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Effects of Soil Properties on the Corrosion Progress of X70-Carbon 

Steel in Tropical Region 

This research aims to investigate the influence of soil engineering properties on 

the corrosion dynamic and to classify the soil engineering properties according to 

the power law constants k and v. The study focuses on four soil engineering 

properties: moisture content, clay content, plasticity index, and particle size. 

Fieldwork and laboratory tests were carried out to measure the metal loss 

influenced by soil properties. Results from fieldwork indicated moisture content 

as the most influential factor on metal loss. Principal component analysis 

classified moisture content into metal loss constant k, while plasticity index and 

particle size are grouped into corrosion growth pattern constant v. Similar 

findings were also observed for results from laboratory tests. As a conclusion, 

this research has identified moisture content as the most significant governing 

factor on metal loss constant k, while other soil properties have strong to modest 

influence on corrosion growth constant v. This research also reveals the existence 

of an optimum value of soil properties that influence the highest measured 

corrosion rate. This finding is significant and may change the way researcher 

model corrosion behaviour. 
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1. Introduction 

Corrosion as one of the major causes of pipeline failure has received great attention 

among various parties, especially pipeline owners (Sosa and Alvarez-Ramirez 2009; 

Mohd et al. 2014; Tahir et al. 2015a). Research to obtain a better understanding of the 

cause of corrosion is continuously carried out and serves as the foundation of reducing 

pipeline failures. Underground pipelines are laid across various types of soil 

environments with different degrees of corrosivity. These various surroundings and 

conditions may contribute to failures in coating, inhibitors, or cathodic protection. Even 

though maintenance is done regularly, pipelines still face corrosion attacks due to 

corrosive environments that surround the structure (Peabody 2011; Wang et al. 2011; 



Noor et al. 2012a; Tahir et al. 2015b).  

Soil engineering properties and soil content are important parameters that may 

have some influence on the corrosion dynamic of buried pipelines. The problem is that 

these factors do not affect the pipeline equally at all locations, and hence, corrosion 

defects do not grow at the same rate throughout the length of the pipeline. If the 

operators can identify those corrosion defects that are active and the factors that 

influence the corrosion rate, then predictions of future corrosion severity for each and 

every defect can be made. 

Earlier research has performed extensive modelling of corrosion in soil by 

incorporating a wide range of soil parameters including soil contents and soil properties. 

The parameters that were found to have governance on the corrosion dynamic were then 

used to develop a predictive corrosion model. Even though a wide range of soil 

parameters was included in the corrosion model development, soil engineering 

properties did not receive sufficient attention, as can be seen in the previous research 

(Doyle et al. 2003; Bullard et al. 2003; Alamilla et al. 2009). This may be due to an 

assumption that these parameters do not govern the rate of metal loss underground. 

However, the assumption is not backed by strong empirical proof. If the governance of 

these parameters can be proven, its inclusion in the future corrosion model will become 

necessary. 

Previous works on corrosion modelling for underground surroundings leaned 

towards corrosion progress based on power law patterns. The development of 

established predictive models was initially motivated by the work of Romanoff (1957), 

who modelled corrosion growth using power law principles based on a 17-year 

collection of corrosion data of buried ferrous pipelines in a wide range of soil as 

follows: 



 dmax = ktv (1) 

where dmax represents maximum pit depth, t is exposure time, and k and v are constant 

regression parameters.   

In order to utilise the power law model, parameters that contribute towards 

corrosion dynamic must be classified into two groups of constants, namely metal loss 

constant (k) and corrosion growth pattern over time (v). Rossum (1969) later derived a 

corrosion model and found common agreement with the model proposed by Romanoff 

(1957). He mentioned that the constant v depends on the state of aeration, resembling 

the power law model. He further discussed the role of several factors that influence 

corrosion dynamics and are related to soil resistivity, soil aeration, pH, and cell 

potential. Mughahghab and Sullivan (1989) continued the effort and further investigated 

the dependency of the constants k and v on the related soil parameters. They found that 

k is primarily determined by soil pH and resistivity, while v is a function of moisture 

content and clay fraction. 

Several new generations of statistical models for pitting depth have been 

proposed recently (Katano et al. 2003; Li 2003; Velázquez et al. 2009, 2010). Katano et 

al. (2003) conducted a study at five sites in Japan. A total of 883 samples of maximum 

pit depth and 17 environmental parameters were collected to perform a multivariate 

regression analysis. An empirical predictive model was proposed based on the power 

law model. Katano concluded that the prediction model of maximum pitting depth is 

governed by the following parameters: soil type, preparation history of land, soil 

resistivity, pH, redox potential, sulphides, and exposure time.   

