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Abstract

This thesis is a collection of three separate studies – but split into
four chapters – which address the underlying issues in the nature
and dynamics of markets. The studies investigate price-formation
in the presence of noisy asymmetric information flow to a synthetic
market, the statistical behaviour of in-play predictive markets and
a reformulation of the Markowitz portfolio optimisation for financial
market securities into the time-domain.

The first study looks to examine modern in-play gambling or predic-
tive markets, in particular, horse racing markets. Since the advent
of online sports gambling approximately 15 years ago large amounts
of data have been collected for many different sporting events such
as football, greyhound racing and cricket. In this study, the focus
is on in-play horse racing markets where stylised statistical facts are
presented and discussed. Price efficiency is analysed, and statistical
arbitrage trading algorithms are developed to evaluate such efficien-
cies/inefficiencies. We develop a new model for testing the efficien-
cies of the initial implied odds quoted on the market. Exploring the
efficiencies/inefficiencies found in the in-play markets we develop a
martingale toy model and a statistical arbitrage trading model.

In the second study, we explore price-formation and the pioneering
approach to financial asset pricing known as the Brody-Hughston-
Macrina framework. The Brody-Hughston-Macrina information-based
asset pricing framework is investigated in two parts; the first a devel-
opment of a trading model and the other a generalisation of the infor-
mation process that does not assume a linear rate-of-information flow.
The trading model developed is a computational agent-based model



that allows different configurations of agents to trade and hence create
a synthetic market. The different configurations are explored by track-
ing the market price and times between adjacent trades with respect
to changing certain model parameters, such as spread. The generali-
sation of the rate-of-information does not assume a linear function, as
in the original Brody-Hughston-Macrina framework, but instead one
that is non-linear in time. We estimate such a function from gambling
market data and find it not to be a linear function. The non-linear
Brody-Hughston-Macrina framework is fitted to winning horse odds
signals.

The final study is motivated by recent advances in the spectral theory
of auto-covariance matrices, and we are led to revisit a reformulation
of Markowitz’ mean-variance portfolio optimisation approach in the
time domain. In its simplest incarnation, it applies to a single traded
asset and allows to find an optimal trading strategy which, for a given
return, is minimally exposed to market price fluctuations. The model
is initially investigated for a range of synthetic price processes, taken
to be either second order stationary, or to exhibit second order station-
ary increments. Attention is paid to consequences of estimating auto-
covariance matrices from small finite samples, and auto-covariance
matrix cleaning strategies to mitigate against these are investigated.
Finally, we apply our framework to real world data.
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Chapter 1

Introduction

This thesis is a collection of studies that have the focus of markets and price
formation. The markets explored are financial markets and in-play horse racing
gambling markets.

The main core of the work is broken down into four chapters with the follow-
ing titles: Chapter 2, Statistical Analysis of Horse Gambling In-play; Chapter 3,
Simulating In-Play Horse Odds and A Novel Trading Algorithm; Chapter 4, In-
formation Based Finance and Trading; and Chapter 5, Optimal Trading Strategies
– a Time Series Approach. Each of these studies involves different approaches to
investigate the notion of price and how it may be perceived differently by indepen-
dent agents, making it a social construct of markets. These studies explore two
different of types markets: gambling and financial. Markets are exchanges where
collections of interacting agents buy and sell assets, and through this medium,
assigning the assets with a subjective value. The work focuses solely on this
concept otherwise known as market price and uses a combination of statistics
and stochastic dynamics to understand its features and behaviour. We introduce
these studies individually by giving the reader a brief summary of the content of
each of the chapters.

Chapter 2 Statistical Analysis of Horse Gambling In-play Markets initially
gives a background analysis of the gambling industry in Table 2.1 but then turns
the focus to the exchange markets known as in-play horse racing markets. The
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same section also discusses the mathematics of a traded asset in this market
referred to as the odds. We discuss that odds are similar – but not equivalent –
to financial market price; as the odds quoted have a value that can be extracted
through hedging techniques, to generate gains. The dataset used in this study
consists of 12736 races that took place across the British Isles during the period
starting 31-12-11 and finishing 31-12-12, this data was provided by [3]. The
activity that coincides with the time in the race after it has begun is known as
the in-play markets, and this temporal part of the market is paramount to this
chapter’s analysis.

The data set is explicitly described in Sec. 2.2 where a detailed discussion of
the variables is given in Table 2.1. In Sec. 2.2.1 we illustrate the typical signal
dynamics found in horse racing in-play markets to give the reader an insight into
how the market evolves in time.

The sample statistics are estimated in Sec. 2.3 in Table 2.2, we also investigate
the initial odds quoted on the market and compare this with the true odds of this
horse winning the race. Using statistical dispersion measures, such as the Gini
coefficient, we show in sec 2.3.1 that on average the uncertainty of the in-play
race odds signals decreases in time.

The last section, Sec. 2.4, published in the paper [4], we find – a somewhat
surprising result – that the initial odds quoted on the in-play market have a dis-
tribution that is similar to the segments of a randomly divided interval.

Chapter 3 Simulating In-Play Horse Odds and A Novel Trading Algorithm
continues in the same spirit as the previous chapter but here we look at modelling
the odds of the in-play horse racing signals.

Sec. 3.1 gives a review of the modern economic theory known as the Efficient
Market Hypothesis (EMH), which in short assesses whether a market price is (or
can be) unduly manipulated by market agent/agents that possess information
that other agents do not hold. We explain that a market price that is considered
to be efficient is known as a martingale and such process are used to test if EMH
holds true. If it assumed that EMH holds true, then one can propose a model
using synthetic stochastic processes to generate a computationally based horse
race. This computationally based horse race is performed in Sec. 3.2 and we
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demonstrate that using Itô processes as a model of a horse’s performance and
a Monte Carlo method one can estimate the odds signals for a particular horse
winning.

Sec. 3.3 gives a review of the pair trading algorithm from a financial market
point-of-view. It discusses a linear pricing model and how these models can be
used to determine the necessary quantity of equity to hold to be market risk neu-
tral. The section then moves on to discuss methods of detecting pairs comparing
the statistics of signals to those of random walks. Once all the theory of creating
a pairs trading algorithm is in place, in Sec. 3.3, we turn our attention to the
applicability of the model. This pairs trading algorithm leads us to apply the
model to the in-play horse racing data described in Chapter 2. This application
is discussed in Sec. 3.4 where we find the algorithm works remarkably well and
generates high rates-of-return over many races.

Chapter 4 Information Based Finance and Trading reviews and develops a
mathematical framework from the field of financial mathematics, namely credit-
risk. We delve into a model established just over a decade ago known as the
Brody-Hughston-Macrina (BHM) approach or information-based asset pricing.

The BHM approach is first reviewed in Secs. 4.1 and 4.2 where we have
presented the background of literature that led to the initial development of the
BHM framework and how it is used to price assets. The BHM model like all
stochastic finance models is constructed from probability theory. These models
are used for the pricing of financial instruments, and such prices are assumed to
exist only if a risk-neutral probability density exists. The essence of what the
BHM model tries to achieve is to treat market prices as the perception of market
participants, and this perception is contrived as a filtration process known as
the information process. In probability theory, information is formulated with
filtrations, and commonplace to assume that these processes are adapted to an
underlying stochastic price process; for example, a geometric-Brownian motion
is used in the Black-Scholes-Merton model. The BHM framework assumes that
the filtrations are adapted to a class of Markov processes which consist of two
additive components: signal and noise. The signal component is theorised to
be a random variable which represents a final outcome, or a cash-flow, that is
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partially revealed linearly in time. The noise component is a Brownian bridge
process which is pinned to zero at both ends, and this process provides noise
variance that is linearly increasing in time up to the half way point and then
linearly decreasing in time to the end. Assuming a risk-neutral pricing kernel
exists and conditioning this on the theorised information process generates a price
which dynamically evolves as an emergent phenomenon, which will be discussed
in more detail in Sec. 4.1 and 4.2.

We develop the BHM framework in two ways: firstly by creating a mechanism
for trading to occur between agents that are pricing the same asset in Sec. 4.3 and
secondly a refinement in the BHM model where the assumption that information
is revealed linearly in time is relaxed Sec. 4.6. The toy model developed in
Sec. 4.3 establishes a synthetic market where the market price is aggregated
from exchanges between agents that price according to the BHM pricing model.
Once a trade occurs in our synthetic market, the prices of the two trading agents
are updated accordingly, with a shift to the average price of the two agents at
the time of trading. Different market configurations are considered with three
categories of market participants: Market Maker, Informed Traders, and Noise
Traders who have their individual trading rules and parameterisation. We also
introduce inventory control in Sec. 4.3.6 which is used as a means to control the
overall frequency of agents’ trading, especially market makers with small spreads.
The results for these synthetic markets are presented in Sec. 4.4 with plots of
distributions for the increments of market price and first passage time.

Sec. 4.5 discusses and highlights limiting properties of the BHM framework,
such as the linear revelation of information. We suggest a refinement, or gener-
alisation, in 4.6 where we take the linear assumption, in the BHM model, and
replace it with a non-linear function. This relaxation of this assumption, linearly
developing perception of the final outcome, allows one to derive a new price dy-
namic which is more flexible in how information is affirmed in the market. The
final section, Sec. 4.7, takes the original BHM model and the non-linear BHM
model and explores fitting these to in-play horse racing price signals using the
same data [3].

The final chapter of this thesis: Chapter 5 Optimal Trading Strategies a –
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Time Series Approach presents a mean-variance optimisation model – similar to
Markowitz’ portfolio optimisation theory [5] – applied to a single time period to
find an optimal trading strategy, presented in the paper [6]. An alternative ap-
proach to when seeking an optimal trading strategy for capital allocation as com-
pared the to the popular dynamic programming approach that requires solving a
Hamilton-Jacobi-Bellman or Bellman equation [7–14]. The Markowitz portfolio
optimisation theory has a rich history in economic research and industrial prac-
tice [15–19]. One of the main reasons for its popularity is clearly its conceptual
simplicity, which helps in building an intuition about the nature of risk and its
relation to an investment’s return.

A review of time series models is given in Sec. 5.1 which highlights concepts
such as weak stationarity, auto-correlations and stationary time series models. A
brief description of the Markowitz approach to portfolio optimisation is given in
Sec. 5.2, and how it is translated into the time domain. We proceed to apply this
time translated model in Sec. 5.3 where it is first implemented with synthetic
price signals that are stationary and stationary in their increment.

The results of this numerical investigation for synthetic processes provides an
insight into the influence of sampling noise on optimal strategies and risk-return
profiles. In Sec. 5.4 we look at optimal trading strategies for empirical data, using
the S&P500 index as an example and investigate the effect of auto-covariance ma-
trix cleaning on risk-return profiles, based on comparing auto-covariance spectra
for the S&P500 and expected spectra for a process with uncorrelated increments.
We finally apply a cleaning methodology to the estimation of empirical auto-
covariance in Sec. 5.4.2, which improves the estimation of the trading strategies.
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Chapter 2

Statistical Analysis of Horse
Gambling In-play Markets

This chapter is split into four parts in which we briefly explore the gambling in-
dustry and take a more thorough look at the statistics of in-play horse gambling
markets. The first part will give a review and background to the gambling indus-
try and in particular modern online peer-to-peer gambling markets 2.1, such as
Betfair [20]. The second part we present the reader with a set of actual signals
from a typical in-play horse race and outline the details of the horse racing data
set this is available to this study. The penultimate part gives a detailed study of
the statistics that are generated by in-play horse racing markets. The statistics
are estimated from the variables discussed in Sec. 2.2. The final part investigates
the behaviour in the order statistics, see [21], of the initial odds and draws a
comparison between the expectation of the random division of an interval.

2.1 Online Gambling Markets Review

Over the last two decades the industry of peer-to-peer gambling has changed
from a market that was almost completely paper traded to one that is almost
completely digitally traded [22]. The global growth of the Internet gambling
market has increased every year since 2000 [22], and mobile markets alone have
been estimated to reach 45% of entire activity by 2018 [23]. This digital paradigm
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shift has led to vast amounts of market data becoming available, opening the door
for large-scale analysis of historical trading behaviour in gambling markets. This
trading behaviour can be analysed by constructing models to help interpret how
agents react to information. Trading behaviour patterns can be thought of as
the market agents’ perceptions and the changes in those perceptions to market
information. These changes in market information may be observed as a linear
or non-linear change in the odds that are quoted on the market, similar to what
is seen in financial markets.

Gambling markets consist of many different games for which odds are ex-
changed, for example, football, tennis, greyhound racing and horse racing. The
data that is used in this study are solely for horse racing and are described in
detail throughout this chapter, particularly in Sec. 2.2. It is worth noting that
not all markets behave in the same way. For example, horse racing and tennis will
have very different price dynamics, but horse racing and greyhound racing would
be very similar. Why such differences emerge through price is because different
features and rules exist in various competitions and games and how the market
processes the information flow leads to different price dynamics. Consider the
tennis match and horse race one of the main difference is the time duration as
tennis matches are usually much longer. Another difference is how the competi-
tions are won, as in a race the competitor is competing for the pole position, and
in tennis the player has to win a certain number of sets.

It is understood that gambling can be addictive [24] and as it has become
more accessible [25] the risk factors leading to social issues increase. The moral
point made to the reader is that this study does not aim to encourage gambling
and we are only interested in the dynamics and statistical behaviour of the odds.

As mentioned previously the data used in this study comes from a horse racing
market and was taken from exchange known as Betfair [20]. Since the internet
boom gambling markets have become modernised, leading to markets where odds
are traded electronically. These modernised markets are referred to as peer-to-
peer online markets. The modernisation has allowed market participants to have
the freedom to buy odds but also to sell odds, which in gambling parlance is
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backing and laying respectively. Since agents can buy and sell odds (or chance),
this means any agent in the market can act as a bookie by laying odds on the
market. A market participant that buys and sells odds is a market maker, and
this is a trading strategy that bears inventory risk but is rewarded by the size of
the spread. The markets maker is rewarded with the spread because they broker
the deal, selling at the asking price and buying at the bidding price securing the
difference between the two. This technological change has massively transformed
the structure of the gambling industry all over Europe [26] as compared to the
market in the pre-internet age. It has been noted that these changes in technology
have brought about radical new business models and trading strategies based on
the information efficiency in the peer-to-peer betting exchanges [27]. A review of
the global gambling markets can be found in Chapter 2 pg. 7-25 in [22] which gives
a breakdown of the different betting markets; for example, online gambling, casino
games and gaming machines. The same chapter in [22] also provides estimates of
regional internet market share, and within Europe, the UK is expected to be the
largest. As a final note, we would like to point out that this research has no ties
with Betfair – or another exchange – and has been conducted independently to
any other private enterprises.

2.1.1 Investing and Gambling

For centuries mathematicians, physicists and economists have been exploring sys-
tems that are considered to be random. This interest started in the seventeenth
century where the French mathematicians Pierre de Fermat and Blaise Pascal de-
veloped the notation of expectation. Even the famous economist John Maynard
Keynes had this to say about gambling and its relationship to investing

“It is generally agreed that casinos should, in the public interest,
be inaccessible and expensive. And perhaps the same is true of stock
exchanges.” - John Maynard Keynes [28]

In the past there has been a clear dichotomy that gambling was strictly regarded
as an entertainment industry and investing as a business activity but in modern
gambling this split is not so clearly defined [2, 29]. There are reasons for the
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apparent cloudiness in definitions, but it must be noted that these two areas
are clearly different phenomena though they do share some similar behaviours.
These similar behaviours come from the fact that both investing and gambling
involve the interactions between people and markets. A simplified definition of
the dichotomy of investing and gambling is as follows:

• Investing is the process of using capital to purchase a financial instrument
that potentially can yield a return.

• Gambling is the process of using money as a stake in the outcome of an
event which if correct yields a return.

Such a set of crude definitions can confuse one into thinking that investing and
gambling are the same, but one must think of the big picture, as this is where
the two clearly diverge. Although investment and gambling play very different
roles in the economy, that does not necessarily impinge on the nature of the
“decision-making under uncertainty” aspect of these two phenomena. Investing
is the driving mechanism of capitalism, this is how capital circulates around the
global markets, and capitalism is society’s means to prosperity.∗ Prosperity and
higher standards of living are achieved through investment by aiding the growth
of an economy which in turn creates more jobs. Professionals that work within the
financial markets serve the purpose of making investments. Besides, investments
have an associated risk, some of which can be hedged using particular trading
strategies [32]. A dynamic economy has frequent investment, and this behaviour
increases market liquidity and price efficiency, with the secondary characteristic
of more transparency within markets as greater amounts of information regarding
investments is exchanged and published through news outlets. Since the advent
of the “financialisation” of the economy, investment is regularly the acquisition
of certain types of financial products; this may have only very slim relationship
with more traditional “investment”, such as investment in infrastructure projects,
technological development or productive capital such as machinery.

∗This point is obviously and deliberately oversimplified as the role of capitalism and pros-
perity in society is not as clear cut as this and is a very complex issue which can be seen
in [30,31].
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Gambling, on the other hand, does not have this direct positive net effect upon
the global economy. One could argue that its rise in popularity through online
peer-to-peer gambling sites has increased employment within a local economy,
but it does bring with it the negative side effects such as addiction [22, 24, 33].
A bet is in many ways just a contract between two parties where, in exchange
for a fee, one party promises the other a payout depending on the realisation of
a future “state of the world".† Placing capital on an event in a gambling game
doesn’t affect the final results∗; consider a horse race if one places more backs
on the leading horse this obviously does not affect the performance of the horse.
Investments on the other hand, generally speaking, can have a positive effect on
the performance of a company. Consider the example of a factory with a surplus
demand but not the additional capital to buy more machinery to help meet this
demand. With the allocation of capital from an investor the factory can purchase
the equipment and hire the extra people needed to meet this additional demand,
thus making the factory more productive and new employees more prosperous.§

To summarise the main points of the roles of gambling and investment in society
and their inherent similarities and differences between them:

1. Both are the pursuit of return via a risky decision regarding a particular
outcome of a random event in the future.

2. In general more research goes into investing, such as technical analysis,
which helps to ensure that the risk of losing capital is more in favour of the
investor.‡

3. Investing potentially has a positive net social and economic effect whereas
gambling has less. ∗∗

†Similar contracts are also signed in the insurance business.
∗One can argue that in a poker game a player can win because of the bluffing strategy and

the outcome of who wins changes but this does not alter the distribution of the cards.
§This is the classical version of investment.
‡Put another way gambling is a risk-seeking strategy whereas investing is a risk-averse one.

∗∗But note that the gambling industry is quite generally part of the services sector of the
economy. All transaction fees paid add to GDP, creating jobs and generating tax revenue.
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4. Investing is the ongoing and long-term flow of capital, whereas gambling is
short term and has a terminal (stopping) time when all the processes end.

5. Investment is a process of business and commerce, and hence the global
economy and gambling is a market share within the entertainment sector.

2.1.2 Horse Racing Markets

Horse racing markets will be the focus of this study, but before this analysis is
done, it is important to know how this particular market operates. The biggest
gambling market operating in Europe is Betfair [20] and the horse racing exchange
is found at this URL https://www.betfair.com/exchange/horse-racing. The
site displays the next three days of races from all across the world. The location
of the races from which the market data has been collected is from tracks located
across Great Britain, Northern Ireland and the Republic of Ireland. Fig. 2.1
shows a screen shot for a typical day of a Betfair horse racing exchange within
race tracks found in Great Britain, the interface displays the different race track
names and race start times. When selecting a race time the user is taken to the
race order-book, an example of which is shown in Fig. 2.1. The order-book is a
set of market odds (also referred to as prices) which are offered by agents. The
order-book acts as an auction where agents can back (buy) or lay (sell) odds for
each competing horse (selection) in the race. The order-book is split into two
halves with three levels of back prices and three levels of lay prices for each selec-
tion. The most competitive odds are found in the middle of the order-book with
blue being the best back and pink the best lay, and the distance between them
is the spread defined in Eq. (2.14). Each of the odds defined in the order-book
has a volume associated with them and are in the units £. The volume informs
the market how much can be taken at a particular level of odds.

The relationship between volume and odds can be observed by considering
Fig. 2.2 and Fig. 2.3 and the top selection Storm Melody (one of the favourites
in the order-book). If an agent wishes to buy the odds for this selection the best
bid lies at the value 4.9∗ with a total volume of £43: if said agent places a market

∗This is a known as decimal odds and is explained in more detail in Sec. 2.1.3.
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Figure 2.1: The interface of a typical day of horse races across Great Britain.
The interface has a tab that allows the user to select from the three days Today,
Tomorrow and the day after tomorrow. On a particular day, there are track
location names, for example, the Tomorrow tab that is highlighted gives the
choices to select from Beverley, Newton Abbot, Salisbury, Bath and Kempton.
Each track name has a list of times below them which are the start times of each
race at that track location for the day and selecting one of them takes the user
to the order-book an example of which is shown in Fig. 2.2.

Figure 2.2: An example of a Betfair order-book for a horse race which is the
Beverley 14:00 race from Fig. 2.1. This race had nine selections, or runners, with
the top selection being the current favourite. The left side starting from the blue
boxes are the back odds on offer with the best back odds in the blue boxes. The
right side starting from the pink are the lay odds with the best lay odds in the
pink boxes. The odds are in a decimal form which is the reciprocal of the implied
probabilities (see Sec. 2.1.3) and are located in bold at the top of the boxes. The
volume is located below the odds and is in terms of pounds sterling £ and this is
the total amount available on the selection at that price.
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order for £43 at 4.9, then that box will be empty/exhausted. The empty box
can lead to two possible outcomes: a limit-order comes in at the original odds 4.9
with a volume £B and the spread remains unchanged at a value of one tick or 0.1,
or a limit-order comes in at 4.6 with a volume £C and the spread increases by
two ticks or 0.2. These two possible situations are shown graphically in Fig. 2.3.
There is also a third possibility which is the box remains empty, that is the odds
and volume do not shift along to occupy the three best backs, but this depends
on the liquidity/market activity for the selection and also the market’s ability to
convert the information of the selection’s performance into a market price†. If
liquidity is high on this selection and it is performing well the most likely outcome
is the top result in Fig. 2.3. Notice that if, in Fig. 2.3, the bottom situation
occurs, the decimal odds decrease to 4.8 which means the subjective likelihood
of this selection winning increases.

4.9
£B

4.8
£730

4.7
£714

4.9
£B

4.8
£730

4.7
£714

4.9
£B

4.8
£730

4.7
£714

4.8
£730

4.7
£714

4.6
£C

4.
£

Figure 2.3: The backing side of the order book for the selection Stormy Melody in
Fig. 2.2 after the best back price is completely exhausted. The top and bottom
images show the two possible outcomes where the volumes B and C are positive
integers.

2.1.3 Odds

Odds are the assets that are exchanged in gambling market and can be considered
binary options [35]. In this section, we will look at how online gambling markets
define implied odds and subjective probabilities. Consider a horse race that is
indexed as i ∈ {1,2, . . . ,Nh} where Nh is the total number of runners in the race.

†Here it is assumed that odds in race track markets exhibit price efficiency otherwise known
as the efficient market hypothesis [29,34] and Sec. 3.1.
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The belief that a particular horse will win the race is denoted as

P
(i)
t = P (X(i)

T = 1) such that
Nh

∑
i=1

P
(i)
t = 1∗ (2.1)

and is an implied probability. One way to calculate this quantity is using the
parimutuel betting system. This framework takes all the bet volumes denoted as
V1, V2, . . . , VNh

and sums them up: VTotal = ∑Nh
i Vi. Normally the market maker

or bookie will take a fraction of the total of bets VTotal: this fraction is denoted as
c ∈ (0,1). Hence, under a parimutuel betting framework, the implied parimutuel
probability is

P
(i)
t = Vi

(1 − c)VTotal
(2.2)

where P (i)
t ∈ (0,1) and t is the time dependence. In the Betfair in-play market,

participants would not use a parimutuel system but instead set the odds using a
double-auction mechanism with market makers [36,37] as described in Sec. 2.1.2.
In such a market the collective behaviour of the agents in the market set the back
and lay prices in a two-way auction. This mechanism can also be observed by the
fact over-rounds are so prevalent in the in-play markets, where the over-round is
the excess value of the total implied probabilities of the selections that do not
converge to unity.

If the implied probabilities sum as ∑Nh
i=1P

(i)
t = 1 the race is a fair game but if

for example ∑Nh
i=1P

(i)
t > 1 then one has a dutch-book [27]. The dutch-book in horse

racing is define numerically by the over-round, which if greater than unity [38]
guarantees the bookies (sellers of odds) a profit no matter the outcome of the
race. Generally speaking, gambling markets never use implied probabilities and
for historical reasons work with either decimal odds or fractional odds. Betfair
uses the reciprocal or decimal odds which are defined as

O
(i)
t = 1

P
(i)
t

(2.3)

∗This is not strictly true in real markets and the discrepancy is observed as the market
over-round, see Fig. 2.4 top left plot.
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where O(i)
t ∈ (1,∞) are the odds seem in the order book shown in Fig. 2.2. If

one has the fractional odds a(i)t ∶ b(i)t then the implied win and lose probabilities
respectively are

P
(i)
t = a

(i)
t

a
(i)
t +b

(i)
t

and Q
(i)
t = b

(i)
t

a
(i)
t +b

(i)
t

(2.4)

where Q(i)
t +P (i)

t = 1 for each i. The odds of winning and losing are therefore the
following ratios

a
(i)
t /b(i)t = P (i)

t /Q(i)
t ≜W (i)

t

b
(i)
t /a(i)t = Q(i)

t /P (i)
t ≜ L(i)

t

(2.5)

where one has defined the odds in favour as W (i)
t and odds against as L(i)

t , such
that W (i)

t L
(i)
t = 1 and ∏Nh

i=1W
(i)
t L

(i)
t = 1. There are now three scenarios for a

particular horse: W (i)
t > L(i)

t ⇔ P
(i)
t > Q(i)

t (higher implied chance of winning),
W

(i)
t < L(i)

t ⇔ P
(i)
t < Q(i)

t (higher implied chance of losing) and W (i)
t = L(i)

t (even
implied chance of winning and losing). As a rule of thumb this is represented as

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 ∶W (i)
t if W (i)

t > L(i)
t ⇔W

(i)
t > 1⇔ L

(i)
t < 1

1 ∶ 1 if W (i)
t = L(i)

t

L
(i)
t ∶ 1 if W (i)

t < L(i)
t ⇔W

(i)
t < 1⇔ L

(i)
t > 1.

(2.6)

To explain this further, consider the example of a two horse race where i = 1,2

and t is fixed:

1. If horse i = 1 has odds 1 ∶ 4 ⇔ W
(1)
t = 4 and L(1)

t = 1/4 this translates to the
implied probabilities P (1)

t = 0.8 and Q(1)
t = 0.2.

2. The previous statement implies that horse i = 2 has odds 4 ∶ 1⇔W
(2)
t = 1/4

and L
(2)
t = 4 this translates to the implied probabilities P (2)

t = 0.2 and
Q

(2)
t = 0.8.

Decimal odds as used by Betfair the reciprocal implied probabilities are set by
the market as in Eq. (2.3) and seen in Fig. 2.3. One of the practical advantages
of decimal odds are they have floating point precision and hence require less
computer memory to store than the converted implied probabilities which have
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double point precision. Decimal odds used on Betfair fix the smallest possible
tick size to 0.01. One can work out the return on investment if horse i wins as
following the percentage

R
(i)
t = (O(i)

t − 1) × 100% (2.7)

where the stake has been removed as this is returned if the selection wins.

2.1.4 Hedging and Arbitrage

This is the process that ensures that, in any outcome, a gambler is guaranteed
to break even or make a profit from an trading strategy. This can be achieved
by hedging with a simple strategy where one backs then lays on a selection. This
strategy can put a gambler in a hedged position, also known as an arbitrage,
meaning that they are guaranteed to profit no matter what the outcome. This
hedge is considered to be successful if for any movement of the odds the bet is still
profitable, hence the strategy is directionless with respect to the odds movement.
The movement of the odds dictate the order by which the hedging transactions
are executed, that is:

• If the odds are Decreasing → Back first then Lay second.

• If the odds are Increasing → Lay first then Back second.

Two common strategies are used in gambling markets to hedge one’s stakes. The
first one is known as “Green Up”: this method is known as this because in a
gambling exchange interface, such as Betfair, the price in the user’s portfolio turns
green to indicate an arbitrage/hedge position. The green up method requires two
or more stakes to be performed in the following order; back or lay on the same
selection in equal amounts, ensuring the back odds are larger than the lay odds
and vice versa for the lay position first. Dividing the potential profit if the horse
wins by the available lay odds you will see, if the orders have moved in your
favour, all the prices on the exchange screen turn green. The method is outlined
in the following steps:

(1) Place a back in a down trending market, or a lay in a up trending market.
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(2) If the odds move in your favour, lay the same amount placed on the back in
the down trending market, or back the same amount placed on the lay in the
up trending market.

(3) This is equivalent to a risk-free bet meaning one is in a situation where one
can only win (Arbitrage) or break even (Hedged).

(4) Dividing the profit of this risk free bet by the current lay odds will give the
“Green up” screen.

To see why this is an arbitrage or a hedge, consider a horse in a given race which
has the odds 9:1 and back this with £100. If the odds are in a down trend, say
the odds drop to 8:1, lay £100 on the same selection. The two possible outcomes
of the strategy and the selection will be:

• Winning horse ⇒ £100×9 and an exposure to the lay (liability) of £100×8
which means a profit of £100.

• Losing horse ⇒ £100 was gained in the lay and a loss of £100 in the back,
hence break even.

This demonstrates a strategy with a profit which is floored at zero and ceiling of
£100, hence such a strategy will not green up, but one can guarantee a profit by
changing the volumes placed. A strategy that is completely hedged against losses
but one that is guarantee a profit, a green up, is one where the gambler divides the
back of £100 by the current lay odds 8:1, giving the lay stake £100/9.0=£11.11.
Using this stake gives the two possible implications of the strategy, which are:

• Winning horse ⇒ £100×9 the liability £100×8 and £11.11×8 a guaranteed
profit of £11.11.

• Losing horse ⇒ £100+£11.11 was gained in the lay and a loss of £100 in
the back hence a profit £11.11.

This is an example of a successful green up as one would be able to sell back
the original bet for £11.11 as this particular configuration of bets has given an
arbitrage.
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2.1.5 Gains

Deploying any sort of strategy one needs to keep track of returns and this section
looks at how one can do this. A return is denoted as Rt ∈ R where t is a discrete
time step dependence. A return in a prediction market∗ can be either a gain
Rt > 0, a loss Rt < 0 or no return Rt = 0. Consider the following, if one backs
at the time step t and lays at subsequent time step t + 1† and the time index is
t ∈ {1,2, . . . , T − 1} where T is the final time step. This sequence is equivalent to
the following sequence of trades {back1, lay2, back3, lay4, ...}. A few assumptions
have been made here, first that successive back and lay positions can be held to
the end of the event but in reality this may not always be the case as there could
be liquidity restrictions; and secondly, one can only take binary positions which
is defined as the following strategy function πt ∈ {1,−1} where πt = 1 is a back
position and πt = −1 is a lay position‡. The next variable that needs to be defined
is the volume or stake that is placed at each position which is denoted as bt > 0,
it is assumed that bt is a constant and is small enough that the position is always
matched§. The two scenarios can occur which are represented as the following
matrices

⎡⎢⎢⎢⎢⎣

Back Lay

X
(i)
T =1 O

(i)
t −O(i)

t+1

X
(i)
T =0 −1 1

⎤⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎣

Lay Back

−O(i)
t O

(i)
t+1

1 −1

⎤⎥⎥⎥⎥⎦
(2.8)

where X(i)
T is the win variable defined as

X
(i)
T =

⎧⎪⎪⎨⎪⎪⎩

1 if i wins
0 if i loses,

(2.9)

O
(i)
t are the decimal odds Eq. (2.3) and i ∈ {1,2, ...,Nh} is the horse index. From

a financial point of view these two matrices are equivalent to going long and short
to a volume of one pound sterling. The change in the decimal odds is denoted
as ∆O

(i)
t = O(i)

t+1 −O
(i)
t and it is trivial to see that ∆O

(i)
t = ∆R

(i)
t from Eq. (2.7).

∗Prediction markets are just another name for gambling markets.
†As a note it does not have to be the very next time step but any succeeding time step.
‡One could also define a third state πt = 0 which is no position.
§The terminology of matched means a back or lay limit-order is exchanged in the order-book.
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Applying the long strategy, which is the left matrix in Eq. (2.8), for a single time
step from t = 1 to t = 2 the odds at each time step are thus O(i)

1 and O(i)
2 . If one

stakes b at both time steps for the losing horses the net gain is zero, but the gain
if the horse wins will be g1 = b (O(i∗)

2 −O(i∗)
1 ) = b∆O(i∗)

1 = b∆R(i∗)
1

∗. Therefore the
gain for each long position or short position is only acquired from the winning
horse signal which is determined at time t = T and thus the returns are

R
(i∗)
t = b (∆O

(i∗)
t ) or R

(i∗)
t = −b (∆O

(i∗)
t ) (2.10)

where the left expression is the gain on a long position and the right expression
is the gain on a short position. The expression will give a positive gain in a
long position when O

(i)
t < O

(i)
t+1 (the decimal odds move up in price) and if a

short position O
(i)
t > O

(i)
t+1 (the decimal odds move down in price). Thus the

accumulative gains on each strategy is the sum of long (or short) positions

R
(i∗)
T =

T

∑
s∈S
R

(i∗)
s (2.11)

where S is the set of all consecutive pairs of long positions Ls ≜ {back, lay}s
and/or short positions Ss ≜ {lay, back}s. The trader could therefore have three
different strategies; one of only long positions S = {L1,L2, . . .LNL

} where NL is
the number of {back, lay} pairs, one of only short positions S = {S1,S2, . . .SNS

}
where NS is the number of {lay, back} pairs and a combination of short and long
positions S = {L1,L2, . . .LNL

,S1,S2, . . .SNS
}. The trader deploying this strategy

would want Eq. (2.11) to be positive hence they would need to have more positive
long and short positions than they have negative.

2.2 Horse Racing Data

The data sets used in this study came from the Betfair website [20], was sourced
from [3] and went through many stages of cleaning and organising. The most
substantial filtering that was done was the extraction of the in-play data. The

∗Notice that we denote the winning horse here as i∗ and the this index value is not known
until time t = T .
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in-play data is any data collected from the point when the race had started to the
point of when it had finished. The important data fields are described in Table
2.1 but this section will give more details of the data fields.

The in-play data is split into individual races, and these are uniquely iden-
tified by an integer which is assigned to the race called the EventID; the race
starting time and date is recorded as a string and is called RaceStartDateTime;
different races have different format such as the type of horses competing, and
this information is stored as a string referred to as RaceType (this is not used
in this study); the individual horses in a race are identified either with the Hor-
seID field which is an integer or the HorseName which is a string (both of which
are unique to the selection or competing horse); each horse in the race has the
time-dependent volume of total amount matched which has the units £: this is
the total number of backs and lays matched where backs are positive and lays
are negative (this is referred to as TotalMatched∗); each horse in the race has a
Last Price Matched signal referred to as LPM which are the final odds that were
exchanged on a selection at a particular time.

The next fields are concerned with the limit-order-book: the back side of the
book (the left side from the blue boxes in Fig. 2.2) are referred to as BP1, BP2
and BP3, each of the three levels of the back prices have corresponding volumes
referred to as BV1, BV2 and BV3 respectively all with the units £; the lay side
of the book (the right side of the pink boxes in Fig. 2.2) are referred to as LP1,
LP2 and LP3 and each of the three levels of the lay prices have corresponding
volumes LV1, LV2 and LV3 respectively, all with the units £. The race time has
been converted to an integer value in units of approximately ≈ 1.0 second and
is referred to as RaceTimeCS; the mid-price is calculated as (BP1+LP1)/2 and
called MP and the final data field is Distance which is the race distance from
start to finish in miles. Some of the statistics of these data fields in Table 2.1
are discussed in Sec. 2.3. It is also worth stating that all fields were in decimal
odds originally: LPM, BP1, BP2, BP3, LP1, LP2 and LP3 have been converted
to implied probability by taking the reciprocal.

