
“No Good Reason to Remove Features”
Expert Users Value Useful Apps over Secure Ones

Steve Dodier-Lazaro1, Ingolf Becker1, Jens Krinke1, and M. Angela Sasse1

University College London, London WC1E 6BT, UK,
s.dodier-lazaro@cs.ucl.ac.uk,

WWW home page: http://www0.cs.ucl.ac.uk/

Abstract. Application sandboxes are an essential security mechanism
to contain malware, but are seldom used on desktops. To understand
why this is the case, we interviewed 13 expert users about app appropri-
ation decisions they made on their desktop computers. We collected 201
statements about app appropriation decisions. Our value-sensitive em-
pirical analysis of the interviews revealed that (a) security played a very
minor role in app appropriation; (b) users valued plugins that support
their productivity; (c) users may abandon apps that remove a feature –
especially when a feature was blocked for security reasons. Our expert
desktop users valued a stable user experience and flexibility, and are un-
willing to sacrifice those for better security. We conclude that sandboxing
– as currently implemented – is unlikely to be voluntarily adopted, es-
pecially by expert users. For sandboxing to become a desirable security
mechanism, they must first accommodate plugins and features widely
found in popular desktop apps.

Keywords: Value-Sensitive Design, Security, Productive Security, Sand-
boxing, Apps, Appropriation

1 Introduction

Sandboxes are security mechanisms that execute processes in a fully controlled
and isolated environment. They are typically used to isolate apps from one an-
other on operating systems (OSs). They protect users both against malicious
apps and against exploits targeting legitimate apps. Sandboxes have become an
essential building block of modern OSs [2,3,12,19]. However, sandboxes impact
how app features can be implemented, and sometimes prevent the implementa-
tion of features found in apps, because the methods used to implement those
features are also useful for malware writing. Therefore, sandboxed and unsand-
boxed versions of the same app can differ slightly in behaviour or affordances.

The security benefits of sandboxes are tangible. On Mobile OSs, all apps are
sandboxed, which prevents malware-ridden and malicious apps from affecting
other apps on the system. On desktop OSs, however, sandboxes are only par-
tially deployed. Desktop developers struggle to make their apps compatible with
sandboxing without sacrificing important features and plugins. Many ultimately

opt out from supporting this security feature [8,13,15,20,26]. Plugin infrastruc-
tures (which allow third-party developers to augment an app with additional
features or user experience improvements) and features such as emulating key-
board input, screen sharing, audio recording, inter-process communication and
bulk file processing are forbidden in sandboxes to prevent malicious behaviours,
but they are sometimes too critical for apps to abandon [22, 31]. These incom-
patibilities are not, per se, technological constraints that cannot be overcome.
They are design decisions made by sandbox designers. Instead, designers could
have chosen to complicate sandboxed apps’ security policies to support those
potentially dangerous features.

On Windows, many popular apps like Dropbox, Steam, iTunes, Google Drive,
VLC, Office, Photoshop, etc. are not sandboxed, or only in rudimentary versions
with missing features [14]. Tech reporters argued that sandboxed apps are rarely
downloaded and used on Windows, as they lack critical features and degrade pro-
ductivity [6]. After five years, the adoption of sandboxing stagnates on Windows,
and even dwindles on OS X where developers have publicly announced aban-
doning the Mac App Store [20,26,31]. On Linux desktops, sandboxed app stores
exist [7,9,10], but none have a substantial user base. Consequently, desktop users
are not currently taking advantage of the security benefits of sandboxes, despite
being exposed to phishing attacks, malware, ransomware, etc. Still, many pro-
ductive activities such as software development, complex information work, data
science, etc. require the use of desktop OSs.

Moreover, assuming sandboxing meets usability requirements, users still need
to either abandon their current apps in favour of new, sandboxed apps. How
users will arbitrate such decisions about app adoption or retainment has not
been addressed in past research.

We hypothesise that developers refuse to support sandboxing because it
would degrade what makes their apps valuable to their users. Our analysis of
developer discussions on sandboxing revealed two main issues: some types of
features cannot be implemented in sandboxed apps, and sandboxed apps can-
not have plugins. If the consequences of sandboxing upset users or make apps
useless, it would explain why developers are reluctant to support it.

To answer these questions, we interviewed 13 expert users to explore the
values they seek to fulfil when they make choices about apps. We aim to unveil
the de facto requirements that sandboxed apps must meet in order to entice user
adoption, support app adaptation needs, and prevent app abandonment.

We show that our users struggle with explaining and accepting feature loss,
and may choose to abandon apps that remove features – especially for security
reasons. We show that plugins are useful and valuable to expert users, and are a
crucial way to improve their productivity. We also show our participants do not
consider security as a prime factor in their decisions related to app appropriation.

We also make the following contributions: we perform a value-sensitive anal-
ysis of app adoption, adaptation via plugins and abandonment. We find that
different values underpin each of these processes, and that the values recruited
to think about content consumption and production apps differ. We identify

shortcomings in past usable security research: temporal aspects of appropria-
tion (e.g. use of plugins, which address issues that were experienced in use and
reflected upon by users) can only be studied in-the-wild; and participants’ ap-
preciation of security must not be distorted by priming.

We first present relevant research. Next, we explain our study design and
research questions. Then, we present our value analysis of three aspects of app
appropriation. We continue with a detailed analysis of participants’ reactions to
feature loss. We finish with a list of limitations, and conclude with a summary
of our findings and open problems.

