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PDBbind mimicking files for RF-Score 
We used the machine learning-based binding affinity prediction method RF-Score v.2 (Ballester et al. 2014) 

shown to have high prediction accuracy. This machine-learning scoring function was trained on the files 

from the PDBbind database (Wang et al. 2004), and requires structure-ligand complexes in that format. 

Since most complexes of interest are not in PDBbind and there was no complete conversion script 

available, we developed a small pipeline for converting PDB files containing a protein with bound ligand 

into a PDBbind like format, mimicking the original PDBbind as closely as possible. 

PDBbind mimicking procedure 
For each PDB code to be converted we downloaded the PDB biounit file, if available, otherwise the 

standard file is used. The first occurrence of the ligand of interest is extracted and all corresponding 

HETATM lines of the PDB written to a separate PDB file. This is converted into mol2 format and protonated 

using OpenBabel (O'Boyle et al. 2011). All SEQRES, SSBOND, TER and ATOM lines of the PDB files are 

extracted into a protein PDB file, which is protonated by the CCP4 programme hgen (CCP4 v.4-6.4.0)(Winn 

et al. 2011). 

A new protein files, is prefixed by three lines:  

 “HEADER    " + PDB code + "_PROTEIN" 

 "COMPND    " + PDB code + "_PROTEIN” 

 "REMARK    GENERATED BY MZiehm on “ + date and time 

This is followed by the content of the hgen output PDB file, with few naming changes necessary to 

numbered atoms, for example: 

 If the atom is called H1 or H1A but not followed by H2 or H2A, respectively, then omit "1" 

 else if the atom is called H2G2, it is changed to 2HG2 

 else if the atom is called H2A, it is changed to HA2 

Then all HETATM of the original PDB file which were not extracted into the ligand file are added with 

renumbered atom numbers and the resulting PDB files send through XScore v1.2.1 (Wang et al. 2002) with 

option “-fixpdb”. Finally, the resulting “fixed” protein PDB file is used in combination with the ligand mol2 

file to create the pocket files using “xscore -preppocket”. 
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Evaluation 
In order to evaluate the impact of the differences of our PDBbind mimicking files compared to the original 

PDBbind format, we created PDBbind mimicking files for the 92 complexes of the PDBbind database which 

overlap with our list of complexes of interest. We then predicted the binding affinity for the PDBbind files 

of the 92 complexes and our PDBbind mimicking files for the same complexes and compared both results 

with the measured binding affinities provided by PDBbind. The results shown in the figure below 

demonstrates that our PDBbind mimicking files production pipeline works well and RF-Score produces high 

quality predictions for these files. 

 

    

(A) On the original PDBbind files of these 92 complexes RF-Score predictions correlated extremely well with the 

measured binding affinities reported in PDBbind (Pearson r=0.978). (B) Nearly identical correlation of the RF-Score 

predictions based on our PDBbind mimicking files with the measured binding affinities from PDBbind (Pearson 

r=0.974). 
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Bioavailability Prediction assessment 
Here we evaluated the only published bioavailability predictor for C. elegans (Burns et al. 2010), for its 

predictive performance. This was particularly important to establish its usefulness, appropriate weighting 

and transformation of the prediction to include it into our scoring function. 

Training set performance 
First, we assessed the predictive performance on the training set as a baseline for the further evaluations. 

For that we converted the 483 compounds of the training set from the SDF format into SMILES using the 

OpenBabel framework (O'Boyle et al. 2011) and predicted the bioavailability using the Pipeline Pilot 

prediction script. We than compared predicted binary bioavailability with the classification based on the 

measurements. These results showed a sensitivity of 0.96, specificity of 0.84, and Matthews correlation 

coefficient of 0.64 of the prediction method on its own training set. Interestingly, the method showed a 

particularly low positive predictive value of 0.53, indicating that many of the positively predicted 

compounds are false positives, while the negative predictive value is very high with 0.99, indicating very 

few compounds predicted as false negative in the training set. This balance chosen by the developers is 

particularly useful for the application of the prediction method as a filtering or prioritisation method. The 

overall performance, with an accuracy of 86%, leaves plenty of room for improvement, especially when 

considering these estimate are based on the data set the method was developed on. Not surprisingly, we 

found a highly significant enrichment for bioavailable compounds by ranking by bioavailability prediction 

score (Wilcoxon rank-sum test p-value < 10-15; Kruskal-Wallis rank sum test p-value < 10-15), with 

enrichments factors between 4 and 6.4 (compared to random) for compounds with prediction values > 2.5. 