∗This quantity rises when back odds are taken and falls if lay odds are taken.
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Table 2.1: Data Key
Data Field Data Type Description
EventID int Unique identifier for individual race
RaceStartDateTime str Timestamp of the race starting time
RaceType str Format of the race
HorseID int Unique identifier for individual horses
HorseName str Unique identifier for individual horses
TotalMatched double Total value matched on horse (in £)
LPM double last price matched on horse
BP1 double Back price 1 (back odds∼buy price)
BP2 double Back price 2 (back odds∼buy price)
BP3 double Back price 3 (back odds∼buy price)
BV1 double Back volume 1 (in £)
BV2 double Back volume 2 (in £)
BV3 double Back volume 3 (in £)
LP1 double Lay price 1 (lay odds∼sell price)
LP2 double Lay price 2 (lay odds∼sell price)
LP3 double Lay price 3 (lay odds∼sell price)
LV1 double Lay volume 1 (in £)
LV2 double Lay volume 2 (in £)
LV3 double Lay volume 3 (in £)
RaceTimeCS int In-play racing time ≈ 1.0 sec
MP double Mid-price
Distance double Distance of the race in miles

2.2.1 Typical Race

Before delving into the statistics of the in-play horse racing signals let us gain
insight into the dynamics of the variables in the system by visualising a typical
set of signals. The set of race data that is presented is a race that took place
on 2012 − 01 − 01 and started at 14:20:00.0. Fig. 2.4 illustrates a standard set
of in-play signals from the data such as LPM , Total Matched, order imbalance
and spread. The middle left plot displays the price dynamics of the competing
horses which come from the data field in Table 2.1 called LPM . The LPM
values have been converted to implied probability from decimal odds. The price
signals fluctuate more rapidly around the time t ≈ 0.7. This increased activity is
down to the fact that the market weighs information received closer to the end of

22



the race greater than at the start. The market perceives information in this way
because the certainty of the outcome is becoming more apparent, see Sec. 2.3.1.
Notice that the price of the winning horse converges to a value just less than 1.0

or in decimal odds 1.01 and the price signals of the losing horses converge to a
value close to 0.0 or in decimal odds 1000.0. The top left plot in Fig. 2.4 is the
over-round, and this is defined as

ORt ≜
Nh

∑
i=1

LPM
(i)
t (2.12)

where LPM (i)
t is the last price matched at time t and i is the index of the compet-

ing horses. The over-round is a measure of the fairness of the market in relation to
selling or buying odds. Expanding on this point, if the over-round is greater than
one, the market is a selling market (more lays than backs) as the book would be a
Dutch one and vice versa for when the over-round is less than one. It is observed
that this fluctuates around the mean value of 1; as a note, the over-round signal
from other races has been observed having an upward drift with time. Also, the
over-round has a volatility cluster that coincides with the LPM signal’s volatility
cluster at around t ≈ 0.7.

The top right plot in Fig. 2.4 shows how the volume matched in-play changes
in time. We see from this that the odds are not calculated with a parimutuel
betting system as the red and purple LPM should then not cross each other. To
see why this follows, consider the definition of the winning implied probability
in the parimutuel betting system, Eq. (2.2), and compare this to the volumes
matched in the top right plot in Fig. 2.4. The volume matched has an upward
trend. If a back is matched the signal moves up, and down if a lay is matched,
hence an upward trend indicates more backs are matched then lays. The order
imbalance is a measure of the proportions of volumes on the back and lay side in
the limit-order-book and is defined as

ρ
(i)
t ≜

V
(i)
t,B − V (i)

t,L

V
(i)
t,B + V (i)

t,L

(2.13)
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where V
(i)
t,B = BV 1

(i)
t + BV 2

(i)
t + BV 3

(i)
t and V

(i)
t,L = LV 1

(i)
t + LV 2

(i)
t + LV 3

(i)
t :

{BV 1
(i)
t ,BV 2

(i)
t ,BV 3

(i)
t } are the back volumes and {LV 1

(i)
t , LV 2

(i)
t , LV 3

(i)
t } are

the lay volume variables both of which are described in the Table 2.1.

The bottom left frame in Fig. 2.4 shows that order imbalance, calculated as
Eq. (2.13), is a variable that is dominated by noise throughout the race. This
noise indicates that the order-book is fluctuating between a book that is heavy
on the lay-side to one that is heavy on the back-side. When the market believes
that the selection is not going to win the order imbalance converges to the value
ρ
(i)
t = 1 and for the winning horse ρ(i

∗)

t = −1. The reason for this is: if it is believed
a horse is never going to win the race then the market would only offer to sell
backs as this will likely lead to positive cashflow, if this horse does not win. With
regard to the winning selection the imbalance converges slowly to −1 if the race
is competitive and fast if the race is not competitive.

The bottom right plot in Fig. 2.4 is the spread which is defined as the difference
between the most competitive back and lay

δ
(i)
t = b(i)t − l(i)t (2.14)

where the best back is b(i)t = min{BP1
(i)
t ,BP2

(i)
t ,BP3

(i)
t } and the best ask

is a(i)t = max{LP1
(i)
t , LP2

(i)
t , LP3

(i)
t }. The sets {BP1

(i)
t ,BP2

(i)
t ,BP3

(i)
t } and

{LP1
(i)
t , LP2

(i)
t , LP3

(i)
t } are the back and lay prices quoted in the order-book,

described in the Table 2.1, which have been converted to implied probability. If
one was working with decimal odds the minimum and maximum would be the
other way round. The spread is strictly positive δ(i)t > 0 which is observed in the
bottom right plot Fig. 2.4.

The spread typically has a volatility cluster that coincides in time with the
price and over-round volatility cluster. The spreads for the horses that are com-
peting to win the race (red and purple) widen as each side of the book is exhausted
and replenished. These fluctuations also indicate that the order-book prices are
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Figure 2.4: Examples of signals generated in a typical racing market, the race
took place on 2012-01-01 and started at 14:20:00.0. Each different coloured line
represents one of the eight competing horses in the race. Top left plot: this is the
race over-round which is the sum of the implied probabilities of all the competing
horses at each time step, see Eq. (2.12). Left middle plot: this is the last price
matched of each horse competing in the race plotted against normalised time.
Right top plot: this is the volume matched in £ on each selection where the total
matched out-of-play has been removing centring the signal at the zero volume by
subtracting the initial volume matched. Left bottom plot: these are the order
imbalance signals against normalised time. Right bottom plot: this is the spread
as calculated as in Eq. (2.14). One can observe that the order imbalance is a
very noisy signal and the spreads tend to increase when the volatility in the price
increases.

oscillating from a situation that is dominated by back orders to one dominated
by sell orders.
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2.3 Statistics of Data Set

The Table 2.2 gives a breakdown of the in-play racing data that is available to
this study. There is a total of 12736 races which have been collected through
Betfair [20]. The races occurred in the period starting on 31-12-11 and finishing
on 31-12-12 and are located at race tracks across the British Isles. The total
number of competing horses is 113999 with the smallest number in a particular
race being 2 and the largest being 32, with an average of 8.95 horses. Note that
the number 113999 is the number of LPM signals in the dataset and not the
physical number of actual horses, as the same horse can compete in multiple
races. The average total matched per time step ∆t ≈ 1.0 seconds in this same
period is £738.28 seconds−1, showing that the regular punter in these markets
can get matched on small enough backs as on average the markets exhibit enough
liquidity.

Table 2.2: Racing data
Data Field Total Min Max Mean Standard

Deviation
# of Races 12736 N/A N/A N/A N/A
# of Horses 113999 2 32 8.95 3.23
TotalMatched, £ 9.83×109 3.46×104 1.31×107 7.71×105 3.78 × 105

TotalMatched in-
play, £

2.15×109 1.29×104 8.03×105 1.69×105 8.84 × 104

TotalMatched in-
play, £ second−1

9.40×106 83.22 2,794.66 738.28 240.49

Average Over-
Round

N/A 0.69 1.55 1.02 0.049

Average ∆t N/A 1.03 4.47 1.15 0.09
# of Time Points 3006245 94 1099 236.043 111.425
Distance N/A 0.625 4.125 1.5465 0.7909

The Table 2.3 displays the sample statistics of the increments of the last price
matched signals for each of the selections. Each variable in this table is the result
of filtering (or in the case of the All variable no filtering is applied). The in-play
price increment signal is defined as

∆LPM
(i)
t = LPM (i)

t+1 −LPM
(i)
t (2.15)
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where i labels the competing horse and t are all the time steps within the races.
The Winner, Favourite and Long-Shot∗ are created through the process of filter-
ing (as they have fewer data points than the All variable); they represent the
price increment signals of the horses that won the race, the horses with highest
initial implied probability and the horses with the lowest initial implied proba-
bility respectively.

One can see from the Table 2.3 that the mean of the increments in absolute
value is smallest in the All and Winner. The All variable has the most data
points which is the reason it is an order of magnitude smaller than the long-shot
and favourite mean. It is surprising that the mean of the Winner variable is the
same order of magnitude as the All variable and in addition found also to be
negative. This means on average the LPM signals move down but we know that
at some point the LPM signal needs to move up toward the value ≈ 1.0. Hence,
the increments that move the LPM signal up must on average occur less often
than the down movements indicating the market must take a while to realise that
the actual winner is going to win. The higher average increments found for the

Table 2.3: Summary of the statistics for the race increment signals of the LPM for
the following selections: All, Winning, Favourite and Long-Shot. Each variable
was found have a minimum value of -0.9890 and maximum value of 0.9891.

Variable Data
Pts.

Mean Std.
Dev.

Skew. Kurt.

All 26067165 5.74 × 10−6 0.098 0.096 32.6
Winner 2993509 −5.15×10−6 0.102 0.072 29.71
Favourite 2993509 5.58 × 10−5 0.148 0.019 11.9
Long-Shot 2993509 1.86 × 10−5 0.053 0.251 141.3

Favourite compared with the Long-Shot is down to the fact that the Favourite
horses are generally competing for the pole position and actually win ≈ 34.66%

of the time (see Fig. 2.4), resulting in a higher average number of up movements.
The highest standard deviation is observed in the Favourite signals which makes
sense as these signals are more likely to fluctuate when competing for the pole

∗The long-shot is the horse or horses with the smallest implied probability of winning the
race.
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position and the Long-Shot signals less likely. The skewness for all the variables
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Figure 2.5: These box-plots represent the initial odds quoted at the first time
point. The Favourite is the selection with the highest implied probability, the
Long-Shot is the selection with the lowest implied probability and the Winner
is the selection that actual won the race. For each box-plot there are 2993509
data points. The median of the initial odds is represented by the red line and the
top and bottom of the blue box are the 75th and 25th percentiles respectively.
The whiskers extend to the upper and lower extreme quantiles as defined by the
Tukey range test [1] and the red crosses are the outlying data points.

is found to be positive but the largest is the Long-Shot: indicating that all the
variables have a distribution which is longer in the right tail and has more mass
concentrated in the left. The kurtosis values for all variables are greater than the
normal distribution, indicating a positive excess kurtosis and hence a leptokurtic
distribution. The highest kurtosis is found for the Long-Shot resulting in a distri-
bution with the strongest leptokurtic features and this could also be the reason
for the smallest standard deviation.

Fig. 2.5 shows the box-plots of all the initial LPM odds posted at t = 0 which
are the odds quoted when the race has just started. The odds have been converted
from decimal odds to implied probability. This figure displays the initial odds for
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the selections that correspond to the Favourite, Long-Shot and Winner, where
these definitions are the same as previously stated in Table 2.3. One can observe
the intuitive result that the mean of the Favourite is greater than the Winner and
Long-Shot, since a favourite is always given the highest initial implied probability
of winning. The interquartile range, which is the distance between the 75th and
25th quantiles, is found to be larger for the Favourite than for the Long-Shot.
This smaller interquartile range for the Long-Shot as compared to the Favourite
shows that there are different risk aversion preferences for the market agents who
trade the Long-Shots compared the Favourites. This would be an interesting
statistical property to explore from the point-of-view of behavioural finance and
decision making under uncertainty, one such model being prospect theory [39]
but this question is left open.

Table 2.4: True unconditional probabilities (This means the actual probability of
the Favourite/Long-Shot winning the race, see Eq. (2.16)) and empirical market
LPM probabilities denoted as Pt=0 for Favourite and Long-Shot horses. The
asterisk ∗ means the statistics where generated via a resampling bootstrap with
the number of resamples 1.0 × 105.

Variable Estimates Std. Dev.
P (Favourite =Winner) 0.3466 0.0042∗

P (Long-Shot =Winner) 0.0268 0.0014∗

⟨max{Pt=0}⟩Nr
0.3321 0.1387

⟨min{Pt=0}⟩Nr
0.0256 0.0325

The statistical spread for the initial implied probability (the Std. Dev. field
in Table 2.4) for the Winner is also larger than the Favourite which comes down
to the fact that the Favourite does not always prove to be the winner, in fact
for this set of data the Favourite has an unconditional chance of winning 0.3466,
see Table 2.4 and calculated with Eq. (2.16). The eventual winner will be a
mix of long-shot, non-favourites and favourites which effectively increases the
standard deviation of the odds. The long-shot odds has the smallest standard
deviation meaning the market prices such selections closer to the unconditional
probability (see Table 2.4) where the long-shot wins with a 0.0268 probability.
In each of the box plots in Fig. 2.5 there are outliers, which are defined from
Tukey’s test [1]. Some of these points are outliers because the data points are a
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collection of all races that contain different numbers of horses, for example, a race
with two horses will weight the long-shot higher than a race with 32 horses. The
Table 2.4 highlights some differences that emerge from the market’s estimation of
implied probability compared to the true unconditional probabilities. The true
unconditional probability of the Favourite winning is defined as

P (Favourite =Winner) = 1

Nr

Nr

∑
j=1

1
{Favourite(j)t=0=Winner(j)t=T }

(2.16)

where 1 is the indicator which is 1 when the favourite horse from race j is the
eventual winner and 0 otherwise. Using the race data, we estimated Eq. (2.16)
to have the value P (Favourite =Winner) = 0.3466 ± 0.0021 which is close to the
market’s average estimation of the initial odds ⟨max{P (i)

t=0}⟩
Nr

= 0.3321 ± 0.0694

where Nr is the number of races averaged over, note that P (i)
t=0 denotes the initial

implied probability of horse i. This closeness of true unconditional probabilities
and the average implied probabilities means that the market on average is almost
correctly estimating the odds of a Favourite or Long-Shot winning. We will return
to this in Sec. 2.4 where a model for the order statistics of the initial odds is
developed to test how well the market ranks the horses.

2.3.1 Statistical Dispersion of the In-play Odds

Statistical dispersion is a class of measures used to evaluate the spread∗ or relative
spread of data or to put it another way, how stretched or squeezed an empirical
distribution is. The most common of these is the sample standard deviation. The
implied probabilities as defined in Eq. (2.1) are decided by the market and can
be considered a representation of a price. This section will explore different mea-
sures of the variability in the implied odds as a function of time. The measures
used are the following: Gini index, Theil index, Atkinson index, and Generalised
entropy index. This set of measures show how uncertainty/certainty evolves in
horse racing markets.

∗The term spread in this subsection should not to be confused with the spread defined in
Eq. (2.14) – we mean statistical spread – for example, standard deviation.
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Each horse at a given time will have a market determined implied probability
P

(i)
t where i = 1,2, . . . ,Nh. The first statistical dispersion measure used is the Gini

Coefficient [40], which is equivalent to half the value of the statistical measure
known as the relative mean absolute difference. The Gini Coefficient for the set
of prices {P (1)

t , P
(2)
t , . . . , P

(Nh)

t } is defined

Gt =
∑Nh
i=1∑

Nh
j=1 ∣P

(i)
t − P (j)

t ∣
2Nh∑Nh

j=1P
(j)
t

(2.17)

where the time t ∈ [0,1] is the normalised time and Nh is the number of horses
in each race. The Gini coefficient is not a coherent measure – because the abso-
lute value makes this non analytic – which is defined to satisfy the four following
conditions: monotonicity, sub-additivity, homogeneity, and translational invari-
ance [41]. As a result it is not additive, which leads to the issue that one cannot
simply find the average of two Gini coefficients as it would be inconsistent with
the actual Gini coefficient of a two part system. Alternative measures used that
are coherent are the entropy measures also known as the redundancy measures.

The three entropic measures that will be discussed have no apparent merit
over one another, but mathematically they are all additive and coherent measures,
which is a clear advantage over the Gini index. The Theil index [42], also known
as the Von Neumann entropy [43], is the first redundancy measure and is defined
as

T (P (1)
t , P

(2)
t , . . . , P

(Nh)

t ) = 1

Nh

Nh

∑
i=1

P
(i)
t

µt
ln

⎛
⎝
P

(i)
t

µt

⎞
⎠

(2.18)

where µt is the time dependent sample mean of the prices µt = 1
Nh
∑Nh
i=1P

(i)
t . The

second measure is the Atkinson Index [44] which is defined as

Aε (P (1)
t , P

(2)
t , . . . , P

(Nh)

t ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − 1
µt

( 1
Nh
∑Nh
i=1 (P

(i)
t )

1−ε
)

1/(1−ε)

for 0 ≤ ε ≠ 1

1 − 1
µt

(∏Nh
i=1P

(i)
t )

1/Nh

for ε = 1,

(2.19)
where the ε ∈ (0,∞) is the measures’ parameter that models the level of affinity
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a set of prices exhibit toward being diverse (spread out) or non-diverse (close
together). For example if ε = 0 there is an affinity for the prices to be non-diverse
and if ε = ∞ there is an affinity for price to be diverse. The Generalised entropy
index [45] is defined as

GEα (P (1)
t , P

(2)
t , . . . , P

(Nh)

t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Nhα(α−1) ∑

Nh
i=1 [(

P
(i)
t

µt
)
α

− 1] , α ≠ 0,1,

1
Nh
∑Nh
i=1 (

P
(i)
t

µt
) ln(P

(i)
t

µt
) , α = 1,

− 1
Nh
∑Nh
i=1 ln(P

(i)
t

µt
) , α = 0.

(2.20)

Notice that the Theil index Eq. (2.18) and Atkinson index Eq. (2.19) are defined
within the mathematical generalisation of Eq. (2.20), such that

T (P (1)
t , P

(2)
t , . . . , P

(Nh)

t ) = GEα=1 (P (1)
t , P

(2)
t , . . . , P

(Nh)

t )

Aε (P (1)
t , P

(2)
t , . . . , P

(Nh)

t ) = 1 − exp (GEα (P (1)
t , P

(2)
t , . . . , P

(Nh)

t ))
(2.21)

where ε = 1 − α. Using the four measures Eq. (2.17) - (2.20) on the set of prices
{P (1)

t , P
(2)
t , . . . , P

(Nh)

t }
j=1,2,...Nr

where Nr = 12736 (the number of races in data set)
gives the statistical dispersion estimations for each for the uncertainty measures.
The results are binned into 40 equally spaced bins in the time period t ∈ (0,1)
and averaged in those bins for each measure. The results are displayed in Fig.
2.6. One can see that the results that are averaged over the number of races Nr

monotonically increase. The structure of the curves in Fig. 2.6 shows that the
uncertainty in price on average is always decreasing as time evolves. This result
backs up our intuition as we know that the prices in typical races (see Fig. 2.4)
have a common terminal structure. That is when a race starts the prices have
maximum diversity as the market is uncertain about which horse will win and as
the race draws to its conclusion the uncertainty decreases and so does the spread
of prices.
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Figure 2.6: Five different sample averages of the parametrised statistical disper-
sion measures as indicated in the legend. All are monotonically increasing and the
Theil measure is equivalent to the generalised entropy α = 1. As these measures
are monotonic, the dispersion of the average in-play odds is always increasing.
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2.4 Order statistics of horse racing gambling and

random divisions on an interval

This section looks to build a model for the distribution of initial odds as quoted
by the in-play gambling markets, see Fig. 2.5, and the results of which where
presented in [4].

The idea is to assume that the implied probabilities quoted by the market
sum to one, in this case, the last price matched are used.

This assumption is not too far away from the truth, but we know from Sec.
2.2 that the sum in the in-play markets can diverge above or below unity. This
effect is not as prominent in the initials odds.

The segments on a unit interval [0,1] are constructed to represent the im-
plied probabilities – if it is assumed that there is little to no information on the
horses’ form and past performance. The simplest model for the distribution of
these segments that one could propose is drawing Nh − 1 samples from a uniform
distribution on the unit interval. This model can be interpreted as the randomly
broken stick problem [46], where the stick is of a unit length. The largest seg-
ment created by this sampling is construed as the odds of the favourite horse,
the second biggest as the second favourite, and so on until the smallest segment,
which is the odds of the long-shot.

Using the well known result of the mapping between exponential random
variables and the statistics of the random division, one can hypothesise that the
horses’ and jockeys’ joint abilities are exponentially distributed. If such abilities
are distributed in this way then prices on average, in economic sense, are efficient
as the no market agent can find a more accurate price than the market price and
all agents in market will price according to this knowledge. Hence, the probability
of the jth horse winning the race is directly proportional to this ability and it can
be assumed that

P [jth horse wins] ≜ Pj =
Aj

∑Nh
i=1Ai

(2.22)

where Ai ∼ Exp (λ) where λ−1 = 1
Nh
∑Nh
i=1Ai and i = 1,2, . . . ,Nh. The jth segment
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is denoted as Uj and defined to be Uj ≜ Pj, therefore bounded by the randomly
partitioned interval [0,1]. Ordering the segments Uj by their lengths is a pro-
cedure denoted as U(k) where (k) is the kth largest segment, see fig 2.7. Thus,
the hypothesis that the horses’ ability is exponentially distributed, defined in Eq.
(2.22), is represented as the following expression

P(k) = U(k) (2.23)

where k = 1,2, . . . ,Nh and the ordering of the segments is shown in Fig. 2.7. The
statistical testing of this hypothesis is the central question in this section. To
put this in to the context of horse gambling markets: when a bookie says they
have “a hot tip” and their odds are better than the market odds this is not true
if and only if Eq. (2.23) holds true – to some level of statistical confidence. Such
a test gives precisely a measure of the degree of price efficiency in initial quoted
odds in the horse gambling markets. To give more detail of what one means by

Figure 2.7: The unit interval partitioned Nh times into segments that are ordered
such that 0 < U(Nh) < U(Nh−1) < U(Nh−2) < ⋯ < U(2) < U(1)<1.

testing the efficiency: consider a gambler with sufficient information such that
they can correctly rank/order the selections, but this information is very noisy so
they can not correctly assign the exact probability of the horses winning the race.
Therefore, we test how efficiently the market is at ranking the horses on average.

It is known from [21] (page 135) that the segments created by partitioning the
unit interval by a exponential distribution, as shown in Fig. 2.7, has the following
expectation for the kth largest segment

Ū(k) =
1

Nh

( 1

Nh

+ 1

Nh − 1
+ ⋅ ⋅ ⋅ + 1

k
) = 1

Nh

Nh

∑
j=k

1

j
(2.24)
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where the bar represents the statistical average for a given Nh, for example X̄ =
E [X ∣ Nh]. In this case one is expecting that on average the initial odds of the
kth highest ranked horse is equivalent to Eq. (2.24). It is trivially found that the
expectation of the smallest segment is

Ū(Nh) =
1

N2
h

. (2.25)

The harmonic function can be used to represent the sum on the right hand side
of Eq. (2.24) and is defined as

HNh,k =
Nh

∑
j=k

1

j
, (2.26)

where one will notice that Ū(Nh) = 1
Nh
HNh,Nh

is the expectation of the smallest
segment, Eq. (2.25), and Ū(k) = 1

Nh
HNh,k is the expectation of the kth largest

segment, Eq. (2.24). If the initial implied probability quoted by the market are
exponentially distributed, where P(k) denotes kth favourite horse, then it follows
from the hypothesis Eq. (2.23) that

P(k) = Ū(k) . (2.27)

Table 2.5 presents the estimates for the average initial odds quoted in the market
P(k) and the true winning probabilities of the horse winning (calculated as in Eq.
(2.16)) and the expected largest segment Eq. (2.24). These three statistics are
compared for the favourite k = 1, second favourite k = 2, third favourite k = 3,
fourth favourite k = 4, and the long-shot k = Nh. In Table 2.5 we compare the
averages for each subsets: all Nh, Nh ≤ 7, 8 ≤ Nh ≤ 10 and Nh ≥ 11. Finding that
the estimates of these conditional averages, especially for the top ranked horses,
are in agreement with empirical market odds. We therefore conclude, to the first
order, that there is statistical truth in the relationship Eq. (2.23) holding; and
thus there is some level of price efficiency in the market value of initial odds.
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favourite 2nd favourite 3rd favourite 4th favourite long-shot
k = 1 k = 2 k = 3 k = n

⟨P(k)⟩ 0.3321 0.2048 0.1429 0.1025 0.0256
⟨P(k)⟩ 0.3478 0.2047 0.1348 0.0952 0.0281
⟨Ū(k)⟩ 0.3380 0.2089 0.1447 0.1033 0.0197

favourite 2nd favourite 3rd favourite 4th favourite longshot
k = 1 k = 2 k = 3 k = n

⟨P(k) ∣ Nh ≤ 7⟩ 0.4173 0.2460 0.1576 0.0990 0.0442
⟨P(k) ∣ Nh ≤ 7⟩ 0.4358 0.2423 0.1484 0.0853 0.0402
⟨Ū(k) ∣ Nh ≤ 7⟩ 0.4332 0.2462 0.1538 0.0958 0.0377

favourite 2nd favourite 3rd favourite 4th favourite longshot
k = 1 k = 2 k = 3 k = n

⟨P(k) ∣ 8 ≤ Nh ≤ 10⟩ 0.3184 0.1985 0.1438 0.1078 0.0182
⟨P(k) ∣ 8 ≤ Nh ≤ 10⟩ 0.3327 0.2081 0.1361 0.1031 0.0233
⟨Ū(k) ∣ 8 ≤ Nh ≤ 10⟩ 0.3166 0.2041 0.1478 0.1103 0.0128

favourite 2nd favourite 3rd favourite 4th favourite longshot
k = 1 k = 2 k = 3 k = n

⟨P(k) ∣ Nh ≥ 11⟩ 0.2470 0.1631 0.1247 0.1004 0.0119
⟨P(k) ∣ Nh ≥ 11⟩ 0.2614 0.1564 0.1172 0.0977 0.0193
⟨Ū(k) ∣ Nh ≥ 11⟩ 0.2500 0.1703 0.1305 0.1039 0.0065

Table 2.5: Using the in-play horse racing market data discussed in Sec. 2.2:
we filter the initial odds (last price matched) and sort the implied odds in rank
order favourite, 2nd favourite, 3rd favourite, . . . , long-shot. Denoting the following
kth largest variables: the implied market odds P(k), the winning probabilities P(k)

estimated simpler to Eq. (2.16), and the expected segment lengths Ū(k) calculated
as Eq. (2.24). The sample average is denoted ⟨.⟩ and estimated for the average
for all Nr races and sub-samples with the number of horses Nh ≤ 7, 8 ≤ Nh ≤ 10,
Nh ≥ 11. The theoretical expectation of the segment lengths are calculated by
averaging the first moment of Eq. (2.30) over the empirical distribution of Nh.
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Figure 2.8: We compare the distributions of the implied market odds P(k) and the
expected segment lengths Ū(k), calculated as Eq. (2.24), where k = 1 (favourites)
and k = Nh (long-shots). Top Plot: A box plot comparison between the initial
favourite implied probabilities and the expected largest segment 1

Nh
HNh,1. Bottom

Plot: A box plot comparison between the initial long-shot implied probabilities
and the expected smallest segment 1

N2
h
.
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From the Tables 2.4 and 2.5 one observes that the average found from Nr =
12736 races with the unbiased measure Eq. (2.24) for the expectation of the
largest segment is ⟨Ū(1)⟩Nr

= 0.338 ± 0.045. This result is not far from the un-
conditional probability ⟨P(1)⟩Nr

= 0.346±0.002 and the empirical value ⟨P(1)⟩Nr
=

0.332 ± 0.069, with the absolute difference between these empirical values and
model calculated as 0.009 and 0.004 respectively. One can observe from the top
panel in Fig. 2.8 that the interquartile range of the box plot for the largest ex-
pected segment 1

Nh
HNh,1 is within the interquartile range of the empirical favourite

odds P(1). The smallest expected segment is ⟨Ū(Nh)
⟩
Nr

= 0.02±0.02 and comparing
this with ⟨P(Nh)

⟩
Nr

= 0.027 ± 0.001 and ⟨P(Nh)
⟩
Nr

= 0.02 ± 0.03 we see again they
are close. The bottom panel in Fig. 2.8 shows that the interquartile range for
the box plot of the smallest expected segment 1

Nh
HNh,Nh

is within the interquar-
tile range of the empirical long-shot odds P(Nh). The model 1

Nh
HNh,Nh

does not
perform as well when the number of horses considered in the average is large.

For example 8 ≤ Nh ≤ 10 and Nh ≤ 11. We believe the model underperforms
in this way because when the number of horses becomes large enough the market
finds it difficult to rank the least favourite horses.

Defining the difference between the empirical value of the kth favourites’ initial
odds and the unbiased estimator Eq. (2.24) as

D(k) = P(k) − Ū(k) = P(k) − 1
Nh
HNh,k. (2.28)

This measure D(k) gives a means of quantifying how much the empirical initial
implied probabilities differ to the model Eq. (2.24), which can be tested to see
if this difference has any correlation to the final result of the races. Defining the
indicator 1(k) ∈ {0,1}, which is 1 when the kth favourite wins and 0 otherwise. It
can be shown that the estimate for the favourite is Corr [D(1),1(1)] = 0.2296 and
long-shot is Corr [D(Nh),1(Nh)

] = 0.1251, hence there is a small positive correlation
which indicates that there exists a linear relationship between the divergence and
the race outcome.
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2.4.1 Order Statistics of the Random Division of the Unit

Interval

Here we present the mathematics of the order statistics of the random division of
the unit interval, which can be found in [21,46]. We do this here so can find the
theoretical distribution of the segments U(k) so we can plot and compare this to
the empirical distributions.

Here we use a similar line of reasoning as in the book by Holst and Na-
garaja [46], which can be found on page 135. The probability that any particu-
lar j segments have lengths simultaneously longer than c1, c2, . . . , cj, respectively
(where ∑ji=1 ci ≤ 1) is

P[U1 > c1, U2 > c2,⋯, Uj > cj ∣ Nh] = (1 − c1 − c2 −⋯ − cj)Nh−1 (2.29)

which is proved in [21] Chapter 6. In order to have pieces with a length that
is at least c1, c2, . . . , ck for all Nh − 1, the cuts have to occur as segments within
the unit interval [0,1] with a total length 1 − c1 − c2 − ⋅ ⋅ ⋅ − ck. Consider the
example where P[U1 > c1 ∣ Nh] is the probability that all Nh − 1 cuts occur in
the interval (c1,1], and since the cuts are randomly distributed in [0,1] then
P[U1 > c1 ∣ Nh] = (1− c1)Nh−1. Note that from [46] the complementary cumulative
distribution function (CCDF) P[U(k) > x ∣ Nh] is found to be

P[U(k) > x ∣ Nh] =
k−1

∑
j=1

(Nh

j
)
Nh−j

∑
`=0

(−1)`−1(Nh − j
`

)[1 − (j + `)x]Nh−1
+

+
Nh

∑
`=1

(−1)`−1(Nh

`
)[1 − `x]Nh−1

+ ,

(2.30)

where a+ = max[a,0] and using the convention that ∑0
j=1 = 0. The length of the

largest segment is thus distributed according to

P[U(1) > x ∣ Nh] =
Nh

∑
`=1

(−1)`−1(Nh

`
)[1 − `x]Nh−1

+ . (2.31)
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The average length of the kth largest segment is given by:

Ū(k) = ∫
1

0
dx P[U(k) > x ∣ Nh]

= 1

Nh

k−1

∑
j=1

(Nh

j
)
Nh−j

∑
`=0

(−1)`−1(Nh − j
`

) 1

j + ` +
1

Nh

Nh

∑
`=1

(−1)`−1(Nh

`
)1

`

(2.32)

leading to the result that

Ū(k) =
1

Nh

Nh

∑
j=k

1

j
= 1

Nh

HNh,k , (2.33)

which is Eq. (2.24). The quadratic variation found in [4] is given by

U2
(k) = 2∫

1

0
dx xP[U(k) > x ∣ Nh]

= 2

Nh(Nh + 1) [
k−1

∑
j=1

(n
j
)
Nh−j

∑
`=0

(−1)`−1(Nh − j
`

) 1

(j + `)2
+
Nh

∑
`=1

(−1)`−1(Nh

`
) 1

`2
] .

(2.34)

which simplifies to

U2
(k) =

2

Nh(Nh + 1)
Nh

∑
j=k

HNh,j

j
= 2

Nh + 1

Nh

∑
j=k

Ū(j)

j
. (2.35)

This result is used in Sec. 2.4.2 to calculate the probability that the kth favourite
horse wins is Ū(k). Fig. 2.9 shows the empirical complementary cumulative den-
sity function (ECCDF) of the kth favourite’s implied odds where k = 1,2,3,4 and Nh

compared against the theoretical CCDF of the kth longest segment, Eq. (2.30)
with k = 1,2,3,4 and Nh. The agreement between the ECCDF and CCDF is ap-
parent but more statistical work is needed before this is confirmed with statistical
confidence.
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Figure 2.9: The dashed lines are the the empirical complementary cumulative den-
sity function (ECCDF) for the implied odds of the kth favourite horses’ denoted
as P[P(k) > x] and the solid lines are the theoretical complementary cumulative
density function (CCDF) of the kth largest segment of the division of the unit in-
terval, which is Eq. (2.30). Note that k = 1,2,3,4, and Nh which are respectively
the red, blue, green, purple and orange lines. We see for the favourite distribu-
tions (red line) that there are diverges in the empirical distribution (dashed red
line) from the theoretical model (solid red line). Hence, the market does under
price the favourite, a phenomenon known as the favourite-longshot bias [2], and
over prices the races with a low number of race – which is seen for the probabilities
where x > 0.4.
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2.4.2 Odds of the Winning Horse

From Sec. 2.4.1 we showed that the probability that the kth favourite horse wins is
Ū(k). The implied odds of the kth horse given that it wins is a different estimation
and from the viewpoint of the random division of the unit interval one can work
this out. Consider that I choose a random point on the interval [0,1] and given
that the random point lies in the kth largest segment, what is the expected length
of this segment? Define the indicator 1(k) = 1 if the random point lies in the kth

largest segment and 1(k) = 0 else. Then the probability that the kth horse given
that it wins is

P[U(k) = x ∣ 1(k) = 1] = P[1(k) = 1 ∣ U(k) = x]
P[U(k) = x]
P[1(k) = 1] =

xP[U(k) = x]
Ū(k)

(2.36)

and the expectation is

E[U(k) ∣ 1(k) = 1] =
U2

(k)

Ū(k)

. (2.37)

The average implied odds of the winning horse is estimated as P̄win = 0.2148. The
average length of the segment containing the random point, which is assumes
that the horses’ abilities are exponentially distributed and the gambling market
is efficient, thus

⟨E[U(k) ∣ 1(k) = 1]⟩ =
Nh

∑
k=1

E[U(k) ∣ 1(k) = 1]P[1(k) = 1] =
Nh

∑
k=1

U2
(k) =

2

Nh + 1
. (2.38)

which after averaging over Nr yields 0.2107, again very close to the empirical
value. Table 2.6 compares the implied odds of the k-th favourite given that it
wins with the average length of the k-th largest segment given that it contains a
random point, see Eq. (2.37).