Similar to Katano et al. (2003), Li (2003) conducted research to further 

investigate corrosion phenomena. A total of 69 sites along the natural gas transmission 

polyethylene-coated carbon steel pipelines spread over Korea were investigated from 



1998 to 2000. A total of 17 environmental factors were measured by collecting soil 

samples at sites where pit growth was observed. The installation period of these 

pipelines varied from two months to nearly 14 years. The main difference between the 

study by Li (2003) and Katano et al. (2003) was that the former explored the effect of 

microbiologically influenced corrosion (MIC) and determined the effect of sulphate-

reducing bacteria (SRB) on the corrosion dynamic. By adapting the model proposed in 

Equation 2, he proposed a predictive model as follows: 

 P0.cal = 0.500Pct 
0.372 (2) 

where P0.cal is the predictive pit depth value, Pc is the evaluation value of the 

environment, and t is exposure time.  Several analyses were performed to formulate the 

constant, and the researcher found that seven parameters governed the Pc: the 

population of sulphate-reducing bacteria (SRB), pipe-to-soil potential (P/S), chloride 

content (Cl-), reduction-oxidation potential (Eh), clay content (Clay), soil pH (pH), and 

soil resistivity (ρ).  The relationship in a mathematical equation is as follows: 

LogPc=0.700+0.069*(LogSRB)+0.749*(P/S)+0.203*(LogCl-)-0.050*(EhxClay)-                      

  0.014*(pH x Logρ)  (3) 

Velázquez et al. (2009, 2010) developed a statistical model from a total of 259 

soil and pipeline samples for onshore underground pipelines operating in southern 

Mexico. Some of those pipelines were cathodically protected others not, some were 

coated others not and the average age of these pipelines is 17 years. The data collected 

in their study included maximum pit depth (dmax), exposure time (t), redox potential 

(rp), pH (pH), pipe-to-soil potential (pp), soil resistivity (re), water content (wc), soil 

bulk density (bd), chloride content (cc), bicarbonate content (bc), sulphate content (sc), 



and coating type (ct). The soil samples collected were classified as clay (110 samples), 

sandy clay loam (79 samples), clay loam (61 samples), silty clay loam (6 samples), silty 

clay (2 samples), and silt loam (1 sample). However, only the first three soil types were 

found to have a significant number for statistical analysis. Therefore, 250 samples were 

considered in the study. For the development of a predictive pitting corrosion model, a 

power law principle was successfully adopted, similar to Katano (2003). A regression 

analysis was carried out for 1,024 possible combinations to obtain the best model, and 

the constants k and v were found as follows: 

 k = k0 + k1rp + k2ph + k3re + k4cc + k5bc + k6sc (4) 

 v = n0 + n1pp +n2wc + n3bd + n4ct (5) 

According to Equation 4, the constant k is governed by redox potential, pH, 

resistivity, chloride, bicarbonate, and sulphate content. On the other hand, pipe-to-soil 

potential, water content, bulk density, and the coating type were found as functions to 

express the constant v (refer to Equation 5). Both coefficients for k and v are dependent 

on three dominant soil types: clay, sandy clay loam, and clay loam. An average 

coefficient for all soil types was also established. The developed model based on all 

type of soils was used to predict the field corrosion data.   

These works mainly focused on the statistical relationship between soil 

properties and metal weight loss over time to group the parameters under constants k or 

v according to the power law. The studies were conducted at real sites and lacked 

investigation of the individual performance of each parameter on corrosion progress.  

The correlation between soil parameters and metal weight loss was based on statistical 

inference through multi-regression since corrosion in soil is mathematically influenced 

by so many factors. Hence, individual performance of each soil parameter on metal 



weight loss based on parametric study was not feasible since the intensity of the 

parameters could not be controlled on site in order to observe the change in the metal 

loss rate relative to variations of soil parameter intensity. This makes the single 

correlation between selected soil parameters and metal weight loss from on-site results 

prone to errors since a real environment is very random and unpredictable.  Hence, this 

may jeopardise the accurate classification of soil parameters in the right groups between 

both constants k and v.   

A parametric study using a one-factor-at-a-time approach (OFAT) may give a 

window of opportunity to accurately classify the influence of soil properties on either 

metal loss (k) or the pattern of corrosion growth over time (v) according to the power 

law.  The OFAT approach allows modification of only a single factor at a time, which 

can provide better understanding of the soil properties’ degree of influence on the 

corrosion dynamic (Frey et al. 2003). The right classification of these parameters may 

contribute to better corrosion model development if the corrosion progress follows the 

power law.  For that reason, the main aim of this research is to investigate the 

relationship between the soil engineering properties of moisture content, plasticity 

index, particle size, and clay content and the corrosion dynamic as experienced by 

underground gas pipelines using multi-regression and OFAT approaches. By achieving 

the aforementioned aim, the research can classify the soil engineering properties into 

metal loss constant (k) and corrosion growth pattern over time (v) based on fieldwork 

and parametric study. The main challenge in developing a predictive corrosion model is 

having a better understanding of the selection of parameters to improve model accuracy.  

Previous research has rarely taken into account soil engineering properties in the 

development of corrosion models and corrosion growth projections.  Thus, the outcome 



of this research may answer the level of influence of soil engineering properties upon 

the corrosion dynamic. 