The figure below shows the rate of bioavailable compounds plotted against the bioavailability prediction 

cut-off, illustrating the overall basic rate of bioavailable compounds of 0.15 in the training set, going up to 

100% availability for compounds scoring more than 9.5. 

 

Hit rate by Predicted Bioavailability. In black circles are the empirically observed rates of bioavailable compounds for 

all possible cut-off of bioavailable prediction score. Dark blue is the cubic spline with 4 degrees of freedom. The 

empirical hit rate of the lower half of each participation is shown in grey. 

 

External data performance C. elegans 
For an independent evaluation, we gathered data from two independent whole animal screens of the 

LOPAC library of 1280 pharmaceutically active compounds (Sigma-Aldrich) in C. elegans (Leung et al. 2013; 

Ye et al. 2014). While both screens do not explicitly assess bioavailability, they observe phenotypes, which 
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require bioavailability of the compounds. We thus reason that these data sets can provide evaluation data 

for bioavailable compounds. The compounds with no effects, however, might not be influencing the 

phenotype, while still being bioavailable, thus do not provide evaluation data for non-bioavailable 

compounds. 

Leung et al. (2013) examined the effect of the compounds on gst-4, a well know target of the SKN-1 

transcription factor, using a 1536-well plate fluorescence-based screening approach. They screened the 

LOPAC library at 5, 10 and 20 µM concentrations each in triplicate with 1.5h exposure time and reported 27 

hits which showed more than 40% inhibition in at least one replicate of one of the concentrations. 26 of 

these compounds could be matched to the LOPAC SD file obtained from Sigma-Aldrich, 1 compound (T-182, 

Tyrphostin A9) was not found in the LOPAC information from Sigma-Aldrich and thus omitted. 

Ye et al. (2014) examined the effect of the compounds in LOPAC on lifespan. They screened the library in 

96-well plates at a compound concentration of 33 µM from day 1 of adulthood continuously until death. 

Using the provided the p-values for survival difference for each compound, we apply a stringent cut-off p < 

0.01 to identify significant effects on lifespan, identifying 80 compounds with significant effects. 

We combined the lists of compounds with observed phenotypes from the two studies to evaluate the 

bioavailability prediction. We converted the SD file of the LOPAC library to SMILES using OpenBabel, and 

predicted the bioavailability for all compounds using the Burns Script with Pipeline Pilot. We then tested 

whether there was enrichment in the compounds with the observed phenotype when ranked by predicted 

bioavailability. 

We found a significant enrichment (Wilcoxon rank-sum test p-value = 0.002; Kruskal-Wallis rank sum test p-

value = 0.002), with enrichment factors between 2.7 and 5.9 compared to random for compounds with 

prediction values > 2.5. This shows that, while the method still performs a significant enrichment on a 

different set of compounds, the discriminatory power is even lower. The figure below shows the hit rate 

plotted against the bioavailability prediction cut-off, illustrating the overall basic hit-rate of 0.08 for this 

data set, which goes up to 0.4 to 0.5 when only looking at the compounds with the highest predicted 

bioavailability. 

 

Hit rate by Predicted Bioavailability. In black circles are the empirically observed hit rates for all possible cut-off of 

bioavailable prediction score. Dark blue is the cubic spline with 4 degrees of freedom of the empirical hit rate, and in 

light blue an approximation by a logistic transformed bioavailability prediction score. The empirical hit rate of the 

lower half of each participation is shown in grey. Please note that there are only 20 compounds with bioavailability 

prediction score >7, and thus hit rate estimation is unstable. 
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C. elegans bioavailability ranking score 
Based on these hit rate estimates, and the logistic shape of improvement, we incorporated a logistically 

transformed Burns bioavailability prediction score with the same location and steepness parameters as 

shown into our scoring function. However, we scaled the transformation to be between 0.2 and 1 instead 

of the observed 0.1 and 0.5, to be on the same scale as the other factors and to allow for the fact that the 

true bioavailability is overall likely to be significantly higher, than the estimate from those also showing one 

of the two considered phenotypes. 

Evaluation for D. melanogaster 
Finally, we wanted to evaluate if the bioavailability prediction method by Burns et al. (2010), which was 

developed for C. elegans, is transferable to D. melanogaster as there is no tailored prediction method 

available to our knowledge. For this we searched the literature for unbiased whole animal screens of 

compound libraries in D. melanogaster and found two relevant publications (Chang et al. 2008; Nall & 

Sehgal 2013). 