2.5 Conclusion and Summary

This chapter has given a detailed discussion of the online gambling industry and
the markets that have been created because of its growth due to the internet
boom. We discuss the main points highlighted by this study and the implications
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favourite 2nd favourite 3rd favourite 4th favourite long-shot
k = 1 k = 2 k = 3 k = n

⟨P(k)∣win⟩ 0.3735 0.2148 0.1542 0.1139 0.0886
⟨Ū(k)∣1(k) = 1⟩ 0.3622 0.2196 0.1549 0.1145 0.0383

Table 2.6: Average implied odds given that the horse wins and expected segment
lengths given that it contains a random point for all races in our dataset (with
Nh ≥ 5). The theoretical expectation of the segment lengths are calculated by
averaging Eq. (2.37) over the empirical distribution of Nh.

of the overall results.
A discussion is found in Sec. 2.1 where a breakdown of the market structure

and the revenues highlights that online gambling is the fastest growing sector of
the industry. The contrast of between gambling and investment is discussed, and
some of the similarities are highlighted, which can blur the differences between
these two concepts. The differences come down to the fundamental mechanism
they play in society, but some of the strategies are very similar. The dataset
used in this study came from a horse racing exchange, so details of this particular
market are explained such as race selection, horse selection order-book, backing
and laying odds. The exchanged assets in gambling markets are the odds which
are auctioned (in a manner similar to but different from financial market order-
books), and we discussed how to interpret such instruments. The hedging of such
instruments is illustrated as a two positioning process where one backs and then
lays, or vice versa and gains (or losses) are extracted from the change in the odds
between the two positions.

In Sec. 2.2 the actual data set and various fields that constitute it are given a
detailed description, discussing what they refer to in the market and also in the
race itself, such the selection or event identification. It is also stated that this
study concentrates its effort in the exploration of statistical properties that emerge
from in-play markets. In Sec. 2.3 we presented Table 2.2 outlining the sample
statistics of the data set such as the average market liquidity. The Table 2.3
described the moments of the price increment signals extracted from the dataset
showing the distributions are not normal and a have highly leptokurtic structure.
We also found some interesting statistics presented in Table 2.4 regarding the
initial odds posted, where one observes that agents on average rank the selection
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close to the unbiased estimator which is shown in Table 2.5. If the market diverges
away from the unbiased estimator, we find that there is a small positive correlation
with outcome of the race, indicating that agents could be diverging from the
unbiased estimator because of some extra information they have. Using statistical
dispersion measures and entropic measures we observe the intuitive statistical fact
that on average the dispersion in the odds increases, see Fig. 2.6.

In Sec. 2.4 we have found a remarkable agreement between the order statis-
tics of the randomly broken stick and the statistical properties of horse racing
betting markets. Because we observe the empirical values of the implied odds
and true winning probabilities to be close, we conclude that this betting market
is informationally efficient∗, at least to some degree. Discrepancies are found for
the long-shot, suggesting that gamblers fail to rank the horses accurately when
their number is significant. Assuming that the implied odds reflect to a large
extent the true winning probabilities, we conclude that the “ability”† of a horse
can be defined in such a way that its winning probability is the ratio of its “abil-
ity” to the sum of all its competitors’ abilities, provided “ability” is exponentially
distributed.

∗By informationally efficient we mean the market on average can correctly order the selec-
tions, but for each race this is comparable to randomly splitting the unit interval as explained
previously.

†This term “ability” is somewhat vague but what is meant by this is the true probability of
the horse (and jockey) winning the race.

45



Chapter 3

Simulating In-Play Horse Odds and
A Novel Trading Algorithm

This chapter describes a very common and well-practised hedging strategy known
as pairs trading which tries to take advantage of market inefficiencies to produce
a profit [47–52]. The strategy will be first explained from a financial markets
perspective and then related back to in-play horse racing markets. The approach
works on the principle that when highly correlated securities move, they statisti-
cally move in the same direction. Some examples of pairs could be two telecom
companies, two big corporations that manufacture carbonated sugar and water
drinks and two automobile companies. Such pairs could also be components of
the same index, which lead to even greater correlations in price. One can describe
such a strategy as a statistical arbitrage, since one is relying on historical prices
and statistical behaviour to identify the pairs. Once the pairs are identified, then
one takes two simultaneous positions in those securities, one short and one long,
which is known as a convergence strategy as one hopes for the price of the two
securities to converge to the same price in the future. While holding these two
positions the trader may exploit market inefficiencies which emerge as abnormal
prices movement which will result in profit for the trader.
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3.1 Market Efficiency Theory

The theory of market efficiency is the idea that markets and their constituent
prices are the most efficient means a society can have to distribute aggregated
information, famously discussed in [53], but the term efficient market was first
coined in [54]. Hayek and Gibson were not aware of an exact mathematical
framework for their arguments, but such ideas were phrased in this manner by a
French stockbroker, Jules Regnault [55], who noticed that the average deviation
of a security’s price is directly proportional to the square root of the elapsed time.
The more rigorous approach by Louis Bachelier in [56] identified that the actual
efficient price of a security behaves as a martingale.

To explain the relationship between martingales and market efficiency we
follow a similar line of reasoning to [57]. Consider a financial security has the
following price path {. . . , St−1, St, St+1, . . .} the price change is defined as ∆St+1 =
St+1−St. The security in question is deemed to have a random payoff XT at time
T in the future. If one could anticipate the prices of the security ∀t ≤ T then this
would be equal to the expectation of XT , given all available information up to
the present time t and denoted as Ft. This is written mathematically as

St = E [XT ∣ Ft] (3.1)

which is bound by the terminal payoff such that XT = ST . If we are at the present
price St, which has the history of prices {. . . , St−2, St−1, St}, from Eq. (3.1) the
anticipated price would be St = E [St+1 ∣ Ft] which Implies that E [∆St+1 ∣ Ft] = 0.
Thus, if one considers all future payoffs of this security

E [∆St+1∆St+2 . . .∆ST ∣ Ft] = E [∆St+1 ∣ Ft]E [∆St+2 ∣ Ft] . . .E [∆ST ∣ Ft] = 0,

(3.2)
therefore all successive price increments are mutually uncorrelated as the price
process St is a martingale.

The work by Bachelier [56] derived similar results to those found by Ein-
stein, in a different context, five years later [58] and Samuelson sixty-five years

47



later [57]. The significant statistical development towards testing market effi-
ciency as a hypothesis was driven by the work of [59–61] which concluded that
prices are martingales and behaviour resembles random walks. For a more thor-
ough review of the development and history of the Efficient Market Hypothesis
see [62].

The Efficient Market Hypothesis (EMH) model has been a successful theory,
but all theories are falsifiable, and this one is by no means an exception. The
EMH has three forms, each differing in the strength of information, albeit public
or non-public, on the current price of an asset and how the price adjusts to
information flow. The three forms are known as the strong, semi-strong, and
weak. The strong form dictates that the current price provides the market with
all information including non-public information. The semi-strong relaxes the
strength of the previous claim by assuming that the current price only reflects
the publicly available information and if new information becomes available the
price updates accordingly. The weak form is the least strict in its assumptions of
the current and future states of price and only requires the price to be a reflection
of the past values (memory). In essence, the relative strength of the EMH is a
means of assessing the dynamics of price movements, and if one believes the
strong form then price behaves as a martingale (a process where the mean is
predictable but not the sample behaviour) and one can not systemically beat the
market with any trading strategy. If one rejects this strong form of EMH and
believes there are profitable strategies available, then the statistical behaviour
will demonstrate patterns that can be exploited for profit. Such patterns could
be trends or mean-reversion behaviour. Therefore, if pairs trading is possible,
then the behaviour exhibited by the prices is the weak form of EMH.

3.2 Simulating Horse Racing

This section develops a toy model which assumes that markets behave as if it
were informational efficient and prices are martingales. In the pursuit of clarity,
we will first discuss the notation used in this section: an upper case letter indi-
cates a random variable and lower case letter indicates an observation/sample. A
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continuous random process with denoted by putting a lowercase d, for example
the white noise process is denoted as dZt ∼ N (0,1). A discrete random variable
is denoted as ∆Zt.

The model first assumes that all horses start atX0 = 0 and the distance covered
relative to the mean distance covered by the competing horses are defined as the
following set of independent Itô processes

dX
(i)
t = µ(i)dt + σ(i)dB

(i)
t (3.3)

where t ∈ (0,1) is the time domain, dB
(i)
t ∼ N (0,dt) is a Wiener process, the

drift is sampled from a uniform distribution µ(i) ∼ U (a, b) such that the real
numbers a and b are a < b, σ(i) is the volatility, which is a positive constant and
i ∈ {1,2, . . . ,Nh} is the index for the Nh horses competing. As a note, the drift
parameter µ(i) is sampled once from the uniform distribution U (a, b) for each i
at time t = 0 – which is a similar model as found in Sec. 2.4 – hence, is not too far
from the truth. Remembering, there is mapped between a uniform distribution
on (0,1) and the exponential distribution, which can be seen by considering the
random variables W ∼ U[0,1] and set Q = − ln (W ) then Q is distributed as
FQ (q) = 1 − FW (e−q).

For each horse i and time t we will sample a random variable from a Gaussian
density which has the following parameterisation:

{∆Y
(i)
t ∼ N (µ(i)t + x(i)

t , (σ(i)t′)2)}
m=1,2,...,Nmc

(3.4)

each independent sample is denoted by the subscriptm and performed Nmc times,
x
(i)
t is the present observed value of Eq. (3.3) and ∆Y

(i)
t represents the random

displacements for the set of horses at the next time step. Fig. 3.1 gives a visual
representation of Eq. (3.4) with i = 1,2 where the density functions for ∆Y

(1)
t

and ∆Y
(2)
t are the green and orange distributions respectively. The time variable

t′ = 1 − t is the complement of time t, decreasing linearly to 0 as t increase to 1

and its use has the effect of reducing the noise as the race comes closer to the
finish. The intuitive content of Eq. (3.4) is the centring of a normal distribution
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Figure 3.1: A diagram depicting a race with the two horses X(1)
t (green line) and

X
(2)
t (orange line), both are defined by Eq. (3.3). The current observations of

the distanced covered by the two is x(1)
t and x(2)

t each of the distances in the next
time step shift by ∆Y

(1)
t and ∆Y

(2)
t respectively, both have densities defined Eq.

(3.4). The probability density that horse X(2)
t will be in the pole position in the

next time step, ∆Y
(1)
t (green curve) and ∆Y

(2)
t (orange curve) is the density of

∆Y
(2)
t > ∆Y

(1)
t .

on µ(i)t+x(i)
t which is then sampled giving a set of possible future displacements

∆Y
(i)
t that X(i)

t could diffuse to. To implement this model we take a numerical
approach using a Monte Carlo model where at each time t the displacements
∆Y

(i)
t are sampled Nmc times for each i. Using this numerical method one can

calculate the probability that horse i will be in pole position. Consider the points
x
(1)
t and x(2)

t , shown in Fig. 3.1, we generate {∆Y
(1)
t } and {∆Y

(2)
t } Nmc times

each. Counting the normalised frequency that ∆Y
(2)
t > ∆Y

(1)
t gives an approxi-

mation of the probability that horse X(2)
t will be in the pole position.
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We now explain the numerical approach used to calculate the probability of
being in the pole position. The random variable Eq. (3.4) is sampled Nmc times
for each horse i and time step t. This is interpreted as a Monte Carlo simulation
of the future possible states of Y (i)

t . Using this Monte Carlo generated sample set
{∆Y

(i)
t }

m=1,2,...,Nmc

which is matrix with dimension (Nmc ×Nh) denoted as Yt.

One can find the unconditional probability that horse X(i)
t is in the pole position

by finding the frequency in which the elements of i in {Yt}(m,i) are the maximum
value for each m. Mathematically, one defines an indicator matrix which is size
(Nmc ×Nh) and is denoted as Lt. The elements of {Lt}(m,i) that are set to 1

correspond to the elements of {Yt}(m,i) that are the maximum value out of the
values in the i dimension and the other elements are set to 0. The unconditional
probability of horse i at time t being in the pole position is

P
(i)
t =

∑Nmc
m=1 {Lt}(m,i)

Nmc

(3.5)

where the numerator is the sum of ones and zeros. An example run of this toy
model is shown in Fig. 3.2, where the parameters are set as following Nh = 10,
Nmc = 1 × 104, dt → ∆t = 1 × 10−2, σ(i) = 0.33 ∀i and µ(i) ∼ U (0,1) sampled for
each i once at t = 0.

The top plot in Fig. 3.2 is the calculation of Eq. (3.5). One can observe the
cointegrating (historically correlated) behaviour as seen in a real in-play market,
but because of the way the probability is calculated using Eq. (3.5) there is no
over-round. One also observes that the probability of the horse i being in pole
position when t→ 1 converges to one for the leading horse and zero for the trailing
horses.

As a side note it is worth mentioning that one can find an analytical version
of Eq. (3.5), that is when the Monte Carlo number Nmc → ∞. Consider a race
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Figure 3.2: Bottom plot is one realisation of X(i)
t which is the numerical inte-

gration of the itô process defined in Eq. (3.3). The top plot is the numerical
estimation of the unconditional probability that horse i will be in the pole posi-
tion as defined in Eq. (3.5). The run of this toy model, explained in Sec. 3.2, has
the following parameters Nmc = 1× 104, Nh = 10, dt→∆t = 1× 10−2, σ(i) = 0.33 ∀i
and µ(i) ∼ U (0,1) sampled for each i.

with two horses, as for Eq. (3.4), the performance two density function are

∆Y
(1)
t ∼ N (µ(1)t + x(1)

t , (σ(1)t′)2)

∆Y
(2)
t ∼ N (µ(2)t + x(2)

t , (σ(2)t′)2) (3.6)

where all variables are same as before. The pdf of Y = max{∆Y
(1)
t ,∆Y

(2)
t },

denoted as f(y), is found to be f(x) = f1(−y)+f2(−y) (see [63]) defining the two
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pdfs are

f1(y) =
1

σ1

φ
⎛
⎜
⎝

y + (µ(1)t + x(1)
t )

σ(1)t′

⎞
⎟
⎠

Φ
⎛
⎜
⎝
−
y + (µ(2)t + x(2)

t )
σ(2)t′

⎞
⎟
⎠

f2(y) =
1

σ2

φ
⎛
⎜
⎝

y + (µ(2)t + x(2)
t )

σ(2)t′

⎞
⎟
⎠

Φ
⎛
⎜
⎝
−
y + (µ(1)t + x(1)

t )
σ(1)t′

⎞
⎟
⎠

;

(3.7)

where the pdf and cdf of the standard normal are denoted respectively as φ(.)
and Φ(.). The probability measure of Eq. (3.5) is analytically calculated for P (2)

t

(odds of horse two taking the pole) as

P [∆Y (1)
t < ∆Y

(2)
t ] = ∫

∞

y2=−∞
∫

y2

y1=−∞
N (y1 ∣M (1)

t , V
(1)
t )N (y2 ∣M (2)

t , V
(2)
t )dy1dy2

(3.8)
where we have defined the mean and variance respectively as M (i)

t = µ(i)t + x(i)
t

and V (i)
t = (σ(i)t′)2 for i = 1,2.

For a race that consists of more than 2 horses it is little more tricky to analyt-
ically calculate Eq. (3.5) but it can be done. The important step is to keep track
of the current leading horse by defining the pole position as j = arg maxi (x

(i)
t )∗

– such that µ(i)t+ x(i)
t < µ(j)t + x(j)

t ∀i. Once the pole position is defined one can
calculate Eq. (3.8) for each i relative to j.

3.3 Pairs Trading

This section explores the statistical arbitrage trading algorithm known as pairs
trading. The pairs trading model is explained from a financial market perspective
before it is implemented on the real horse racing data that was discussed in Sec.
2.2.

∗The arguments of the maxima (abbreviated arg max or arg max) are the points of the
domain of some function at which the function values are maximised.
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3.3.1 Linear Pricing Models

In order to proceed with the construction of a pairs trading algorithm, one must
define the fundamental variables. Let pi denote the price (today, at time t = 0)
of asset i and Xi its future payoff (at time t = 1). The (gross) return on asset i
is defined as the ratio between the future payoff and the price now

Ri =
Xi

pi
. (3.9)

The rate-of-return on asset i is defined as

ri = Ri − 1 = Xi − pi
pi

(3.10)

and is used as a regressor to identify pairs. The security market line (SML) is
the graph given by the linear mapping defined by the capital asset pricing model
(CAPM) [64]. The CAPM is defined as the following: for a given asset’s (or
portfolio) return one can define a linear relationship such that the ith asset return
is

ri = βi(rm − rf) + rf (3.11)

where ri is the expected rate-of-return for the ith asset, βi is the beta which is
a linear measure of the systematic market risk of investment in asset i and rf is
the risk-free rate. The variable rm is the market rate-of-return defined by

rm = Rm − 1 (3.12)

where the subscript m denotes a market or index such as the S&P500 or Euro
Stoxx 50. The market beta for ri = rm is defined to be βm = 1. Assuming a
linear correlation between the rate-of-return of the market rm and the ith asset’s
rate-of-return, one can find that the betas are related as follows

βi =
C[ri, rm]
V[rm] (3.13)
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where C[., .] and V[.] are the covariance and variance calculated respectively as

C[ri, rm] = E [(ri −E [ri]) (rm −E [rm])] and

V[rm] = C[rm, rm].
(3.14)

βi is high when market variance is small and rm is strongly correlated with the
ith asset’s rate-of-return, and βi is small when market variance is high and rm is
weakly correlated with the ith asset’s rate-of-return.

3.3.2 Market Risk-Neutral

Market beta’s are a first order linear approximation of the systematic risk in the
investment of an asset from a particular market. If a situation arises by which
one has a market beta such that βi ≈ 0, then this is an indication to the first order
that there is no systemic risk and ri is uncorrelated with the market rm. Such a
situation is known as being Market Risk-Neutral and is an objective of an active
money manager.

Consider a market participant who has invested in a portfolio consisting of
two assets categorised as security 1 and 2. Applying CAPM to each asset suggests
that the rates of return are given by

r1 = β1(rm − rf) + rf
r2 = β2(rm − rf) + rf

(3.15)

where the variables are the same as defined in Eq. (3.11). Here one is not giving
any indication of how the securities are selected which in practice is important,
and more on this is given in Sec. 3.4. One constructs a portfolio with the two
assets with the weights π1 and π2 (the fraction of the total wealth invested)
such that one has the following normalisation π1 + π2 = 1. If the total amount
of capital to invest in this portfolio is denoted as W0 (initial wealth), then the
wealth invested in each security is W1 = π1W0 and W2 = π2W0. Given that the
total return on such a portfolio is the sum of the fractions invested into each of
the assets and then multiplied by their individual returns one can find the beta
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for this portfolio by applying CAPM, giving

r12 = β12(rm − rf) + rf (3.16)

where the portfolio rate-of-return is r12 = π1r1+π2r2 and beta is β12 = π1β1+π2β2.
As before the market neutral strategy is the strategy that yields β12 = 0. To
achieve market neutrality, the investor can use particular configurations of the
portfolio weights π1 and π2, such that π1β1 + π2β2 = 0. Having such a market
neutral portfolio, where β12 = 0, implies that

⎛
⎝
β1 β2

1 1

⎞
⎠
⎛
⎝
π1

π2

⎞
⎠
=
⎛
⎝

0

1

⎞
⎠

(3.17)

which has the solution for β1 ≠ β2

π1 = −
β2

β1 − β2

and π2 =
β1

β1 − β2

. (3.18)

Using these two solutions for the relative weights of the investments in the secu-
rities 1 and 2, one can calculate the amounts of each security to hold in order to
be market neutral. The total number of units to invest in each asset 1 and 2 to
be market neutral which is thus

Ni =
Wi

pi
= πiW0

pi
for i = 1,2 (3.19)

where pi is the current price of asset i and πi are the weights found in Eq. (3.18).
Knowing this result, Eq. (3.19), one has a first order proxy for a market-neutral
pairs strategy and if the investor is willing to hold this number of assets they can
maintain a first order risk neutral portfolio.

3.3.3 Mean Reversion

Mean reversion is the natural phenomena by which a particular stochastic process
will move back (revert) to its mean value. Mean reversion is property that can
be exploited to construct a profitable trading strategy. As an example of such a
trading strategy, consider a security which has a price that is historically far from
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the mean price; if this price is known to be a mean reverting process, then the
price should return to this mean price. Depending on whether the process is above
the mean or below it, a strategy by which one goes short or long in the security,
respectively, will statistically make a profit (after exiting the strategy when the
reversion is complete). Such a strategy falls into the categories of statistical
arbitrage and convergence strategies and these properties are the theoretical basis
in the pairs trading strategy construction. To find a mean reversion process, one
must consider a set of statistical tests that look to classify if the process in question
is mean reverting. The tests usually have a similar goal, which is to compare the
statistical differences of a measured process to that of a random walk process. A
discrete random walk is mathematically defined as the following process:

Xt =Xt−1 + εt, (3.20)

with the initial condition X0 = 0. Xt has independent increments, such incre-
ments are Gaussian and are denoted as εt ∼ N(0, σ2). The εt term is also known
as an idiosyncratic noise, which is a random fluctuation that is endemic to a
particular asset’s price, for example a stock’s price. Such random walks, Xt,
are martingales and have zero memory. Consider the sequence X1,X2,X3, . . .

then for any time τ : the sequence satisfies the following: E [∣Xτ ∣] < ∞ and
E [Xτ+1 ∣X1,X2,X3, . . .Xτ ] =Xτ [17,18,65–72]. The martingale property has the
interpretation that the next observed valueXτ+1 of the sequenceX1,X2,X3, . . .Xτ

has the conditional expectation of the previous value Xτ , which is equivalent to
E[Xτ+1−Xτ ∣X1,X2,X3, . . .Xτ ] = E[εt ∣X1,X2,X3, . . .Xτ ] = 0. A random walk is
the complete opposite to a mean reverting process, as the latter types of process
differ by the fact that the mean change in value of the time series is proportional
to the current value. The simplest mean reverting process in continuous time is
the Ornstein-Uhlenbeck process [73] which is defined as

dXt = θ (µ −Xt)dt + σdWt (3.21)

where θ is the rate of reversion to the mean, µ is the mean value of the process,
σ is the volatility of the process and Wt is a Brownian motion or Wiener process
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[17, 18,65–72]. Integrating Eq. (3.21) we obtain the Itô integral

Xt =X0e
−θt + µ (1 − e−θt) + σ∫

t

0
e−θ(t−s)dWs (3.22)

and setting µ = 0 one finds

E [Xτ ∣ {Xt, t ≤ s}] =Xse
−θτ ∀s ≤ τ (3.23)

which proves that the Ornstein-Uhlenbeck process, Eq. (3.21), is not a martin-
gale. Note, it is clear that the Ornstein-Uhlenbeck process is not a martingale
but it is a Markov process. Therefore, the goal is to find mean reverting price
processes to create a statistical arbitrage. Hence, one must use statistical tests
for example the Augmented Dickey-Fuller test [74] and in addition a stationarity
test, such as a KPSS test [75].

3.3.4 Hurst Exponent

A strictly stationary∗ signal is when the joint probability distribution of the values
generated by the process {Xt ∣ t ≥ 0} are invariant under a transformation in
time. One would like to test this in order to see if statistical arbitrage strategies
can be deployed. A famous test for this is the measure known as the Hurst
exponent. This measure explores the repetition of patterns within a signal. Put
another way it verifies statistically the memory of a signal. The measure was
first described by the hydrologist H.E. Hurst [76] using water level signals for
the Nile River. The Hurst Exponent helps us to classify statistically if a signal
falls into the categories of random walk, mean-reverting or trending signals. A
stochastic process {Xt ∣ t ≥ 0} is called uni-scaling if it has stationary increments
and satisfies

Xct ∼ cHXt (3.24)

where c is a positive constant and H is the Hurst exponent. If the stochastic
process {St ∣ t ≥ 0} is a random walk, the variance of changes in the natural

∗In the future Sec. 5.1.2 we discuss the properties of stationary signals in more detail.
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logorithm of this process is calculated as

⟨(ln(St+h) − ln(St))2⟩ ∼ h (3.25)

where h is a lag, ⟨.⟩ is the average over all time points and exponent of h is unity.
The common way the Hurst is defined is by modifying Eq. (3.25), such that

⟨(ln(St+h) − ln(St))2⟩ ∼ h2H (3.26)

and for a random walk one finds H = 0.5. Eq. (3.26) quantifies the type of auto-
correlation found in signals where such correlations could be classified as long
range, short range and uncorrelated. The range of the auto-correlation found
can be thought as the memory of past values exhibited by the signal. The fun-
damental idea is to use Eq. (3.26) to estimate H for a signal and compare this
with the Hurst exponent of known signals. The Hurst exponents’ values can be
summarised as: H = 0.5 the series ln(St) is a Brownian motion, 0.5 <H < 1.0 the
series ln(St) is trending (long-memory) and 0 < H < 0.5 is mean-reverting (anti-
persistent). The closer the estimation of the Hurst exponent is to the bounds of
[0,1] the more the signal ln(St) exhibits the behaviour of long-memory (H = 1)
and anti-persistence (H = 0). The Hurst exponent can also be negative and this
a phenomena known as monoscale [77–79], an effect where signals evolving on
small time scales show larger fluctuations than on larger time scales.

Using the last price matched signals discussed in Sec. 2.2, we calculate the
Hurst exponent for the entire set of competing horses in all races. Estimat-
ing H, one will be able to see the different of types signal auto-correlation be-
haviour in the in-play horse racing markets. The Fig. (3.3) applies Eq. (3.26)
to the last price matched data, where St = LPMt and there are 113999 sig-
nals. Fig. (3.3) shows that the Hurst exponent is distributed within the domain
−0.2250 ≤ H ≤ 0.4480, suggesting that the signals are mean-reverting and anti-
persistent. The left tail of the distribution in Fig. (3.3) becomes negative and this
indicates monoscaling in some of the signals. This result indicates that the last
price matched signals found within in-play markets are not martingales and thus
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are not in accordance with the principle of EMH Sec. 3.1. One can also perform
a Variance Ratio test [80], which is a standardised test to estimate if a signal is a
martingale (a random walk): this test finds that 99.29% of the last price matched
signals are not martingales and hence one can further conclude that prices in the
in-play horse racing market are not efficient. Therefore, because of this ineffi-
ciency one could deploy statistical arbitrage and market making strategies, such
as pairs trading, to make a profit.

Figure 3.3: The distribution of the Hurst exponent measured on all the ln (LPMt)
which consists of 113999 race signals. The moments of the distribution are found
to be: mean ⟨H⟩ = 0.0316, standard deviation σ = 0.0511, skewness Skew [H] =
0.1622, excess kurtosis Kurt [H] − 3 = 0.5799.

3.3.5 Cointegration

This statistical property is at the core of what pairs trading and statistical arbi-
trage is trying to exploit. When time series are described as being cointegrating
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pairs, they are exhibiting the property of strong correlation (or anti-correlation);
that is on average they move together. To define this in a mathematical context,
consider the two time series Yt and Xt that have stationary covariance under the
differencing ∆Yt = (1 −L)1Yt = Yt − Yt−1 and ∆Xt = (1 −L)1Xt = Xt −Xt−1 where
one has introduced the lag operator ∆dXt = (1 −L)dXt such that

LdXt =Xt−d . (3.27)

Consider the increment processes ∆Yt and ∆Xt, both of which are stationary.
The number of times the difference operator is applied for both processes is d = 1,
and since both are stationary for d = 1, they are referred to as having the order of
integration 1, which is denoted as I(1) [81]. If the linear combination of Yt and
Xt is found such that the residue process is defined as

εt = Yt − βXt − α (3.28)

where α is the interception, β ≠ 0 is a constant parameter to be estimated from
observed values of Yt and Xt. If one finds that the residue process εt is station-
ary for β ≠ 0 then there exists a linear correlation between Yt and Xt, denoted
as εt ∼ I(0). The implication of Eq. (3.28) and the stationary property of the
residues, εt ∼ I(0), is Yt and Xt are a cointegrating pair because they are corre-
lated. Finding that the residues are not stationary for an order of integration not
equal to one is an indication that Yt and Xt are not a cointegrating pair. The
intuition of cointegrating is that in the long-run (t → ∞) the terms in the rela-
tionship Yt − βXt − α = εt will converge to its mean value, such a value is defined
as following the time average ⟨εt⟩ = µ. Hence, if µ = 0 then in the long-run we
have Yt = βXt + α and this true even if the residues εt are autocorrelated.

Cointegration can be used as a means to construct a portfolio that consists of
asset prices that by themselves are not mean-reverting but when combined create
a portfolio with a value that is mean-reverting. The classic pairs trading strategy
is one in which a trader takes a simultaneous long and short position in a financial
asset whose prices are cointegrating, in the hope to construct a mean-reverting
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strategy. Hence to summarise, if one has invested into two equities with prices
P

(1)
t and P (2)

t forming a linear combination such that P (1)
t − βP (2)

t = εt (ignoring
α) and finds that εt ∼ I(0), then a pair strategy is achievable. The investor in
a pairing strategy can also position themselves to be market risk-neutral, Eq.
(3.19), ensuring a hedge against linear adverse market movements.

3.4 Pairs Selection in Horse Odds

This section now takes the pairs trading method discussed in Sec. 3.3 and applies
it to the in-play horse racing price signals. The algorithm works in the a similar
to a historic bookies strategy be which when they match a large risky bets they
migrate this risk by making the opposite bet with another bookie (hedging). The
signals which are used to detect the pairs are the odds P (i)

t , as defined in Eq.
(2.1), and this is assumed to be the Last Price Matched (LPM (i)

t ) field found
in Table 2.1. One could also use the mid-price to detect the pairs, but we have
used the last price matched, in decimal odds form, as a first attempt due to this
data field is less sparse than the mid-price. A non-overlapping rolling window
of size M , which moves left to right down the LPM (i)

t signal, is used to analyse
statistical behaviour that indicates a pair, see Sec. 3.3. The size of the window
M is calculated as being the floored value (rounded down to the lowest integer
value) which is 10% of the total number of time points. The log-price or log of the
decimal odds is defined as P (i)

t = ln (LPM (i)
t ) where i ∈ {1,2, . . . ,Nh} is the index

of the Nh competing horses and t ∈ {1,2, . . . ,M} is the time within each rolling
window. The odds P (i)

t are standardised using the following transformation

P
′(i)
t =

P
(i)
t − ⟨P (i)

t ⟩
σ(i)

, (3.29)

where the sample average is denoted as ⟨.⟩ and σ(i) is the standard deviation of
each of the price processes which are calculated with Eq. (5.2) and Eq. (5.7)
respectively. Eq. (3.29) is the z-score transformation and is a statistical measure
on a sample set; it gives the relationship between an individual data point (in
the sample set) relative to that of the population mean and standard deviation.
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The z-score ensures that the prices can be statistically compared and the fluctu-
ations observed are standardised relative to their population’s statistics, which is
important in the identification of pairs.

To select pairs, we create the following matrix which is the sum of square
distances (spreads) within a window

Θij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑Mt=1 (P
′(i)
t − P

′(j)
t )

2
, if i ≠ j

0, if i = j.
(3.30)

The additional index j ∈ {1,2, . . . ,Nh} is introduced as we are comparing price
signals. The matrix Θij is a means of estimating the relative fluctuation between
each of the odds signals as the race is under way. Hence, a pair would be the
relative fluctuations that fluctuate the least. Such an indicator is defined as
the vector p ∈ {1,2, . . . ,Nh}Nh and dim (p) = (1 ×Nh) each element of which is
found by the index that gives minimum relative fluctuations. One defines this
mathematically in terms of Θij as

{p}j = arg min
i

{Θij}; such that i ≠ j (3.31)

where arg mini returns the index value of i = 1,2, . . . ,Nh that corresponds to the
j that is the minimum value of Θij. The intuition here is that one is looking for
the price movement j with the least relative divergence with respect to another
price which we denote as i∗, hence the price signal would be P (i∗)

t . The elements
of p = (i∗1, i∗2, . . . , i∗Nh

) are the first indication that a pair of prices are statisti-
cally cointegrating. Using the elements of p one finds the distance between the
normalised prices and the prices at the end of the window, denoted as the set

{P ′(i∗1)

M , P
′(i∗2)

M , . . . , P
′(i∗Nh

)

M }. So if the solution of Eq. (3.31) is denoted the follow-

ing vector p = (i∗1, i∗2, . . . , i∗Nh
) one can find the following vector which is the end

of window distances
dj = P ′(j)

M − P ′(i∗j )

M (3.32)

for j = 1,2, . . . ,Nh. This vector of distances is also know as the spread between
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the prices at the end of the rolling window at time step M . The Eq. (3.32) and
the value of dj is compared to a control parameter which filters the size of the
pairs’ spreads to be considered for the pair trade. This ensures that the strategy
does not trade a pair unless the spread is greater than a particular level, which is
denoted as φ. Filtering the spreads of the potential pairs p such that dj > φ one
would like to hold a portfolio that is cost neutral with the hedging ratio, as seen
in Sec. 3.3.2.

Figure 3.4: The empirical probability of a trade occurring within the time win-
dows indicated on the abscissa. One observes that the implied probability of a
pair trade is close to a uniform distribution.

Consider the example where the horse prices (1,2) are considered to be a pair
such that d1 > φ; one can now define the set of prices within the window for (1,2)
as xt = {P (1)

1 , P
(1)
2 , . . . , P

(1)
M } and yt = {P (2)

1 , P
(2)
2 , . . . , P

(2)
M } and fit the following

linear model
yt = βxt + εt (3.33)

where εt are the residuals. The model in Eq. (3.33) is fitted using the ordinary-
least-square (OLS) solution which is β = (∑Mt=1 x

2
t )

−1 (∑Mt=1 xtyt). The estimation
of β is known as the hedging ratio and this gives the relative holding xt to ensure
the strategy is cost neutral. One also uses the hedging ratio β to determine the
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spread (residuals) between the two signals xt and yt

εt = yt − βxt (3.34)

and this determines how much to back or lay on the corresponding pair. Using
the final residual εM one can determine which signals of the pair (1,2) to back
and lay. Defining the parameter γ and the interval (−γ, γ), if the final residual
εM is outside this interval:

1. To the negative left one backs yt with £1 and hedges by laying £β on xt.

2. To the positive right one lays yt with £1 and hedges by backing £β on xt.

One must also check if an open position is on either of the pairs as it should be
closed before entering a new one, so as to avoid being over exposed to a particu-
lar price signal. We also allow for a 5 time step slippage as there can be a delay
when trying to get matched on an order in the Betfair horse racing markets. This
process is then repeated to the end of the signal where the positions are recorded
and assumed to be matched on £1 wagers and the gains are calculated as Eq.
(2.11).