2. Experimental Work 

Five sites located on the east coast of Peninsular Malaysia, known as SITE 1 to SITE 5, 

were identified for fieldwork. The experiment was carried out by exposing steel coupon 

to underground so that the behaviour of corrosion based on weight loss could be 

observed, monitored, and measured. A total of 50 steel coupons were installed per area 

(for SITE 2 to SITE 5) in 25 boreholes.  Each borehole can house two coupons which 

were placed at 0.5m and 1.0m depth from ground surface.  SITE 1 is located in a rocky 

area and mainly consist gravel soil (hard surface).  Hence, the drilling process only 

managed to provide seven boreholes with only one coupon installed per hole at a depth 

of 0.3m to 0.5m depth from the ground surface.  For every three months, eight coupons 

from four holes were dug out randomly to measure the average metal weight loss (for 

SITE 2 to SITE 5) while for SITE 1, only one coupon was dug out per visit.  Soil 

sampling was carried out at each hole right after coupon retrieval to conduct parameter 

testing. The field work was completed in the period of 18 months with total of 188 

coupons retrieved from the five areas. The fieldwork was designed to produce 

information regarding the weight loss of buried steel coupon subject to the corrosion 

process.  The information on weight loss was then correlated with the measured 

parameters of moisture content, clay content, plasticity index, and particle size using an 

all-factors-at-a-time (AFAT) approach. 

Laboratory tests were conducted according to ASTM G162-99 (ASTM 2010). 

The laboratory test (parametric study) functions as a useful tool in manipulating the 

intensity of the aforementioned soil parameters under a controlled environment by using 

the OFAT method. Washed sand of medium size was used as the main medium and 



control sample to conduct the test.  The washed sand was found to be non-plastic 

(plasticity index = 0) and have no clay particle. (clay content = 0%).  Moisture in 

washed sand was removed via oven-dry method (0% of moisture content). De-ionized 

water was added into washed sand as the main source of moisture to manipulate the 

moisture content range, from 5%to 35%. Plasticity index was modified by mixing 

washed sand and bentonite to produce a sample with plasticity index ranging from 15 to 

60. Dry sieving method was used to segregate washed sand into various particle sizes to 

produce four soil samples with different average of particle size distribution, from 

0.045mm to 0.644mm. Kaolin clay was added proportionally (by weight) into washed 

sand to modify the intensity of clay content, ranging from 25% to 100%. Even though 

parameters of particle size and clay content seems like interconnected, however the 

influence of both can be differ where the former affect mainly the aeration while the 

latter playing the role of destruction of pipeline protection layer. All modified soil 

samples were then kept in a plastic container whereby steel coupon was installed in the 

container and placed in the mid-depth of the soil samples. The parametric performance 

of every single parameter with different intensities upon corrosion (weight loss) can be 

individually measured to support the findings from the fieldwork.  A series of 

measurements were conducted on the steel coupon throughout the 12-month period with 

a total of 330 steel coupons were successfully retrieved. 

Periodic retrieval was done every 3 months and 2 months for fieldwork and 

laboratory tests respectively.  In order to get time-function data for metal weight loss, 

every single steel sample was assumed to be uniform in terms of strength and corrosion 

resistance.  Hence, metal weight loss measurements from respective retrievals at 

different times within the testing period were considered correlated with each other.  



Statistical techniques were utilized to analyse corrosion and soil parameters.  A 

single regression (linear and power law) was applied to observe the corrosion growth 

pattern.  Possible erroneous data due to intolerable value (extreme data) was removed 

using a box plot method.  A normality test was performed to justify the type of 

correlation test.  A simple linear regression analysis was used to study the relationship 

between metal weight loss and soil parameters.  The determination of soil parameter 

influence upon metal weight loss and corrosion growth pattern over time was based on a 

principal component analysis and a paired t-test.     

The coupons utilised in this research were X70 carbon steel pipes sourced from 

an actual pipeline segment.  The pipes were machined into smaller sizes by a hot cut 

method. A cold cut method was then applied to remove the heat-affected zone (HAZ) 

on the coupon, which may cause changes in properties of the material and affect the 

corrosion rate (Yahaya et al. 2011; Ren et al. 2012; Noor et al. 2012b). Pipes were cut 

into the desired sizes for fieldwork (60 mm x 80 mm) and laboratory tests (20 mm x 30 

mm).  Coatings of those samples were removed to avoid inconsistent coating protection 

that may lead to unfair results as well as to let the coupon corrode under a worst-case 

scenario. The samples were thoroughly cleaned by acetone, dried, and carefully kept in 

a sealed plastic beg before testing to avoid any contamination, atmospheric corrosion, or 

any possible entities that may affect the corrosion process. The weight of each coupon 

(known as initial weight, W0) was recorded so that the total weight loss after corrosion 

initiation could be identified. 

This study focused on general corrosion; hence no investigation was done for 

localized corrosion. All retrieved coupons from fieldwork and laboratory tests were 

cleaned to determine the metal loss by weight due to the corrosion process. The 

cleaning procedure to remove corrosion products followed the procedure as stated in 



ASTM G1-03 (ASTM 2004). Soil sampling was carried out after coupon retrieval to 

conduct parameter testing according to BS 1377: 1990 (BSI 1998). 