2 Background & Related Work

Usability evaluations of security mechanisms are mostly restrained to their user
interfaces. We argue there is more to technology adoption than usable interfaces.
If a tool does not perform a function that is useful to users, or if this function con-
flicts with other valued artefacts, the tool may be ignored. This is why Smetters
and Grinter [27] have called for usable security to ensure that designed systems
are useful. Likewise, Mathiasen and Bødker [17] examine usable security from
the lens of experience-driven design [18]. They “concern [themselves] with how,
on the one hand, the use experience is determining the security technology, while
on the other hand, the security technology resists, constrains and directs the use
experience”. By framing sandboxing as an appropriation problem rather than a
usability one, we can focus on the compositional and spatio-temporal aspects of
user experience, which are usually ignored in usable security.

2.1 The Usability of Sandboxes

Only two usability studies of sandboxes exist [23, 25]. Both had participants
perform scripted scenarios in a lab, emulating basic app interactions. These
studies do not model the impact of introducing sandboxes on the complex app
ecosystems of the real-world. Expert users may rely on features that are more
demanding on security policies, or sometimes not possible to formulate safely
with current app sandbox models. These differences in technological needs are
masked by seemingly successful usability studies, but it remains unclear if users
would be able to appropriate a fully sandboxed OS.

2.2 Value-Sensitive Design

We did not want to just document participants’ preferences, but understand why
they held such preferences. Value-Sensitive Design (VSD) [11] is a methodology
that reveals values involved in user behaviours and the frictions between them.
It combines three forms of analysis. Conceptual analysis is used to identify stake-
holders, their goals and potential value tensions between them. Empirical anal-
ysis reveals tensions in studied environments where technologies are deployed.
Technical analysis probes how artefact designs position themselves with regards

to values and value conflicts. We used a VSD conceptual analysis to design the
interview we report on, and an empirical study to model the values involved in
app appropriation and relate them to security, which we report on here.

3 Study Design

We aim to identify how sandboxes clash with the needs of expert users. We
performed semi-structured interviews with 13 users about the apps they use.

3.1 Research Questions

Feature loss and plugin loss are externalities of sandboxing that developers ex-
pect and dislike, and thus focus most of our investigation on these aspects.
However, other tensions might yet have to be uncovered. We hence explore the
relationship between users and their apps more thoroughly, including situations
like app adoption and abandonment which are have been ignored in past studies.
We treat plugin usage as acts of app adaptation, and thus include their use in
our value analysis. If the presence of features emerges as an important value
for users, and if plugins play a distinct and important rules in users’ practices,
it would corroborate developers’ worries about these two aspects of apps that
conflict with sandboxing.

We first investigate what users value and prefer in their apps, and the relation
between these values and security. Our research questions are:

RQ1: Which values drive app appropriation? Is security one such value?
RQ2: How much do expert users rely on plugins? What value do plugins

provide to expert users?
After that, we turn to how users relate to and react to feature removal in

their apps. We discuss their own experiences and beliefs, and then explore how
they make sense of feature removals motivated by security reasons.

RQ3: Is feature loss acceptable? How does it impact users’ choices of apps?
RQ4: How does security-motivated feature loss differ from other types of

loss with regard to acceptance and reaction?

3.2 Data collection and coding

We performed semi-structured interviews centred around participants’ usage of
apps, how they manage and value their apps, and about their information man-
agement and security strategies. The interviews lasted 40 minutes to 1:50 hour
(median 1:14 hour), and we collected 81 to 227 statements per participant (me-
dian 140).

We coded our data separately for the value analysis and questions about
feature loss. In the next section on value analysis, we allocated all participant’s
statements for each topic to characteristics of the apps that they relate to (we call
those app traits), e.g. : apps being slow or costly, or the fact that an app offers
new features. We re-coded previous answers and refined app traits as we went

along, until all participants answered could be unambiguously classified. We then
mapped these app traits to the value they support, to enable a value-sensitive
empirical analysis of participants’ behaviours. In the section on feature loss, we
used Grounded Theory’s open coding [30] to identify themes in participants’
answers, e.g. how they made sense of feature loss statements or the expected
compensations for feature loss.

Self-reported data suffer from accuracy issues. To eliminate potential demand
traits biases [21], we only retained strong statements – which participants justi-
fied or supported with prior experiences. We eliminated 18 hypothetical, vague
or contradictory statements, and used 201 in our findings.

3.3 Recruitment and Demographics

We advertised our study on a Reddit community dedicated to Linux. We used
Linux users because participants were recruited as part of a larger field study,
parts of which include deploying software components that cannot be written for
closed-source OSs. Linux is for this reason the de facto standard OS in systems
research. We paid participants £20 for participating to the interview this paper
is based on, out of a total of £100 for participating to the whole project.

We recruited 13 Xubuntu users from 7 EU countries and from the USA, aged
between 18 and 54, representative of desktop Linux users for age, occupation,
gender and degree of Linux proficiency. Most were expert Linux users, except
P6 and P12 (beginners), and P3 and P10 (IT professionals). P10 and P13 are
security experts, and P12 attends security classes. Our participants include a
Web developer, two (adult) high school students, two tech support representa-
tives, a musician, a consumer retail employee, a student teacher, a sales engineer
and four computer science students. 8 of them write code, 7 perform information
work, and 7 produce media content (e.g. graphics, audio, video, photos).

3.4 Use of deception

We told participants the study focused on their multitasking habits, to avoid
non-respondent bias from participants with limited motivation to engage with
security, and social desirability biases and demand trait biases during the study.
We chose multitasking to attract participants who have a need for productivity,
as opposed to leisure users of computers. We revealed the deception to par-
ticipants near the end of the interview. Unless when mentioned otherwise, all
the data we use was obtained before we revealed the deception. This study was
approved by the UCL Research Ethics Committee under identifier 6079/001.