The top plot in Fig. 3.5 shows the accumulated average rate-of-return for
the pairs trading strategy. To ensure that there is no bias in picking the races
from the 12736 contained in the data set we pick at random 20 races, the pairs
strategy is deployed, the rate-of-return is calculated and we repeat this process
1000 times. This average rate-of-return is calculated from the 1000 runs over the
20 races randomly chosen. The top plot in Fig. 3.5 shows that the average rate-
of-return positively accumulates and increases ≈ 0.19177 (gradient of the blue line
m = ∆y/∆x) on average for each race the strategy is deployed on. This result
from Fig. 3.5 seems too high (or too good to be true) as by the last race the
rate-of-return reaches ≈ 375%, this number must be treated with great scepticism.
Possible reasons why the rate-of-return increases at such great rate is down to
the assumptions of the model: such as when a pair is found the back and lay
positions are assumed to be easily matched and it is also assumed that the orders
made have no price impact. To measure the strategies reward-to-variability we

65



use the industry standard statistical measure known as the Sharpe ratio [82]. The
Sharpe ratio is a measure of signals information to noise, and gives an indication
of how much one can gain for a given risk. The bottom plot in Fig. 3.5 are the
average Sharpe ratio which is calculated as

Sr = ⟨Rr

σr
⟩ (3.35)

where the index r = 1,2, . . .20 labels the randomly pick race, Rr is the rate-
of-return sampled 1000 times for each r then averaged and σr is the standard
deviation calculated for the 1000 samples. One observes that the average race
achieves a Sharpe ratio of ⟨Sr⟩ = 0.3062±0.0015 and each Sr calculated in bottom
plot of Fig. 3.5 is positive indicating on average that the rate-of-return in positive.
The Fig. 3.4 shows the frequency of pair trades deployed in each window, one
can see that this is close to a uniform distribution.
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Figure 3.5: Top Plot: The sample average accumulated rate-of-return over 20
randomly picked races sampled 1000 times and averaged over the 1000 samples.
Bottom Plot: The sample average Sharpe ratio as calculated in Eq. (3.35) has
an average value ⟨Sr⟩ = 0.3062 ± 0.0015 and is never negative.
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3.5 Summary and Discussion

A novel toy model was described in Sec. 3.2 which assumes the competing horses
have a relative position in the race that evolves as a set of Itô processes. These Itô
processes are used to calculate the probability numerically with a Monte Carlo
strapped on top of each Itô process. One sees from Fig. 3.2 that the odds exhibit
a cointegrating behaviour between competing horses. An issue with this model is
the static over-round which is always one and it would be interesting to explore
the possibility of creating a similar model with a fluctuating over-round as seen
in the real data.

In Sec. 3.3 we gave a review of the modern statistical arbitrage trading strat-
egy known as pairs. This trading strategy in Sec. 3.4 is reverse engineered for
in-play horse racing data. The algorithm is applied to randomly selected data,
and the average rate-of-return is recorded along with the average Sharpe-ratio,
Fig. 3.5. These results should be treated with a high degree of scepticism as the
last rate-of-return ≈ 370% is suspiciously high and unlikely to be to achieved in
reality. The two main reasons why this is so high is down to the assumptions
of the model, the first being that backs and lays are always matched and at the
front of the queue and the second that the there is no price impact when trading.
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Chapter 4

Information Based Finance and
Trading

This chapter looks to review the literature which came about from the develop-
ment of the information-based asset pricing framework. It was first introduced
in the following articles [83–85], and will be referred to as the Brody-Hughston-
Macrina (BHM) approach. The BHM approach is used as the basis for construct-
ing our own model. Other developments in the area of BHM pricing model have
been studied in the following set of literature [86–110]. The BHM methodology
initially came about from a split in ideology within the field of credit risk. At
the time that the BHM approach was developed, the two popular theories that
dominated the credit risk literature were, and still are, structural and reduced-
form. Both the structural and reduced-form models are used in the pricing of
credit risk products, such as credit derivative swaps (CDS). The two frameworks
are discussed and compared in [111] and a more detailed textbook in the field
is [112]. To summarise these two approaches, one needs to make assumptions
regarding what information is available to the market agents that are pricing
credit products; structural models assume that market agents have a complete
set of information of a firms’ financial/credit state and the reduced-form models
assume an incomplete set of information.
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The structural model was first introduced in [113], known as the Merton
model, and the first successfully implementation of a structural model was by
Kealhofer, McQuown and Vasicek (KMV) in [114]. The basic idea behind struc-
tural models is they treat credit events as a class of first passage time processes,
which are adapted to some predefined stochastic process (filtration). Such pro-
cesses are calibrated using a company’s balance sheet (debt/equity), and defaults
are then simulated by observing the frequency with which the calibrated process
hits a barrier. Two advantages of structural models: the default event is directly
linked to the firm’s value and hence its insolvency and the definition of the default
time is intuitive. Some drawbacks are the strong assumption that the total value
of a firm is a stochastic process that is continuously observable in time and an
observed fact from practitioners is that such models underestimate credit spreads
for corporate bonds close to maturity [115].

The reduced-form models require fewer assumptions making them more prac-
tical than structural models. This approach models the default time as a positive
random variable which has a distribution depending on the current state of the
economic ecosystem. The reduce-form model was first introduced in [116] and
again in [117] with the Jarrow-Turnbull model (for zero-coupon bonds) and popu-
larised in [118] with the Hull and White model (for benchmark bonds). The Hull
and White model is one of the most frequently used by practitioners for credit risk
pricing. Some advantages of the reduced-form approach are the computational
efficiency and pragmatic nature of the model. A drawback of this design is that
there are no means of addressing a credit instrument’s relationship between the
probability of default and its cash-flows.

At the time when the BHM framework was being developed, there was a
movement to create a hybrid of the two approaches. This hybrid model would
ideally unite the tractability of the reduced-form and the financial events that
lead to defaults found in structural models [119,120].

In the development of the BHM approach, however, there was no similar
endeavour taken, and the model falls into the category of reduce-form models.
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What makes the BHM model different was a naturally intuitive and economic
narrative of explaining an asset’s price through its cash-flows.

4.1 Brody-Hughston-Macrina (BHM) Approach

The BHM framework fell in the category of reduced-form modelling and was first
applied to the credit instrument known as a credit derivative. This is a type of
derivative derives its price from an underlying credit instrument, for example, a
bond with a fixed deterministic interest rate. A bond is a financial instrument that
is purchased with a face value is given a maturity. Such bonds may also provide
periodic payments known as coupons and all such payments to the holder have an
additional amount known as the interest rate payment. All cash-flows, payment
times, maturity and interest rate, are agreed at the time that the bond is issued.
Over the lifespan of the bond one can partition the instrument into a series of
cash flows (from the buyer’s perspective); the initial purchase payment (outflow),
the coupon payments received periodically up to maturity and at the maturity
(inflow) the final recuperation of the face value (inflow). A product of this form
is also referred to as a debt-obligation and are considered to be: default-free if all
cash flows are received and in default if any of the cash flows are not received.
If one assumes that there is a risk associated with the due cash-flows, then such
an event can be modelled as a random variable measured at predetermined times.

The first assumption of the BHM model is that the bond’s history (or rep-
utation) is considered to reveal partial information of the cash flow prior to its
payment.∗ The second assumption is that the partial information is received tem-
porally and is enshrouded with noise. The true informational content of the cash
flow payment is not known: it could be considered to be a binary random vari-
able (payment/non-payment), and this is independently hidden by noise, which is
initially assumed to be Gaussian in the BHM model. Before going into the mathe-
matical formalism of this model, one can visualise the second assumption through
the following narrative. Consider a television which is currently displaying white

∗In financial terms this is not too far from the truth as this is the reason bonds are rated
by companies such as Moody’s and Standard and Poor’s.
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noise: the viewer at this time can not interpret or perceive any information from
this medium as the noise is completely hiding it. Now if the intensity of this ob-
scuring noise is reduced the viewer may be able to interpret that behind the noise
is some structure or pattern. The strength is reduced further, and the viewer
will see more pattern, for example, the true information could be the results of
a group of football matches but since there is still noise they might not be able
to make out all the scores or even all the teams playing each other. Reducing
the noise completely means the viewer can see all the results are revealed, and
therefore all right information is affirmed.

4.1.1 BHM Formalism

Here we outline the mathematics of the BHM model as it was first introduced
in [83–85]. Consider a system consisting of a single random future cash flow XT ,
such that

XT =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1 payment

x0 partial/non-payment
(4.1)

where the subscript T denotes the time that the cash-flow is received (or not
received). The time domain is defined in the range 0 ≤ t ≤ T < ∞ and XT is
FT -measurable∗. The values XT ∈ {x0, x1} are categorical variables and can be
thought to be equivalent to the binary set {0,1} (or any two member set). This
system is modelled by the probability triplet (Ω,F ,Q) where Ω is the sample
space, F is the σ-field and Q the risk-neutral probability measure [17, 18, 65–72].
Defining the probability triplet is not enough if one wishes to model the flow of
partial information regarding the true value of XT at times 0 < t < T . To model
this, partial information regarding the future cash flow at times before T , namely
the process {Ft}0≤t<T<∞ is defined and is known in the literature as the market
filtration or natural filtration. A natural filtration is the σ-field generated by the
historical dynamics of a process at each time; consider the process {St}0≤t<T then
the natural filtration is

Ft = FSt ≜ σ ({Su ∣ 0 ≤ u ≤ t}) , ∀t ∈ [0, T ] . (4.2)
∗XT is not Ft-measurable hence the value of XT is unknown till it is observed at time T .
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In the standard setup, one would assume all price processes to be adapted to a
pre-specified market filtration, for example the Black-Scholes-Merton model as-
sumes all price processes denoted as {St}0≤t<T<∞ are all adapted to the σ-field
generated by a geometric Brownian motion.† The important difference in the
BHM approach, as compared to the standard pricing setup, is that one is seeking
to find the explicit means to model the flow of information by giving more struc-
ture to the market filtration {Ft}.

Assuming that the system is arbitrage free implies the existence of physi-
cal probability measure P that is equivalent to the risk-neutral measure P ∼ Q.
Therefore, this assumption allows the use of the fundamental theorem of asset
pricing [17, 18, 65–72] which ensures that a pricing kernel exists. The pricing
kernel is thus

St =DtTEQ [XT ∣ Ft] (4.3)

where DtT is the discounted default-free bond value which is calculated as

DtT = e−∫ T
t r(u)du (4.4)

where the deterministic spot rate is denoted as r(t). DtT is a function which
is bound in the half closed interval DtT ∈ (0,1] and is monotonically decreasing
to zero as limT→∞DtT → 0 and has the time derivative dDtT

dt ≤ 0 almost everywhere.

At the terminal time t = T the random variable XT will be revealed with
the probabilities Q [XT = x0] = p0 and Q [XT = x1] = p1 such that: p0, p1 ∈ (0,1),
p0+p1 = 1 and x0 < x1. Given the pricing kernel Eq. (4.3) the initial price at t = 0

is found to be
S0 =D0TEQ [XT ∣ F0] =D0TEQ [XT ] , (4.5)

which results in the initial price S0 =D0T (p0x0 + p1x1). The a priori probabilities
p0 and p1 can be solved in terms of the future cash flows x0, x1, S0 andD0T [83–85],
and thus can be statistically calibrated to real market data.

†Mathematically such a filtration would be donated as the following process {Ft} = σ ({St})

where 0 ≤ t < T < ∞ and σ(.) is the sigma algebra generator.
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4.1.2 True Information

The cash flow XT is defined as before in Eq. (4.1) and is FT -measurable. The
true information in the system regarding the final value of XT is received in ad-
dition to noise (partial information), before it is finally revealed at t = T . This is
modelled in the same manner as the X-factor analysis described in [83–110].

We define the constant σ (not to be confused with a σ-algebra) as the rate of
information revelation: it represents the intensity in the trueness of information,
that is

• High values of σ corresponds to a cash flow values that are revealed quickly.

• Small values of σ corresponds to a cash flow values that are revealed slowly.

In the BHM model as formalised in [83–110] in the literature it is assumed that
the true information is revealed linearly as σXT t (there does not seem to be any
economic or financial justification for this other than mathematical convenience).
The rate of information is [σ] = [price]−1[time]−1/2 [83,84], which can be seen later
on from Eq. (4.23) to ensure that the exponent is dimensionless when pricing;
therefore it is apparent why one calls this a rate. As a final note this form of the
true information has no explanation stemming from reality and the case maybe
that it is a function such that σ(t) ≠ σt.

4.1.3 Brownian Bridge

Following the original framework set out in the initial BHM model [83–85], one
parameterises the noise component of the information signal using a Brownian
bridge process. The Brownian bridge [17,18,65–72] has the following properties:

Given a standard Brownian bridge process {βtT}0≤t≤T , which exists in the time
interval t ∈ [0, T ], and is independent of the cash-flow under the risk-neutral
measure Q (this independence is denoted as βtT ⊧Q XT ). The standard Brownian
Bridge is distributed as βtT ∼ N (0, t(T − t)/T ) and is defined as

βtT ≜ Bt −
t

T
BT 0 ≤ t ≤ T (4.6)
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with the start and end values set to β0T = βTT = 0. The process {Bt}0≤t≤T is an
{Ft}−adapted standard Brownian motion and BT is a random variable which is
FT−measurable. The standard Brownian bridge process as defined in Eq. (4.6)
can be numerically simulated and sample realisations are shown in Fig. 4.1. The
Brownian bridge process {βtT}0≤t≤T by definition is not an {Ft}-adapted process.
This property has the important interpretation that market participants in the
time domain 0 < t < T cannot distinguish between noise and true information
until a cash flow is paid at t = T .

The expectation of the Brownian bridge, defined in Eq. (4.6), gives E[βtT ] = 0

and the signal’s auto-covariance is trivially found to be

C[βsT , βtT ] = E[βsTβtT ] =
s(T − t)

T
0 ≤ s ≤ t ≤ T. (4.7)

The distribution of the Brownian bridge’s increments is given by

dβtT = dBt −
BT

T
dt (4.8)

where the increments are normally distributed as dBt ∼ N(0,dt) and the random
variable BT is FT -measurable. One can also write Eq. (4.8) equivalently as

dβtT = − βtT
T − tdt + dBt (4.9)

where β0T = 0, which is a well known result that can found in textbooks such
as [121]. Eq. (4.9) has the following integral solution

βtT =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(T − t) ∫
t

0
dBu

T−u 0 ≤ t < T
0 t = T

(4.10)

which is equivalent to Eq. (4.6) and allows one to dynamically create such a
process with a computer.
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Figure 4.1: Five independent standard Brownian bridge processes as defined in
Eq. (4.6) with the time step ∆t = 1 × 10−5 and T = 1.

4.1.4 Information Process

Combining the true information term and Brownian bridge, one derives the in-
formation process of the BHM model. The cash-flow XT is revealed at time T .
This value is inaccessible to any market participants and is not Ft-measurable for
t < T but it is in fact FT -measurable. The filtration Ft is assumed to represent
the time dependent flow of noisy information in regard to the value of XT . The
BHM approach theorises that the following process characterises such a flow of
information

ξt = σXT t + βtT (4.11)

where the noise is generated by the term {βtT}0≤t≤T which is a standard Brownian
bridge process (discussed in Sec. 4.1.3) and the signal representing the flow of
true information is σXT t (discussed in Sec. 4.1.2). The true information term is
linear in time meaning revelation of true information regarding the future cash-
flow XT grows at a linear rate σ which is a positive constant. The process defined
in Eq. (4.11) is referred to in the literature as an information process [83–110].
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An information process is assumed to be accessible to the market at times t < T
and it is implied that {ξt}0≤t<T is {Ft}-adapted. The filtration generated by
the information process is {F ξt } = σ ({ξt}0≤s<t) and this is a sub-σ-algebra of
the natural filtration, Eq. (4.2), which is denoted as {F ξt } ⊆ {Ft}. The crucial
step in BHM approach is to make the assumption that the natural filtration
{Ft} is adapted to σ−algebra generated by the information process {ξt}, that is
{Ft} ≜ {F ξt }. Hence the price process Eq. (4.3) is

St =DtTEQ [XT ∣ F ξt ] (4.12)

and since the information process in Eq. (4.11) is a Markov process one can
rewrite this as

St =DtTEQ [XT ∣ ξt] (4.13)

and this form of the pricing kernel will be discussed in more detail in the pro-
ceeding section, Sec. 4.2.1.

We now discuss the Markov property and why one can rewrite Eq. (4.12) as
Eq. (4.13). Consider the information process defined in Eq. (4.11), if such a
process is Markov then we have

Q [ξt ≤ y ∣ ξu] = Q [ξt ≤ y ∣ F ξu] , ∀y ∈ R (4.14)

where all times u and t are 0 ≤ u ≤ t ≤ T . The Markov property (shown Eq.
(4.14)) is a characteristic of a subset of stochastic processes where the condi-
tional probability distribution only depends on the present state – when the
process is conditioned on both past and present states the process (here denoted
as Q [. ∣ ξu]). To prove Eq. (4.14) consider a sequence of increasing times (but
decreasing index) 0 < un < un−1 < ⋅ ⋅ ⋅ < u2 < u1 < t ≤ T . Using this time sequence
one can define the following sequence of random variables

κi ≜
βuiT
ui

− βui+1T
ui+1

= ξui
ui

− ξui+1
ui+1

(4.15)

where i = 1,2, . . . , n − 1 and the covariance between κi and βtT is zero. This zero
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covariance is shown if one takes the following expectation

EQ [βtTκi] =
ui(T − t)
uiT

− ui+1(T − t)
ui+1T

= 0 ∀i (4.16)

hence κ1, κ2, . . . , κn−1 are independent. Applying the conditional probability in
Eq. (4.14)) to the sequence of Gaussian random variables ξu1 , ξu2 , . . . , ξun gives

Q [ξt ≤ y ∣ ξu1 , ξu2 , . . . , ξun] = Q [ξt ≤ y ∣ ξu1 ,
ξu1
s1
− ξu2

u2
,
ξu2
u2

− ξu3
s3
−, . . . , ξun−1un−1

− ξun
un

]

= Q [ξt ≤ y ∣ ξu1 ,
βu1T
s1

− βu2T
u2

,
βu2T
u2

− βu3T
s3

−, . . . , βun−1Tun−1
− βunT

un
]

= Q [ξt ≤ y ∣ ξu1 , κ1, κ2, . . . , κn−1]
(4.17)

and using the definition of conditional probability on the left hand side

Q [ξt ≤ y ∣ ξu1 , κ1, κ2, . . . , κn−1] =
Q (ξt ≤ y, ξu1 ≤ y0, κ1 ≤ y1, κ2 ≤ y2, . . . , κn−1 ≤ yn−1)

Q (ξu1 ≤ y0, κ1 ≤ y1, κ2 ≤ y2 . . . , κn−1 ≤ yn−1)

= Q (ξt ≤ y, ξu1 ≤ y0)Q (κ1 ≤ y1)Q (κ2 ≤ y2) , . . . ,Q (κn−1 ≤ yn−1)
Q (ξu1 ≤ y0)Q (κ1 ≤ y1)Q (κ2 ≤ y2) , . . . ,Q (κn−1 ≤ yn−1)

= Q (ξt ≤ y ∣ ξu1)
(4.18)

which proves that the information process {ξt}t>0 is a Markov process.

4.2 BHM Pricing Review

This section explores the pricing of a binary bond in the information process
framework which uses Eq. (4.13). A later goal of this chapter is to explore and
construct a model which gives a trading mechanism to agents, which was not fully
investigated in BHM [83–110]. To a achieve this one must first determine the pric-
ing of a binary class of asset (which is discussed in Table 4.2.1) and then find the
dynamics of the associated price process (which is discussed in Sec. 4.2.2). The
dynamics of the price processes are implemented for each of the agents in a syn-
thetic market where their pricing perception change when they trade with each
other; this is allowed to evolve in the time interval t ∈ (0, T ). As the agents’ price
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processes materialise through the time interval, disagreements are brought about
via the agents’ independent Brownian bridge processes. The Brownian bridge
processes can be thought of as the agents’ reaction to noisiness of the partial in-
formation (be it true or false) concerning the price of the future payoff of the asset.

From a financial market’s point-of-view prices are submitted to a clearing
house which is the mechanism by which buyers and sellers exchange financial
instruments for capital. Clearing houses are an important mechanism of aiding
the liquidity of financial markets without revealing the parties that are trading.
It has also been known that a clearing house can also suggest a price if buyers
and seller are within a threshold price of each other. Within the clearing house
system one can place orders for a particular asset. When disagreements between
buying and selling prices of these orders arise one has an order book [122–125].
The difference between the prices of the most competitive buy and sell order is
called the spread. This trading mechanism will be used as a away of developing
the BHM approach by incorporating trading. Trading gives rise to a market price
which evolves in the time interval t ∈ (0, T ) but disagreements in price are driven
by the agents’ asymmetric information and will be investigated in this section.

4.2.1 BHM Pricing of a Simple Bond

Consider an asset which consists of a single cash flow that is revealed at t = T ,
where T ∈ R>0. The receiving of the cash flow can be categorised as a random
variable XT which takes a value in the range [0,1]. To price such an asset in
the time interval t ∈ (0, T ), we use Eq. (4.13), which is the following conditional
expectation

St = EQ[XT ∣ ξt] (4.19)

where Q is the risk-neutral probability distribution and {ξt}t>0 the information
process as described by Eq. (4.11). The price process {St}t≤0 generated by Eq.
(4.19) is a martingale∗. Note the removal, for simplicity, of any contribution

∗A stochastic process {Yt}t≥0 ∈ R is called a martingale with respect to process {Xt}t≥0 ∈ R
that is defined on the filtered probability space (Ω,F ,{Ft}t≥0,Q) where {Ft}t≥0 = σ ({Xt}t≥0)
∀t ≥ 0, when two properties hold: (i) E [∣Yt∣]] < ∞ and (ii) E [Yt ∣ Fs] = Ys ∀s ≤ t.
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of discounted future cash flow by setting the risk-free rate r = 0 and hence the
discount factor is unity DtT = 1 ∀t ∈ [0, T ]. The conditional expectation Eq.
(4.19) is found by the following integral

St = ∫
1

0
xdQ(XT ≤ x ∣ ξt) , (4.20)

but to evaluate this one needs to define the conditional posterior probability
density function in term of Q(.). The posterior conditional probability density
function of the continuous random variable XT for given observation of the infor-
mation ξt = y is defined as the following differential

fXT
(x ∣ ξt = y) ≜

d

dx
Q(XT ≤ x ∣ ξt = y) , (4.21)

With the application of Bayes’ theorem such a conditional probability density
can be written as

fXT
(x ∣ ξt = y)=

fXT
(x)fξt(y ∣XT = x)

∫
1

0 f(z)fξt(y ∣XT = z)dz
, (4.22)

where fXT
(x) is the prior belief of the cash-flow XT and fξt(y ∣ XT = x) is the

likelihood function of observing information y given that the cash-flow is XT = x.
The information process, Eq. (4.11), is distributed as a Gaussian denoted as
ξt ∼ N(σxt, t(T − t)/T ). Substituting into Eq. (4.22), one can expressed the
conditional posterior density of the cash flow as

fXT
(x ∣ ξt = y) =

fXT
(x) exp ( T

T−tσx(y − 1
2σxt))

∫
1

0 fXT
(z) exp ( T

T−tσz(y − 1
2σzt)) dz

. (4.23)

where the information rate parameter is σ ∈ R>0. To streamline the notation for
the probability densities, one can define the prior as fXT

(x) ≜ f(x) and posterior
as fXT

(x ∣ ξt = y) ≜ φt(x), such that

φt(x) =
f(x) exp ( T

T−tσx(y − 1
2σxt))

∫
1

0 f(z) exp ( T
T−tσz(y − 1

2σzt)) dz
. (4.24)
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This conditional probability density φt(x) is central to how one prices in the
BHM framework. The posterior φt(x) is updated when there is an update in
the likelihood function fξt(y ∣ XT = x) as the two are directly proportional
φt(x) ∝ fξt(y ∣ XT = x). In addition, the likelihood function is dependent on
the information process {ξt}, meaning changes in {ξt} update the posterior. Us-
ing φt(x), Eq. (4.19) and Eq. (4.20) the price is then calculated as the following
integration

St = ∫
1

0
xφt(x)dx→ (0,1), (4.25)

where one notices that because the likelihood function is dependent on the infor-
mation process {ξt}, then the price is function of St ≡ S(ξt, t). Formally price is
a function with the following mapping S ∶ R × [0, T ) → (0,1).

4.2.2 Dynamic Analysis of a Simple Bond

This section looks at the derivation of the dynamics of the price process {St}
found in Eq. (4.25), which takes a similar method to [83, 86], but setting the
interest rate r = 0. Since the price can be written as a function of the information
process ξt and the time t, one can derive the underlying dynamics of the price
process dSt. The increment of price dSt is found by differentiating S(ξt, t) with
Itô’s lemma

dSt = (∂S(ξt, t)
∂t

+ 1

2

∂2S(ξt, t)
∂ξ2

t

)dt + ∂S(ξt, t)
∂ξt

dξt , (4.26)

but one first needs to show that the information process is a Lévy process in order
to apply Itô’s lemma. The dynamics of the information process dξt is found by
differentiating Eq. (4.11) and using Eq. (4.9) as the definition of the Brownian
bridge. One finds

dξt = d [σXT t + βtT ]

= σXTdt − βtT
T − tdt + dBt

= 1

T − t (σXTT − ξt)dt + dBt

(4.27)
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which is semimartingale∗, and the quadratic variation of the information process
is shown to be

E[dξ2
t ] = E [((σXT − BT

T
)dt + dBt)

2] = dt. (4.28)

Since it has been shown from Eq. (4.27) that ξt is a semimartingale and Eq.
(4.28) has finite quadratic variation, then {ξt} is a Lévy process and therefore
one can apply Itô’s lemma to S(ξt, t) as in Eq. (4.26). The three partial derivative
terms in Eq. (4.26) are found to be

∂S(ξt, t)
∂t

= ∫
1

0
dxx

∂

∂t
φt(x)

= ∫
1

0
dxxφt(x)

σT

(T − t)2
(xy − 1

2
σx2T − yS(ξt, t) +

1

2
σTEQ [X2

T ∣ ξt = y])

∂S(ξt, t)
∂ξt

= ∫
1

0
dxx

∂

∂y
φt(x)

= ∫
1

0
dxxφt(x)

σT

T − t (x − St)
∂2S(ξt, t)

∂ξ2
t

= ∫
1

0
dxx

∂2

∂y2
φt(x)

= ∫
1

0
dxxφt(x)

σ2T 2

(T − t)2
((x − St)2 − ∫

1

0
dxφt(x) (x −EQ [XT ∣ ξt = y])

2)

(4.29)

which leads to the following dynamic expression for the price increment process

dSt =
σT

T − tVt(
1

T − t(ξt − σTSt)dt + dξt) (4.30)

where the conditional time dependent variance of the cash flow XT is denoted as
Vt. The conditional variance of the cash flow is defined as Vt ≜ V[XT ∣ ξt = y] and

∗A process {Xt}t≥0 ∈ R defined on the filtered probability space (Ω,F ,{Ft}t≥0,Q) is called
a semimartingale if it can be decomposed as Xt = Mt + At where Mt (in Eq. (4.27) term
∫

t
0 dBs) is a local martingale and At (in Eq. (4.27) term ∫

t
0

1
T−s (σXTT − ξs)dt) is a RCLL

(“right continuous with left limits” adapted process of locally bounded variation).
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explicitly calculated as

Vt = ∫
1

0
dxφt(x) (x −EQ [XT ∣ ξt = y])

2

= ∫
1

0
x2φt(x)dx − (∫

1

0
xφt(x)dx)

2

which written in expectation terms is

Vt = EQ [X2
T ∣ ξt] − (EQ[XT ∣ ξt])

2
. (4.31)

The conditional variance can be described as a process {Vt}0≤t≤T such that EQ [∣VT ∣ ] <
∞ and EQ [VT ∣ ξt] ≤ Vt ∀t ≤ T implying that Vt is a supermartingale. The history
of Vt tends to be bound from below (to observe this supermartingale property for
a binary bond see Fig. 4.2 and Fig. 4.3). One can see that Vt is a supermartingale
from Eq. (4.31) because Eq. (4.3) is a martingale using Jensens’ inequality, the
square of a martingale (the term on the right of the minus sign in Eq. (4.31))
is a submartingale and EQ [X2

T ∣ ξt] is martingale implying that Vt is a super-
martingale because the difference between a martingale and submartingale gives
a supermartingale [126]. The conditional variance Vt being a supermartingale in-
dicates that the average uncertainty of the terminal payoff XT tends to decrease
in time (t→ T ).

One can show that Eq. (4.30) can be written as the following dynamic process

dSt =
σT

T − tVtdB̃t (4.32)

where {B̃t}0≤t<T
is a standard Brownian motion and is independent of the stan-

dard Brownian motion {Bt}0≤t<T , which drives the Brownian bridge process Eq.
(4.6) and hence the information process Eq. (4.11).

To prove Eq. (4.32) one must show that

dB̃t = ( 1

T − t(ξt − σTSt)dt + dξt) (4.33)
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and therefore prove that {B̃t}0≤t<T
and {Bt}0≤t<T are both:

(i) Independent Brownian motions

(ii) Martingales

First to prove point (i), consider the increments in Eq. (4.33) such that

B̃s − B̃t = ξs − ξt + ∫
s

t

1

T − u(ξu − σTSu)du
(4.34)

where 0 ≤ t ≤ s < T and the time step s − t is small. The increments in the
Brownian bridge process, defined in Eq. (4.9), can be written as

βsT − βtT = −∫
s

t

βuT
T − udu +Bs −Bt (4.35)

and Eq. (4.34) becomes

B̃s − B̃t = σ(s − t)XT − ∫
s

t

βuT
T − udu +Bs −Bt + ∫

s

t

1

T − u(ξu − σTSu)du. (4.36)

After further substitution and rearrangement of Eq. (4.36) one can show that

B̃s − B̃t = Bs −Bt + ∫
s

t

σT

T − u(XT − Su)du , (4.37)

implying that the increment Bs − Bt is independent of the following σ−algebra
{F ξt } = σ ({ξt}0≤s<t) and that

EQ [B̃s − B̃t∣ F ξt ] = EQ [B̃s − B̃t∣ ξt] = 0 (4.38)

as it can be shown that

EQ [∫
s

t

σT

T − u(XT − Su)du∣ξt] = 0. (4.39)

So to conclude the proof, Eq. (4.38) shows that the two standard Brownian mo-
tion in question are independent, that is B̃t ⊧Q Bt.
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Second to prove (ii): if {B̃t} in Eq. (4.33) is an martingale then

E [B̃τ ∣ F ξt ] = B̃t for 0 ≤ t ≤ τ < T (4.40)

and hence is an {F ξt }-Brownian motion. Integrating Eq. (4.33)

B̃t = ∫
t

0

1

T − u(ξu − σTSu)du + ξt (4.41)

E [B̃τ − B̃t ∣ F ξt ] = E[∫
τ

0

1
T−u(ξu − σTSu)du + ξτ

− ∫
t

0

1
T−u(ξu − σTSu)du + ξt∣F

ξ
t ]

(4.42)

E [B̃τ ∣ F ξt ] = B̃t −E [ξt ∣ F ξt ] +E [ξτ ∣ F ξt ] − σTE [∫
τ

t

1
T−uSudu∣F

ξ
t ]

+E [∫
τ

t

1
T−uξudu∣F

ξ
t ] .

(4.43)

Since the information process {ξt}t≥0 is a Markov process shown in Eq. (4.18),
then the expectation in Eq. (4.43) becomes E [. ∣ F ξt ] = E [. ∣ ξt], so

E [B̃τ ∣ ξt] = B̃t −E [ξt ∣ ξt] +E [ξτ ∣ ξt] − σTE [∫
τ

t

1
T−uE[XT ∣ ξu]du∣ξt]

+E [∫
τ

t

1
T−u (σXTu + βuT )du∣ξt] .

(4.44)

Applying the tower property and integrating out the terms in Eq. (4.44) one
finds

E [B̃τ ∣ ξt] = B̃t −E [σXT t ∣ ξt] −E [βtT ∣ ξt] +E [σXT τ + βτT ∣ ξt]

− σTE[XT ∣ ξt] (− ln(∣τ − T
t − T ∣)) + σE [XT ∣ ξt] (−T ln(∣τ − T

t − T ∣) − τ + t)

+ ∫
τ

t

1
T−uE [βuT ∣ ξt]du ;

(4.45)
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using the tower property again for the term E [βτT ∣ ξt] = E [E [βτT ∣ βtT ] ∣ ξt], one
can cancel terms such that

E [B̃τ ∣ ξt] = B̃t −E[E [βtT ∣ βtT ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

∣ ξt] +E [E [βτT ∣ βtT ] ∣ ξt]

+∫
τ

t

1
T−uE [E [βuT ∣ βtT ] ∣ ξt]du .

(4.46)

The final step is to apply the following relationship E [βτT ∣ ξt] = T−τ
T−t βtT leading

to

E [B̃τ ∣ ξt] = B̃t −
T − τ
T − t βtT +

τ − T
T − t βtT

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

(4.47)

which is the desired result that E [B̃τ ∣ ξt] = B̃t. Therefore we have proved that
the process {B̃t} is a martingale with respect to the information generated by
{ξt} and is an {F ξt }-Brownian motion.

What the BHM model shows from Eq. (4.32) is that the standard Brownian
{B̃t} drives the price process with noise. The noise is thus driven by information
through t

ζtT = σT

T − tVt (4.48)

where the price volatility is a function of time and {ξt}, denoted as ζt ≡ Σ(ξt, t).
Combining Eq. (4.32) and Eq. (4.48) one finds that the price forms the drift free
Itô process

dSt = ζtdB̃t (4.49)

and if {St} is bounded that is EQ [(∫
T

0 ζ2
t dt)

1/2
] < ∞ then it is a martingale with

respect to the risk-neutral measure Q. This Eq. (4.49) is an important break
though because as noted by Brody-Hughston-Macrina in [86]

“In this way our framework resolves the paradoxical point of view
usually adopted in financial modelling in which {Wt} is regarded on
the one hand as “noise”, and yet on the other hand also generates the
market information flow.”
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which means price can now be viewed as an emergent phenomenon that is driven
by the noisiness of the flow of information. Consider the example: if σ is large
then the market more or less knows the price and the noise is small, and compare
that to the situation when σ is small: the price process is driven by pure noise
and the market cannot be sure of the price.

4.2.3 Binary State XT

It is known that if the random variable XT has a discrete outcome with two
values, such as the binary set, the price Eq. (4.25) has a closed form solution.
This section shows that if the final state is defined as XT ∈ {0,1} the price process
can be analytically solved. Setting the sample space of the random variable such
that {ω ∈ Ω ∣ Ω = {Payment,Non-Payment}} which has the following map

XT (ω) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if ω = Payment,

0, if ω = Non-Payment,
(4.50)

and the a priori probabilities

f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p1, if x = x1 = 1,

p0, if x = x0 = 0,
(4.51)

such that p0+p1 = 1 and p0, p1 ∈ (0,1). The conditional pricing density which was
found in Eq. (4.24) can be adjusted for a discrete x or in this case a binary one,
giving

φt({xi}i=0,1) =
pi exp ( T

T−tσxi(ξt − 1
2σxit))

∑1
j=0 pj exp ( T

T−tσxj(ξt − 1
2σxjt))

(4.52)

such that the integral in the numerator has now changed to a sum (∫
1

0 → ∑
1
0).