Chang et al. (2008) examined the effects of 2000 compounds from the Spectrum library (MicroSource 

Discovery Systems Inc.) on a D. melanogaster model of the fragile X syndrome. They did so by screening the 

library at 40 µM in 96-well plates with 12-embroys per well for rescuing developmental lethality of Frm1 

mutants and found 61 hits. 42 of these hits could be matched to entries in the SD file provided by 

MicroSource Discovery Systems Inc. for the Spectrum library. We converted the SD file of the Spectrum 

library to SMILES using OpenBabel, and predicted the bioavailability for all compounds using the Burns 

Script with Pipeline Pilot. Three compounds (01502501, 01505308, 01506152) were excluded as their 

structures provided in the SD file contained incorrect valence electron configurations. We then tested 

whether there was enrichment of compounds with the observed phenotype when ranked by predicted 

C. elegans bioavailability. We found no significant enrichment (Willcoxon rank-sum test p-value = 0.4; 

Kruskal-Wallis rank sum test p-value = 0.4). While the absence of any detectable enrichment might initially 

seem surprising, we believe that a likely reason is the screened phenotype (rescue of embryonic lethality). 

This particular phenotype requires very specific compounds for an observable effect, while many other 

compounds might be bioavailable, but not rescue the Frm1 mutant’s specific embryonic lethality, thus not 

show up in the screen. Hence, the data-set might not be suitable for evaluating the predictive qualities for 

D. melanogaster bioavailability. The second publication by Nall and Sehgal (2013), screened the LOPAC 

library for effects on sleep in wild-type iso31 D. melanogaster. Nall and Sehgal (2013) screened the 

compounds at 20 µM for 1 week in young adult flies and found many compounds which affected sleep in at 

least one sex, 38 of which affected sleep in both sexes. Unfortunately, the data were not included in the 

publication and we were not able to obtain them from the author upon request. 

We therefore, were unable to successfully validate the usefulness of the Burns predictor for predicting 

bioavailability in D. melanogaster. Since the relevance or suitability of the predictor is unclear, we chose to 

not use these predictions in the D. melanogaster ranking, but rather substitute the bioavailability score 

with a fixed 0.9 term. This value was chosen to allow bonuses to increase the overall score, rather than 

being irrelevant because of the upper limit of 1.0. If in the future a bioavailability predictor for 

D. melanogaster is published or the Burns et al. (2010) evaluated for D. melanogaster, this term can be, 

after transformation into the range between 0 and 1, readily used into the ranking procedure. 

 

  



6 

References 
Ballester PJ, Schreyer A,  Blundell TL (2014). Does a more precise chemical description of protein-ligand 

complexes lead to more accurate prediction of binding affinity? J Chem Inf Model. 54, 944-955. 
Burns AR, Wallace IM, Wildenhain J, Tyers M, Giaever G, Bader GD, Nislow C, Cutler SR,  Roy PJ (2010). A 

predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans. Nat Chem 
Biol. 6, 549-557. 

Chang S, Bray SM, Li Z, Zarnescu DC, He C, Jin P,  Warren ST (2008). Identification of small molecules 
rescuing fragile X syndrome phenotypes in Drosophila. Nat Chem Biol. 4, 256-263. 

Leung CK, Wang Y, Malany S, Deonarine A, Nguyen K, Vasile S,  Choe KP (2013). An ultra high-throughput, 
whole-animal screen for small molecule modulators of a specific genetic pathway in Caenorhabditis 
elegans. PLoS One. 8, e62166-e62166. 

Nall AH,  Sehgal A (2013). Small-molecule screen in adult Drosophila identifies VMAT as a regulator of sleep. 
J Neurosci. 33, 8534-8540. 

O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T,  Hutchison GR (2011). Open Babel: An open 
chemical toolbox. J Cheminform. 3, 33-33. 

Wang R, Fang X, Lu Y,  Wang S (2004). The PDBbind database: collection of binding affinities for protein-
ligand complexes with known three-dimensional structures. Journal of medicinal chemistry. 47, 
2977-2980. 

Wang R, Lai L,  Wang S (2002). Further development and validation of empirical scoring functions for 
structure-based binding affinity prediction. J Comput Aided Mol Des. 16, 11-26. 

Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, 
McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A,  
Wilson KS (2011). Overview of the CCP4 suite and current developments. Acta crystallographica. 
Section D, Biological crystallography. 67, 235-242. 

Ye X, Linton JM, Schork NJ, Buck LB,  Petrascheck M (2014). A pharmacological network for lifespan 
extension in Caenorhabditis elegans. Aging Cell. 13, 206-215. 

 