4 Value-Sensitive Analysis of App Appropriation

Sandboxes can make an impact in terms of everyday security only if they are
used, rather than merely usable. To this end, we aim to determine how sand-
boxing interplays with three aspects of app appropriation: adoption, adaptation

and retainment. Sandboxes may conflict with users’ ability to obtain features
and may incur a performance penalty. If users’ adoption and abandonment be-
haviours are driven by the presence or absence of features and by performance
considerations, then sandboxing will conflict with users’ main decision factors.
This could lead to sandboxed apps being adopted less often, or apps being aban-
doned after they become sandbox-compatible.

Besides, sandboxes prevent apps from providing plugins. Plugins are part of
how apps can be adapted to better suit workflows. Users of plugins must compare
the benefits afforded by plugins with the sandbox’s benefits and decide whether
to adopt or circumvent the sandbox based on such a cost/benefit analysis. We
aim to find out where plugins are used, and what value they provide.

4.1 Method

We classified participants’ statements on how they appropriate apps and on the
plugins they use, based on the app traits they relate to (e.g. “Ad-blocking” or
“Access to content” for plugins; “Unresponsive UI” or “Privacy Issues” for app
abandonment). For plugins, we paid attention to their reported purpose, e.g.
P11 uses a VPN service to access foreign media rather than for security. When
participants added or replaced components of their desktop Environment (DE),
we recorded those events as DE plugins.

Next, we categorised traits into values: usefulness, security & privacy, usabil-
ity, productivity, credibility, affordability, mobility, stability and flexibility. We
chose values to highlight known tensions in the usable security literature (secu-
rity vs. usability [1], usefulness [27] and productivity [4]) and to capture concerns
identified in our conceptual analysis (usefulness and developers’ credibility).

We classified apps into categories: browsers, communication apps (email and
messaging), file sharing apps (cloud storage and torrent), media consumption
apps (e.g. music and video players, news aggregators, etc.), media and document
editors (e.g. Office, audio, video, image editors), code editors, DEs and security
apps. When a statement refers to an app’s feature or to a past experience with
an app, we assign it to the category that fits the app.

4.2 App Adoption and Abandonment

We look at the values governing app adoption and app abandonment, in order
to discover potential challenges during the transition to sandboxed apps. When
developers port their apps to a sandbox, externalities can include features being
incompatible, loss of plugins or performance degradation. They must decide if
those changes will put users off from adopting or continuing to use their app.
Hence, we asked participants what would convince them not to try a new app,
and what would convince them to abandon an app they are using.

Losing Interest in Potential Apps We recorded 20 statements of interest
loss. P4 gave no answer, and P2’s answers were too weak to be included.

As Figure 1 shows, half of our 12 respondents stopped considering an app
because it lacked a feature. Feature loss is a possibility when porting an app to
a sandbox, either because the feature relied on privileged operations (e.g. bulk
file processing, access to hardware, IPC) or on libraries that are themselves not
compatible with the sandbox. Thus, if an app developer removes a key feature
because of sandboxing, fewer users will adopt their app in the future.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

UI looks unappealing

Privacy concerns

Security reputation

App is too hard to install

Excessive resource usage

Bugginess reputation

UI looks unusable

Bad reputation online

App is proprietary

App is too expensive

Lack of required features

Participants Losing Interest in an App Because of...

Usefulness (6)

Reliability (2)

Affordability (3)

Credibility (4)

Security & privacy (2)

Usability (3)

App Traits

Values

Fig. 1. Participants decided not to install potential new apps primarily because they
lacked a required feature. Other reasons revolve around Credibility and alleged Usability
and Reliability.

P10 mentioned avoiding apps that have a reputation for “breaking other pro-
grams somehow” or “security stuff”. He also avoids apps that are hard to install.
Apps with such a reputation might benefit from being sandboxed owing to the
benefits of app stores. Ultimately however, sandboxes appear more detrimental
than beneficial to adoption for our cohort.

Abandoning a Current App We also analysed what reasons participants
have to stop using their current applications, to identify the impact of sand-
box introduction for the current users of an app. 11 participants provided 21
statements on app abandonment. P2’s data was again removed.

Figure 2 shows that Reliability is the primary factor for app abandonment:
participants stopped using apps because they became too slow, buggy, or used
too much RAM. Usefulness follows in users’ reasons for app abandonment. It is
by changes in apps or in user needs. Two participants no longer needed an app,
and two had a better replacement available. Five abandoned an app because it
was missing a feature (in four cases, it was lost to an update; in one case, it was
only partially implemented). Security was mentioned only once spontaneously

0 1 2 3 4 5 6 7 8 9 10 11 12 13

App becomes proprietary

UI too hard to learn

Inefficient UI

Security issues

Slow, unresponsive app

Buggy app

Excessive resource usage

Low frequency of use

Replaced by another app

Loss of required features

Participants Abandoning an App Because of...

Reliability (7)

Values

Usefulness (6)

Security & privacy (1)

Productivity (1)

Usability (1)

Credibility (1)

App Traits

Fig. 2. Participants stopped using applications primarily because of Reliability issues:
bloated apps, unresponsive or buggy UIs. Apps also fell out of use, or lost required
features after an update.

as a good reason to abandon an app. Two other participants stated security was
a good reason after we accidentally primed them.

4.3 Using Plugins to Customise Apps

Expert users commonly install plugins on their apps to improve them. Plugins
are routinely found on browsers, but also code editors, media editors, information
work apps, communication apps, media players, etc. They are written by third-
party developers, and are banned from the Windows App Store, the OS X App
Store (partially) and on Mobile platforms. Browsers run unsandboxed in order
to retain the ability to provide plugins.