Denoting the conditional density function as φt({xi}i=0,1) ≜ φit, to stream line the
notation, one finds that Eq. (4.52) becomes

φit =
pi exp ( T

T−tσxi(ξt − 1
2σxit))

(p0 + p1 exp ( T
T−tσ(ξt − 1

2σt)))
, (4.53)
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where φ0t+φ1t = 1. The conditional density function {φit} is a stochastic process,
the dynamics of which drive the dynamics of the price process. Using the result
found in Eq. (4.53) one can differentiate the process {φit} and find

dφit
φit

= σT

T − t (xi − φ1t)(
1

T − t(ξt − σTφ1t)dt + dξt) , (4.54)

where φ1t = St, which is shown below in Eq. (4.57). Combining the result Eq.
(4.54) with Eq. (4.33) the dynamic process of {φit} satisfies the following diffusion
equation

dφit
φit

= σT

T − t (xi − φ1t)dB̃t (4.55)

where {B̃t} is a standard Brownian motion. The price is found by using the
discrete conditional expectation Eq. (4.25)

St =
1

∑
i=0

xiφit = (1 + p0
p1

exp ( − Tσ
T−t(ξt − 1

2σt)))
−1

(4.56)

where p0
p1

is the ratio of the a priori probabilities, that is Q [XT = 0] /Q [XT = 1]
for t = 0. The compact solution Eq. (4.56) shows that the price of the binary XT

is conveniently
St = EQ[XT ∣ξt] = φ1t (4.57)

which is plotted in the top plot of Fig. 4.2. Combining the result Eq. (4.55) with
the price Eq. (4.57) one finds the following dynamic price process

dSt =
1

∑
i=0

xidφit =
σT

T − tVt(
1

T − t(ξt − σTφ1t)dt + dξt) , (4.58)

which is the same result as found in Eq. (4.30), where Vt is the conditional
variance process {Vt} and is defined to be

Vt = (1 − φ1t)φ1t , (4.59)
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Figure 4.2: Five independent price processes as defined in Eq. (4.57) in the upper
plot with corresponding conditional variance as defined in Eq. (4.59) in the lower
plot with the parameters; time step ∆t = 1 × 10−5, T = 1, σ = 1, p1 = 0.4 and
XT = 1.
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which is plotted in the bottom plot of Fig. 4.2, and is quadratic in φ1t with roots
at 0 and 1. Using Eq. (4.33) one can write the dynamic price process as

dSt =
σT

T − t(1 − φ1t)φ1tdB̃t (4.60)

where {B̃t} is standard Brownian motion. The same definition of volatility as in
Eq. (4.48), but for binary states, gives

ζtT ≜ σT

T − t(1 − φ1t)φ1t =
σT

T − tVt, (4.61)

and this leads to a final result

dSt = ζtTdB̃t. (4.62)

which is a diffusion equation similar to that found in Eq. (4.49). The results
outlined in this section are fundamental in the development of our trading model
is Sec. 4.3 and to the calibration of this model to real data in Sec. 4.7.
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4.2.4 Shannon Entropy

To investigate the evolution and dynamics of the uncertainty in the price pro-
cess {St}, one can evaluate the statistical measure known as Shannon entropy
[127, 128]. The Shannon entropy represents a measure of the expected informa-
tional content of a random variable that has been lost, and there is an uncertainty
about the value of the random variable. As uncertainty decreases in the random
variable the Shannon entropy must be decreasing, which makes it similar to a
statistical measure such as variance.

Consider a n+1 discrete cash flow state denoted as XT ∈ {x0, x1, . . . , xn} which
has the same probability density function as defined in Eq. (4.53), but instead
of a binary set we now take i = 0,1, . . . , n states for the process {φit}. The time
dependent Shannon entropy for this process {φit} is

Ht ≜ Eφit [− ln (φit)] = −
n

∑
i=0

φit ln (φit) , (4.63)

thus for the binary system XT ∈ {x0, x1} the Shannon entropy is

Ht = −
1

∑
i=0

φit ln(φit) = −φ0t ln(φ0t) − φ1t ln(φ1t) . (4.64)

where HT = 0; as one is certain of the value of XT at t = T . The Shan-
non entropy Ht has been plotted in Fig. 4.3. The initial value of Shannon
entropy H0T can be found from the fact that φi0 = pi for i = 0,1, therefore
H0T = −(p0 ln(p0) + p1 ln(p1)). Differentiating the time dependent entropy Eq.
(4.64) and setting XT ∈ {0,1}, one finds the dynamic process

dHt = −
σT

T − tφ1t (
σT

2(T − t)(1 − φ1t)dt + (lnφ1t +Ht)dB̃t) (4.65)

which has a drift that is strictly negative which arises from the fact that the
conditional variance Vt is a supermartingale. Remembering that the variance
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Figure 4.3: Five independent Shannon entropy processes as defined in Eq. (4.64)
with the parameters; time step ∆t = 1 × 10−5, T = 1, σ = 1, p1 = 0.4 and XT = 1.

process Vt is given by Eq. (4.59) and integrating Eq. (4.65)

Ht −H0 = −∫
t

0

σ2T 2

2(T − u)2
Vudu − ∫

t

0
h(φ1u, u)dB̃u (4.66)

where we have defined h(φ1t, t) = σT
T−tφ1t (lnφ1t +Ht). Taking the expectation with

respect to Q, the risk-neutral measure, we find that EQ [∫
t

0 h(φ1u, u)dB̃u] = 0 for
∀t ∈ [0, T ] because of the martingale property (not proven here but see [90] for
proof). Thus, we are left with following expression for the expected Shannon
entropy

EQ [Ht] =H0 −EQ [∫
t

0

σ2T 2

2(T − u)2
Vudu] (4.67)

where the expectation term on the right is known as the mutual information
between the information process ξt and the terminal payoff XT [90, 128]. Taking
the time limit t→ T and using the fact that the entropy process converges to zero
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as t→ T then Eq. (4.67) converges in the same way, hence

lim
t→T

EQ [H0 − ∫
t

0

σ2T 2

2(T − u)2
Vu du] = lim

t→T
EQ [H0 − ∫

t

0

σT

2(T − u)ζuT du] = 0 ,

(4.68)
where ζtT is the volatility process defined in Eq. (4.61). This relation shows that
for the binary XT ∈ {0,1} the integration constant H0 is equal to the following
relationship

H0 = EQ [∫
T

0

σT

2(T − u)2
VuT du] = EQ [∫

T

0

σT

2(T − u)ζuT du] , (4.69)

which is bound by the value ln(2). Therefore, Eq. (4.69) has the following in-
terpretation that: the variance Vt and volatility ζtT process must decay in time
sufficiently quickly to ensure the right hand side of Eq. (4.69) is to exist. Fur-
thermore, the results Eq. (4.68) and Eq. (4.69) highlight that the price dynamics
of the binary bond, as found in Eq. (4.62), are such that the volatility ζtT of
St converges as limt→T ζtT = 0, which ensures that any divergence created by the
(T − t)−1 term in Eq. (4.61) is rebalanced as H0 is bounded.

The combination of all these entropic properties found in this section lead to
an important property of the conditional density function {φit}, Eq. (4.53), that
converges as

lim
t→T

φit = 1{XT =i} for i = 0,1 , (4.70)

where 1 is the indicator function. This final result Eq. (4.70), ensures that price,
as calculated in Eq. (4.60), converges to the desired terminal value limt→T St =XT .

4.3 Trading

This section is the basis for the following working paper [129] which explores a
numerical model for an agent based market where the agents perceive prices with
their own BHM pricing kernel. Trading is an important mechanism within finan-
cial markets, and without it, market prices could not form. What this section will
try and achieve is to take the binary state XT ∈ {0,1} pricing model derived in
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Sec. 4.2.3 and introduce a mechanism where agents can buy or sell such an asset.
A model was briefly introduced in the article [94] but was never simulated; this
section moves in a similar spirit by creating trading agents but not exactly in the
same way. The difference in our approach is that we create a mechanism where the
trading agents have a price shift and this update their information process, where
as in [94] they update the price directly by updating the information process only.

Given that the price process calculated in Eq. (4.60) is driven by the noise
process ξt one can parametrise a model that consists of two agents who are pricing
the same asset. The two agents have their own perceptions of the asset XT ’s price
which is modelled with the following two information processes

ξ
(1)
t = σ1tXT + β(1)

tT

ξ
(2)
t = σ2tXT + β(2)

tT

(4.71)

where the two information rate constants are defined to be strictly positive 0 <
σ1 < ∞, 0 < σ2 < ∞. The time domain is t ∈ [0, T ] and the standard Brownian
bridge processes are independent under the risk-neutral measure Q, denoted as
β

(1)
tT ⊧Q β

(2)
tT . Applying the rules as set out in Sec. 4.2.3, the pricing kernel is

Eq. (4.19) which is assumed to give the two mid-prices for each of the two agents
namely

S
(1)
t = EQ [XT ∣ ξ(1)t ] = φ(1)

1t

S
(2)
t = EQ [XT ∣ ξ(2)t ] = φ(2)

1t

(4.72)

which are driven endogenously by their individual information processes Eq.
(4.71). The most competitive sell and buy prices are defined in such away that

S
(i)

A/B
= S(i)

t ± δ (4.73)

where the agent index is i = 1,2, the subscript A is the ask price (sell price) and
B is the bid price (buy price). For simplicity, the model will consider a constant∗

∗δ being a positive constant is only assumed for simplicity but it can be represented as a
convex function δ (I) where I is measure of inventory for a particular agent.

94



half spread δ, where this parameter controls the rate of trading between trader 1
and 2.

Figure 4.4: This diagram outlines the geometry in trading mechanism used
throughout the model and relationship between the parameters: half spread δ,
mid-price S(.)

t , ask price S(.)
t,A, bid price S(.)

t,B, and the disagreement in bid and ask
price ∆

(.,.)
t .

The difference between the two agents’ bid and ask price is defined as

∆
(i,j)
t ≜ S(i)

t,B − S
(j)
t,A (4.74)

where i, j = 1,2 and i ≠ j: when i = j the spread is simply ∆
(i,i)
t = ∆

(j,j)
t = −2δ.
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Hence the spreads can be represented in the following matrix† with

¯̄Λ =
⎛
⎝

−2δ ∆
(1,2)
t

∆
(2,1)
t −2δ

⎞
⎠

(4.75)

where the determinant is defined as det ( ¯̄Λ) = 4δ2 −∆
(2,1)
t ∆

(1,2)
t . It can seen from

Fig. (4.4) that when ∆
(1,2)
t = 0, ∆

(2,1)
t = −4δ or ∆

(2,1)
t = 0, ∆

(1,2)
t = −4δ and when

∆
(1,2)
t ≠ 0 or ∆

(2,1)
t ≠ 0 then ∆

(2,1)
t ∆

(1,2)
t < 0, which means that

det ( ¯̄Λ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

4δ2, if S(i)
t,B = S(j)

t,A ∀i, j
(2δ +∆

(i,j)
t )

2
, if S(i)

t,B < S(j)
t,A where i ≠ j

(4.76)

which shows that det ( ¯̄Λ) ≥ 4δ2 > 0 if and only if δ > 0, and det ( ¯̄Λ) ≥ 0 if and only

if δ ≥ 0. The eigenvalues of ¯̄Λ if ∆ > 0 are found to be λ = −2δ ±
√

4δ2 − det ( ¯̄Λ)

⇒ λ = −2δ ±
√

∆
(1,2)
t ∆

(2,1)
t with eigenvectors z = 1 ±

√
∆
(1,2)
t

∆
(2,1)
t

giving possible two

outcomes:

(i) Im(λ) = Im(z) = 0 if ∆
(1,2)
t ≤ 0 or ∆

(2,1)
t ≤ 0

(ii) Im(λ) ≠ 0 and Im(z) ≠ 0 if ∆
(1,2)
t > 0 or ∆

(2,1)
t > 0 .

(4.77)

This is the first check to see if a trade is possible where outcome (i) means it is
feasible or outcome (ii) is not feasible at all. This setup gives a trigger mechanism
for when a trade can be initiated, and put simply a trade is possible if the two
ranges of price quoted by the two agents do not overlap. If the two agents disagree
in their pricing then a trade is possible if

∆
(i,j)
t > 0⇒ S

(i)
A > S(j)

B (4.78)

where i, j = 1,2 and i ≠ j and the time of the trade is recorded and denoted as
t∗. The next step of the trade would be for the two participants in the trade to

†The matrix ¯̄Λ Eq. (4.75) is a special case of a non-symmetric real matrix that is negative-
definite if δ > 0 and negative-semidefinite if δ ≥ 0.
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update their prices by the size of the disagreement which is defined as

Θ
(i,j)
t ≜ δ +

∣∆(i,j)
t ∣
2

(4.79)

which is shown in Fig. 4.5. The variable Θ
(i,j)
t is equivalent to the distance each

agent needs to move to adjust each their price to the average of the bid-ask price.
The direction of the change in price adjustment for the agent depends on whether
the agent is buying or selling and can be described by

∆S
(1)
t = −Θ

(2,1)
t H (∆(2,1)) +Θ

(1,2)
t H (∆(1,2)) ,

∆S
(2)
t = Θ

(2,1)
t H (∆(2,1)) −Θ

(1,2)
t H (∆(1,2)) ,

(4.80)

where H(.) is the Heaviside step function defined as

H(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if x < 0,

1, if x ≤ 0,
(4.81)

where x ∈ R. The change in price in Eq. (4.80) has the following structure
when a trade is feasible: ∆S

(1)
t∗ < 0 ⇔ ∆S

(2)
t∗ > 0 where the absolute values

∣∆S(1)
t∗ ∣ = ∣∆S(2)

t∗ ∣ = Θ
(1,2)
t∗ or ∆S

(1)
t∗ > 0 ⇔ ∆S

(2)
t∗ < 0 where ∣∆S(1)

t∗ ∣ = ∣∆S(2)
t∗ ∣ =

Θ
(2,1)
t∗ otherwise ∆S

(1)
t = ∆S

(2)
t = 0. This gives the correct structure to the agents’

price adjustment: when agents buy the asset there is update in the up direction
and if the agent sells there is a shift in the down direction. The corresponding
price shifts ∆S

(1)
t∗ and ∆S

(2)
t∗ can be used to calculate the changes in information

∆ξ
(1)
t∗ and ∆ξ

(2)
t∗ which would be needed to bring about these changes ∆S

(1)
t∗ and

∆S
(2)
t∗ . These changes are found by inverting Eq. (4.56), hence the changes in

information ∆ξ
(1)
t∗ and ∆ξ

(2)
t∗ needed to update the prices by ∆S

(1)
t∗ and ∆S

(2)
t∗ are

respectively

∆ξ
(1)
t∗ = 1

2
σ1t

∗ − ξ(1)t∗ − (T − t∗
Tσ1

)ln(p1

p0

( 1

S
(1)
t∗ +∆S

(1)
t∗

)) ,

∆ξ
(2)
t∗ = 1

2
σ2t

∗ − ξ(2)t∗ − (T − t∗
Tσ2

)ln(p1

p0

( 1

S
(2)
t∗ +∆S

(2)
t∗

)) ,
(4.82)
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Figure 4.5: The notation in this diagram is same as Fig. 4.4 but here we show
the mechanism of the price updating after a trade is trigged. The mid-prices S(1)

t

and S(2)
t are shifted to the updated to prices S(1)

t∗ and S(2)
t∗ respectively. Agent 1

is the selling agent and agent 2 is the buying agent. The quantity Θ
(1,2)
t∗ is the

amount both agents have to adjust to move to their average price and the arrow
is the direction in which they adjust; positive for up shift (sell) and negative for
down shift (buy).

which is effectively the information obtained by each agent through having made
a trade. We can now redefine the two information processes Eq. (4.71) to account
for trading jumps

ξ
′(1)
t = (σ1XT − ∑

t∗∈T∗

1

T − t∗∆ξ
(1)
t∗ H(t∗)) t + β(1)

tT

ξ
′(2)
t = (σ2XT − ∑

t∗∈T∗

1

T − t∗∆ξ
(2)
t∗ H(t∗)) t + β(2)

tT

(4.83)

where H(.) the Heaviside function is used to ensure that trading updates only
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happen when t > t∗. The term ∑t∗∈T∗ 1
T−t∗∆ξ

(i)
t∗ adds the necessary jumps guar-

anteeing that the information process, future trajectory is corrected linearly en-
suring that the prices remain in the unit square S(i)

t ∈ [0,1] × [0,1] for i = 1,2.
Thus, the pricing of the asset is now calculated as

S
(1)
t = EQ [XT ∣ ξ′(1)t ] = φ(1)

1t

S
(2)
t = EQ [XT ∣ ξ′(2)t ] = φ(2)

1t

(4.84)

and the dynamics are found in the same way as in Eq. (4.60) but with the
updated information processes ξ′(1)t and ξ′(2)t .

4.3.1 Trading with N-agents

In the previous section, Sec. 4.3, only two agents were used but the model can
easily be expanded to any number of agents which is denoted as N . This means
that there are N information processes implying that Eq. (4.71) and Eq. (4.72)
become the following set of process

ξ
(1)
t = σ1tXT + β(1)

tT

ξ
(2)
t = σ2tXT + β(2)

tT

⋮
ξ
(N)

t = σN tXT + β(N)

tT

⇒

S
(1)
t = EQ [XT ∣ ξ(1)t ] = φ(1)

1t

S
(2)
t = EQ [XT ∣ ξ(2)t ] = φ(2)

1t

⋮

S
(N)

t = EQ [XT ∣ ξ(N)

t ] = φ(N)

1t

(4.85)

where the information rate constants are defined to be strictly positive 0 < σ1 < ∞,
0 < σ2 < ∞,. . . ,0 < σN < ∞. The time domain is t ∈ [0, T ] and the standard
Brownian bridge processes are all independent of each other. The definition of
the bid and ask price remains the same as in Eq. (4.73) and the distance between
different agent’s buy and sell price is Eq. (4.74). The matrix ¯̄Λ, defined in Eq.
(4.75), now becomes a block matrix of 2 × 2 matrices. This block matrix can
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defined as the following upper triangular matrix

Ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

¯̄Λ1,1
¯̄Λ1,2

¯̄Λ1,3 . . . ¯̄Λ1,N

¯̄Λ2,2
¯̄Λ2,3 . . . ¯̄Λ2,N

¯̄Λ3,3 . . . ¯̄Λ3,N

⋱ ⋮
¯̄ΛN,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.86)

where the elements (which are 2 × 2 matrices) are defined as the following

¯̄Λi,j =
⎛
⎝

−2δ ∆
(i,j)
t

∆
(j,i)
t −2δ

⎞
⎠

(4.87)

and ∆
(i,j)
t are defined as in Eq. (4.74). The diagonal elements of Eq. (4.86), that

is i = j, are of no interest to trading as agents can not trade with themselves.
The upper off-diagonal elements determine whether a trade is feasible between
the two agents i ≠ j: there are N(N −1)/2 matrices that need to be checked if the
conditions from Eq. (4.77) are feasible, hence the time overhead of the number
of checks grows as O(N2).

4.3.2 Market Structure

This section looks at how the model creates a market with three different types
of traders. The market configurations are denoted as (NMM ,NIT ,NNT ) where
NMM is the number of market makers, NIT is the number of informed traders
and NNT is the number of noise traders. The different traders in the model are
summarised as following:

1. Market makers are traders that define the spread by quoting the buy and
sell prices.

2. Informed traders do not agree with the market and believe in their own
price.

3. Noise traders are agents only looking to make a trade for exogenous reasons.
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These three different types of traders will be described in more detail in the next
few sections.

4.3.3 Market Maker

A market maker has the role (or strategy) in financial markets to provide liquidity
to exchanges. This strategy has an inherent risk associated with it, as the market
maker bears the risk of holding sometimes large quantities of financial assets. The
risk of holding financial assets emerges because their prices can adversely move
against the holder; for example the price of a stock, that is held, could move
down. A market maker looks to make the bid-ask spread of an asset by holding
in the hope to buy the asset for a lower price at which they can broker a deal to
sell it. In our model of trading we have thus defined a trading trigger for when
this type of trade is achievable, which is as follows:

∆
(i,j)
t ≥ 2δ⇒ S

(i)
t,A ≤ S(j)

t,B − 2δ if true then trade, else if

∆
(j,i)
t ≥ 2δ⇒ S

(j)
t,A ≤ S(i)

t,B − 2δ is true then trade.
(4.88)

The notation in Eq. (4.88) is the same as was described in Sec. 4.3. The two
conditions in Eq. (4.88) can not both be true for i ≠ j which intuitively means
that i can sell to j and vice versa but they cannot simultaneously sell to each
other; this should be apparent from how the model is constructed in Sec. 4.3 and
illustrated in Fig. 4.4. Hence, if any of the conditions are true in Eq. (4.88) the
mechanism comes in to play described in Eqs. (4.82)-(4.84) and visualised in the
transition from Fig. 4.4 to Fig. 4.5.

4.3.4 Informed Traders

An informed trader in our model is assumed to be a trader who is a pessimistic
regarding the current market price and does not believe in this market price.
The informed trader believes in their price, and because of this have a particular
spread that they hope to gain. Besides, when their spread is met, they do not
update their price as a market maker as they do not believe in the market. In
the model of trading one thus needs to define a trading trigger for this type of

101



Figure 4.6: This diagram outlines the geometry in the trading mechanism between
an informed trader (superscript (2)) and a market maker (superscript (1)). The
parameters: half spread δ, mid-price S(.)

t , ask price S(.)
t,A, bid price S(.)

t,B, and the
disagreement in bid and ask price ∆

(.,.)
t . Notice that the market maker is the only

agent to update his price and the informed trader does not.

trader. This is achieved as follows:

∆
(i,j)
t ≥ 2δI ⇒ S

(i)
t,A ≤ S(j)

t,B − 2δI if true then trade, else if

∆
(j,i)
t ≥ 2δI ⇒ S

(j)
t,A ≤ S(i)

t,B − 2δI is true then trade
(4.89)

where δI ≥ δ is the spread of the informed trader. Hence, if one of the Eqs. (4.89)
is true then a trade is a initiated and Fig. 4.6 illustrates how the prices update
after a trade. From Fig. 4.6 we see that when a trade occurs and the prices of
the two parties update, the only price that changes is the market maker’s price;
the informed trader’s price remains unchanged.
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4.3.5 Noise Traders

The noise trader, also known as the liquidity trader, is one of a class of traders
that are solely looking for liquidity. By liquidity one is referring to agents that
are just looking to trade (buy or sell) regardless of the price and their trigger
to trade is exogenous to the market’s pricing system (discussed in Sec. 4.3.3).
Noise traders look to buy and sell an asset, but not simultaneously, because such
traders are not looking to gain a spread. As a noise trader does not have their
own spread (or perceived price) when a trade occurs with a market maker, the
shift in price only happens to the market maker, this is similar to trades with an
informed trader (see Fig. 4.6). The trigger that is used for this type of trader
will be two independent samples at each time step from a uniform distribution
with the support on the unit interval. Hence, we define the two independent
random variables as YB, YS ∼ U (0,1) which are sampled at each time step. If
the samples YB and YS exceed some threshold parameter, then a trade will be
triggered following:

YB ≥ γ if true then trade, else if

YS ≥ γ is true then trade
(4.90)

where 0 ≤ γ ≤ 1 and is a constant. The two random numbers YB and YS are used
to control the buy and sell trades, respectively. Hence, if none of the inequalities
in Eq. (4.90) are true then a trade is not triggered, and if both are true, then one
is picked using a discrete probability distribution with equal probabilities (such
as a coin flip).

4.3.6 Inventory Utility

Inventory utility (or inventory control) is introduced as a means to control the
amount of trading, especially for the market maker traders. The market makers
in this model will frequently trade if their spreads are small (of the size 1.0×10−2

and smaller) and to control this appetite for trading a utility function will be
defined and implemented for each market maker. The function used for inventory
utility is arbitrary, but we require it to be even, strictly positive and monotonic.
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We introduce the trade-dependent spread δ(i)t where i is the index referring to a
market agent and the initial value is δ(i)0 = δ ∀i. The spread function is defined
and is updated in the following way

δ
(i)
t+∆t = δ + δe ( ∑

t∗∈T∗
I
(i)
t∗ )

2

(4.91)

where ∆t is the time step, t∗ is the time when a trade has occurred, and T∗ is
the growing set of all trade times that have occurred up to most recent trade
time t∗. The term δe is a constant and represents the amount the half spread
adjusts after a trade and is defined as δ ≥ δe. The buy or sell trade function I(i)t∗
is 1 when a buy trade has occurred and −1 when sell trade has occurred. The
δe (∑t∗∈T∗ I(i)t∗ )

2
term is the inventory utility where the summation in the brackets

is the current inventory up to the most recent trade of agent i, if no trades have
occurred or the inventory is empty then this term is zero. Notice in Eq. (4.91)
that we introduce the indicator function which is 1 when a trade has occurred
at time t and 0 when a trade has not took place at time t; this ensures that the
spread δ(i)t only changes at the time when a trade occurs.

4.4 Results

This section is a tentative investigation of the model constructed previously in
Sec. 4.3 and demonstrates the numerical dynamics of the realised market price.
Three market configurations (NMM ,NIT ,NNT ) are explored: 2 Market Makers
(2,0,0) the results of which are shown in Sec. 4.4.1, 2 Market Makers with 1 In-
formed Trader (2,1,0) the results of which are shown in Sec. 4.4.3, and 2 Market
Makers with 1 Noise Trader (2,0,1) the results of which are shown in Sec. 4.4.5.
Each of the market configuration has relevant parameters peculiar to the configu-
ration, and such parameters will be varied to find features of the model. We will
also consider the effect of applying inventory control, defined in Sec. 4.3.6, which
will allow a closer look at the impact of the informed traders and noise traders on
the market price. Also we will present the market return (price-increment) dis-
tribution and the distribution of the first passage times between successive trades.
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The parameters that are unchanged for all simulations are as follows: the
time step ∆t = 1.0 × 10−6 and XT = 1. The number of Monte Carlo runs changes
when inventory control is and is not applied: Nmc = 1.0 × 105 and Nmc = 1.0 ×
103 respectively for each of the parameters that are spanned over. The reason
for this change in the number of Monte Carlo runs is because the number of
trades between market makers is very frequent when there is no inventory control
applied. This effect makes it difficult to observe the effect of adding an informed
or a noise trader to the synthetic market. A summary of the parameters used
throughout this results section, Sec. 4.4, is presetned in Table 4.1.

Nmc ∆t XT p1 σi δe
No-Inventory Control 1.0 × 103 1.0 × 10−6 1 0.5 1 0
Inventory Control 1.0 × 105 1.0 × 10−6 1 0.5 1 0.001

Table 4.1: A summary of the constant parameters used in the simulation of the
trading model.

4.4.1 2 Market Makers (2,0,0)
This configuration uses a system that only consists of two market makers as
explained in Sec. 4.3.3. The parameter that is spanned over is the half spread δ
which is defined as the following set

δ ∈ [0.001,0.00105,0.0011,0.00115,0.00125,0.0015,0.00175,0.002,0.003,0.005] .
(4.92)

We chose this set for δ as it allows one to observe gradual changes in the number
trades and market price. The a priori probabilities, as defined in Eq. (4.51), are
p1 = p0 = 0.5. The distributions of the market return and first passage times, when
inventory control is and is not applied with a δe = 0.001, are shown respectively
in Figs. 4.7 and 4.8. Besides, we present the moments of each of the distributions
in the following tables: Table 4.2 has the estimations for the moments of the
distributions for the top plots in Fig. 4.7; Table 4.3 has the estimations for the
moments of the distributions for the bottom plots in Fig. 4.7; Table 4.4 has the
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estimations for the moments of the distributions for the top plots in Fig. 4.8;
and Table 4.5 has the estimations for the moments of the distributions for the
bottom plots in Fig. 4.8.

δ # of Trades Mean Standard-Deviation Skewness Kurtosis
0.001 24205452 0.0000 0.0024 0.0269 5.4536
0.00105 2224053 0.0000 0.0025 0.0270 5.4083
0.0011 20322212 0.0000 0.0026 0.0274 5.3838
0.00115 19082652 0.0000 0.0027 0.0316 5.3384
0.00125 16730070 0.0000 0.0029 0.0307 5.2666
0.0015 11944145 0.0000 0.0034 0.0356 5.2340
0.00175 9123674 0.0001 0.0039 0.0445 5.1909
0.002 7163738 0.0001 0.0044 0.0468 5.0674
0.003 3292175 0.0001 0.0064 0.0794 5.1008
0.005 1268859 0.0004 0.0104 0.1248 5.0423

Table 4.2: We estimate the moments of the return distributions for the top plots
(no inventory control) in Fig. 4.7. For the market configuration 2 Market Mak-
ers (2,0,0), with no inventory control, we find the changes in the market price
between successive trades and present the sample statistics. The parameters that
are unchanged for all simulations are as follows: the time step ∆t = 1.0 × 10−6,
XT = 1, and the number of Monte Carlo runs Nmc = 1.0 × 103.

δ # of Trades Mean Standard-Deviation Skewness Kurtosis
0.001 7128514 0.0042 0.0376 1.5844 17.5113
0.00105 7095343 0.0042 0.0376 1.5822 17.5599
0.0011 7097018 0.0042 0.0376 1.5690 17.4758
0.00115 7115804 0.0042 0.0377 1.5776 17.5148
0.00125 7123717 0.0042 0.0377 1.5885 17.4934
0.0015 7157674 0.0042 0.0376 1.5830 17.3550
0.00175 7104924 0.0043 0.0378 1.5422 16.9098
0.002 7162929 0.0043 0.0378 1.5170 16.5142
0.003 7189637 0.0043 0.0380 1.4531 15.8613
0.005 7102818 0.0045 0.0386 1.2988 14.3386

Table 4.3: We estimate the moments of the return distributions for the bottom
plots (inventory control) in Fig. 4.7. For the market configuration 2 Market
Makers (2,0,0), with inventory control, we find the changes in the market price
between successive trades and present the sample statistics. The parameters that
are unchanged for all simulations are as follows: the time step ∆t = 1.0 × 10−6,
XT = 1, and the number of Monte Carlo runs Nmc = 1.0 × 105.
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δ Mean Standard-Deviation Skewness Kurtosis
0.001 -10.8680 1.2387 -0.0837 2.7038

0.00105 -10.7953 1.2514 -0.0918 2.7022
0.0011 -10.7046 1.2554 -0.1207 2.7406
0.00115 -10.6664 1.2782 -0.1181 2.7170
0.00125 -10.5358 1.2813 -0.1290 2.7438
0.0015 -10.2289 1.3135 -0.1629 2.7762
0.00175 -9.9930 1.3532 -0.2090 2.8073
0.002 -9.7748 1.3767 -0.2254 2.8312
0.003 -9.0129 1.3992 -0.2902 2.9688
0.005 -8.1097 1.4516 -0.3247 2.9717

Table 4.4: We estimate the moments of the first passage time distributions for
the top plots (no inventory control) in Fig. 4.8. For the market configuration
2 Market Makers (2,0,0), with no inventory control, we find the changes in the
time between successive trades and present the sample statistics. The parameters
that are unchanged for all simulations are as follows: the time step ∆t = 1.0×10−6,
XT = 1, and the number of Monte Carlo runs Nmc = 1.0 × 103.

δ Mean Standard-Deviation Skewness Kurtosis
0.001 -6.4971 2.4134 -0.2317 2.4135

0.00105 -6.4689 2.3925 -0.2295 2.4205
0.0011 -6.4456 2.3701 -0.2261 2.4361
0.00115 -6.4293 2.3499 -0.2184 2.4424
0.00125 -6.4023 2.3249 -0.2197 2.4745
0.0015 -6.3139 2.2329 -0.1945 2.5115
0.00175 -6.2378 2.1762 -0.2005 2.5732
0.002 -6.1779 2.1190 -0.2036 2.6350
0.003 -5.9657 1.9450 -0.2275 2.8322
0.005 -5.6807 1.7459 -0.3087 3.0985

Table 4.5: We estimate the moments of the first passage time distributions for
the bottom plots (inventory control) in Fig. 4.8. For the market configuration 2
Market Makers (2,0,0), with inventory control, we find the changes in the time
between successive trades and present the sample statistics. The parameters that
are unchanged for all simulations are as follows: the time step ∆t = 1.0 × 10−6,
XT = 1, and the number of Monte Carlo runs Nmc = 1.0 × 105.
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Figure 4.7: Both sets of plots (the top and bottom with black borders) are the
market price increments/returns distributions that are generated by successive
trades where the top plot is with no inventory control and the bottom plot is
with inventory control. For the market configuration 2 Market Makers (2,0,0)
with the parameters that are unchanged for all simulations are as follows: the time
step ∆t = 1.0 × 10−6, XT = 1. The number of Monte Carlo runs Nmc = 1.0 × 103

(no inventory control top plot) and Nmc = 1.0 × 105 (inventory control bottom
plot). The y-axis is the normalised occurrences density and the x-axis is the
market price increments. The spread parameter is defined as the following set δ,
defined in Eq. (4.92), corresponding to the increasing value left to right and top
to bottom for each of the two plots (see top right corner).
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Figure 4.8: Both sets of plots (the top and bottom with black borders) are the first
passage time distributions that is generated by successive trades where the top
plot is with no inventory control and the bottom plot is with inventory control.
For the market configuration 2 Market Makers (2,0,0) with the parameters that
are unchanged for all simulations are as follows: the time step ∆t = 1.0 × 10−6,
XT = 1. The number of Monte Carlo runs Nmc = 1.0 × 103 (no inventory control
top plot) and Nmc = 1.0 × 105 (inventory control bottom plot). The y-axis is
the normalised occurrences density and the x-axis is the natural logarithm of
the increments of the first passage time between trades. The spread parameter
is defined as the following set δ, defined in Eq. (4.92), corresponding to the
increasing value left to right and top to bottom for each of the two plots (see top
right corner).
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4.4.2 Discussion of (2,0,0) Results

A market consisting of just two market makers (2,0,0) is presented in Sec. 4.4.1.
The figures Fig. 4.9 and Fig. 4.10 are examples of snap shots from a single run of
the model where there is no inventory control and inventory control respectively.
Note that the scale of the snap shot is not same in both Fig. 4.9 and Fig. 4.10,
but is arbitrarily chosen to help give the reader a visual interpretation of the
trade mechanism.

Figure 4.9: The blue and orange lines are the price processes for two market
makers. The two green circles are trades between the two market makers and
there is no inventory control applied.

The no inventory control results from Sec. 4.4.1 are displayed in the Tables
4.2 and 4.4 and the top of figures Fig. 4.7 (market return) and Fig. 4.8 (logarithm
of time between trades). The market return is defined as the increment between
two successive trades which can be seen in Fig. 4.9 and is the vertical distance
between the green circles. For the market return distributions in Fig. 4.7 moving
left to right and top to bottom the half spread increases

δ ∈ [0.001,0.00105,0.0011,0.00115,0.00125,0.0015,0.00175,0.002,0.003,0.005] .
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We observe that the standard-deviation increases and the number of trades de-
crease as the half spread δ increases. The larger the spread becomes, the more
the two market maker’s prices have diffused away from each other, which in turn
increases the average time waited for a trade. This last point is also observed in
Fig. 4.8 as the distribution moves and skews more to the right.

Figure 4.10: The blue and orange lines are the price process for the market
makers. The green circle are the market prices created by a trade between the
market makers. There is inventory control applied to both agents.