3. Results of Fieldwork (AFAT Approach) 

In this study, metal weight loss (MLF) as a result of corrosion with specific exposure 

time (TF) was the dependent parameter controlled by a set of independent parameters, 

which were moisture content (MCF), clay content (CCF), plasticity index (PIF), and 

particle size (PSF). Metal loss data was plotted against time of exposure to determine 

the pattern of corrosion dynamic for each site (refer to Figures 1 to 5).  From the 

observations, most of the sites showed a linear (solid line) to power law pattern (dotted 

line) in the increment of metal loss over time.  Both models showed a high coefficient 

of determination for the linear model (R2 = 0.739 to 0.937) and the power law model (R2 

= 0.864 to 0.978).  Based on the R2 value, the power law model was found more feasible 

to represent the progress of metal loss due to corrosion over time as opposed to the 

linear model for most of the sites. 

The normality test was carried out using Shapiro–Wilk (S–W) and 

Kolmogorov–Smirnov (K–S) tests (SPSS 2007). The tests were conducted at 95% 

confidence intervals, and the results are presented in Table 1.  The corrosion data is 

regarded as normally distributed if the significant value (Sig.) is greater than 0.05 for S–

W, and it is marked with an asterisk (*) for the K–S test.  The results from both tests 

show that only moisture content has the potential to be normally distributed.  This result 

gives important information for the following analysis, such as the correlation test.  

Erroneous data/outliers such as negative growth rate or extremely high growth 

rate, which is highly sensitive to the change of weight before and after installation, may 

influence the outcome of this research.  Thus, a box plot was utilised to dampen the 

effects on overall results.  There were four measurements of metal loss, one clay 



content, and two plasticity indexes classified as outliers. These data sets were removed 

since they could affect the accuracy of the correlation analysis.   

Figure 6 indicates the correlation between moisture content and metal loss.  

Even though the regression of coefficient (R2) yielded a small value; due to the 

randomness of the real and uncontrolled environment as compared to laboratory testing, 

a modest correlation can be justified.  This is according to Volk (1980), where an R2 

value of approximately 0.4 is considered reliable for a sample size of about 25.  In 

general, metal loss increases with an increase in moisture content.  On the other hand, 

clay content influences metal loss in the opposite way as compared to moisture content 

even though the R2 yields an unconvincingly small value, thus showing a weak 

relationship (refer to Figure 7).  Figures 8 and 9 show the influence of plasticity index 

and particle size, respectively, on metal loss.  The positive trend shows that metal loss 

increases with the increase in plasticity index and particle size.  Yet, similar to clay 

content, the R2 value was too low to enable the identification of the degree of 

correlation between those parameters. 

Tables 2 and 3 show the coefficient of correlation for Pearson and Spearman’s 

rho correlation test between each parameter (metal loss and soil properties). These 

coefficients indicate the degree to which two parameters act independently of one 

another.  Values of 1.0 or –1.0 indicate perfect positive or negative correlation 

respectively, while a value of zero indicates an absolutely random relationship or no 

correlation between two parameters.  Results of both tests (refer to Tables 2 and 3) 

show that only metal loss (MLF) and moisture content (MCF) are significantly 

correlated.  This gives an early indication that the moisture content is the only potential 

parameter that may govern the metal loss process.  The results show some degree of 



agreement with simple linear regression tests (refer to Figures 6 to 9), whereby moisture 

content has the highest R2 among all corrosion parameters. 

Principal component analysis (PCA) is widely used in statistics, signal 

processing, and neural computing (Xu and Yuile 1995; Hyvarinen 1999) to reduce the 

number of variables in the database and to detect structure in the relationships between 

variables, that is, to classify variables. PCA is used to determine more precisely the 

controlling factors that affect corrosion dynamic in terms of metal loss (k) and time 

factor (v) as found in the power law equation (Li 2003). Soil properties that have a 

strong influence on k will affect the metal weight loss, whereas the influence on v may 

indicate the controlling effect of soil properties upon the growth pattern or acceleration 

behaviour of metal loss over time.  The acceleration behaviour will distinguish between 

linear and power law growth patterns.  

PCA was performed on two sets of parameters that relate the influence of soil 

properties on either metal loss (k) or corrosion growth patterns (v).  Figures 10 and 11 

graphically show the relationship among parameters obtained by PCA for metal loss 

and corrosion growth patterns respectively.  The factor loadings are presented in Tables 

4 and 5 for both metal loss and corrosion growth patterns respectively.  The factor 

loading determines the contribution of each variable in the particular extracted 

component.  Typically, Component 1 will explain the most variance as compared to 

other components.  Hence, variables falling in Component 1 will be the controlling 

factors, i.e., metal loss.  