Our participants reported using 73 plugins (2 to 9, average 5), for all app
categories except media consumption apps (46 for browsers; 14 for code editors; 2
to 4 for communication apps, document editors, DEs and security apps). When
asked, seven participants mentioned 11 additional plugins they would like to
have. Participants plausibly had more plugins installed than they recalled, as
many Linux productivity apps and media players are distributed with some
plugins enabled by default. If all Linux apps were sandboxed, participants would
resultingly miss out on a significant part of their user experience. In this section,
we document the role of plugins to understand how users would be affected if
they chose to adopt sandboxed apps. This informs us on the values that security
mechanisms compete against when they compromise the ability to have plugins.

Desired Plugins and Features We asked participants to imagine an addi-
tional feature or plugin they would like to have, to check if specific types of

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Replacing a buggy feature

Data backup feature

Access to content

Enabling Social Interactions

UI improvements

Security

Format compatibility

Cross-device computing

New features

Privacy

Work organisation

Integrating external features

Improving task efficiency

Ad blocking

Number of Participants Reporting a Plugin per App Trait

Ad blocking (13)

Productivity (12)

Mobility (5)

Security & privacy (7)

Usability (4)

Usefulness (9)

Reliability (2)

Values

App Traits

Fig. 3. The plugins installed and wanted by our participants primarily support Ad-
blocking, Productivity (task efficiency, external features, work organisation) and Use-
fulness (new features, format compatibility, access to content, social interactions).

features are in demand, or if plugins are wanted for specific app categories. Plu-
gins were desired for browsers, communication apps, code editors and DEs.We
found that the 73 installed plugins and 11 desired plugins and features were sim-
ilar in terms of the values they support and concerned similar app categories.
Consequently and for space reasons, we discuss ‘installed plugins’ and ‘desired
plugins’ together in this paper.

The Role of Plugins Plugins were predominantly used for browsers, but also
for content production apps such as code or image editors and for communica-
tion apps. The features provided by plugins supported a variety of app traits,
e.g. making an app compatible with a new format. Our classification aims to
show what exactly participants would lose if plugins were removed. Some types
of users or some apps’ userbases may be more affected than others. We highlight
the app traits for which sandboxes may be able to replace plugins with other
techniques. We counted how many participants mentioned each trait and as-
signed traits to values, as shows Figure 3. The Ad-blocking trait was mentioned
by all participants and not classified into a value due to its unique nature.

Plugins mostly support the productivity value, with three traits relating to it.
Firstly, plugins help participants perform small tasks faster, e.g. code snippets
or tools to accelerate browsing through Web pages. Secondly, they integrate
features normally found in other apps to make them faster to access, e.g. image
processing features in browsers or source version control in code editors. Thirdly,

plugins help participants organise their work sessions in browsers, DEs and code
editors, e.g. tools to manage tabs or improve window placement.

Plugins also support Usefulness, with traits such as the compatibility with
new document formats, enabling new social interactions, granting access to copy-
righted content, and with the introduction of new features. Security plugins
consisted of script and Flash blockers, HTTPS Everywhere, and a password
manager. Privacy plugins comprised end-to-end encryption for instant messag-
ing and email apps and of plugins to prevent user tracking on the Web and on
Facebook. Sandboxes can partially emulate some features of network security
plugins, albeit without proper integration into apps’ UIs. They cannot compen-
sate for the loss of plugins in the Usefulness category.

Accounting for Productivity Apps Our participants used plugins for code
editors and document and media editors, as well as DEs and browsers. We call
both editor categories ‘production apps’ – apps used in productivity contexts.
Browsers, DEs and communication apps are hybrid, relevant to all sorts of use
contexts. Media consumption apps (music and media players, online social net-
works, news aggregators, etc.) are, themselves, rarely ever useful in productivity
contexts. Even though plugins are available for most of the media consumption
apps mentioned by our participants, none of them used plugins for this category.
Thus, plugins are particularly in demand for production apps. This is especially
true for code editors where 6/8 participants used plugins. The Productivity value
also accounted for 7/15 plugin mentions for the code editor category. Therefore,
users of code editors are particularly dependent on plugins to boost their pro-
ductivity. They would be more affected than others by plugin loss.

4.4 Values Driving Appropriation over Time

We recorded other value statements that are not specific to adoption, abandon-
ment or plugins. Two values were frequently mentioned: stability and flexibility.

6 participants expressed, in 8 statements, discontent when their user experi-
ence is disrupted by changes in apps, therefore preferring stable experiences. P7
and P5 expressed disbelief about feature removal. P5 said: “If there is a need and
there something covering this need, if you remove it it’s really hard to explain to
your users that it’s just not there any more”. Three participants were attached
particularly to a specific feature (e.g. the ability to browse books or albums by
their cover for P5, or the reopening of documents at the page they were last
closed for P10) while we discussed their work habits. Finally, P13 expressed not
wanting to change the apps he was habituated to, and disliking when those apps’
UI changed after an update.

4 participants also praised, in 6 statements, software that is flexible and can
be adjusted to their needs. P4 and P12 told us how they take advantage of
settings and plugins to speed up keyboard-driven workflows. P4, P5, P12 and
P13 mentioned customising applications like their document editors or DE. P5,
for instance, says “I have been able to basically make my own toolbars with

everything that I use. That’s really flexible. [...] And it’s pretty much the same
idea in all applications”.

4.5 Summary of Findings

RQ1: Which values drive app appropriation behaviours? Is security one such
value? We found apps are:
adopted if they are useful, appear usable and affordable, and have a reputation

of reliability, security and credibility

adapted with plugins to boost productivity and usefulness and sometimes to
provide security and ad blocking capabilities

abandoned when they lose their usefulness or reliability
Users also valued a stable user experience, and flexible apps that can be

adjusted to their needs.
RQ2: How much do expert users rely on plugins? What value do plugins

provide to expert users? All our participants used plugins – for browsers, DEs
and all types of editors, but not for media consumption apps. Plugins mainly
provide usefulness and productivity. They also provide ad-blocking in browsers,
and security for Internet-facing apps. Few of the benefits provided by plugins
could be replaced by other mechanisms, if plugins were to become unavailable.