The inventory control results from Sec. 4.4.1 are displayed in the Tables 4.3
and 4.5 and the bottom figures of Fig. 4.7 (market return) and Fig. 4.8 (logarithm
of time between trades). We observe that the introduction of inventory control
decreases the overall number of trades, even though there are more Monte Carlo
runs, shown in the Table 4.3. The number of trades is also found to be consistently
around the value ≈ 7.1 × 106, which is because Eq. (4.91) is parameterised in the
same way for each value of the half spread.
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4.4.3 2 Market Makers and 1 Informed Trader (2,1,0)
This configuration uses a system that consists of two market makes and 1 informed
trader, as explained in Sec. 4.3.4. The parameter that is spanned over is the
spread of the informed trader δI and is defined as the following set

δI ∈ [0.002,0.003,0.005,0.007,0.01,0.02,0.03,0.05,0.075,0.1] . (4.93)

We chose this set for δI as the informed trader should have a larger spread than
market as this agent should be in more of a disagreement, in terms of market
price, before trading. The a priori probabilities, as defined in Eq. (4.51), are
p1 = p0 = 0.5 and the initial spread of the market makers is set to δ = 0.001. The
distributions of market returns and first passage times, when inventory control is
and is not applied with δe = 0.001, are shown respectively in Figs. 4.11 and 4.12.
In addition we present the moments of each of the distributions in the following
tables: Table 4.6 has the estimations of the moments for the distributions for
the top plots in Fig. 4.11; Table 4.7 has the estimations of the moments for the
distributions for the bottom plots in Fig. 4.11; Table 4.8 has the estimations for
the moments of the distributions for the top plots in Fig. 4.12; and Table 4.9 has
the estimations for the moments of the distributions for the bottom plots in Fig.
4.12.
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δI # of Trades Mean Standard-Deviation Skewness Kurtosis
0.002 37747326 0.0000 0.0018 0.0434 16.3559
0.003 30876178 0.0000 0.0019 0.0188 4.7153
0.005 25650224 0.0000 0.0022 0.0403 5.9454
0.007 24276338 0.0000 0.0024 0.0104 4.0960
0.01 22680546 0.0000 0.0026 0.0061 4.1939
0.02 21143075 0.0000 0.0028 -0.0021 6.1621
0.03 21239750 0.0000 0.0029 0.0155 10.4071
0.05 22522936 0.0000 0.0030 0.0541 24.2690
0.075 23259898 0.0000 0.0030 0.1453 51.3784
0.1 24784621 0.0000 0.0029 0.2878 84.4465

Table 4.6: We estimate the moments of the return distributions for the top plots
(no inventory control) in Fig. 4.11. For the market configuration 2 Market Makers
and 1 Informed Trader (2,1,0), with no inventory control, we find the changes
in the market price between successive trades and present the sample statistics.
The parameters that are unchanged for all simulations are as follows: the time
step ∆t = 1.0×10−6, XT = 1, and the number of Monte Carlo runs Nmc = 1.0×103.

δI # of Trades Mean Standard-Deviation Skewness Kurtosis
0.002 23392919 0.0016 0.0228 1.4827 19.9777
0.003 21826385 0.0018 0.0236 1.4021 18.5971
0.005 19354919 0.0020 0.0249 1.3030 16.3881
0.007 17591612 0.0022 0.0260 1.2342 15.2938
0.01 15504207 0.0024 0.0273 1.1480 13.9354
0.02 11469854 0.0032 0.0308 1.0075 11.2520
0.03 9404283 0.0037 0.0332 1.0006 10.3454
0.05 7413753 0.0044 0.0364 1.0581 10.2157
0.075 6418846 0.0047 0.0380 1.2068 11.1049
0.1 6045749 0.0046 0.0383 1.3465 12.4934

Table 4.7: We estimate the moments of the return distributions for the bottom
plots (inventory control) in Fig. 4.11. For the market configuration 2 Mar-
ket Makers and 1 Informed Trader (2,1,0), with inventory control, we find the
changes in the market price between successive trades and present the sample
statistics. The parameters that are unchanged for all simulations are as follows:
the time step ∆t = 1.0 × 10−6, XT = 1, and the number of Monte Carlo runs
Nmc = 1.0 × 105.
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δI Mean Standard-Deviation Skewness Kurtosis
0.002 -7.8246 2.3712 -0.1929 2.5306
0.003 -7.6285 2.3058 -0.2499 2.6346
0.005 -7.3373 2.2126 -0.3332 2.8192
0.007 -7.1327 2.1562 -0.3951 2.9778
0.01 -6.9087 2.1069 -0.4732 3.1996
0.02 -6.4929 2.0690 -0.6561 3.7884
0.03 -6.2728 2.0793 -0.7397 4.0735
0.05 -6.1020 2.1506 -0.7286 3.9627
0.075 -6.0909 2.2234 -0.5968 3.5147
0.1 -6.1804 2.2728 -0.4425 3.0923

Table 4.8: We estimate the moments of the first passage time distributions for
the top plots (no inventory control) in Fig. 4.12. For the market configuration
2 Market Makers and 1 Informed Trader (2,1,0), with no inventory control, we
find the changes in the time between successive trades and present the sample
statistics. The parameters that are unchanged for all simulations are as follows:
the time step ∆t = 1.0 × 10−6, XT = 1, and the number of Monte Carlo runs
Nmc = 1.0 × 103.

δI Mean Standard-Deviation Skewness Kurtosis
0.002 -11.5480 1.3992 0.0437 2.3228
0.003 -11.3310 1.4050 -0.0425 2.4182
0.005 -11.0933 1.3772 -0.1190 2.5732
0.007 -11.0423 1.3959 -0.1630 2.5756
0.01 -10.9446 1.3986 -0.2652 2.6753
0.02 -10.7959 1.3209 -0.2548 2.8206
0.03 -10.7659 1.2783 -0.1832 2.7792
0.05 -10.7935 1.2365 -0.1176 2.7558
0.075 -10.8094 1.2169 -0.0829 2.7335
0.1 -10.8754 1.2149 -0.0436 2.7081

Table 4.9: We estimate the moments of the first passage time distributions for
the bottom plots (inventory control) in Fig. 4.12. For the market configuration 2
Market Makers and 1 Informed Trader (2,1,0), with inventory control, we find the
changes in the time between successive trades and present the sample statistics.
The parameters that are unchanged for all simulations are as follows: the time
step ∆t = 1.0×10−6, XT = 1, and the number of Monte Carlo runs Nmc = 1.0×105.
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Figure 4.11: Both sets of plots (the top and bottom with black borders) are the
market price increments/returns distributions that are generated by successive
trades where the top plot is with no inventory control and the bottom plot is with
inventory control. For the market configuration 2 Market Makers and 1 Informed
Trader (2,1,0) with the parameters that are unchanged for all simulations are as
follows: the time step ∆t = 1.0 × 10−6, XT = 1. The number of Monte Carlo runs
Nmc = 1.0 × 103 (no inventory control top plot) and Nmc = 1.0 × 105 (inventory
control bottom plot). The y-axis is the normalised occurrences density and the
x-axis is the market price increments. The spread parameter is defined as the
following set δI , defined in Eq. (4.93), corresponding to the increasing value left
to right and top to bottom for each of the two plots (see top right corner).
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Figure 4.12: Both sets of plots (the top and bottom with black borders) are the
first passage time distributions that is generated by successive trades where the
top plot is with no inventory control and the bottom plot is with inventory control.
For the market configuration 2 Market Makers and 1 Informed Trader (2,1,0)
with the parameters that are unchanged for all simulations are as follows: the time
step ∆t = 1.0×10−6, XT = 1. The number of Monte Carlo runs Nmc = 1.0×103 (no
inventory control top plot) and Nmc = 1.0 × 105 (inventory control bottom plot).
The y-axis is the normalised occurrences density and the x-axis is the natural
logarithm of the increments of the first passage time between trades. The spread
parameter is defined as the following set δI , defined in Eq. (4.93), corresponding
to the increasing value left to right and top to bottom for each of the two plots
(see top right corner).
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4.4.4 Discussion of (2,1,0) Results

A market consisting of two market makers and one informed trader (2,1,0) is
presented in Sec. 4.4.3. The figures Fig. 4.13 and Fig. 4.14 are snapshots from a
single run of the model where there is no inventory control and inventory control
respectively. The market returns are the increments between successive market
prices, referring to Fig. 4.13 the change in price is the vertical difference between
adjacent circles, be they either red or green.

Figure 4.13: The blue and orange lines are the market maker’s price processes
and the yellow line is that of the informed trader. The green circle is a trade
between the market makers and red circle is a trade between a market maker and
the informed trader. There is no inventory control applied for any of the market
agents.

The no inventory control results from Sec. 4.4.3 are displayed in the Tables 4.6
and 4.8 and the top figures of Fig. 4.11 (market return) and Fig. 4.12 (logarithm
of time between trades). The market return is defined as the increment between
two successive trades which can be seen in Fig. 4.13 and is the vertical distance
between the green circles. For the market return distributions in Fig. 4.11 moving
left to right and top to bottom the half spread of the informed trader increases

δI ∈ [0.002,0.003,0.005,0.007,0.01,0.02,0.03,0.05,0.075,0.1] .
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While the market makers’ spread is set to δ = 0.001. We observe that the

Figure 4.14: The blue and orange lines are the market maker’s price processes,
and the yellow line is that of the informed trader. The green circle is a trade
between the market makers and the red circle is a trade between a market maker
and the informed trader. There is inventory control applied for all the market
agents.

standard-deviation only increases slightly (as compared to the (2,0,0) case) and
the number of trades decreases as the informed trader’s half spread δI increases.
The larger δI becomes, the more time the informed trader is willing to wait for
the prices to diffuse away from their price, which in turn increases the average
time waited to trade. This last point is also observed in Fig. 4.12 as the distri-
bution skews more to the right. Notice, that this effect of skewing to the right in
the top plot in Fig. 4.12 is not as high as seen in the corresponding plot in Fig.
4.8. The reason for this is that the two market makers do not have any inven-
tory control and will trade very frequently as their half spread remains unchanged.

The inventory control results from Sec. 4.4.3 are displayed in the Tables
4.7 and 4.9 and the bottom figures of Fig. 4.11 (market return) and Fig. 4.12
(logarithm of time between trades). We observe that the introduction of inventory
control decreases the overall number of trades which is shown in the Table 4.7.
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The number of trades is also found to decrease as δI increases. The reason for
this is that the inventory control function increases the market makers’ spread.
This large spread will be comparable to the informed trader’s spread meaning
the market makers and the informed trader will trade with each other. Another
feature observed in the bottom plot in Fig. 4.12 is that the distributions are
bimodal with two peaks occur at the 0.002 and −0.002. This bimodal distribution
could be caused by a situation when the market makers’ spread is comparable
to the informed trader’s spread. This, in turn, creates a clustering of trades and
decreases the spread of the market makers to the minimal value but this point is
a tentative one at best; this conclusion would need to be investigated further.

4.4.5 2 Market Makers and 1 Noise Trader (2,0,1)
This configuration uses a system that consists of two market makers and one
noise trader, as explained in Sec. 4.3.5. The parameter that is spanned over is
the threshold at which a noise trader trades γ which is defined as the following
set

γ ∈ [0.9990,0.9991,0.9992,0.9993,0.9994,0.9995,0.9996,0.9997,0.9998,0.9999] .
(4.94)

We chose this set for γ as we wanted to create a noise trader that trades a
lot, which then gradual evolves in to that trades less frequently. The a priori
probabilities, as defined in Eq. (4.51), are p1 = p0 = 0.5 and the initial spread
of the market makers is set to δ = 0.001. The distributions of increments of the
market return and first passage times, when inventory control is and is not applied
with δe = 0.001, are shown respectively in Figs. 4.15 and 4.16. In addition we
present the moments of each of the distributions in the following tables: Table
4.10 has the estimations for the moments of the distributions for the top plots in
Fig. 4.15; Table 4.11 has the estimations for the moments of the distributions for
the bottom plots in Fig. 4.15; Table 4.12 has the estimations for the moments of
the distributions for the top plots in Fig. 4.16; and Table 4.13 has the estimations
for the moments of the distributions for the bottom plots in Fig. 4.16.
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γ # of Trades Mean Standard-Deviation Skewness Kurtosis
0.9990 24859037 0.0000 0.0024 0.0504 8.5664
0.9991 24681375 0.0000 0.0024 0.0398 6.7691
0.9992 24419605 0.0000 0.0024 0.0271 5.6911
0.9993 24849441 0.0000 0.0024 0.0278 6.9503
0.9994 24920356 0.0000 0.0024 0.0994 6.6859
0.9995 24585881 0.0000 0.0024 0.0306 5.7095
0.9996 24722078 0.0000 0.0024 0.0302 5.6313
0.9997 24620099 0.0000 0.0024 0.0227 6.5881
0.9998 24128729 0.0000 0.0024 0.0254 5.7760
0.9999 24594965 0.0000 0.0024 0.0251 5.3597

Table 4.10: We estimate the moments of the return distributions for the top plots
(no inventory control) in Fig. 4.15. For the market configuration 2 Market Makers
and 1 Noise Trader (2,0,1), with no inventory control, we find the changes in the
market price between successive trades and present the sample statistics. The
parameters that are unchanged for all simulations are as follows: the time step
∆t = 1.0 × 10−6, XT = 1, and the number of Monte Carlo runs Nmc = 1.0 × 103.

γ # of Trades Mean Standard-Deviation Skewness Kurtosis
0.9990 43329183 0.0002 0.3141 0.0110 3.3466
0.9991 39366533 0.0002 0.3063 0.0123 3.4615
0.9992 35432495 0.0003 0.2975 0.0142 3.5944
0.9993 31457674 0.0004 0.2854 0.0165 3.7865
0.9994 27539006 0.0005 0.2703 0.0175 4.0390
0.9995 23618349 0.0007 0.2502 0.0247 4.3900
0.9996 19774091 0.0010 0.2230 0.0265 4.9030
0.9997 16060747 0.0015 0.1870 0.0416 5.6815
0.9998 12566303 0.0023 0.1427 0.0754 6.6753
0.9999 9378220 0.0036 0.0953 0.2129 8.0951

Table 4.11: We estimate the moments of the return distributions for the bottom
plots (inventory control) in Fig. 4.15. For the market configuration 2 Market
Makers and 1 Noise Trader (2,0,1), with inventory control, we find the changes
in the market price between successive trades and present the sample statistics.
The parameters that are unchanged for all simulations are as follows: the time
step ∆t = 1.0×10−6, XT = 1, and the number of Monte Carlo runs Nmc = 1.0×105.
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γ Mean Standard-Deviation Skewness Kurtosis
0.9990 -7.0486 2.1021 -1.9381 6.7537
0.9991 -6.9884 2.1626 -1.9281 6.6038
0.9992 -6.9217 2.2270 -1.9155 6.4476
0.9993 -6.8469 2.2979 -1.8957 6.2662
0.9994 -6.7640 2.3726 -1.8711 6.0788
0.9995 -6.6739 2.4603 -1.8341 5.8437
0.9996 -6.5653 2.5471 -1.7897 5.6188
0.9997 -6.4383 2.6174 -1.7283 5.4080
0.9998 -6.2839 2.6467 -1.6287 5.2060
0.9999 -6.1386 2.5727 -1.3458 4.7420

Table 4.12: We estimate the moments of the first passage time distributions for
the top plots (no inventory control) in Fig. 4.16. For the market configuration 2
Market Makers and 1 Noise Trader (2,0,1), with no inventory control, we find the
changes in the time between successive trades and present the sample statistics.
The parameters that are unchanged for all simulations are as follows: the time
step ∆t = 1.0×10−6, XT = 1, and the number of Monte Carlo runs Nmc = 1.0×103.

γ Mean Standard-Deviation Skewness Kurtosis
0.9990 -10.8926 1.2560 -0.0916 2.7516
0.9991 -10.8874 1.2570 -0.0866 2.7412
0.9992 -10.8680 1.2488 -0.1020 2.7714
0.9993 -10.9016 1.2594 -0.0801 2.7387
0.9994 -10.8922 1.2460 -0.0760 2.7543
0.9995 -10.8824 1.2471 -0.0766 2.7503
0.9996 -10.8923 1.2510 -0.0819 2.7504
0.9997 -10.8916 1.2504 -0.0738 2.7411
0.9998 -10.8514 1.2276 -0.0752 2.7725
0.9999 -10.8763 1.2315 -0.0677 2.7377

Table 4.13: We estimate the moments of the first passage time distributions for
the bottom plots (inventory control) in Fig. 4.16. For the market configuration
2 Market Makers and 1 Noise Trader (2,0,1), with inventory control, we find the
changes in the time between successive trades and present the sample statistics.
The parameters that are unchanged for all simulations are as follows: the time
step ∆t = 1.0×10−6, XT = 1, and the number of Monte Carlo runs Nmc = 1.0×105.
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Figure 4.15: Both sets of plots (the top and bottom with black borders) are the
market price increments/returns distributions that are generated by successive
trades where the top plot is with no inventory control and the bottom plot is
with inventory control. For the market configuration 2 Market Makers and 1
Noise Trader (2,0,1) with the parameters that are unchanged for all simulations
are as follows: the time step ∆t = 1.0×10−6, XT = 1. The number of Monte Carlo
runs Nmc = 1.0×103 (no inventory control top plot) and Nmc = 1.0×105 (inventory
control bottom plot). The y-axis is the normalised occurrences density and the
x-axis is the market price increments. The spread parameter is defined as the
following set γ, defined in Eq. (4.94), corresponding to the increasing value left
to right and top to bottom for each of the two plots (see top right corner).
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Figure 4.16: Both sets of plots (the top and bottom with black borders) are the
first passage time distributions that is generated by successive trades where the
top plot is with no inventory control and the bottom plot is with inventory control.
For the market configuration 2 Market Makers and 1 Noise Trader (2,0,1) with
the parameters that are unchanged for all simulations are as follows: the time
step ∆t = 1.0×10−6, XT = 1. The number of Monte Carlo runs Nmc = 1.0×103 (no
inventory control top plot) and Nmc = 1.0 × 105 (inventory control bottom plot).
The y-axis is the normalised occurrences density and the x-axis is the natural
logarithm of the increments of the first passage time between trades. The spread
parameter is defined as the following set γ, defined in Eq. (4.94), corresponding
to the increasing value left to right and top to bottom for each of the two plots
(see top right corner).
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4.4.6 Discussion of (2,0,1) Results

A market consisting of two market makers and one noise trader (2,1,0) is pre-
sented in Sec. 4.4.5. The figures Fig. 4.17 and Fig. 4.18 are snapshots from a
single run of the model where there is no inventory control and inventory control
respectively. The market returns are the increments between successive market
prices, referring to Fig. 4.17 the change in price is the vertical difference between
adjacent circles, be them either red or green.

Figure 4.17: The blue and orange lines are the market makers’ price processes.
The green circle is a trade between the market makers, and the red circle is a
trade between a market maker and noise trader. There is no inventory control
applied for the market agents.

The no inventory control results from Sec. 4.4.5 are displayed in the Tables
4.10 and 4.12 and the top of figures Fig. 4.15 (market return) and Fig. 4.16 (log

time between trades). The market return is defined as the increment between
two successive trades which can be seen in Fig. 4.17 to be the vertical distance
between the adjacent circles. The parameter that is spanned over is the threshold
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γ which is defined as the following set

γ ∈ [0.9990,0.9991,0.9992,0.9993,0.9994,0.9995,0.9996,0.9997,0.9998,0.9999]

While the market makers’ spread is set to δ = 0.001. We observe that the
standard-deviation does not change and is of similar magnitude as compared
to the (2,0,0) and (2,1,0) cases. The number of trades remains reasonably con-
stant when the noise trader’s parameter γ increases. These two observations and
with the addition of the top plot in Figs. 4.15 and 4.16 we can see the values of
the γ parameter has little to no effect on the distribution of market returns. This
result could be alleviated if the half spread of the market makers is increased
(or inventory control applied) which will make the effect of noise trader more
apparent.

Figure 4.18: The blue and orange lines are the market makers’ price processes.
The green circle is a trade between the market makers and the red circle is a
trade between a market maker and a noise trader. There is inventory control
applied for all the market agents apart from the noise trader. Notice that there
is no price trace for the noise trader which is in line with the model construction.

The inventory control results from Sec. 4.4.5 are displayed is the Tables
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4.11 and 4.13 and the bottom figures of Fig. 4.15 (market return) and Fig.
4.16 (logarithm of time between trades). We observe that the introduction of
inventory control increases the overall standard deviation of the market return
distribution shown in Table 4.11. The number of trades is also found to decrease
as γ increases. The reason that the number of trades decreases when γ increases
is that the probability that the trade trigger Eq. (4.90) is activated is decreasing.
Another feature that we see is that no matter how big the market makers’ spread
becomes the noise trader will trade when Eq. (4.90) is activated and this causes
swings in the market price. This effect of price swinging is most apparent in our
model parameters when γ = 0.9990 and the least when γ = 0.9999. We see that in
the bottom plot in Fig. 4.16 that there is a small peak in the likelihood of trading
at the smallest time step. We speculate that this peak emerges from the initial
trading between market makers at times close to t = 0. The spread grows from
δ = 0.001 until it becomes too big for market makers to trade with each other,
and only the noise trader can trade. This final observation and explanation is a
tentative one and would need further investigation.

4.5 Non-linear Information Rates and their Lim-

its

We return to a point made in Sec. 4.1.2, that is that the true information part
σXT t of the information process is arbitrary chosen by the modeller (for math-
ematical convenience). This is a somewhat unsatisfactory feature of the model,
which will be investigated in this section and Sec. 4.6. This section explores
the arbitrariness of the BHM model and we start by redefining the information
process Eq. (4.11) as

ξt ≜ f(t)XT + βtT (4.95)

where the BHM model is recovered by setting f(t) = σt. This linear assump-
tion is unfounded by economic or financial principles. The modeller in the BHM
framework is free to choose f(t) as long as in the domain t ∈ [0, T ] it is smooth
and continuous, which ensures that the process Eq. (4.95) is Markov [130, 131].
This section also aims to examine the limits of the BHM model when f(t) is not
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linear and when we have correlated price processes.

We proceed with a thought experiment to test the applicability of the BHM
model and this experiment will be based on a two horse race market. Such markets
were discussed in Chapters 2 and 3. As before, in Eq. (4.2), we define the random
variable XT ∈ {0,1} which represents the final outcome of an uncertain terminal
(at time t = T ) event. This random variable XT is theorised to represent the
outcome of a horse race. It is assumed that the race finishes at a fixed time t = T
which in reality is not strictly true as a race finishes when the course distance
is completed∗. The market consists of one gambler and the role of the gambler
is to try and work out which horse is going to win the race while the race is
in-play. Consider a race that consists of two horses, denoted as horse 1 and 2,
and assuming the gambler has access to the following information processes

⎛
⎝
ξ
(1)
t

ξ
(2)
t

⎞
⎠
=
⎛
⎝
f(t)
g(t)

⎞
⎠
XT +

⎛
⎝
β

(1)
tT

β
(2)
tT

⎞
⎠

(4.96)

where XT indicates which horse is the winning horse. In reality at t = 0 both
horses can win the race, hence the final state of the system can either be X(1)

T = 1

and X(2)
T = 0 or X(1)

T = 0 and X(2)
T = 1: which applies it is not known until t = T .

The BHM model can not capture this behaviour and does not make the claim
that it is trying to predict the final state of XT , only model how agents process
the information in determining a price of a future cash-flow. To ensure the model
is now consistent with our narrative, that is the information process will converge
to 1 for the winner and zero otherwise, we will require the functions f(t) and g(t)
to converge to the appropriate values such that limt→T f(t) = 1 and limt→T g(t) = 0

or limt→T f(t) = 0 and limt→T g(t) = 1. The random variable XT will be set to
one and the interpretation of this is that XT indicates that both horse can win at
t < T but the functions f(t) and g(t) will determine the actual winner at t = T .

∗One can also take horse gambling price data and standardise the race time T to unity such
that t ∈ [0,1].

127



Considering f(t) and g(t) to be of quadratic forms the Eq. (4.96) becomes
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⎛
⎝
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tT

β
(2)
tT

⎞
⎠
. (4.97)

The final time can be set to T = 1 which make the models notation more stream
lined

⎛
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ξ
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. (4.98)

The moments of the processes are found to be E [ξ(1)t ] + E [ξ(2)t ] = σxt and

V [ξ(1)t ] = V [ξ(2)t ] = t(1 − t); with the covariance C [ξ(1)t , ξ
(2)
t ] = E [β(1)

t β
(2)
t ] = 0

and if we define 0 ≤ s < t ≤ 1, the auto-covariance is C [ξ(1)s , ξ
(2)
t ] = E [β(1)

s β
(2)
t ] =

s(1−t). Combining all of these results and using the definition on page 111 of the
H. M. Mahmoud book [132] one finds that the expectation vector and covariance
matrix of Eq. (4.98) can be written as

µ̄ =
⎛
⎝

σxs2

σxt(1 − t)
⎞
⎠

and ¯̄Σ =
⎛
⎝
s(1 − s) s(1 − t)
s(1 − t) t(1 − t)

⎞
⎠
. (4.99)

The bivariate normal distribution of the two information processes ξ(1)s and ξ(2)t

is thus ρ (ξ(1)s , ξ
(2)
t ∣XT = x) ∼ N (ξ(1)s , ξ

(2)
t ∣ µ̄, ¯̄Σ), which explicitly is written as

ρ (ξ(1)s , ξ
(2)
t ∣XT = x) = 1

2π
√

det ( ¯̄Σ)
exp (−1

2
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s ξ
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,

(4.100)

where the vector ξ̄ is defined as ξ̄ = (ξ(1)s , ξ
(2)
t )

′

and the dash denotes the transpose.
It can be seen that if the times are s = t, the distribution Eq. (4.100) collapses to
lims→t ρ (ξ(1)s , ξ

(2)
t ∣XT = x) → ∞. To avoid such a situation one must make ξ(1)t ⊧

ξ
(2)
t ⇒ ρ (ξ(1)t , ξ

(2)
t ∣XT = x) = ρ (ξ(1)t ∣XT = x)ρ (ξ(2)t ∣XT = x) and C [ξ(1)t , ξ

(2)
t ] =
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E [β(1)
t β

(2)
t ] = 0, hence Eq. (4.100) becomes

ρ (ξ(1)t , ξ
(2)
t ∣XT = x) = 1

2πt(1−t) exp(−(ξ
(1)
t −σxt2)

2

2t(1−t) ) exp(−(ξ
(2)
t −σxt(1−t))

2

2t(1−t) ) . (4.101)

From a theoretical point-of-view Eq. (4.101) is rather a limiting one as one would
like to couple the information process Eq. (4.98) with an interaction term ξ

(1)
t ξ

(2)
t ,

but Eq. (4.100) makes this impossible because the two information process are
independent⇒ ρ (ξ(1)t , ξ

(2)
t ∣XT = x) = ρ (ξ(1)t ∣XT = x)ρ (ξ(2)t ∣XT = x). Not hav-

ing such an interaction term leads to an inconsistency with the argument and we
will try to highlight this limitation of the model. The univariate components of
Eq. (4.100) are found by marginalisation∗ giving
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(4.102)

after expanding out the exponent one finds that

ρ (ξ(1)t ∣X(1)
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2
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(4.103)

Using Bayes’ theorem, as in Eq. (4.22), one finds that the conditional densities
that are needed to calculated the price (or implied back probabilities, see Eq.
(2.1)) of horses 1 and 2 are
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(4.104)

∗By marginalisation one means the following procedure ρ (ξ
(1)
s ∣XT = x) =

∫ dξ
(2)
t ρ (ξ

(1)
s , ξ

(2)
t ∣XT = x) and ρ (ξ(2)t ∣XT = x) = ∫ dξ

(1)
t ρ (ξ

(1)
s , ξ

(2)
t ∣XT = x).
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The right arrow is indicating that x is transformed to a discrete state, which in
this case is a binary variable. The price processes are found in the same way as
in Sec. 4.2.3 giving

φ
(1)
1t = (1 + p0

p1
exp (− t

1−tσ (ξ(1)t − 1
2σt

2)))
−1

φ
(2)
1t = (1 + p0

p1
exp (−σ (ξ(2)t − 1

2σt(1 − t))))
−1
.

(4.105)

One finds a few inconsistencies from Eq. (4.105): the first point is that the two
prices do not add up to unity φ(1)

1t + φ(2)
1t ≠ 1, which could be brought about by

the fact that there is no interaction term between the two information process
because ξ(1)t ⊧ ξ(2)t ; and the second point is that limt→1 φ

(2)
1t ≠ 1. This second point

is a important observation because as was shown in Eq. (4.70) that this condition
must be true, hence it must be limt→1 φ

(2)
1t = 1 for the model to be consistent. This

indicates that there are restriction on what f(t) and g(t) can be such that the
following condition for both functions

lim
t→T

f(t)
t(t − 1) = lim

t→T

f(t)
V [βtT ]

→ ∞ (4.106)

is true. This requirement ensures that the conditional density has the limiting
property limt→T φit = 1{XT =xi} for i = 0,1; which means that the price will have
the correct terminal value, that is limt→T St =XT .

4.6 Generalisation of Non-linear Information Rate

This section has the objective to create a class of information processes that are
not linear as in the BHM model Eq. (4.11), which converge in the same way
as Eq. (4.106) or more generally Eq. (4.70). This reformulation of Eq. (4.11)
is important when fitting to real data, which we will return to in Sec. 4.7.2.
Consider an information process of the form

ξt = g(t)XT + βtT (4.107)
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where the conditional density is ρ({ξt ∣ XT = x}) ∼ N (g(t)x, t(T − t)/T ) and we
assume that limt→T

g(t)
V[βtT ]

→ ∞. To find if Eq. (4.107) is Markovian consider a
sequence of increasing times (but decreasing index) 0 < un < un−1 < ⋅ ⋅ ⋅ < u2 < u1 <
t ≤ T . Define the following sequence

κi ≜
βuiT
g(ui)

− βui+1T
g(ui+1)

= ξui
g(ui)

− ξui+1
g(ui+1)

(4.108)

where i = 1,2, . . . , n. The covariance between κi and βtT decreases as n → ∞.
This can be shown by taking the following expectation in the limit n → ∞ such
that

lim
n→∞

{EQ [βtTκi]} = lim
n→∞

{ui(T − t)
g(ui)T

− ui+1(T − t)
g(ui+1)T

} → 0 , (4.109)

therefore Eq. (4.107) is Markovian in the continuous limit. The dynamical process
of the non-linear information is found to be

dξt = d [g(t)XT + βtT ]

= ∂g
∂t
XTdt − βtT

T − tdt + dBt

= 1

T − t (
∂g

∂t
XT (T − t) − βtT)dt + dBt

(4.110)

which is semimartingale if and only if g(.) is a function with bound variation.
The quadratic variation of Eq. (4.107) is thus found to be

E [dξ2
t ] = E [((XT

∂g

∂t
− BT

T
)dt + dBt)

2

] = dt (4.111)

which is a necessary condition for application of Itô’s lemma. Applying Bayes’
theorem, as in Eq. (4.24), and defining ρ(ξt ∣ XT = x) ≜ φt(x) to streamline
notation, one finds that

φt(x) =
f(x) exp ( T

t(T−t) ĝtx(y − 1
2 ĝtx))

∫
1

0 f(z) exp ( T
t(T−t) ĝtz(y − 1

2 ĝtz))dz
(4.112)

where is f(x) is the a priori probability density function of XT = x and x ∈ [0,1].
A hat has been placed on the non-linear information rate ĝt as an indication that
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this will be estimated from data, which will be done in Sec. 4.7. The price is
found in the same way as in Eq. (4.25) where price St is equivalent to the function
S(ξt, t), which will be the function we apply Itô’s lemma to. Hence, Itô’s lemma
applied to the price function S(ξt, t) is as follows
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dt + 1

2
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xΓ3(ξt, t)dx)dt

(4.113)

where the functions Γ1(ξt, t), Γ2(ξt, t) and Γ3(ξt, t) are defined as the partial
differential terms in the integrands. The aim is to calculate each of these three
functions and plug them into Eq. (4.113), which will lead to a dynamic expression
of the price process. To reduce the notation in the calculation, define the two
functions

A ≜ f(x) exp( T

t(T − t) ĝtx(ξt −
1
2 ĝtx))

B ≜ ∫
1

0
f(x) exp( T

t(T − t) ĝtx(ξt −
1
2 ĝtx))dx ,

(4.114)

such that a third function can be defined in terms of A and B

C ≜ ∫
1

0
xAdx = BEQ [XT ∣ ξt] = BS(ξt, t) . (4.115)

The functions defined in Eq. (4.114) naturally lead to the useful expression for
Eq. (4.112) which is φt(x) = A

B . The Γ1(ξt, t) term is found by using the following
relationships

∂A

∂ξt
= A T

t(T − t)xĝt

∂B

∂ξt
= ∫

1

0
A

T

t(T − t)xĝtdx = C
T

t(T − t) ĝt
(4.116)
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and applying the quotient rule to φt(x)

Γ1(ξt, t) =
∂

∂ξt
φt(x) =

∂

∂ξt

A

B
= 1

B

∂A

∂ξt
−A( 1

B2
) ∂B
∂ξt

= φt(x)
T

t(T − t) ĝt (x −EQ [XT ∣ ξt])

= φt(x)
T

t(T − t) ĝt (x − S(ξt, t)) .

(4.117)

The Γ2(ξt, t) term is found first by writing

∂A

∂t
= A ∂

∂t
( T

t(T − t) ĝtx(ξt −
1
2 ĝtx))

= A Tx

t2(T − t)2
( ˙̂gtt(T − t)(ξt − ĝtx) − ĝt(ξt − 1

2 ĝtx)(T − 2t))
(4.118)

and

∂B

∂t
= ∫

1

0
A
∂

∂t
( T

t(T − t) ĝtx(ξt −
1
2 ĝtx))dx

= T ˙̂gt
t(T − t) (ξt∫

1

0
xAdx − ĝt∫

1

0
x2Adx)

− T (T − 2t)ĝt
t2(T − t)2

(ξt∫
1

0
xAdx − 1

2 ĝt∫
1

0
x2Adx) ;

(4.119)

where the dot in ˙̂gt = ∂ĝ
∂t is Newton’s dot notation. Notice that the function A

has the following properties

∫
1

0
xAdx = BEQ [XT ∣ ξt] = S(ξt, t)

(4.120)

and

∫
1

0
x2Adx = BEQ [X2

T ∣ ξt] . (4.121)
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Applying the quotient rule to Γ2(ξt, t)

Γ2(ξt, t) =
∂

∂t
φt(x) =

∂

∂t

A

B

= 1

B

∂A

∂t
−A( 1

B2
) ∂B
∂t

(4.122)

and using Eq. (4.118) and Eq. (4.121) gives

Γ2(ξt, t) = φt(x)
T

t2(T − t)2

⎛
⎝
x ( ˙̂gtt(T − t)(ξt − ĝtx) − ĝt(ξt − 1

2 ĝtx)(T − 2t))

− ( ˙̂gtt(T − t) (ξtS(ξt, t) − ĝtEQ [X2
T ∣ ξt])

− ĝt(T − 2t) (ξtS(ξt, t) − 1
2 ĝtE

Q [X2
T ∣ ξt]) )).

(4.123)

The Γ3(ξt, t) term is found by

Γ3(ξt, t) =
∂

∂ξt
Γ1(ξt, t)

= T

t(T − t) ĝt (φt(x)
T

t(T − t) ĝt (x −EQ [XT ∣ ξt])
2 − φt(x)

∂

∂ξt

C

B
)

(4.124)

and applying the quotient rule

∂

∂ξt

C

B
= 1

B

∂

∂ξt
C − C

B2

∂

∂ξt
B

= T

t(T − t) ĝtV
Q [XT ∣ ξt] .

(4.125)

Now substituting this into Eq. (4.124), one finds

Γ3(ξt, t) =
T 2

t2(T − t)2
ĝ2
t φt(x) ((x − S(ξt, t))

2 −VQ [XT ∣ ξt]) . (4.126)
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Hence, we have found Γ1(ξt, t), Γ2(ξt, t) and Γ3(ξt, t) and one can plug these
values into Eq. (4.113) and calculate the three integrals

∫
1

0
xΓ1(ξt, t)dx =

T

t(T − t) ĝtV
Q [XT ∣ ξt]

∫
1

0
xΓ2(ξt, t)dx =

T

t2(T − t)2

⎛
⎝

˙̂gtt(T − t)(ξtEQ [X2
T ∣ ξt] − ĝtEQ [X3

T ∣ ξt])

− ĝt(T − 2t)(ξtEQ [X2
T ∣ ξt] − 1

2 ĝtE
Q [X3

T ∣ ξt])

− S( ˙̂gtt(T − t) (ξtS(ξt, t) − ĝtEQ [X2
T ∣ ξt])

− ĝt(T − 2t) (ξtS(ξt, t) − 1
2 ĝtE

Q [X2
T ∣ ξt]) )

⎞
⎠

∫
1

0
xΓ3(ξt, t)dx =

T 2

t2(T − t)2
ĝ2
t

⎛
⎝
EQ [X3

T ∣ ξt]

− 2S(ξt, t)EQ [X2
T ∣ ξt]

+ S3(ξt, t) − S(ξt, t)VQ [XT ∣ ξt]
⎞
⎠
.

