only published bioavailability predictor for C. elegans

(Burns et al., 2010) for its predictive performance (for details see Data

S3, Supporting information), we used its score logistically transformed

and scaled as a basis for our bioavailability score in C. elegans. As we

could not successfully evaluate the relevance or suitability of the

predictor for D. melanogaster, we opted not to use these predictions in

the D. melanogaster ranking, but rather substitute the bioavailability

score with a fixed term, which can be readily replaced when predictions

or measurements of bioavailability in D. melanogaster become available.

Bioavailability

¼ logistic Burns score;4;2:25ð Þ � 0:8þ 0:2 C: elegans

0:9 D:melanogaster

�

The modulating losses and bonuses are defined as follows.

Lipinski score

This term is one of four terms representing nonessential beneficial and

detrimental properties. This term has been used to represent the drug

likeness based on Lipinski’s rule of five (Lipinski et al., 2001), which has

been widely applied in drug development processes. This rule of thumb

states that compounds have a high likelihood of being orally active in

humans if they have a molecular weight less than 500 Daltons, an

octanol–water partition coefficient log P of no more than 5, no more

than 5 hydrogen-bond donors and no more than 10 hydrogen-bond

acceptors. This and the following terms are scaled to modulate the

overall score.

Lipinski loss ¼ �#violations of Lipinski;s rule of five

20

Binding promiscuity

An examination of the list of compounds and their targets showed a few

compounds, which are found to bind to a large number of targets. These

compounds included well-known omnipresent metabolites such as ATP,

but also compounds often used to aid crystallization processes, such as

PEG. These highly promiscuous compounds are less interesting com-

pared to more specific compounds targeting one or a few targets. This

term penalizes compounds by number of targets.

Promiscuity loss

¼� logisticð#different aging-related proteins crystallized with;7;1Þ
5

Availability to purchase

The final two terms of the ranking are not requirements for the

successful modulation of aging, but influence the ease of performing

any experiments and taking positive results forward. This term gives a

bonus for purchasable compounds, which is a requirement for most

researchers to examine its effects, as few will have the means to

synthesize any desired compounds.

Availability to purchase bonus

¼ 0:1 if contained in ZINC or eMolecules database

0 else

�

Drug approval status

Finally, approved human drugs and drug candidates (as defined in

DrugBank Law et al., 2014) receive a bonus. These compounds would

be especially attractive if found to extend lifespan in model organisms

because they have already been shown to be tolerated by humans at

least under certain circumstances. Thus, they might offer shorter

development routes to beneficial interventions against human aging

by drug repurposing.

Approveddrugbonus

¼
0:1 ifdesignatedasknowndrug inChEMBL

0:075

0

ifnotdesignateddrug inChEMBL,but contained inDrugBank

else

8<
:

Drug repurposing for aging research, M. Ziehm et al. 1013

ª 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



Protein structure modelling and docking

Single template modelling was performed using Automodel and loop

modelling from MODELLER 9.13 (Eswar et al., 2006). Trailing amino acid

residues lacking structural information and the P37 ligand were removed

before modelling, while other hetero atoms such as ions were included.

The best model was selected based on discrete optimized protein energy

(DOPE) using the CHARM22 force field and root-mean-square deviation

(RMSD). Rigid-protein, flexible-ligand docking experiments were per-

formed using AUTODOCK vina4.2 (Trott & Olson, 2010) with a 27.5 �A

search box. Finally, protein structure model files with docked ligand were

converted to PDBbind mimicking files for RF-Score binding affinity

prediction.

Literature mining

Literature mining was performed by querying PubMed and PubMed

Central (NCBI Resource Coordinators 2015) using the NCBI Entrez

Programming Utilities (eUtils; http://eutils.ncbi.nlm.nih.gov/entrez/eutils).

We created search term dictionaries for compound names and

synonyms, lifespan terms and species terms, with all combinations of a

drug dictionary term, a survival dictionary term and a species term. The

query was conducted to use the automatic term expansion (PubMed),

which, for example, expanded “ageing” to “(aging[MeSH Term] OR

aging[All Fields] OR ageing[All Fields])”, or manual equivalent expansion

(PubMed Central). The compound dictionary was constructed to contain

for each of the top 25 compounds for D. melanogaster and C. elegans:

the ChEMBL, DrugBank and ZINC identifiers if available, all names and

synonyms listed by these three resources as well as all names from the

NCI/CADD Chemical Identifier Resolver (http://cactus.nci.nih.gov/che

mical/structure). Names shorter than three characters were excluded.

The survival dictionary comprised “longevity”, “lifespan”, “life-span”,

“life span”, “life history”, “survival”, “mortality”, “ageing” and the

species dictionary included “Drosophila melanogaster”, “Drosophila”,

“melanogaster”, “Caenorhabditis”, “elegans”, “Caenorhabditis ele-

gans.” The dictionaries were constructed to be relatively promiscuous

in order not to miss any relevant publications. For the PubMed Central

queries, the survival dictionary did not contain “ageing”, but all queries

had the additional constraint “+AND+(aging[MH]+OR+aging

[ARTICLE]+OR+ageing[ARTICLE])” to gear the results more towards

longevity experiments in contrast to cancer survival. To avoid finding

articles where the relevant terms are only part of the references, we

restricted the survival and species terms, but not the compound term, to

the article body. For all PubMed and PubMed Central queries, all space

characters were substituted with “+” as required by the query tool.
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