Productivity plugins were more prevalent for productivity apps and DEs, and
our participants were in demand for more productivity plugins than they already
had. Thus, people who use computers for productive work, and specifically users
of some types of apps, would see their productivity decrease if they no longer
had access to plugins.

4.6 Implications for Sandboxing

Sandboxing threatens usefulness by preventing the implementation of some fea-
tures, reliability by degrading performance and resource usage, and stability by
causing developers to transform or drop some features. Sandboxes thus conflict
with the values recruited by participants when they decide to adopt and abandon
apps. Owing to their effects on plugins, sandboxes further threaten productivity
and usefulness, the main values supported by the use of plugins. Developers who
chose to drop features and plugins to support sandboxing will be confronted to
loss of users and potential new users, according to our value-sensitive analysis.

Our participants’ liking of stability suggests sandbox designers shouldn’t ex-
pect user experience sacrifices as a prerequisite to sandbox adoption. Mobile
OSs never had plugin infrastructures, and so their users have adopted what was
available. Android and iOS are dominated by media consumption apps [28, 29],
and since there is no plugin demand for consumption apps, plugins are not as
crucial for Mobile OSs as they are for desktops. Users might refuse to switch
to sandboxed versions of desktop apps if this means losing plugins they have
already integrated into their work practices.

Plugin loss will particularly affect users with productivity goals, and some
demographics e.g. users who write code (and expectedly, over demographics that

were not represented in our cohort). When productivity is put in competition
with security, users respond by implementing “shadow security” practices, which
involve disengagement from sanctioned, verified security mechanisms, even if
they do value security [16]. It is advisable that plugins be supported by sand-
boxes, especially since there is no technical barrier to distributing plugins on the
Windows and Mac App Stores, just like standalone apps.

5 Feature Loss

We learnt that usefulness is a major driver of appropriation decisions, and we
know that sandboxes conflict with usefulness by forbidding some features. We
now explore the value arbitrations made by participants when they are con-
fronted with feature loss. We query how they explain feature loss in an app they
use, and how they react to it, especially if “security reasons” motivate it.

5.1 Method

We asked participants, if a feature was removed from an application, what they
would do and how it would affect them. We also asked them what good and bad
reasons a developer could give to justify this change. When possible, we asked
participants about features they mentioned during the interview. Otherwise, we
would ask about “a feature” or “the ability to have plugins” for an app they
mentioned using. Most participants responded with hypothetical scenarios based
on apps they used.

We formulated the security question as such: we asked participants what
they would think if a developer were to remove a feature or plugin “for security
reasons”. P12 spontaneously mentioned security as a valid reason for removing a
feature, obviating the security question. P5 and P9 were mistakenly asked about
justifications to feature removal after we had revealed the security deception.

We refer to answers based on participants’ features as “own experiences”,
and answers to the security question as “security reasons”. As the interviews
were semi-structured, some participants did not answer, especially P3 and P11.

5.2 Justifying Feature Removal

We wanted to know what determined whether users would accept the disap-
pearance of a feature. If a specific reason makes sense to users, they will be less
incredulous and suspicious when a feature is removed for that reason. Inversely,
if users are told a feature is removed for a reason they do not understand, they
might deplore the developer’s decision and be more prone to switch apps.

We collected 18 reasons which participants thought were acceptable (see Fig-
ure 4) and 8 unacceptable (Figure 5) to justify feature removals. 5 participants
recalled actual experiences of feature loss, showing it is a commonplace experi-
ence, though overall participants did not find it easy to answer those questions.

Maintainability was seen as the most valid reason to remove features, by 3
participants, with 2 mentions from P4. This included removing code that was
too difficult to maintain or not stable enough, or making plugins temporarily
unavailable after an update. However, one of the “feature loss” app abandonment
reasons we discussed in the previous section was justified with maintainability:
P4 abandoned the GNOME DE because its plugins would often stop working
after an update. So the reason is not unanimously accepted.

Acceptable Feature Removal Reasons (number of participants)

Reducing resource usage

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Low frequency of use

Replaced by another feature

Legal reasons

Maintainability

It depends

There is no good reason

Security
two of which
were primed

Reasons

None (4)

Any, I trust the developer

Reliability (4)

Usefulness (2)

Values

Credibility (3)

Security & privacy (1–3)

Fig. 4. Number of participants citing a reason as acceptable to justify feature removal.

Unacceptable Feature Removal Reasons (number of participants)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Legal reasons

Low frequency of use

Excessive disk space usage

I don’t know

Change for the sake of it

Reasons

None (4)

Reliability (2)

Values

Usefulness (1)

Credibility (1)

Fig. 5. Number of participants citing a reason as not acceptable.

Security was mentioned thrice, albeit two times by participants whom we
accidentally primed to think about security beforehand, as we forgot to ask the
question about feature removal until right after revealing the security topic of
the study and before discussing security practices. Legal reasons were mentioned
both as a good and as a bad justification. So was reliability, with participants
claiming that excessive CPU or RAM usage were valid reasons, but excessive
disk usage wasn’t. Likewise for usefulness: P6 mentioned not caring about a
feature he did not use, whereas P12 strongly opined that developers should not
remove a feature used only by a minority of users.

Participants could conceptualise why feature are removed (maintainability,
legal issues, reliability, and security), but none of the enumerated reasons seem
to be always justified. Besides, three participants thought feature removal to be
inexcusable, no matter the reason. Therefore, there is no blanket rationale that
developers can invoke to explain away a decision to remove a feature.