(4.127)

Substituting these three expressions in Eq. (4.127) into Eq. (4.113) we find

dSt =
T

t(T − t) ĝtV
Q [XT ∣ ξt]dξt+

T

t2(T − t)2

⎛
⎝
ĝt(T − t) (ĝt − ˙̂gtt) (EQ [X3

T ∣ ξt] − S(ξt, t)EQ [X2
T ∣ ξt])

−VQ [XT ∣ ξt] (ξt(ĝt(T − 2t) − ˙̂gtt(T − t)) + T ĝ2
tS(ξt, t))

⎞
⎠

dt

(4.128)

which is the dynamic price process for a continuous XT ∈ [0,1]. For a discrete
state XT ∈ {0,1} one finds a simpler form of Eq. (4.128)

dSt =
T

t(T − t) ĝtV
Q [XT ∣ ξt]

⎛
⎝

dξt +
1

t
(ĝt − ˙̂gtt)

− 1

t(T − t) (ξt((T − 2t) −
˙̂gtt

ĝt
(T − t)) + T ĝtS(ξt, t))dt)

(4.129)
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where it can be computationally shown for certain definitions of ĝt , such as
ĝt = t2, that

dB̃t = dξt −
1

t(T − t) (ξt ((T − 2t) −
˙̂gt
ĝt
t(T − t)) + T ĝtS(ξt, t) +

1

t
(ĝt − ˙̂gtt))dt

(4.130)
is a standard Brownian motion. Finally one arrives at the generalised dynamic
price process

dSt =
T

t(T − t) ĝt (1 − φ1t)φ1tdB̃t (4.131)

which is applicable if and only if limt→T
g(t)

V[βtT ]
→∞. Notice that Eq. (4.131) yields

the BHM model by setting ĝt = σt which reproduces the same price dynamics as
in Eq. (4.62). Now that Eq. (4.131) has been derived one can now use this form
to fit to real data which is performed in Sec. 4.7.2.

4.7 Fitting Racing Data to An Information Pro-

cess

Using the theory reviewed and developed in Sec. 4.2.3 the BHM model is fitted
to the last price matched signal, see Sec. 2.2, for the winning horses. We first fit
the linear model, as defined by the original BHM model as in Eq. (4.11), in Sec.
4.7.1. The next fit that is performed is with the non-linear information model
that was developed in Sec. 4.6, derived as Eq. (4.131), and this is described in
Sec. 4.7.2.

4.7.1 Fitting a Linear Information Rate Model

This section explores the application of a fitting procedure to the linear informa-
tion rate BHM-model, Eq. (4.11), which is based on

ξt = σ̂XT t + βtT (4.132)
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where σ̂ is the positive constant information rate parameter that will be fitted
and all other notation is the same as in Sec. 4.2. The fitting of σ̂ is applied to
the winning last price matched signals (XT = 1) which are described in the Table
2.1 and Sec. 2.2. The winning last price matched signals are filtered and sorted
by the course distances, splitting the data into sub-samples. There tends to be a
period of lower fluctuation in the last price matched winning signal at the start of
the race compared to when the volatility cluster is observed, see Fig. 2.4 middle
left. A volatility cluster is defined as tendency of large price movements to clump
together, this is illustrated in Fig. 4.19 using the return series from the S&P500.
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Figure 4.19: This is the percentage return series for the S&P500 starting from
01/01/06 and ending 31/12/16. We see there are parts of the signal that oscil-
late with large swings, as compared to the majority of the series, and these are
clumped together. This is known as a volatility cluster and the most prevalent
one is found round the period 2008-2009.

The volatility cluster found with the gambling data is assumed to be the point
at which the information process is initiated, such that the time coordinate in
the model is defined to start at this point. To find the time when the volatility
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cluster starts to emerge we use an exponential weighted moving average model
(EWMA) [18,81] which is calibrated on the increments of the last price matched:
this running volatility measure is then compared to the signal’s standard devia-
tion. If the EWMA measure of volatility exceeds the standard deviation then this
is the point at which the volatility cluster starts and the point t = 0 in the cali-
bration of our BHM model fit. The sub-samples determined by the race distance
are represented by 100 randomly picked winning signals which are averaged by
binning and averaging the data points in those bins; these bins are equally spaced
in the interval t ∈ [0,1]. These averaged signals are then shifted up vertically so
that the final value of price is 1 and then rotated about the end data point, which
is the point (t = 1, Last Price Match = 1), ensuring that all the signals start at
the same a priori probability (denoted as p1 in the BHM model Eq. (4.51)). The
fit is performed on each of the average price signals that are designated by the
course distance. We define the information rate parameter space as the interval
σ̂ = [0.5,2] which is split into evenly spaced values of step size 0.01. We define
there to be Nσ = 151 values of the σ̂ parameter in the search space. We index the
interval σ̂ = 0.5,0.51,0.52, . . . ,2 as σ̂l = 0.5 + l(0.01) where l = 0,1,2, . . .150. For
each value of σ̂l one generates 1.0 × 104 information processes and thus 1.0 × 104

price signals using the BHM pricing kernel in Eq. (4.19). These price processes
are denoted as {S(t, σ̂l)}u=1,2,...,1×104 for each l = 0,1,2, . . .150 and then they are
averaged over the 1.0×104 samples, denoted S̄(l)

t = ⟨S(t, σ̂l)⟩. The average empir-
ical price is J(j)

t = ⟨LPM (j)
t ⟩ where the index j = 1,2, . . .Nd corresponds to the

sub-samples filtered on course distance and ⟨.⟩ is the binned average over the 100
signals. The mean square error (MSE) on the set of parameters σ̂l is defined as

{MSE (σ̂l)}j=1,2,...,Nd
= 1

T

T

∑
τ=1

(J(j)
τ − S̄(l)

τ )
2

(4.133)

where l = 0,1, . . . ,150, τ = 1,2, . . . , T is indexed time t within the averaged binned
price J(j)

t and the average BHM price is S̄(l)
t . Using the MSE as the fitting

measure, one can find the σ̂l for each race distance j = 1,2, . . . ,Nd that gives the
smallest value of MSE. This procedure is defined mathematically as the minimum
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mean square error (MMSE)

σ̂j = {arg min
σl

(MSE (σl))}
j=1,2,...,Nd

(4.134)

hence we estimate the σ̂j for each race distance j. This process is repeated 100
times and σ̂j for each j = 1,2, . . . ,Nd is shown in Fig. (4.20). On a log-log scale
one observes a linear relationship between log (σ̂j) and the logarithm of race
course distance. A linear relationship on a log-log scale is a power-law where the
gradient of the linear line is the exponent of the power law which is estimated as
m̂ = 0.3993 ± 0.0413. This positive value of m̂ indicates that races of a smaller
distance are dominated more by noise than the longer races.
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Figure 4.20: A log-log plot where the blue circles are the estimated values of σ̂j
for each of the distances j = 1,2, . . . ,Nd. The red line is a linear model with
intercept, the gradient is estimated to be m̂ = 0.3993 ± 0.0413. This estimation
of m̂ has a p-value of 5.18× 10−7 and R2 = 0.8164 both indicating that this linear
model is statistically significant.
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An issue when calculating the variance process Eq. (4.59) with the fitted
linear information rate σ̂ is demonstrated in Fig. 4.21. One observes from Fig.
4.21 that the model underestimates the variance after the time t ≈ 0.2. The
volatility profiles in Fig. 4.21 of the model (blue line) and the data (red line) do
have a similar structure but we can improve the fit by employing a non-linear
information process in Sec. 4.7.2.
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Figure 4.21: The solid blue lines are the average variance calculated with the real
price data. The average variance is calculated by Eq. (4.59) and averaged over
10 samples. The dashed red line is the average variance for the simulated BHM
model with σ̂j given by the blue circles in Fig. 4.20. Each of the lines in the two
stack (red and blue) from top to bottom are increasing in race distance, and are
estimates for the variance.

4.7.2 Fitting a Non-Linear Information Rate Model

This section explores the implementation of the non-linear information process
defined in Eq. (4.107). This is of the form

ξt = ĝ(t)XT + βtT (4.135)
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where ĝ(t) is a function that will be estimated. The price of such an asset with
a binary terminal payoff is found in Sec. 4.2.3 to be

St = (1 + p1
p0

exp (− T
t(T−t) ĝ(t)(βtT + 1

2 ĝ(t))))
−1

(4.136)

where 0 ≤ t < T , 0 < St < 1, p0 and p1 are the a priori probabilities as defined in
Eq. (4.51). The price Eq. (4.136) is inverted and a sample average taken which
gives

ĝ(t)(⟨βtT ⟩N + 1
2 ĝ(t)) − ⟨h(t, St)⟩N = 0 (4.137)

where function h(t, St) is defined as

h(t, St) ≜ −
t(T − t)

T
ln(p1

p0

(1 − St)
St

) (4.138)

such that h(t = 0, S0 = p1) = 0 and h(t = T,ST = 1) = 0. As stated in Sec. 4.1.3 the
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Figure 4.22: The implementation of the non-linear function fitting procedure as
defined by Eq. (4.139). The noisy solid lines that fluctuate are fits obtained
using Eq. (4.139) and the smooth solid lines are a degree 6 polynomial that has
been calibrated to fit Eq. (4.139). Each colour denotes price data that has been
sub-categorised by the distance shown (in miles) in the legend.
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Brownian bridge has the following property ⟨βtT ⟩N = 0 and Eq. (4.137) becomes

ĝ(t) =
√

2 ⟨h(t, St)⟩N (4.139)

where ⟨.⟩N is the average over the sample of size N . We use the same empirical
price data as in the linear fit model, Sec. 4.7.1, which is denoted as J(j)

t =
⟨LPM (j)

t ⟩ and fitted with Eq. (4.139) where S̄(j)
t = ⟨S(t, ĝj(t))⟩ and j = 1,2, . . .Nd

as before. The results are displayed in Fig. 4.22. It is clear from this plot that
the information rate function is not linear. We estimate the corresponding of
variances in Fig. 4.23 using the same method as explained in the previous section
Sec. 4.7.1.
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Figure 4.23: The solid blue lines are the average variance calculated with the real
price data. The average variance is calculated by Eq. (4.59) and averaged over 10
samples. The dashed red line is the average variance for the simulated non-linear
BHM model with ĝ(t) given by the smooth lines in Fig. 4.22.
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4.8 Summary and Discussion

In this chapter we discussed and reviewed the main body of literature where the
BHM framework was developed [86–110]. This BHM framework is discussed in
detail in Sec. 4.1 where the information process is mathematically defined as the
union of the true information rate and Brownian bridge price. We then show
in Sec. 4.2 that by applying the BHM framework to model filtrations one can
price financial instruments. This pricing schema is then used to derive a dynamic
form of price evolution, see Eq. (4.30), where we notice that a Brownian process
drives the noise but on the other hand generates the market information. We
also shown the necessary limiting condition for the conditional density function
in Eq. (4.70) which if broken means the price will not converge to correct values.

In Sec. 4.3 we developed the BHM framework such that a synthetic market-
place can be achieved. We first created a mechanism for trading to take place and
proposed how the prices of the trading agents update after trading. The agents
are categorised as either market making, informed traders and noise traders where
each type of agent has a different trading mechanism. To control the number of
trades made by the market makers we defined the inventory control mechanism
in Sec. 4.91 and this is applied so we can observe the effect on the market price
arising from the informed traders and noise traders. The results for the trad-
ing model are presented in Sec. 4.4 where we present the distributions for the
market returns and first passage times for the following configurations (2,0,0),
(2,1,0) and (2,0,1). For the (2,0,0) configuration we change parameters such
as the spread which when increased reduces the frequency of trading and in-
creases the standard deviation of the returns. For the configuration (2,1,0) we
change the spread of the informed trader and apply inventory control and find the
tentative result that a bimodal distribution is observed which is something that
needs further examination. For the configuration (2,0,1) we change the thresh-
old parameter denoted as γ and defined in Eq. (4.90), we find that increasing γ
decreases the frequency of trading.

The Sec. 4.5 explores the introduction of multiple information processes with

143



the example of horse racing markets. We find that making the information pro-
cesses independent ensure that the limiting property Eq. (4.70) holds true. This
is a somewhat frustrating condition because it seems intuitive that information
processes that are correlated would give a richer framework for collections of
agents pricing the same asset.

The Sec. 4.6 discusses a way of introducing a non-linear rate function instead
of a linear function as proposed in the BHM model. We defined this as a general
function that obeys the condition Eq. (4.70). We apply Itô’s Lemma to this non-
linear version of the information process and derive the dynamical price process
Eq. (4.131). We find that this process has a similar structure to the BHM price
model but now one can try to fit this non-linear information rate function to see
if it is linear or not.

The final section, Sec. 4.7 took the original BHM theory and successfully
applied it to the winning horse signals from the data set. We found that when
fitting to the average last price matched using the original BHM model the in-
formation rate parameter followed a power law with a positive exponent against
course distance, see Fig. 4.20. This gives the interpretation that the odds in
short races are governed more by noise than is found in longer races. We took
the non-linear BHM model derived in Sec. 4.6 and fitted it to the same data
set as the linear BHM. This estimation of the information rate function does not
produce a linear function but one that can be regarded as either piecewise linear
or a polynomial of order 6.
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Chapter 5

Optimal Trading Strategies – a
Time Series Approach

The last couple of decades have seen many physicists becoming interested in the
question of portfolio optimisation [133–144]. Key issues addressed in these stud-
ies concern the effects that sampling noise is likely to have on the measurement
of correlations or covariances in large portfolios, the way in which such sampling
noise is going to affect the solution of a subsequent mean-variance portfolio opti-
misation problem, and the design of methods to mitigate against adverse effects
of such sampling noise.

The bedrock of most of these studies is the theory of random sample co-
variance matrices [145]. Their spectral theory was pioneered by Marčenko and
Pastur [146] in the 1960’s. It has indeed been observed that, apart from a num-
ber of large eigenvalues, the bulk of the spectrum of sample covariance matri-
ces of asset returns in various markets is very close to the form predicted by
Marčenko and Pastur for sample covariance matrices of i.i.d. random data; see
e.g. [133, 134]. This type of comparison between market data and a null-model
defined by random data could then be used to devise theory-guided ways of dis-
tinguishing between information and noise in market data, and thereby to devise
methods to clean covariance matrices of asset returns for the purpose of their
subsequent use in portfolio optimisation, with the effect of improving risk-return
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characteristics [133,135–144,147].

The present study was triggered by the fact that the spectral theory of sample
auto-covariance matrices, the analogue of [146] in the time domain has recently
become available [148]. This leads us to revisit the analogue of Markowitz mean-
variance optimisation in the time domain [6], which in its simplest incarnation
allows to find an optimal trading strategy for a single traded asset over a fi-
nite (discrete) time horizon. We investigate this setup for a range of synthetic
processes, taken to be either second order stationary, or to exhibit second order
stationary increments, and we systematically study the effects of sampling noise
on optimal strategies and on risk-return characteristics. Finally, we apply our
framework to daily returns of the S&P500 index, and we explore how results ob-
tained for spectra of sample auto-covariance matrices obtained in [148] could then
be used as a guide to clean sample auto-covariance matrices in a spirit analogous
to that used for sample-covariance matrices in the context of portfolio optimisa-
tion.

We note at the outset that we regard this as an exploratory study, and that we
ignore economic factors such as discounting and agents’ asymmetric perceptions
of gains and losses in the present study. Expecting that the primary area of
application of our techniques would be in the high-frequency domain, as return
auto-correlations will be most prominent at short times. We note, however, that
much of our analysis is about the effects of sampling noise on optimal trading
strategies, which is relevant at all time scales, and thus also for weakly correlated
data.

5.1 Time Series Review

Times series can be exercised in a multitude of areas of applied mathematics and
can be a powerful tool in real time statistical analysis. Using time series to split a
signal into a component sum of deterministic trends, seasonal trends and random
fluctuations (i.e. Gaussian white noise). Trends are removed from a data set by
procedures such as differencing, de-trending and Hodrick-Prescott filter. These
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normalising methods ensures that no long term trends are mistaken for seasonal
movements also known as “seasonal adjustment”. A beneficial property of time
series modelling is forecasting; the technique filters out random components of
the signal and find hidden deterministic trends that can be applied to the future
to make predictions. A reason for adopting time series for this study is the
synthetic generation of stochastic signals, which will be assumed to mimic the
fluctuation of an assets’ price in time (such as an index or component of an
index). Times series models can be calibrated by maximum-likelihood or machine
learning techniques [149], with real data which in turn can be used as a means to
simulate the fluctuations of real data. This calibration may have some predictive
power for some time scales, but these have been highly criticised in some of the
economics literature [150]. The signal is simulated by an underlying process such
as an auto-regressive process and in turn generates synthetic data for analysis.
Other examples of random signals could be tidal levels [76, 151], import/export
quantities [152,153], and pairs trading [47–52] and Sec. 3.3. Adopting time series
methodologies gives a means of simulating synthetic processes and stress test
the models developed. Depending on subjective opinion of the model builder
with information criteria [154] and test-statistics, one can build a model such as
ARIMA(p, i, q) or GARCH(p, q) to model price or return fluctuations.

5.1.1 Mathematical Framework

This section outlines the fundamental mathematical definitions of time series
analysis used in our model that can be also found in the following textbooks
[18,81,155–157]. A time series can be thought of as a sequence of random variables
that have been sampled or measured in time, known as a time index. The time
index is a member of a time index set T, for example T ⊂ Z. The time index set
is by no means a strict definition of T, as one can index with the continuous real
line R (see [68]). This chapter will only be concerned with the discrete time index
case that is t ∈ {1,2, ..., T}. The random variables of a time series are defined in
the probability space (Ω,F ,P) where Ω is the sample space, F is the σ-field and
P is the physical probability measure. We have now denoted enough variables to
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define a stochastic signal and a time series as

{Xt(ω) ∣ ω ∈ Ω, t ∈ T} - Stochastic Signal/Process

{xt ∣ t ∈ T} - Sequence of observations of Xt(ω) (filtration).
(5.1)

This sequence of random variables is assumed to be distributed in some manner
and will be simple and well behaved. If the event is fixed ω ∈ Ω and the time index
set is t = {1,2, ..., T}, then the discrete sample path of the underlying stochastic
signal is {X1,X2, ...,XT}. Each realisation of {Xt(i)}Mi=1 gives a single value and
one can repeat the operation of measurement which supplies M samples denoted
as

{X1(1),X2(1), ...,XT (1)},{X1(2),X2(2), ...,XT (2)}, ...,{X1(M), ...,XT (M)}.

Estimating the expectation of {Xt(i)}, from this sample space, is found by taking
the ensemble average for all the realisation at time t. In reality one only observes
a particular sample path for the underlying process, so it is insurmountable to
calculate the sample mean for all i. A more prudent way of estimating the
expectation of a stationary process {Xt} is the time average

⟨Xt⟩ = 1
M

M

∑
t=1

xt . (5.2)

The time average of a stochastic signal is only feasible if the probability distribu-
tion of the underlying process {Xt} is time-shift invariant also known as signal
stationarity.

5.1.2 Stationary Signals

The stationarity property is at the heart of time series and allows one to exercise
statistical analysis on a stochastic time signal {Xt}. Non-formally, a stationary
signal is one that has similar or unchanged statistical properties under time trans-
lation (time-shift invariant). Formally, a stationary signal {Xt} is one that has
an independent joint cumulative distribution function (CDF) under a time-shift,
defined in Eq. (5.3).
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5.1.3 Strict Stationarity

Consider a stochastic signal {Xt ∣ t ∈ T} which for any subset of the time index
set T = {t−n, t−n+1, . . . , t−2, t−1, t0, t1, t2, . . . tn−1, tn}. For any lag h ∈ T such that
ti + h ∈ T where {i = −n,−n + 1, . . . ,−2,−1,0,1,2, . . . , n − 1, n} and n being a
positive integer; if the CDF of the process {Xt ∣ t ∈ T} is invariant under the
following time-shift

FX(xt−n , ..., xt−1 , xt0 , xt1 , ..., xtn) = FX(xth−n , ..., xth−1 , xth , xth+1 , ..., , xth+n) (5.3)

then {Xt ∣ t ∈ T} is said to be strictly stationary. This implies the distribution FX
is independent of the time-shift and the signal {Xt} is strictly-stationary. One
can express the definition of strict-stationarity explicitly in terms of time depen-
dent expectation and auto-covariance:

(i) E[Xt] = µX(t) .

(ii) C[Xt,Xt′] = E[(Xt − µX(t))(Xt′ − µX(t′))] = γX(t, t′); ∀t, t′ ∈ T .

Here it has been assumed that the signal is defined in terms of the L2-norm∗ such
that the process {Xt ∈ L2 ∣ t ∈ T} has the following finite expectation E[∣Xt∣2] < ∞.
This assumption ensures that the two properties, (i) and (ii), from the above box
are both finite and exist. The function γX(t, t′) is known as the auto-covariance
function and γX(t, t) = V (Xt).

5.1.4 Weak Stationarity

The strict-stationarity property is usually too strong, rigid and impractical of
a property to test on a real time-series, as an empirical distribution is never
completely realised. In the analysis of empirical data, one would find it extremely
difficult, nigh impossible, to ensure strict-stationarity is maintained throughout
the signal. A more pragmatic and practical approach is to adopt a weaker form
of strict-stationarity, a statistical approach based on the signals first and second

∗The general p-norm is defined as Xt ∈ Lp⇔ E[∣Xt∣
p] < ∞.
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moments. If one assumes that the mean and covariance function of the signal
{Xt ∈ L2 ∣ t ∈ 1,2, . . . ,M} hold statistically in the following way:

(i) µX(t) = µX(t′) = µ̂X , where t′ = t + h ∀h ∈ T

(ii) C[Xt,Xt′] = γX(t, t′) = γ̂X(h)

(5.4)
then one has a weak stationarity. The hat indicates that a statistical estimation
of the moment is being performed, see Eq. (5.7). The definitions of a weak
stationary signal shows that the mean and covariance are statistically time-shift
invariant which can be tested with a Kwiatkowski, Phillips, Schmidt, and Shin
(KPSS) test [75,81,158].

Consider a stochastic signal {Xt} which is weak stationary, one can define the
auto-correlation function as

ρ̂X(h) = γ̂X(h)
γ̂X(0) (5.5)

where ρ̂X(h) ∈ [−1,1] is bounded.

The fact that the empirical auto-correlation and auto-covariance function are even
symmetric functions, implies one can define the Toeplitz form as the following
matrix

{Σ}ij = γX (∣i − j∣) (5.6)

where the auto-covariance matrix is the true auto-covariance matrix if the number
of sample M →∞.
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5.1.5 The Empirical Estimation

The empirical mean and variance are defined respectively for M observation as

µ̂X ≜ 1

M

M

∑
t=1

xt

σ̂2
X ≜ γ̂X(0) = 1

M

M−1

∑
t=0

(xt − µ̂X)2

(5.7)

where the hat represents one is estimating the parameters with a finite sample
size M < ∞. The empirical auto-covariance matrix is defined as

Σ̂tt′ =
1

M

M−1

∑
k=0

(xk+t − ⟨xk+t⟩)((xk+t′ − ⟨xk+t′⟩), for 1 ≤ t, t′ ≤ T (5.8)

where this definition is taken from [148] and we have that the sampling error
disappears in the following limit lim

M→∞
{Σ̂} = Σ.

5.1.6 White Noise Process

Consider a stochastic signal {Xt ∣ t = 1,2,3, . . .} and X0 = 0; the signal for each
time is independent and identically distributed (i.i.d) as a Gaussian and has a
second order moment E[∣Xt∣2] = σ2 < ∞. This Gaussian distribution is centred
about the value 0 and has the first order moment E[Xt] = 0 ∀t, therefore the
weak stationarity conditions holds. One writes this process as {Xt} ∼ N(0, σ2)
and because this process is i.i.d the generated sequence will have zero cross-
correlation for each time t. The auto-covariance function of the white noise
process is

γX(h) = σ2
1{h=0} (5.9)

where the indicator 1 = 1 when the lag h = 0 and 1 = 0 otherwise. The true
auto-covariance matrix is

Σ = σ2I (5.10)

where I is the identity matrix with the size (h × h).
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5.1.7 Auto-Regressive AR(p) Process

This process is defined as

Xt = a0 + a1Xt−1 + a2Xt−2 + ... + apXt−p + ξt; t ∈ T (5.11)

where {ξt} ∼ N(0, σ2) ∀t and a0, a1, a2, ..., ap are the fixed parameters of the model
with p being the number of degrees-of-freedom. Using the lag operator as in Eq.
(3.27) one can write the AR(p) process as

Xt = a0 +
p

∑
k=1

akL
kXt + ξt (5.12)

expanding and rearranging we find

(1 − a1L − a2L
2 − ⋅ ⋅ ⋅ − apLp)Xt = φ (L)Xt = a0 + ξt (5.13)

hence,
Xt = φ (L)−1 (a0 + ξt) , (5.14)

where the function φ (L) is known as the auto-regressive polynomial. Taking the
expectation of Eq. (5.13) gives

E [Xt] = φ (L)−1 (a0 +E [ξt]) = φ (L)−1
a0 (5.15)

to ensure the expectation does not explode to infinite, we must have φ (L) ≠
0. Noticing that the auto-regressive polynomial can rewritten by defining the
polynomial variable as LkXt = yp−k we arrive at the following

yp − a1y
p−1 − a2y

p−2 − ⋅ ⋅ ⋅ − ap−1y − ap . (5.16)

Hence, for φ (L) ≠ 0 the root of this polynomial must lie within the unit circle
if the AR(p) process is to be weakly stationary. This result comes from the
fundamental theorem of algebra

φ(y) = (y1 − y)(y2 − y) . . . (yp − y) , (5.17)
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where the roots are denoted as y1, y2, . . . , yp and if ∣yi∣ < 1 ∀i one has weak sta-
tionarity. The variance of the AR(p) process is found in a similar way and one
finds

V [Xt] = (φ(L)−1)2 V [ξt] = (φ(L)−1)2
σ2 (5.18)

giving the same condition that weak stationarity requires that φ(L) ≠ 0.

5.1.8 Auto-Regressive AR(1)
The auto-regressive AR(1) process are the simplest of auto-regressive models and
defined from Eq. (5.11) as

Xt = a0 + a1Xt−1 + ξt; t ∈ T (5.19)

where a0 and ∣a1∣ < 1 are constants. If one applies the principle of weak station-
arity then the expectation of Eq. (5.19) gives

E[Xt] = a0 + a1E[Xt−1] +E[ξt]

µX = a0 + a1µX ⇒ µX = a0

1 − a1

,
(5.20)

where we define µX = E[Xt]. The Gaussian noise term {ξt} is also uncorrelated
with {Xt} for each t > h and if a0 = 0 and the expectation is µX = 0. With
repetitive substitution of the AR(1) series one finds an iterative expression for
Xt as a sum of the parameters and white noise

Xt = (a0 + ξt) + a1(a0 + a1Xt−2 + ξt−1)
= (a0 + ξt) + a1(a0 + ξt−1) + a2

1(a0 + a1Xt−3 + ξt−2)
= a0 + ξt) + a1(a0 + ξt−1) + a2

1(a0 + ξt−2) + ...
(5.21)

⇒Xt =
∞

∑
i=0

ai1(a0 + ξt−i). (5.22)
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If ∣ai∣ < 1 one can evoke the geometric sum ∑∞
i=0 a

i
1a0 = a0

1−a1
= µX and the variance

of the AR(1) process is

V[Xt] = V[
∞

∑
i=0

ai1ξt−i]

=
∞

∑
i=0

(a2
1)
iV[ξt−i]

(5.23)

⇒ V[Xt] =
σ2

1 − a2
1

= σ2
X (5.24)

and the auto-covariance function is found as

γX(h) = E[(
∞

∑
i=0

ai1ξt−i)(
∞

∑
i=0

ai1ξt−h−i)]

= ah1
∞

∑
i=0

a2i
1 E[ξ2

t−h−i]
(5.25)

⇒ γX(h) = ah1σ
2

1 − a2
1

= ah1γX(0) . (5.26)

The AR(1) process, as defined by Sec. 5.19, will be used throughout this chapter
as means to generate synthetic data to test the model.

5.2 Portfolio Optimisation: The Markowitz Set-

Up

In the simplest version of mean-variance portfolio optimisation one considers a
set of N tradable assets i = 1, . . . ,N . It is usually assumed that these do not
include complex financial instruments such as derivatives, options and futures.
An investor can take positions on these assets. We will use πi to denote the
position on asset i, using the convention that πi > 0 represents a long position
(buying the asset), whereas πi < 0 represents a short position (selling asset). With
ri denoting the (random) return on the ith asset, the return on the entire portfolio
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with positions π = (π1, π2, . . . , πN)′ is given by

R(π) =
N

∑
i=1

πiri = π′r , (5.27)

where r = (r1, r2, . . . , rN)′ is used to denote the vector of random returns and the
prime indicates a transpose. The optimal portfolio according to Markowitz is the
one that minimises the variance of the portfolio return,

V[R(π)] =
N

∑
i,j=1

πiπj ⟨(ri − µi)(rj − µj)⟩ =
N

∑
i,j=1

πiπjΣij , (5.28)

subject to the constraint of a given expected portfolio return µP

µP ≡ ⟨R(π)⟩ =
N

∑
i=1

πi ⟨ri⟩ =
N

∑
i=1

πiµi . (5.29)

In Eq. (5.28), Σ = (Σij) is the covariance matrix of asset returns. To put a scale
to the problem, one usually imposes the normalisation constraint

π′1 ≡
N

∑
i=1

πi = 1 . (5.30)

Here 1 = (1,1, . . . ,1)′ denotes theN dimensional vector with all components equal
to 1. The minimisation problem is solved using the method of Lagrange multi-
pliers to take the constraint of expected return and normalisation into account.
One is looking for the stationary point for the following Lagrange function

L = 1

2
π′Σπ − λ1(π′1 − 1) − λ2(π′µ − µP ) (5.31)

with respect to variations of the πi, λ1 and λ2. Elementary linear algebra then
entails that the optimal portfolio π∗ takes the form

π∗ = λ1Σ−11 + λ2Σ−1µ , (5.32)

with actual values of the Lagrange parameters λ1 and λ2 determined by the
constraints.
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5.2.1 Translation into the Time-Domain

The Markowitz portfolio optimisation problem allows a relatively straightforward
translation into the time-domain. To formulate it, assume that X = (Xt)t∈Z is the
price process for a single traded asset. Let πt denote the trading position that an
investor takes on this asset at time t. As in the above, we shall use the convention
that πt > 0 represents a long position (buying the asset), whereas πt < 0 represents
a short position (selling the asset).

The return of a trading strategy π = (π1, π2, . . . , πT )′ over a finite time horizon
of T time steps for a realisation x = (x1, x2, . . . , xT )′ of the price process can be
written as

RT (π∣x0) =
T

∑
t=1

πt(x0 − xt) . (5.33)

In terms of these conventions the expected return µS of a trading strategy (con-
ditioned on the initial price x0) is

µS = ⟨R(π∣x0)⟩ =
T

∑
t=1

πt(x0 − µt) = x0 −π′µ , (5.34)

where we have restricted ourselves in the second step to normalised trading strate-
gies satisfying π′1 = 1, and where µt = ⟨xt⟩ denotes the expected price at time t.

It is worth remarking at the outset that X could alternatively (and perhaps
even more appropriately in the present context) be thought of as the log-price
process, in which case RT (π∣x0) would be the log-return of the strategy π. For
the sake of simplicity and definiteness, we shall stick to the language of price
processes and returns in what follows.

An optimal trading strategy in the spirit of Markowitz would then be a strat-
egy which minimise the (conditional) variance

V[RT (π∣x0)] =
T

∑
t,t′=1

πtπt′ ⟨(xt − µt)(xt′ − µt′)⟩ =
T

∑
t,t′=1

πtπt′Σtt′ , (5.35)
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subject to the constraints of normalisation π′1 = 1 and given mean return π′µ =
x0 − µS. In Eq. (5.35), the matrix Σ = (Σtt′) now denotes the auto-covariance
matrix of the price process.

The algebraic side of the problem of finding an optimal trading strategy is now
formally fully equivalent to that of finding an optimal portfolio, and the optimal
strategy π∗ takes the form

π∗ = λ1Σ
−11 + λ2Σ

−1µ , (5.36)

with Σ now the auto-covariance matrix of the price process rather than the co-
variance matrix of portfolio returns. Actual values of the Lagrange parameters
λ1 and λ2 are determined by the constraints as before.

It is well known, and indeed easily verified that the globally optimal solution,
which does not impose a restriction concerning the mean return, is compactly
given by

π∗
GO = Σ−11

1′Σ−11
. (5.37)

As seen before in Eq. (5.36), we have a linear optimisation problem which
can be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 µ1

1 µ2

Σ̂ ⋮ ⋮
1 µT

1 1 . . . 1 0 0

µ1 µ2 . . . µT 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

π∗1
π∗2
⋮
π∗T

−λ1/2
−λ2/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

⋮
0

1

µp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
k

(5.38)

where the empirical auto-covariance matrix Σ̂ is estimated as Eq. (5.8). The
solution is found by a = A−1k and the right hand side can be estimated with
ordinary least square regression or an alternative regression method. The global
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minimum strategy is found with the empirical auto-covariance matrix as

π∗t,GO = ∑
N
t′=1 Σ̂−1

tt′

∑t,t′=1 Σ̂−1
tt′

. (5.39)

The main problem facing both portfolio optimisation à la Markowitz, and the
mean-variance approach to finding optimal trading strategies, is that covariance
matrices of portfolio returns or auto-covariance matrices of price processes of
traded assets are not known, but need to be estimated from empirical market
data. The effects of sampling noise in such estimation processes are well studied
in the case of portfolio optimisation. As mentioned in the introduction, various
strategies to mitigate against such effects, typically guided by random matrix
theory, have been investigated in the past.

By contrast, the corresponding randommatrix theory for sample auto-covariance
matrices that might be invoked for similar purposes for the problem of mean-
variance formulations of optimal trading strategies has only recently become
available [148]. We shall address the issue of sampling noise in empirical data
and the use of spectral theory for the purpose of guiding the choice of “cleaning”-
strategies for auto-covariance matrices of market data below in Sec. 5.4. Before
that we investigate the effects of sampling noise for some synthetic processes
where comparison with known true auto-covariance matrices is possible.

5.3 Results for Synthetic Price Processes

In this section we evaluate the theory developed in the previous section for syn-
thetic price processes. We begin by taking these processes to be either white noise
processes or auto-regressive processes of order 1 (see Eq. (5.19)), and then move
on to look at the situation where price-increments are modelled as white-noise and
auto-regressive processes, respectively. For the white noise and auto-regressive
price processes, the true auto-covariance matrices are known, and analytical ex-
pressions for optimal trading strategies can be given. We then look at the effects
of sampling noise, using estimates of auto-covariance matrices for various values
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of the ratio of α = T /M of the length T of the risk horizon (and thus the ma-
trix dimension) and the sample size M used to determine these estimates. The
analytical expressions for the true auto-covariance matrices correspond to the
(α → 0)-limit in these results.