The results show that metal loss and moisture content with the largest squared 

cosine fall in Component 1, particle size and plasticity index in Component 2, while 

clay content belongs to Component 3 (refer to Table 4).  The squared cosine value was 

used to classify the variables into their particular components.  This result indicates that 



moisture content appears to be the controlling factor on metal loss, which belongs to 

Component 1.  On the other hand, PCA results based on corrosion growth pattern v, of 

which the v value was obtained from an exponential factor in the power law model from 

Figures 1 to 5, show that plasticity index and particle size are the controlling factors due 

to their classification in Component 1.  If the exact pattern of corrosion growth followed 

the power law model, plasticity index and particle size may play an important role in 

controlling the acceleration of metal weight loss over time.  Table 6 lists the influence 

of soil properties on metal loss (k) and corrosion growth pattern (v) for the fieldwork. 

4. Results of Laboratory Test (OFAT Approach) 

The laboratory test was specifically designed to study the effects of each soil property 

on the corrosion dynamic at different intensities.  In contrast to the fieldwork, this could 

be done under a controlled environment in a laboratory.  Every parameter had a set of 

control samples.  Table 7 shows the summary of soil parameters.  A total of 15 samples 

(three samples per intensity including control samples) were retrieved at an interval of 

every 2 months to study corrosion behaviour as a function of parameter intensity and 

time of exposure.  The results may give some indication of the tendency of those four 

parameters on either metal loss severity (k) or corrosion growth pattern (v). 

Figures 12 to 15 illustrate the relationship between corrosion rate and parameter 

intensity with variation of time of retrieval.  The figures were mainly used to identify 

the optimum value, if it exists, of every single soil property that may trigger the highest 

corrosion rate. Judging by the plotted graph, it is obvious that all parameters except 

plasticity index have optimum intensity related to the highest recorded corrosion rate 

throughout the duration of the experiment.   

Figure 12 shows a consistent pattern between corrosion rate and moisture 

content for every exposure time.  This consistent pattern yielded a trustworthy result 



that the influence of moisture content follows a specific trend similar to an open 

downward parabola shape.  Similar relationship was also reported by Gupta and Gupta 

(1979). The critical point was recorded at 15% moisture content, which is almost half of 

the studied moisture content range (0% to 35%). In the first 2 months, different 

variations of clay content showed a constant corrosion rate, as illustrated in Figure 13.  

After 6 months of exposure, the effects due to variation of clay content started to 

become visible where an open downward parabola shape could be seen.  A drastic 

increase was observed in clay content from 0% to 25%, yet the corrosion rate was 

getting slower after the critical point.  The deceleration of the corrosion rate with the 

increase in clay content shows the potential of clay particles to reduce the corrosion risk 

beyond the critical value.  The corrosiveness level as a function of the clay content was 

as follows: 25% > 50% > 75% > 100% > 0%. 

Figure 14 shows no distinct pattern in the lines that represent variations of the 

plasticity index throughout the periodic retrieval.  Nearly all lines are spread 

horizontally, showing that variation of soil plasticity did not post effects on the 

corrosion rate.  Even if there are some lines showing variation in corrosion rates, the 

difference is not significant enough to justify the contribution of plasticity index to the 

corrosion process.  A similar relationship was observed for particle size and moisture 

content.  The highest corrosion rate was recorded nearly at the middle of the particle 

size range of 0.344 mm, which consists of 15% silt particles, 70% sand particles, and 

15% gravel.  The lowest corrosion rate was recorded from a sample with a particle size 

of 0.045 mm.  This finding generally agrees with the results from the clay content, 

where smaller particle size tends to lower corrosion rate. 

In order to investigate whether different intensities of soil parameters are 

influential on metal loss over time (k), a paired t-test was carried out at a confidence 



interval of 95%.  The commonly used definition of t-test is simply comparing two 

means to see if they are significantly different from each other.  The paired t-test was 

used to test the difference of means between metal loss measurements and a range of 

intensities of soil parameters.  The null hypothesis is that there are no differences 

between the means, which indicates that changes in the intensity of independent 

parameters will not affect the metal weight loss, whereas an alternative hypothesis is 

vice versa.  Tables 8 to 11 show the significant value of a two-tailed paired t-test result 

for moisture content, clay content, plasticity index, and particle size, respectively.  If the 

significant value is greater than 0.05, the null hypothesis will be accepted.  The bold 

values in the tables represent the significant tested pairs. 

Samples with variable moisture content yielded a significant value of less than 

0.05 when compared to the control sample, as presented in Table 8.  This generally 

indicates that the presence of moisture in soil greatly affects metal loss.  A comparison 

among variables shows that the samples with a moisture content of 5% and 35% 

showed no significant difference, as did those with a moisture content of 15% and 25%.  

The results also indicate that metal loss seems to be very sensitive to the change in 

moisture since the significant value for almost all tested moisture content pairs was 

found to be less than 0.05. 

While moisture content has been proven to be influential on metal loss, clay 

content, on the other hand, has exhibited dissimilar behaviour.  Clay content of 25% is 

the only variable that can be associated with metal loss progress according to its 

significant value, which is less than 0.05 as compared to the control sample.  A similar 

finding was observed when comparing clay content of 25% with 50% and 75% 

intensity.  The other clay content variables were proven to not govern the metal loss 



since there was no difference between the mean of metal weight loss among those 

variables compared to the control sample.  