5.3 Security reasons

We asked eleven participants (except P3 and P11) what they would think of a
scenario where a feature is removed for “security reasons”.

Are security reasons really accepted? Eight participants considered secu-
rity to be a good reason to remove a feature, once we asked them. The three
others did not answer the question, but described how they would analyse the
feature loss instead. None found it explicitly unacceptable. Yet, only P12 men-
tioned security spontaneously – as well as P5 and P9 right after we primed them.
Security might be a positive value to our participants, but it is not something
they think about when features are affected by updates.

Making sense of “security reasons” Even though participants agreed se-
curity was an acceptable justification, they sounded negative about it. We had
expected them to state that they would no longer use the insecure software. In-
stead, they showed us they would attempt to understand the announcement and
to decide for themselves if they should be concerned and adjust their practice.

Participants were mostly defiant because of how they made sense of “secu-
rity reasons”. They understood security as incident response, rather than the
anticipation of risks that have not yet materialised, or compliance with exter-
nal constrains. Yet, sandbox feature constraints derive from risk management
considerations rather than security vulnerabilities.

Three participants clearly expressed the idea that the security risk had re-
sulted in exploitation, using words such as “malware”, “breach” or “security
exploit”. Three more talked of a “vulnerability” or “security hole” and won-
dered if their data could be compromised as a result. Only P8 pondered that the
feature itself might have represented a danger, without mentioning the existence
of a fault attributable to the developer.

5.4 Deciding What to do About Feature Removals

How many users would abandon an app if its developers decided to remove an
important feature from it? The answer to this question is relevant to develop-
ers who must decide whether to adopt feature-degrading sandboxes or not. We
thus asked our participants how they would react to the loss of a feature they
had previously mentioned to us, or to the loss of plugins. We sometimes asked
participants about more than one feature. Figure 6 presents the 20 reactions
we collected from 11 participants for feature loss in general (some participants

answered for several features, P9 gave weak answers, P11 was not asked). It
also shows the 11 reactions collected for security-induced feature loss from 9
participants (P1 gave two answers, and P3, P9, P11 and P13 gave none).

Reactions to a Feature Loss

Accept loss

Attempt workarounds first

Keep old version

Switch to other app

It depends

Security reasons Own experiences

3
8

3
2

4
7.5

2
2

0

0.5

Fig. 6. Participants are more likely to accept an update that induces feature loss for
reasons other than security. Some will deploy workarounds to emulate or replace the lost
feature, before seeking a replacement app. Over a third of participants would abandon
an app that lost a feature and seek another one with an equivalent feature either way.

For updates motivated by security reasons, participants decided to stay on
the old, insecure version of the app in 2/10 cases. In 4/10 cases, they preferred
switching to another app. 2/10 said their reaction would depend on the fea-
ture or the developer’s attitude. This leaves only 3/10 cases where participants
would accept the update. This reaction contradicts our finding that nearly all
participants agreed security is a valid reason to remove features. We hypothesise
this discrepancy is due to usefulness taking precedence over security in driving
participants’ choices. Another possible conjecture is that our expert users have
become prejudiced against security announcements, owing to dissonance between
alleged and perceived security benefits in past security experiences.

The cost of feature loss was viewed as higher than the security benefits in our
security question. In contrast, when we asked about feature removal in a generic
update, participants rooted for the imagined benefits of the update more often:
they would use the new version in 11/21(52%) cases – including 3/21(11%) cases
where they would attempt to emulate the lost feature with the new version, but
would switch back to the old one or to a new app if their coping mechanism fails
to satisfy them. Security is, after all, a secondary goal [24,32], so it comes after
features which support a primary goal. Our value analysis corroborates this:
factors like usefulness, productivity or reliability trump security in participants’
decisions. P10 would either switch to another app or stay on the old version.
In 7.5/21(36%) cases in total, participants would switch to another app. In
2/21(10%) cases, participants said it depends on the feature.

5.5 Getting Something out of the Loss

In both conditions, three participants expected lost features to be re-introduced
after some time. When a disruption is temporary, participants might tolerate it
as a necessary evil. P1, P10 and P13 also expected the app to be improved in
some way (e.g. reducing RAM usage, speeding up the UI, or integrating popular
plugins into the app) in the general case. This desire for compensation was not
seen in the security condition, as a security benefit was already communicated.

P5, P10 and P13 wanted developers to explain what the vulnerability was
that had been fixed. Other participants sought to convince themselves of the
well-foundedness of the security reason. P7 stated he expected to be told “how
much time has there been a security breach, why have they not warned me
beforehand, and what happens now”. P12 said “they’d have to justify it pretty
well”. P2, P8 and P10 said they would look into the issue to decide if they should
feel concerned. Overall, those participants had untrusting attitudes towards de-
velopers who announced security updates.

5.6 Summary of Findings

RQ3: Is feature loss acceptable? How does it impact users’ choices of apps
and practices? Feature removal has a substantial impact on users: over a third
may abandon an app when a feature they used disappears. Half won’t consider
updating an app with a missing feature, and they may also abandon an app that
loses a feature. A forth of participants expected feature loss to be temporary,
and a forth also expected it to be compensated with improvements.

There is no consensus among participants over what constitutes good rea-
sons to remove a feature. Maintainability, reliability and legal issues were men-
tioned, although as bad reasons too. Security was mentioned spontaneously by
one participant, and after security priming by two more participants. Given the
prevalence of stability in user values, we find feature loss hard to justify overall.