5.3.1 Synthetic Stationary Price Processes

The primary objectives of the project to analysis a single asset from a portfo-
lio that has been translated to the time domain. In the next few sections we
will combine what was learned in the previous two chapters to form the basis
of our research. To this end it is assumed that a single assets price is a weakly
stationary stochastic signal {Xt ∣ t ∈ {1,2, ...,N + T}} where N,T ∈ Z+. N is
the dimension of the empirical auto-covariance matrix and T is the number of
realisations. From this signal we calculate its empirical auto-covariance Σ̂ and
apply optimisation techniques to find the global minimum-variance of the signal
{Xt}, which demonstrates optimal trading strategies π∗t . We first consider a price
process with fluctuations around the trend ∆xt = xt − µt taken to be a Gaussian
white noise process, i.e. ∆Xt ∼ N(0, σ2). The true auto-covariance matrix in this
case is proportional to the unit matrix, i.e. Σt,t′ = σ2δt,t′ .

The globally optimal strategy Eq. (5.37) for a time horizon of length T in
this case is then readily found to be

π∗t,GO = σ−2

∑Tt=1 σ
−2

= 1

T
. (5.40)

Thus, for a white noise process with variance σ2 the optimal strategy π∗
GO =

(1/T,1/T, ...,1/T )′ is uniform over the time horizon T , and independent of the
variance of the price process. The analogous result for a Markowitz portfolio of
uncorrelated assets is, of course, well known. The optimal liquidation strategy
would be to make N →∞ with π = (1/T, ...,1/T )′ and hence the global minimum
variance

lim
T→∞

{(σ∗p)2} = lim
T→∞

{ 1
T } = 0 (5.41)

where σ∗p is the standard deviation of the optimal trading strategy.
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Let us next assume that price fluctuations around the trend are described by
an AR(1) process, i.e. an auto-regressive process of order 1 of the form

∆Xt = a∆Xt−1 + (
√

1 − a2)ξt , (5.42)

in which ξt ∼ N(0,1); for simplicity, we have normalised the process to exhibit
fluctuations of variance 1. The parameter a in Eq. (5.42) is required to satisfy
∣a∣ < 1 for fluctuations to be stationary. The auto-covariance function of this
process is known to be given by

γ(i) = Cov[∆Xt∆Xt−i] = a∣i∣. (5.43)

The auto-covariance matrix evaluated for a finite time horizon of length T is thus
a Toeplitz matrix of the form

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 a a2 ⋯ aT−1

a 1 a a2 ⋮
a2 a 1 a ⋱

a2 a 1 ⋱ a2

⋮ ⋱ ⋱ ⋱ a

aT−1 ⋯ a2 a 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.44)

Its inverse is a tridiagonal matrix given by

Σ−1 = 1

1 − a2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −a 0 ⋯ ⋯ 0

−a 1 + a2 −a ⋱ ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 0

⋮ ⋱ −a 1 + a2 −a
0 ⋯ ⋯ 0 −a 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.45)

The globally optimal strategy Eq. (5.37) for a time horizon of length T in this
case is then given by

π∗
GO = λ1(1,1 − a, . . . ,1 − a,1)′ , (5.46)
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with λ1 = [2 + (T − 2)(1 − a)]−1 fixed by the normalisation-constraint π′1 = 1.
In this case the globally optimal trading strategy turns out to be uniform apart
from the two boundary terms. The white noise result is clearly recovered in the
(a→ 0)-limit for the present result of the AR(1) process, as it should.

Solutions with constraints on the expected return can be given in closed form
as well; they are simply obtained by inserting Eq. (5.45) into Eq. (5.36), with
Lagrange parameters achieved by solving a pair of linear constraint equations;
details will, of course, depend on assumptions concerning the drift, and we re-
frain from writing them down explicitly.

Fig. 5.1 shows optimal strategies for an AR(1) price process with parameter
a = 0.8, both for the global optimum as well as for cases with non-zero mean
returns imposed. As can be seen from the figure, increasing the expected strategy
return from µS = 4.0 × 10−4 to µS = 1.0 × 10−3 changes the optimal strategy Eq.
(5.36) from one that is monotone decreasing over the risk-horizon to one which
is monotone increasing , and starting in fact with a (short-)selling position at the
initial time-step t = 1.

5.3.2 Synthetic Price Processes with Stationary Increments

The stationarity assumption for the price process used in the previous subsection
is clearly unrealistic, and there is obviously need to go beyond that, if the meth-
ods discussed in the present investigation are to be useful in practice.

However, once the realm of stationarity is left, some structure is needed on
a different level in order to make operational sense of estimating auto-covariance
functions and the corresponding auto-covariance matrices defined over a finite
time horizon. The structure we shall rely on here is based on the assumption
that (fluctuations of) price-process can be described as having stationary incre-
ments. If one adopts the reading that the processes considered here are actually
log-price processes, the assumption of stationarity of their increments is actually
a popular assumption in much of Mathematical Finance.
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Figure 5.1: Top panel: Globally optimal trading strategy for an AR(1) price
process with a = 0.8 over a risk horizon of T = 10 time steps. Bottom panel:
optimal strategies for a process with the same parameter a and a linear drift of
the form µt = 10−4t, imposing expected strategy returns of µS = 4 × 10−5 (blue
solid line) and µS = 1 × 10−3 (solid orange line).
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In what follows we assume that the (log-) price process X = (Xt) exhibits
stationary increments, i.e. that

Xt =Xt−1 + Yt (5.47)

with Yt = ⟨Yt⟩ +∆Yt = µt − µt−1 +∆Yt with zero-mean fluctuations ∆Yt. In terms
of these conventions, we can write the return of a strategy π = (πt) for a given
realisation x as

RT (π) =
T

∑
t=1

πt(x0 − xt) =
T

∑
t=1

πt[(µ0 − µt) −
t

∑
τ=1

∆yτ]. (5.48)

The expected return is given by the first contribution on the r.h.s, while the
variance is

V[RT (π)] =
T

∑
t,t′=1

πtπt′[
t

∑
τ=1

t′

∑
τ ′=1

⟨∆yτ∆yτ ′⟩ ]. (5.49)

This is of the same structure as Eq. (5.35), with the auto-covariance matrix
Σ ≡ ΣX = (ΣX

t,t′) of the non-stationary price process expressed in terms of the
auto-covariance matrix ΣY = (ΣY

t,t′) of the process of price increments as

ΣX
t,t′ =

t

∑
τ=1

t′

∑
τ ′=1

⟨∆yτ∆yτ ′⟩ =
t

∑
τ=1

t′

∑
τ ′=1

ΣY
τ,τ ′ . (5.50)

This relation between the auto-covariance matrices of process and the correspond-
ing process of increments can be compactly expressed in matrix form as

ΣX = PΣYP ′ , (5.51)

where P is a lower triangular constant matrix of ones,

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0

⋮ ⋮ ⋮ ⋱ ⋮
1 1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.52)
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The mean-variance approach to strategy optimisation then yields optimal
trading strategies of the form Eq. (5.36), with the auto-covariance matrix Σ = ΣX

of the price process expressed in terms of the auto-covariance matrix ΣY of the
process of stationary increments according to Eq. (5.51).

Taking the price increments to be a white noise process ∆Yt ∼ N(0, σ2),
we have ΣY

t,t′ = σ2δt,t′ so Σ−1 = σ−2(PP ′)−1, where (PP ′)−1 is found to be of
tridiagonal form,

(PP ′)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0

⋮ ⋱ ⋱ ⋱ ⋮
0 0 . . . −1 2 −1

0 0 . . . −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.53)

The globally optimal strategy Eq. (5.37) in this case is then simply

π∗
GO = (1,0,0, . . .0)′ , (5.54)

i.e., it consists of taking a single long position at the initial time step.

If we assume an AR(1) process, of the form Eq. (5.42), for the fluctuations of
the price increments, i.e.

∆Yt = a∆Yt−1 + (
√

1 − a2)ξt , (5.55)

then it is ΣY which is given by Eq. (5.44); it turns out that Σ−1 = (PΣYP ′)−1,
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too, can be evaluated in closed form, giving

Σ−1 = 1

1 − a2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C −A2 a 0 ⋯ ⋯ ⋯ 0

−A2 2B −A2 a 0 ⋮
a −A2 2B −A2 a 0 ⋮
0 ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ 0

⋮ 0 a −A2 2B −A2 a

⋮ 0 a −A2 C −A
0 ⋯ ⋯ ⋯ ⋯ 0 a −A 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

in which we use the abbreviations A = 1 + a, B = 1 + aA and C = 1 +A2.

In this case the globally optimal strategy Eq. (5.37) is of the form

π∗
GO = (1 + a,−a,0, . . . ,0)′ , (5.56)

i.e. it consists of taking a single long position at the first time-step, which is
then partially offset by a short position at the second time step if a > 0, whereas
it is followed by a further long position if successive price increments are anti-
correlated (a < 0). Note that the solution for white noise increments is correctly
recovered as the (a→ 0)-limit of the AR(1) results.

Once more, solutions with constraints on expected returns can be given in
closed form; in analogy to the procedure described for the case of stationary
price processes, they are obtained by inserting Eq. (5.45) into Eq. (5.36), with
Lagrange parameters obtained by solving a pair of linear constraint-equations.

We find, and shall demonstrate below, that the procedure predicts non-trivial
changes of strategy as constraints on expected returns are varied. Once more,
details will depend on assumptions concerning the drift, and we refrain from pro-
ducing explicit equations here. We will report our analytical results alongside
numerical results which take sampling errors arising from finite sample fluctua-
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tions on estimated auto-covariance matrices into account

5.3.3 Sampling and The Effects of Noise

Having analytical results for synthetic price processes available allows one to
estimate the effects of sampling noise on optimal strategies and on risk-return
profiles. In practice, the analytic structure of an underlying price process will not
be known, and auto-covariance matrices will have to be estimated on the basis
of finite samples, i.e. the design of optimal strategies will have to be based on
sample auto-covariance matrices Σ̂.

For a stationary price process, samples taken along a realisation of the process
can be taken to define the elements of Σ̂ via

Σ̂t,t′ =
1

M − 1

M

∑
k=1

∆xt+k∆xt′+k . (5.57)

This procedure introduces sampling noise; estimated auto-covariance matrix el-
ements Σ̂t,t′ will exhibit O(M−1/2) fluctuations about their corresponding true
counterparts Σt,t′ , which is observed from the central limit theorem. When as-
sessing the effects of sampling noise via the influence on spectra, one expects the
relevant parameter to be the aspect ratio α = T /M , i.e. the ratio of the number of
time-lags considered and the sample-size used to estimate matrix elements. We
shall use this parameter in what follows to parametrise the influence of sampling
noise, with the (α → 0)-limit corresponding to the situation without sampling
noise, i.e. with true asymptotic auto-covariances known.

If the price process is not stationary, but has stationary increments, one can
use Eq. (5.50) and Eq. (5.51) to express the auto-covariance matrix ΣX of the
price process in terms of the auto-covariance matrix ΣY of the process of price
increments. For the latter it is legitimate to use an estimator by sampling along
a realisation, so one can define Σ̂Y via

Σ̂Y
t,t′ =

1

M − 1

M

∑
k=1

∆yt+k∆yt′+k (5.58)

166



0 0.2 0.4 0.6 0.8 1

σ
2

s
, Risk

0

0.2

0.4

0.6

0.8

1

µ
s
, 
R

e
tu

rn

×10
-3

α = 0.5
α = 0.2
α = 0.1
α = 0.01
α = 0.001
α = 0.0001
α = 0

Figure 5.2: Risk-return profile for an AR(1) price process with the same parame-
ters as in Fig. 5.4 for various levels of sampling noise parameterised by α. Results
are obtained by averaging over 107 samples as in Fig. 5.3. Note in particular that
sampling noise leads to an under-estimation of risk. The two horizontal dashed
lines indicate two values of the target return for which optimal trading strategies
are reported in Fig. 5.4 below.

and
Σ̂X = P Σ̂YP ′ . (5.59)

In Fig. 5.2 we show the risk-return profile for the case of an AR(1) price pro-
cess for various aspect ratios α, ranging from α = 0.5 down to α = 10−4, with the
noise-free case α = 0 also included. Note that sampling noise leads to a systematic
underestimation of risk, though results quickly approach the noise-free limit as α
becomes small.

Fig. 5.3 exhibits the weights of the globally optimal (minimum risk) trading
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strategy for this process, while Fig. 5.4 gives weights of optimal trading strategies
for two different values of the target return (indicated by the two horizontal
dashed lines in Fig. 5.2. In this case we assume a small drift µt = 10−4t of the
underlying price process. It is noticeable that an increase in the required target
return leads to a qualitative change of the optimal strategy, with the larger target
return requiring to take an initial short position at the beginning of the trading
period.
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Figure 5.3: Globally optimal trading strategies for an AR(1) price process with
a = 0.8 over a risk horizon of T = 10 time steps, using estimated auto-covariance
matrices. Data are shown for various values of the ratio α = T /M of risk horizon
and sample size M used to estimate auto-covariances according to Eq. (5.57):
optimal strategies (with solid lines as guides to the eye) are obtained by averaging
over 107 samples. Standard deviations are also shown; they rapidly decrease with
α – not shown here as it obscures the shape of the strategy. Results obtained for
the true auto-covariance function, the (α → 0)-limit, are included for comparison.
Note that average strategies obtained for finite samples are very close to the α = 0
results.
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Figure 5.4: Top panel: Optimal strategies for an AR(1) process with a = 0.8 and
a linear drift of the form µt = 10−4t as in Fig. 5.1, with imposed expected strategy
return of µS = 4 × 10−5. Shown are average trading strategies for various levels
of sampling noise parameterised by non-zero α, obtained by averaging over 107

samples. Average results are close to those obtained using true asymptotic auto-
covariance matrices in the (α → 0)-limit, which are included for comparison.
Bottom panel: optimal trading strategies for an AR(1) process with the same
parameters as in the left panel, but now with µS = 1 × 10−3.
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Turning to the situation where we use an auto-regressive process to describe
the statistics of price increments, we see from a comparison of Fig. 5.5 and Fig.
5.2 that risk levels are significantly larger compared to the situation where the
same underlying process describes the fluctuations of the price process itself.

This concludes our collection of results for synthetic price processes, where
the underlying true auto-covariances are known. We now turn to applying the
framework to empirical data, where this is not the case.

5.4 Empirical Data

In what follows we apply our framework to empirical data, using daily adjusted
close data of the S&P500, spanning the period 03 Jan 1950 to 20 Apr 2015.

This is perhaps the point to notice that we are not advocating that using the
variance of trading strategy returns constitutes the best way of capturing risk in
real market data. Indeed, given that market returns are known to have fat-tailed
distributions, variance can at best be regarded as a proxy for risk. However,
our primary goal here is not to explore a wider family of possible risk measures,
but rather to define a reformulation of the popular mean-variance optimisation
strategy in the time domain, and to begin investigating its properties.

5.4.1 The Spectrum of the S&P500 Auto-Correlation Ma-

trix

Before turning to the evaluation of optimal trading strategies and risk-return
profiles we shall have a look at the spectrum of the auto-covariance matrices of
the data, taking time windows of T = 50, and sample sizes of M = 100, hence
α = 0.5. Auto-covariance matrices of the price process are obtained as described
in Sec. 5.3.3, by first evaluating auto-covariances of the return process, assuming
stationarity across individual sample-windows. In order to obtain meaningful
statistics across the entire data set, we transform the return series in each time
window to exhibit unit-variance increments, and then obtain auto-covariances of
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the thus normalised price process using the transformation Eq. (5.59).
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Figure 5.5: Top Panel: Optimal strategies for a setup where the fluctuations of
the price-increments are described by an AR(1) process with a = 0.8; a linear
drift of the form µt = 10−4t is assumed for the price process, and an expected
strategy return of µS = 1× 10−3 is imposed. Shown are average trading strategies
(solid lines) obtained by averaging over 107 samples for various levels of sampling
noise parameterised by non-zero α. Average results are close to those obtained
using true asymptotic auto-covariance matrices in the (α → 0)-limit, which are
included for comparison. Bottom Panel: risk-return profile for this setup, with
the horizontal dashed line indicating the expected strategy return imposed in the
data of the top panel. The bottom panel should be compared with Fig. 5.2,
which exhibits the risk return profile for an AR-1 price process.
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Figure 5.6: Spectrum of the sample auto-covariance matrix of the S&P500, nor-
malised as described in the main text, using T = 50 time lags and an aspect ratio
α = 0.5, i.e. samples of size M = 100 to define the auto-covariances (red full line).
Also shown is a comparison with the spectrum of an auto-covariance matrix for
a price process with independent unit variance increments (green dashed line).
The two are remarkably close.

As can be seen in Fig. 5.6, where we plot the density of logarithms of eigen-
values for ΣY , the spectrum is very broad , spanning several orders of magnitude.
For comparison we include the spectrum for a process with independent unit
variance increments using the same values of T and M , and we notice that the
two are remarkably close. This is not completely unanticipated, as it is one of
the widely reported ‘stylised facts’ in the field that return-series have very short
correlation-times. We will use this type of spectral comparison below to inform
the auto-covariance matrix cleaning strategy that we will use for the purpose of
noise reduction.
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Figure 5.7: Risk-return profile of optimal trading strategies on the S&P500
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optimal strategies are reported in Fig. 5.8.
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5.4.2 Optimal Trading Strategies and Auto-Covariance Ma-

trix Cleaning

In Fig 5.7 we report the risk-return characteristics for optimal trading strategies
on the S&P500, using sample-auto-covariance matrices of T = 50 time lags, and
sample sizeM = 100 as in Fig. 5.6. We report results obtained for auto-covariance
matrices, as measured via Eq. (5.58) and Eq. (5.59), and compare them with
results obtained by applying a cleaning strategy to these, which we shall describe
below. We use realised returns defined by linear trends in each data window
to compute risk-return profiles, and use conventions for in-sample risk, true risk
and and out-of-sample risk as in [159], taking the average auto-correlation ma-
trix across the entire time series as a proxy for the true auto-correlation. The
convention from [159] for risk are defined as:

1. In-sample risk:
σ2

in = π′
EΣ̂πE (5.60)

2. True risk:
σ2

true = π′
CΣπC (5.61)

3. Out-of-sample risk:
σ2

out = π′
EΣπE (5.62)

The subscript E denotes an empirical estimations and subscript C is an analytic
calculation. Note, that the reduction of risk that can be obtained through clean-
ing is substantial. Fig. 5.8 exhibits optimal trading strategies for the S&P500,
showing both the minimal risk solution and risk-optimal solutions for two dif-
ferent non-zero target strategy returns. Apart from the effect of reducing risk,
we find that the effect of cleaning is also to create strategies that are “smoother”
than those obtained without cleaning.

Let us finally turn to the cleaning approach that is used to get the data de-
scribed above. In the context of covariance matrices of financial data, strong
similarities were observed between empirical correlation matrix spectra and the
Marčenko-Pastur law expected for high-dimensional uncorrelated data. One of
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the cleaning strategies that has been suggested due to such similarities is re-
ferred to as ‘clipping’ [133, 159]. It analyses correlation matrices by performing
a spectral decomposition, and regards the bulk of a sample correlation matrix
spectrum, which resembles the Marčenko-Pastur law, as noise. It then trans-
forms correlation matrices by keeping large eigenvalues outside the majority, and
replacing those in the bulk by their average, thereby avoiding small eigenvalues in
the modified matrix. In the present case, the phenomenology is rather different;
there are no eigenvalues of the (normalised) sample auto-covariance matrices that
can be regarded as lying significantly outside the bulk of the spectrum predicted
for uncorrelated increments. So there would be no clear guidance coming from
random matrix theory that could form the basis of a clipping-type procedure.

We, therefore, decided to apply a ‘shrinkage’ method to our data. To the
best of our knowledge, this procedure was first proposed by Stein [160], and
has recently found renewed interest in the Mathematical Statistics [136,142] and
Econophysics [161] communities.

Based on the observation reported in Fig 5.6 that the (normalised) auto-
covariance spectra of the S&P500 and of a synthetic process with independent
increments are indeed rather similar, we apply the shrinkage procedure to the
sample auto-covariance matrixes of the S&P500 increments Σ̂Y , shrinking them
towards a target matrix D given by the diagonal matrix of variances of the
increments (which would indeed describe a process of independent increments),
i.e. towards D = diag({Σ̂t,t}), using the substitution rule

Σ̂Y ← ρD + (1 − ρ)Σ̂Y , (5.63)

and transforming the shrunk Σ̂Y thus obtained to define the cleaned estimate of
Σ̂X using the transformation Eq. (5.51). The proper value for the parameter ρ
in this procedure is determined from the data as described in [136,142].
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5.5 Summary and Discussion

To summarise, in the present study we have a reformulation of Markowitz’ mean-
variance optimisation in the time domain to obtain optimal trading strategies for
a single traded asset over a finite discrete time horizon. Using simple linear alge-
bra, one gets such optimal trading strategies as sequences of buy, hold, and sell
instructions for that asset, which minimise the market fluctuations of the return
generated by this sequence of instructions over a given time horizon, subject to
suitable constraints. The procedure requires the auto-covariance matrix of the
price process (and estimates for expected prices) during the risk horizon as input.

We investigated this problem for some synthetic price processes, taken to be
either second order stationary or be described by second order stationary incre-
ments. Analytic expressions are given for the cases where the price and the return
processes are described by i.i.d. or by auto-regressive fluctuations.

We compare analytic solutions with numerical results for situations where
auto-covariance matrices have to be estimated from finite samples, which is the
situation typically encountered in practice. For the synthetic processes for which
true auto-covariance matrices are known the effects of sampling noise on optimal
strategies and on risk-return profiles can thus be quantitatively assessed. We
find that in general sampling noise leads to an underestimation of risk, but that
asymptotic results are well approximated when samples used to estimate auto-
covariance matrices are sufficiently large. A ratio α = T /M < 0.1, i.e. sample
sizes ten times the length of the risk-horizon appears to be desirable from this
point-of-view.

From the financial point of view on the other hand, it is always desirable to use
time series as short as possible for estimation, to avoid letting (possibly) outdated
data influence current trading strategies. Small samples, however, increase the
effects of sampling noise, and it is for this reason that cleaning strategies have an
important role to play. Looking at the S&P500 data, we found that (normalised)
auto-covariance spectra closely resemble those one would expect for price pro-
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cesses with independent increments, and it is this observation that motivates our
choice of target matrix within a shrinkage cleaning strategy.

We observe that the auto-covariance matrix cleaning gives rise to smoother
trading strategies and that it also leads to a reduction of risk in risk-return pro-
files.

A natural generalisation of the present work would deal with a multi-period
multi-asset version of a mean-variance formulation of optimal trading strategies.
One approach to this problem is to redefine the covariance matrix in the opti-
misation problem to a block matrix. This block matrix will have its diagonal
matrices as the auto-covariance matrices for the N assets and the off-diagonal as
the cross covariance matrices. While some work has been done in this direction
in the past (see. e.g. [147] and references therein) the solution presented in [147]
remains somewhat formal and restricted to the case without correlations in time.
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Chapter 6

Conclusion

This chapter reviews the models developed in Chapters 2-5, with the addition of
possible future research directions. The goal of the thesis was to explore different
ways of modelling prices in two different types of markets: financial and gam-
bling. This was achieved from a number of different angles using statistics, and
stochastic and time series models.

In Chapter 2, we discussed the service sector known as the online gambling
industry. This market has grown substantially in the last decade and has been
driven, partly, by the growth of the internet.

Sec. 2.1 discusses the main features of the gambling market and shows that the
online sector is the fastest growing part. It was crucial in this section to illustrate
the contrast between gambling and investment – because one can be perplexed
by their similarities. These similarities can be quite striking, to the point if one
explores the job market one will now find gambling jobs advertised with titles
such as Quant or Algo-trader; roles usually reserved solely for the finance world.
This resemblance between the financial profession and gambling profession has
materialised through the similarity in the skill sets needed to model such entities
as the order book and the different guises of data science. One must be very clear;
the differences emerge from the fundamental role that investment plays in society,
as it provides society with the means to prosperity and progress; such as faster
computers and funding for research degrees. Whereas, the gambling industry is
a constituent of the services sector – more specifically the entertainment sector.
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Using the data provided to the author by [3], we were able to perform an
extensive study of the in-play horse racing markets. We gave details of this
particular market in Chapter 2 and explained how it is constructed through com-
ponents such as race selection, horse selection, order-book, backing and laying
odds. We showed that exchanged assets in gambling markets are odds and illus-
trated how they are auctioned, similar to financial market order-books but with
different quantities such as volume being the quantised in terms of a numéraire
– in Betfair’s case Great British Pounds Sterling. The decimal odds have a dual
meaning in the gambling markets, as this is the instrument that is exchanged but
it also has the interpretation of value; which makes it similar to price. We found
that bets can be hedged with a two position process where one backs and then
lays, or vice versa, and gains (or losses) are extracted from the change in the odds
between the two positions.

Sec. 2.2 we explain the various fields that constitute the in-play horse racing
data set with a detailed description and discussion. The statistical properties
are explored in detail for the in-play market signals in Sec. 2.3. We present
sample statistics of the data set such as the average market liquidity in Table 2.2.
The Table 2.3 depicts the estimation of the sample moments for the increments
of the last price matched signals which indicate that the distributions are not
normal and are evidently leptokurtic. We discovered some interesting statistics,
shown in the Table 2.4, where we estimated the sample average for the initial,
last price matched for the favourite and long-shot; and observed that the mean
value corresponds to the unconditional probability of winning the race, estimated
as Eq. (2.16). By applying statistical dispersion and entropic measures to the
last price matched signals we identify that on average the dispersion in the odds
increases in time, see Fig. 2.6.

In Sec. 2.4 we find a significant similarity between the order statistics of the
randomly broken stick, of unit length, and the statistical market estimation of
initial odds. We observe that the empirical values of the implied odds and true
winning probabilities come close in value. We conclude – partly because of the
results in Table 2.5 – that this betting market is initially to some degree informa-
tionally efficient. By informationally efficient we mean the market on average can
correctly order the selections, but for each race, this is comparable to randomly
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splitting the unit interval as explained previously. Discrepancies in the market’s
estimation of the long-shot odds (or similar low-rank selections), implies that the
market is inefficient at accurately ranking the selections, especially when the to-
tal number of selections is large. We further expand this prediction by making
the assumption that the implied odds reflect the horses’ (and jockeys’) “ability”
to win the race. This term “ability” is in some way vague but we stipulate the
semantics here that this refers to the true probability of the horse (and jockey)
winning the race, such as the exponential distribution defined in Eq. (2.22).

Chapter 3, describes two models: a novel toy model in Sec. 3.2 and a tradi-
tional statistical arbitrage trading strategy known as pairs in Sec. 3.3.

The novel toy model makes the assumption that the competing horses in-play
have a relative position (or performance) that is a local martingale and is defined
through a set of Itô processes. Making this assumption means we are treating the
market in accord with the Efficient Market Hypothesis implying that the market
is in a state of perfect competition, and thus no one market agent can manipulate
the prices to their advantage. Using these relative positions one can calculate the
probability of the horse winning the race by a numerical procedure where another
distribution is centred on the current position of each horse and sampled from.
One can see from Fig. 3.1 that we are estimating (numerically) the probabilities
of a particular horse being in the lead in the next time step, the blue area in
Fig. 3.1. Fig. 3.2 shows that the odds exhibit a cointegrating behaviour between
competing horses and the probabilities converge to the correct values: winner
→ 1 and loser → 0. An issue concerning this model is the constant over-round,
which is always one. It would be interesting, as a line of further investigation, to
examine the possibility of creating a similar model but with a varying over-round.

The traditional statistical arbitrage trading strategy known as pairs is ex-
plained from a financial point-of-view in Sec. 3.3. This trading strategy is then
reverse engineered in Sec. 3.4 and applied to in-play horse racing data. The
results of the pairs trading algorithm are shown in Figs. 3.4 and 3.5. We see from
Fig. 3.4 that the algorithm uniformly sets up betting positions across the time
window. The average rate-of-return is displayed along with the average Sharpe-
ratio in Fig. 3.5. The results are shown in Fig. 3.5 should be treated with a high
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degree of scepticism as a final rate-of-return ≈ 370% is suspiciously large and un-
likely to be attained in reality. Two reasons come to mind why rate-of-return is
so high: (1) there is no price impact when trading and (2) that backs and lays are
always matched and at the front of the queue. It would be interesting to explore
these two deficiencies in the model by calibrating a price impact model as found
in [162] and developing order book dynamics to account for queues such as [125].

In Chapter 4, we gave a detailed review of a body of work known as Informa-
tion Based Finance or the Brody-Hughston-Macrina (BHM) framework, found in
the following literature [86–110]. The bulk of the review is given in Secs. 4.1 and
4.2 deriving the pricing model, see Eq. (4.25), which is the basis of our model for
trading in Sec. 4.3.

Sec. 4.3 the BHM framework is used to develop a synthetic agent based
market where under certain conditions the agents trade. To achieve this end,
we created a mechanism for trading to take place in Sec. 4.3, with the addition
of a specification of how the market agents’ price/information is updated after
trading. The different market behaviour was created through the categorisation of
agents into the following: market makers, Sec. 4.3.3; informed traders, Sec. 4.3.4;
and noise traders, Sec. 4.3.5. The agent was categorised in this way to give the
market and each type of agent a different trading mechanism, which in turn led to
various market price features. To help highlight the different features generated
by the different market agents we introduced the inventory control mechanism.
The inventory control was defined in Eq. (4.91), and is a utility function that
controls the amount an agent buys and sells relative to their absolute value in
inventory. When applying Eq. (4.91) one can observe the features generated by
the informed traders and noise traders on the market price from.

Sec. 4.4 presents the results for the trading model where we display the
distributions for the market returns and first passage times for trading for the
following market configurations (2,0,0), (2,1,0) and (2,0,1), this notation rep-
resents (NMM ,NIT ,NNT ) where NMM is the number of marker makers, NIT is
the number of informed traders, and NNT is the number of noise traders.

For the configuration (2,0,0) the half spread parameter δ, which is half the
distance between the market making agents buy and sell price, is varied. We
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found that when the half spread δ is increasing the overall frequency of trades
reduces and the standard deviation of the returns is growing. The reason for these
two effects is that increasing the half spread increases the amount agents have
to diffuse away from each other to trade, which in turn increases the standard
deviation of the returns and the time waited in between trades by agents; this
also reduces the overall number of trades by the agents. We observed that when
the inventory control was applied, the number of overall trades reduced to a
constant number, as did the standard-deviation, and the kurtosis was found to
have increased.

For the configuration (2,1,0) the half spread of the informed trader δI , which
is half the distance between the informed trader agent’s buy and sell price, is
varied while the market makers’ half spread is held constant at δ. We found that
when the half spread δI is increasing the overall frequency of trades reduces and
the standard deviation of the returns is growing. When the inventory control was
applied we observed – the tentative result of – a bimodal distribution (see the
bottom plot in Fig. 4.11).

For the configuration (2,0,1) the threshold parameter of the noise trader γ,
which is the value sampled from a uniform distribution has to exceed to trade, is
varied while the market markers half spread is held constant at δ. We found that
this had no effect on the overall number of trades and standard-deviation both
of which remain constant. The reason for this is that trading is dominated by
the market makers who have a small half spread which does not change. When
inventory control is applied we observed that the number of trades and standard-
deviation is decreasing as γ increases which is because the larger this parameter
is, the smaller the probability becomes for a noise trade to occur and thus the
longer one has to wait for a noise trade.

Sec. 4.6 introduces a non-linear rate function in the BHM information process,
instead of a linear function. The new non-linear Eq. (4.107) was defined in terms
of a general function g(t) that obeys the condition Eq. (4.70). Using this non-
linear version of the information process we apply Itô’s Lemma and derive a new
dynamical price process Fig. 4.131) in terms of g(t). This non-linear version of
the information process has a similar structure to the BHM price model but is
more general.
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In Sec. 4.7 the original BHM theory was fitted to the winning horse signals
from the data set. It was found that the average last price matched could be
modelled with the original BHM model using an information rate parameter σ̂
that depends on course distance according to a power law with a positive expo-
nent, see Fig. 4.20. This result gives the interpretation that the odds in short
races are governed more by noise than is found in longer races. Sec. 4.7.2 took
the non-linear BHM model, as derived in Sec. 4.6, and fitted it to the same data
set. This estimation gave a different result to when the original BHM model
was fitted as the information rate function σ̂(t) that was fitted to the non-linear
BHM can be regarded as either piecewise linear or a polynomial of order 6. There
was an issue found with this result as one can see that in Fig. 4.22 when t → T

the function does not satisfy ĝ(t) → 1, which violates the condition Eq. (4.70).
Therefore, to further improve this fit we would have to investigate better ways
of fitting this model; perhaps with regularisation such as the ridge or lasso re-
gression [163], both of which penalise the dimension of the regression to prevent
overfitting a model.

Chapter 5, in its essence gave a reformulation of Markowitz’ mean-variance
optimisation in the time domain to obtain optimal trading strategies for a sin-
gle traded asset over a finite discrete time horizon, discussed in Sec. 5.2.1. We
obtained such optimal trading strategies as sequences of buy, hold, or sell in-
structions for that asset, which minimise the market fluctuations of the return
generated by this sequence of instructions over a given time horizon, subject to
suitable constraints. The methodology required the empirical estimation of the
auto-covariance matrix of a given price process, and estimates for expected prices,
during the risk horizon as input.

We applied this framework to a set of synthetic price processes. Such consid-
ered were taken to be either second order stationary, see Sec. 5.3.1, or described
by second order stationary increments, see Sec. 5.3.2. We showed that analytic
solutions exist for certain cases where the price and the return processes are de-
scribed by i.i.d. or by auto-regressive fluctuations. These analytic solutions were
compared with numerical results for situations where auto-covariance matrices
have to be estimated from finite samples. We found that in general, the sam-
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pling noise leads to an underestimation of risk, but that asymptotic results are
well approximated when samples used to estimate auto-covariance matrices are
sufficiently large.

Looking at S&P500 data, we found that (normalised) auto-covariance spectra
closely resemble those one would expect for price processes with independent
increments, see Fig. 5.6, and it is this observation that motivates our choice of
target matrix within a shrinkage cleaning strategy. To restate, shrinkage cleaning
is the statistical estimation methodology where one takes a convex combination
of a target and empirical estimator – and finds the best combination of the two
that reduces the noisiness of estimation. We observed that the auto-covariance
matrix cleaning gives rise to smoother trading strategies, and that it also leads
to a reduction of risk in risk-return profiles, shown in Fig. 5.7.

A generalisation of the present work would expand the model to deal with a
multi-period multi-asset version of a mean-variance formulation of optimal trad-
ing strategies. We are not aware of an investigation of the effects of sampling
noise in the multi-period multi-asset case. Indeed the spectral theory of that case
which would be useful to motivate and design cleaning strategies has not been
developed as of now. Another direction that could be pursued is to include higher
moments of strategy-return distributions in measures of risk, to better capture
risk in the presence of fat-tailed return distributions. The translation into the
time-domain, as advocated in the present study would, in general, involve k-point
correlations of returns in time (where k ≥ 3). Assessing sampling noise in such a
situation would then clearly transcend the realm of random matrix theory.

To summarise, our goal was to explore two different forms of price formation
in financial and gambling markets. For gambling we found the behaviour of odds
signals to be similar – but not equivalent – to financial price. The initial odds in
the horse racing in-play markets were found to behave in the same manner as the
division of a randomly cut interval [4]. Toy models of the in-play odds signals
were constructed along with statistical arbitrage trading strategies. We took the
BHM model and created an agent-based trading model [129]. The BHM was also
generalised such that the assumption of a linear information rate function was
expanded to handle non-linear functions and both of which were fitted to winning
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horse in-play odds signals. The final part of the thesis was only concerned with
financial price and took the Markowitz portfolio model and translated it into the
time domain – giving optimal trading strategies as presented in [6].
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