Contradicting the findings for moisture content, plasticity index variables in 

Table 10 exhibit the most consistent pattern, whereby none of the variables yielded 

significant values of less than 0.05 to reject the null hypothesis.  The acceptance of the 

null hypothesis means that the variation of plasticity index does not contribute to the 

progress of metal loss.  Table 11 shows that an average particle size of 0.344 mm 

consists of gravel, sand, and silt particles, and it produces a significant value less than 

0.05 when compared to other particle sizes, including the control sample.  The control 

sample, which consisted of only washed sand particles, had no difference in terms of 

metal loss governance with other average particle sizes except for the 0.344 mm 

variable.  

In general, the paired t-test has explicitly explained the governance of soil 

properties on metal loss.  From the findings, moisture content has proven its dominance 

in metal loss progress caused by corrosion.  The variation of moisture content can 

influence the rate of metal loss.  Unlike moisture content, the changes in other variables 

such as plasticity index, clay content, and particle size are not that influential except for 

certain levels of intensity.  Plasticity index has the most consistent pattern of 

insignificant influence on metal loss throughout the study, be it from experimental or 

laboratory work. 

A similar paired t-test was conducted to examine the influence of soil 

parameters on the constant v.  Tables 12 to 15 show the significant value of two-tailed 

paired t-test results for moisture content, clay content, plasticity index, and particle size, 

respectively.  Moisture content variables in Table 12 exhibit the most consistent pattern 

in which none of the tested pairs yielded significant values less than 0.05.  This is in line 



with the findings through principal component analysis for fieldwork in which moisture 

content posts an influence on metal loss (k) but not on time factor (v).  

On the other hand, results in Table 13 show a few significant values that are less 

than 0.05 for clay content.  The influence was found significant in early exposure time, 

and the effect lessened as time progressed from 6 months onwards.  Thus, it is possible 

that the rate of corrosion will not be much different relative to variations of clay content 

if the exposure period is prolonged.  PCA results from fieldwork indicate that plasticity 

index may be one of the governing factors on the constant v.  A stronger finding can be 

seen for different plasticity index values and particle sizes as compared to clay content 

(refer to Tables 13 to 15).  More than half of the tested pairs were found to yield a 

significant value of less than 0.05.  The time influence was observed to play a role in the 

early stage.  Similar to the results from the sample with variations of clay content, 

insignificant effects were found after 6 months of exposure. 

5. Discussion 

For a single linear regression between metal weight loss and soil properties (refer to 

Figures 6 to 9), it was found that clay content is the only parameter that has a negative 

correlation.  An increase in particle size, moisture content, and plasticity index will 

increase the value of metal loss.  Oguzie et al. (2004) and Velázquez et al. (2009) 

reported that clayey soil is technically more corrosive. This may due to partially moist 

clay which deposited on the steel surface experienced expansion and shrinkage due to 

temperature changes, hence destroy the protection layer of steel surface. However, 

results from Li (2003) do support the findings from fieldwork. High clay content can 

results in low penetration of moisture and oxygen to make contact with the buried steel 

coupons.  This directly reduces the risk of corrosion development and shows that clay 

can be a protection mechanism to lower the corrosion risk.  Abdullayev and Lvov 



(2010) in their recent study have proposed clay particles in metal coatings as a corrosion 

inhibitor. Moisture content poses the highest R2 of 0.369 with a positive trend, followed 

by clay content, particle size, and plasticity index, as shown in Figures 6 to 9.  Moisture 

content has a direct effect on corrosion progress since the formation of hydroxyl ions 

originated in water.  Particle size plays an important role in allowing the participation of 

water and oxygen from the atmosphere into the soil (aeration behaviour), hence 

providing a supply for corrosion to initiate.  Soil plasticity is closely related to the 

presence of clay and silt particles, which are capable of retaining moisture and which 

influence soil aeration as well as the moisture content itself.  According to the negative 

correlation between clay content and metal loss (refer to Figure 7), plasticity index in 

theory is expected to behave similarly to clay content upon corrosion progress since soil 

plasticity is closely related to the presence of clay particles.  However, the positive trend 

may be due to the more dominant effect of moisture content as compared to clay 

content. 

The idea of PCA is to classify all four corrosion parameters of soil properties 

into the best group of power law constants k and v.  The results (refer to Table 7) show 

that moisture content is best grouped into the metal loss constant k, while plasticity 

index and particle size are better suited to constant v, representing the time factor related 

to corrosion growth pattern.  Unfortunately, clay content falls into neither the constant k 

nor v categories.  According to the fundamental corrosion mechanism, since water is the 

main contributor to the formation of rust (reddish-brown ferric hydroxide), the constant 

supply of water is proven influential on metal loss.  There is no empirical evidence from 

previous work that the change in moisture content would directly affect the acceleration 

or the slowdown of metal loss rate as time progress (constant v).  However, statistical 

inferences from earlier works by Mughahghab and Sullivan (1989) and Velázquez et al. 



(2009) strongly mentioned the association of water content with constant v instead of k.  