RQ4: How does security-motivated feature loss differ from other types of
loss with regard to acceptance and reaction? When asked, our participants claim
security is a valid reason to remove features. Yet, they are four times more likely
to ignore a security update than a non-security update that removes features.
This illustrates how security is a secondary goal to users.

Participants view security-motivated feature removals as incident response
rather than a preventative measure. They expect developers to explain why a
security risk existed and the consequences if it. Thus, developers’ credibility may
paradoxically suffer when they announce security improvements.

5.7 Implications for Sandboxing

Sandboxes restrain the ability to implement some features as a form of risk man-
agement, rather than because these features cause systematic vulnerabilities. As
our participants understand security as incident response, they are likely to at-
tribute a sandbox-related feature loss to a fault on behalf of app developers.

Besides, we’ve seen that there is no blanket rationale that developers can invoke
to explain away a decision to remove a feature, which all participants would be-
lieve is legitimate. Therefore, the task of explaining a sandbox-motivated feature
loss to users seems particularly strenuous and hazardous for developers.

Feature removal can lead to user base attrition. As we’ve seen, this is more so
the case when feature loss is justified by security. In competitive app ecosystems
where many apps provide similar features, having to remove features from one’s
app may act as a deterrent for developers to consider sandboxing. We argue that
the current restrictions on features and plugins place an unfair burden on app
developers, and that sandbox designers must review those decisions rather than
wait out for developers to finally ‘get it’ and adopt sandboxing. Presently, there
are valid incentives in place for app developers to stay away from sandboxing.

6 Limitations

6.1 Cohort size

The field study we are running involves sustained interactions with participants,
forcing us to keep a small cohort. We thus have too few participants to provide
statistical significance for our results. We provide quantitative data as much
as possible to allow for our results to be aggregated to future studies on this
topic. Besides, we view the presentation of our method as a contribution in
itself, relevant to security designers who need to study barriers to the adoption
of security technologies in their app ecosystems.

6.2 Deception

We ensured the validity of our data by using deception. This means less data was
available as we could not incite our participants to detail their mental models of
security without drawing their attention to our actual topic of interest.

6.3 Method of report

App appropriation events are rare, and participants sometimes struggled to recall
details of their past experiences. We helped them recall past events by using diary
data to discuss the apps which we knew they used, and we eliminated statements
where participants sounded hesitant or were inaccurate.

6.4 Linux users

We recruited Linux users. They are reflective about technology and often have
experience with multiple OSs. This is not a threat to validity, but reduces the
scope of our findings to experienced and reflective practitioners. Many Win-
dows and OS X users are experts, too – including developers, digital artists,
researchers, etc. Linux users prefer software that is open-source. Thus, our data
likely overstates the importance of the app traits related to proprietary licenses.

7 Implications for Usable Security Research

Some of our findings would not have been possible to make if we had stuck to the
methods used in previous sandbox usability research [23,25]. We derive method-
ological implications for future usability evaluations of security mediators.

7.1 Productive security is achieved over time, not in the lab

Beautement et al. [5] argue that the cost of security might be accepted during
initial interactions, but rejected over time as users wear out their “compliance
budget” – their ability to comply with security when the cost of it exceeds its
benefits. When newly introduced security artefacts disrupt stability (e.g. with
feature loss) or flexibility (e.g. by removing plugins), these artefacts cannot be
declared usable solely on the basis of one-off interactions in a lab setting. Those
values are fulfilled over time, and so the impact that changes in users’ practices
have on them must be studied over time too.

Previous usability studies of sandboxing [23, 25] failed to study how partici-
pants ultimately react to the cumulative frustrations caused by a degraded user
experience, or how they can improve their productivity once sandboxes hinder
apps’ flexibility. Ergo, sandboxes must be introduced in-the-wild and their im-
pact on practice monitored until they are completely appropriated or rejected
by participants. Otherwise, researchers may falsely conclude that sandboxes are
usable, when participants’ compliance budget is exhausted in superficial inter-
actions settings and their interaction would not have been sustained in-the-wild.

7.2 Deception is necessary to discover actual behaviour drivers

Participants overwhelmingly agreed that security is an acceptable reason to re-
move a feature, when we asked them. Yet, they would be less likely to continue
using an app that lost a feature for security, rather than for other types of im-
provements. We conclude from that that querying participants directly about
their attitude to security can mislead researchers into thinking that security is
sufficiently valued to influence user behaviour. We’ve shown that explicit atti-
tudes towards one value are not the proper measure for drivers of behaviour.
Instead, researchers should focus on building value hierarchies and identifying
the main values that users recruit in making decisions that impact security. This
means that study designs must include deception to avoid non-respondant and
social desirability biases, and to produce valid value hierarchies.

8 Conclusion

Sandboxes do not provide support for several types of features, and for plugins,
resulting in second-class apps. Sandboxes also decrease app performance slightly.
Sandbox adoption is low on desktop OSs, and some developers even forsake sand-
boxed versions of their apps. We investigated how expert desktop users arbitrate

different values in apps, and how they cope with feature loss, to understand how
they arbitrate between usefulness, productivity and security, and how likely they
are to adopt or retain apps that sacrifice features for security improvements. If
users are likely to abandon newly sandboxed apps, it would explain developers’
reluctance to support sandboxing.

We built a model of values involved in three desktop app appropriation pro-
cesses: adoption, adaptation, and abandonment. We found that lack of features
was the primary reason for users to reject a potential app, and one of two reasons
(along with reliability) for users to abandon an app they’re using. We also found
that users like to adapt and customise their apps, primarily to meet productivity
goals, especially for browsers and productivity apps like code editors. Besides,
feature loss is a seldom understood phenomena that is poorly accepted by users.
A non-negligible portion of our participants would abandon an app that removes
a feature they use, especially if justified by security improvements.