This contradictory finding may be better clarified by results from parametric study.  The 

comparison of PCA results for particle size and plasticity index is not feasible since the 

early work did not cover both parameters.  Rossum (1969) and Li (2003) did clarify that 

the constant v is directly associated with aeration.  Since particle size and plasticity 

index play important roles in the aeration of soil, this proves that the classification of 

both parameters into the group of constant v is well justified.  However, clay content, 

which initially was hypothesised as belonging to constant v, did not fall into any 

constant group even though this parameter contributes to the aeration of soil.   

Similar to PCA, the purpose of a paired t-test is to classify the studied soil 

properties into the best group of power law constants k and v based on the OFAT 

approach.  The results demonstrated a good agreement with the findings from the 

fieldwork (refer to Table 7), which show that moisture content has a good influence on 

constant k while constant v is strongly influenced by plasticity index and particle size.  

In general, this indicates that the two different approaches are reliable for parameter 

classification and can complement each other quite well.  As discussed earlier, the 

findings from the fieldwork contradict to Mughahghab and Sullivan (1989) and 

Velázquez et al. (2009) in regards to the classification of moisture content into constant 

k or v.  However, parametric study has confirmed the findings from the PCA on 

fieldwork results.  Therefore, backed by evidence from the parametric study (paired t-

test), moisture content is considered to be more appropriately classified under constant 

k.  The results of the parametric study are more convincing since the variation of 

moisture content is the only factor that influences the behaviour of the corrosion 

process.  Furthermore, the measured metal loss on site from early research may be 

interfered with by other unknown corrosion factors, and the application of a multiple 



linear regression method may not represent the real scenario.  Particle size poses a 

minor influence on the metal loss constant k as compared to constant v.  In the 

meantime, clay content was identified as having a minor influence on both constants k 

and v.  This may be one of the reasons behind the elimination of clay content from both 

groups of constants based on the PCA of fieldwork results.  According to previous work 

by Li (2003) and Mughahghab and Sullivan (1989), there has been a mixed opinion on 

the classification of clay content.  Table 16 lists the comparison of soil parameters 

related to constants k and v between the results of this research and earlier research.  

Figures 12, 13, and 15 report optimum values of 15%, 25%, and 0.344 mm for 

moisture content, clay content, and particle size, respectively, in regards to maximum 

corrosion rate.  This indicates that the relationship between these three parameters and 

corrosion rate does not behave linearly.  A second- and third-order polynomial 

regression can well describe the aforementioned non-linear relationship.  Sufficient 

attention should be drawn to this optimum value since it may trigger the highest 

corrosion risk.  According to current practice, the constants k and v in the power law 

model are mostly developed based on multiple linear regressions.  In this practice, since 

the modelling of k and v are assumed to have linear correlation, the existence of 

optimum value (non-linear behaviour with parabolic effect) of soil properties that may 

influence the highest corrosion rate will affect the accuracy of the predictive model.  

Therefore, a multiple non-linear regression is suggested as an alternative approach to 

model corrosion behaviour. 

6. Conclusion 

The influence of soil properties upon the corrosion dynamic has been identified through 

fieldwork and parametric study.  Both methodologies have utilised different approaches 

to analyse the data—AFAT and OFAT. The findings from both approaches complement 



each other and provide strong empirical evidence for corrosion study.  The final 

conclusions can be drawn as follows; 

(1) Moisture content has the strongest influence on metal loss caused by corrosion 

in soil. The other parameters produce minor effects, with plasticity index as the 

least influential factor. Therefore, corrosion modelling practices must take into 

account moisture content as one of the important parameters that control the 

change of corrosion in soil. Moreover, the research also reveals that soil 

engineering properties alone cannot accurately estimate the potential metal loss 

due to corrosion in soil due to the fact that other parameters especially related to 

soil contents may have a stronger influence. 

(2) This research has successfully determined and classified soil engineering 

properties that influence the metal loss (constant k) and corrosion growth pattern 

(constant v). Moisture content was found to be well fitted to constant k while 

other soil properties are better classified under constant v. This research also 

reveals the existence of an optimum value of soil properties that influence the 

highest measured corrosion rate. The finding is significant and may change the 

way researchers model corrosion behaviour since the current practice of 

modelling constants k and v is based mainly on a multiple linear regression. 

Future research on corrosion modelling can be improved by this classification 

since the power law model is highly dependent on the accuracy of constants k 

and v. 
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Table 1: Tests of normality for fieldwork 

Parameters 
Kolmogorov–Smirnova Shapiro–Wilk 

Statistic df Sig. Statistic df Sig. 

Metal Loss (MLF) .249 30 .000 .759 30 .000 

Moisture Content (MCF) .108 30 .200* .954 30 .211 

Clay Content (CCF) .194 30 .005 .745 30 .000 

Plasticity Index (PIF) .168 30 .031 .906 30 .012 

Particle Size (PSF) .149 30 .089 .914 30 .018 

 

Table 2: Pearson correlation test for fieldwork 

 MLF MCF CCF PIF PSF 

MLF 1 0.406** -0.179 0.089 -0.115 

MCF  1 -0.040 0.004 -0.207 

CCF   1 0.187 -0.028 

PIF    1 0.186 

PSF     1 
** Indicates significant correlation.  

 

Table 3: Spearman’s rho correlation test for fieldwork 

 MLF MCF CCF PIF PSF 

MLF 1 0.586** -0.273 0.130 0.178 

MCF  1 -0.040 0.051 -0.278 

CCF   1 0.250 -0.030 

PIF    1 0.256 

PSF     1 
** Indicates significant correlation. 

 

Table 4: Factor loadings of metal loss for fieldwork 

 Component 

 1 2 3 

MCF .860 -.163 .372 

MLF .854 .382 .059 

PSF -.149 .836 -.297 

PIF -.118 .730 .452 

CCF -.457 -.055 .791 
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Table 5: Factor loadings of exposure time for fieldwork 

 Component 

 1 2 3 

TF .752 .370 .228 

PIF .724 .153 .039 

PSF .717 -.453 .288 

MCF -.277 .774 .501 

CCF .339 .442 -.788 

 

Table 6: Summary of classification test for fieldwork 

 Constant of power law model 

 Metal loss (k) Time factor (v) 

Controlling factor Moisture content 
Plasticity index 

Particle size 

 

Table 7: Summary of soil parameters for laboratory test 

 

Soil Parameter Intensity Control Sample Remarks 

Moisture Content (%) 5,15, 25, 35 0 
Deionized water was used to 

change the intensity. 

Clay Content 

(%) 
25, 50, 75, 100 0 

Kaolin clay was used to change the 

intensity. 

Plasticity Index 15, 30, 45, 60 0 (Non-plastic soil) 
Bentonite was used to change the 

intensity. 

Particle Size 

(mm) 

0.045, 0.344, 

0.644 
0.063 (sand only) 

Dry sieving method on washed 

sand was used to change the 

intensity. 
* Intensity is a range of value for independent parameters. 

 

Table 8: Paired t-test for different moisture content 

Moisture Content 0% (control) 5% 15% 25% 35% 

0% (control) 1     

5% 0.021 1    

15% 0.008 0.008 1   

25% 0.001 0.012 0.072 1  

35% 0.022 0.093 0.007 0.006 1 

 

 

 



Table 9: Paired t-test for different clay content 

Clay Content 0% (control) 25% 50% 75% 100% 

0% (control) 1     

25% 0.035 1    

50% 0.595 0.005 1   

75% 0.752 0.035 0.506 1  

100% 0.532 0.053 0.502 0.675 1 

 

Table 10: Paired t-test for different plasticity index 

Plasticity Index Non-Plastic (control) 15 30 45 60 

Non-Plastic (control) 1     

15 0.518 1    

30 0.654 0.084 1   

45 0.932 0.341 0.625 1  

60 0.396 0.173 0.609 0.441 1 

 

Table 11: Paired t-test for different particle size 

Average Particle Size  0.063 (mm) (control) 0.045 (mm) 0.344 (mm) 0.644 (mm) 

0.063 (mm) (control) 1    

0.045 (mm) 0.125 1   

0.344 (mm) 0.014 0.011 1  

0.644 (mm) 0.059 0.056 0.011 1 

 

Table 12: Paired t-test for moisture content on time function 

Buried Time (month) 2 4 6 8 10 12 

2 1      

4 0.198 1     

6 0.110 0.113 1    

8 0.100 0.093 0.066 1   

10 0.113 0.158 0.184 0.228 1  

12 0.113 0.123 0.126 0.135 0.246 1 

 

 

 

 

 



Table 13: Paired t-test for clay content on time function 

Buried Time (month) 2 4 6 8 10 12 

2 1      

4 0.182 1     

6 0.006 0.026 1    

8 0.038 0.019 0.641 1   

10 0.059 0.052 0.183 0.089 1  

12 0.051 0.047 0.108 0.061 0.085 1 

 

Table 14: Paired t-test for plasticity index on time function 

Buried Time (month) 2 4 6 8 10 12 

2 1      

4 0.074 1     

6 0.003 0.016 1    

8 0.005 0.008 0.722 1   

10 0.006 0.025 0.177 0.406 1  

12 0.002 0.001 0.048 0.042 0.364 1 

 

Table 15: Paired t-test for particle size on time function 

Buried Time (month) 2 4 6 8 10 12 

2 1      

4 0.108 1     

6 0.063 0.304 1    

8 0.046 0.103 0.092 1   

10 0.004 0.032 0.042 0.054 1  

12 0.003 0.008 0.019 0.032 0.628 1 

 

Table 16: Summary of classification for constants k and v 

 

Current Study 
Soil parameter related to 

constant k 

Soil parameter related to 

constant v 

PCA Fieldwork Moisture content 
Plasticity index 

Particle size 

Parametric study 

Moisture content 

*Particle size 

*Clay content 

Plasticity index 

Particle size 

*Clay content 

Previous Researchers 
Soil parameter related to 

constant k 

Soil parameter related to 

constant v 

Mughahghab and 

Sullivan10  
… 

Moisture content 

Clay content 

Li12  Clay content … 

Velázquez13 … Moisture content 

* Indicates minor influence. 
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