Sandbox designers must identify the features threatened by the changes sand-
boxing brings about, and they must improve support for the relevant APIs so
that these features survive sandboxing. They could support plugins by distribut-
ing them on app stores and subjecting them to the same security checks as apps.
These corrections are essential to avoid putting security in competition with use-
fulness and security. Indeed, our value analysis clearly shows that security will
not be privileged by expert users, and thus, that sandboxed apps are less likely
to be adopted than their insecure counterparts.

In future work, we will continue to investigate how app sandboxing and our
participants’ digital lives fit together. We will assess the fitness of app sandboxing
for the information management strategies of our participants using qualitative
and quantitative data we collected, and we will investigate how many of the apps
they used contain features typically threatened by sandboxing.

References

1. Adams, A., Sasse, M.A.: Users are not the enemy. Commun. ACM 42(12), 40–46
(Dec 1999)

2. Apple Inc.: App Sandboxing (Sep 2016), https://developer.apple.com/

app-sandboxing/

3. Apple Inc.: iOS Security iOS 9.3 or later (May 2016), https://www.apple.com/
business/docs/iOS_Security_Guide.pdf

4. Beautement, A., Becker, I., Parkin, S., Krol, K., Sasse, A.: Productive Security:
A Scalable Methodology for Analysing Employee Security Behaviours. In: SOUPS
2016. USENIX Association (2016)

5. Beautement, A., Sasse, M.A., Wonham, M.: The compliance budget: managing
security behaviour in organisations. NSPW ’08, ACM (2008)

6. Brad Chacos: And the study says: Windows 8 users rarely touch Metro apps (May
2013), http://www.pcworld.com/article/2039445/

7. Canonical: Ubuntu Core Documentation – Security and Sandboxing (2016), http:
//docs.ubuntu.com/core/en/guides/intro/security

8. Dan Counsell: Not on the Mac App Store (Nov 2015), https://www.dancounsell.
com/not-on-the-mac-app-store/

9. Docker Inc.: Overview of Docker Hub (2016), https://docs.docker.com/

docker-hub/

10. Flatpak: Flatpak – the future of application distribution (2016), http://flatpak.
org/

11. Friedman, B.: Value-sensitive Design. interactions 3(6), 16–23 (Dec 1996)
12. Google: android: Application security (Sep 2016), https://source.android.com/

security/overview/app-security.html

13. Hoffman, C.: Why the Mac App Store Doesn’t Have the Applications You Want
(Mar 2015), http://www.howtogeek.com/210605/

14. Hoffman, C.: Why Desktop Apps Arent Available in the Windows Store (Yet) (Mar
2016), http://www.howtogeek.com/243559/

15. Ian Paul: The 10 most glaring Windows Store no-shows (Apr 2013), http://www.
pcworld.com/article/2033876/

16. Kirlappos, I., Parkin, S., Sasse, M.: Learning from Shadow Security: Why under-
standing non-compliance provides the basis for effective security. In: Workshop on
Usable Security. USEC 2014 (Feb 2014)

17. Mathiasen, N.R., Bødker, S.: Threats or Threads: From Usable Security to Secure
Experience? NordiCHI ’08, ACM (2008)

18. McCarthy, J.C., Wright, P.: Technology as experience. MIT Press (2004)
19. Microsoft: Windows 8 Security Overview (Jun 2013), https://technet.

microsoft.com/en-us/library/dn283963(v=ws.11).aspx

20. Milen Dzhumerov: Mac App Store: The Subtle Exodus (Oct 2014), http://blog.
helftone.com/mac-app-store-the-subtle-exodus/

21. Nichols, A.L., Maner, J.K.: The Good-Subject Effect: Investigating Participant
Demand Characteristics. The Journal of General Psychology 135(2) (2008)

22. Peter Cohen: The Mac App Store and the trouble with sandboxing (Apr 2014),
http://www.imore.com/mac-app-store-and-trouble-sandboxing

23. Potter, S., Nieh, J.: Apiary: Easy-to-use Desktop Application Fault Containment
on Commodity Operating Systems. USENIX ATC’10 (2010)

24. Sasse, M.A., Brostoff, S., Weirich, D.: Transforming the ’Weakest Link’ a Hu-
man/Computer Interaction Approach to Usable and Effective Security. BT Tech-
nology Journal 19(3) (Jul 2001)

25. Schreuders, Z.C., McGill, T., Payne, C.: Empowering End Users to Confine Their
Own Applications: The Results of a Usability Study Comparing SELinux, AppAr-
mor, and FBAC-LSM. ACM Trans. Inf. Syst. Secur. 14(2) (Sep 2011)

26. Sketch: Leaving the Mac App Store (Dec 2015), http://bohemiancoding.tumblr.
com/post/134322691555/leaving-the-mac-app-store

27. Smetters, D.K., Grinter, R.E.: Moving from the design of usable security technolo-
gies to the design of useful secure applications. NSPW ’02, ACM (2002)

28. Statista: Most popular Google Play app categories in February 2014, by device
installs (Feb 2014), http://www.statista.com/statistics/279286/

29. Statista: Most popular Apple App Store categories in June 2016, by share of avail-
able apps (Jun 2016), http://www.statista.com/statistics/270291/

30. Strauss, A., Corbin, J.: Basics of qualitative research: Techniques and procedures
for developing grounded theory . Sage Publications, Inc (1998)

31. Streeting, S.: Between a rock and a hard place our decision to abandon
the Mac App Store (Feb 2012), http://blogs.atlassian.com/2012/02/

between-a-rock-and-a-hard-place-our-decision-to-abandon-the-mac-app-store/

32. Yee, K.P.: Aligning security and usability. Security & Privacy, IEEE 2(5) (2004)

