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Abstract

Purpose:

We aim to study the effects of different axial lengths on ultra-widefield imaging to
determine the presence of distortion in images despite software correction and
calculate an enlargement factor based on angular location.

Design:
Experimental image analysis study.
Study objects:

Three 3-dimensional printed model eyes simulating eyes with axial lengths of 22mm,
24mm and 26mm. Each model has a grid of rings 9 degrees apart centered at the
posterior pole

Methods:

Single centre study performed at the National Institute for Health Research Moorfields
Biomedical Research Centre, London, United Kingdom. Each model was imaged using
Optos 200TX (Optos, Dunfermline, United Kingdom). Two images for each model
eye that were corrected using V2 Vantage Pro software (Optos, United Kingdom)
were used for analysis and the average values obtained. Each image inter-ring area
was measured using ImageJ to obtain a measured image area in pixel and mm?2,
This was compared with the true calculated object inter-ring area and an
enlargement factor was determined.

Main outcome measures: Measured image inter-ring area in pixels and mm?. True
calculated object inter-ring area in mm?.

Results:

The enlargement factor of the rings gradually increases towards the periphery with
factors of 1.4 at 45 degrees and 1.9 at the equator. The axial lengths did not affect
the enlargement factor of the rings imaged in three different model eyes, p=0.9512.
The anterior equator exhibits a significant distortion despite the software correction.

Conclusion:

The enlargement factor is dependent on angular location and not axial length. The
enlargement factors can be used in clinical practice to more accurately measure
area in ultra-widefield imaging.
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Text

Introduction

The evolution of ultra-widefield imaging over the past decade has redefined the
evaluation and management of retinal diseases. The implications of visualising a
wider view of the retina on our understanding of disease mechanisms is significant.?
We have acquired new knowledge on the impact of peripherally located lesions on
the severity of diabetic retinopathy as well as the increasing importance of ultra-
widefield imaging in assessing diabetic retinopathy.?3 Wide-angled retinal imaging
has also enabled us to ascertain the extent of peripheral retinal ischemia in retinal
vein occlusions and it was also instrumental in identifying peripheral changes in
uveitis and age related macular degeneration.*-®

It is believed that using an elliptical mirror with a focal point at the plane of the iris,
the Optos ultra-widefield system (Optos 200TX; Optos, Dunfermline, United
Kingdom) can potentially view 200 degrees of the retina in a single capture, at least
three times more than the view obtained with montaged 7-field standard fundus
images.’

Despite marked progress in the field, care needs to be taken to assess the quality
and reliability of the images obtained. So far, three unique observations have been
made. Firstly, obtaining a wide view of the three—dimensional retina and displaying
the image obtained in a flat two dimensional image causes a projection distortion of
the ultra-widefield image produced.* Secondly, a horizontal stretch over the entire
image that magnifies into the periphery has also been reported in uncorrected
images.&? Finally, the impact of different axial lengths on the images produced can
vary the imaged size by almost 10%.1°

The ultra-widefield system is unique and still evolving, and it is important to rectify
these flaws to realise the full potential of this system. Significant efforts have been
made to measure and quantify area in ultra-widefield images. Precise quantification
of area is challenging and the concept of a pixel ratio was used for the ischemic
index while comparisons to disc area used in the concentric rings method.%:1?
Spaide et al suggested an azimuthal projection technique and the Optos software
now incorporates its own stereographic projection software to correct the peripheral
distortion and the horizontal stretch.**2 The stereographic projection software has
been studied and although the ischemic index in the corrected images are
comparable with uncorrected images, the variation can be as high as 14.8%.4

Acknowledging that the Optos system can view up to 200 degrees in a single image,
20 degrees of the anterior equatorial retina will also be included in the image. It is
perfectly reasonable to assume that a hemisphere will have predictable projection
errors. However, if we place a set of annular rings in a sphere, the equator will have
the largest area and the area of the annulus anterior and posterior to the equator will
be smaller. This can be explained using the spherical cap formula on a sphere with a
radius of 11mm. The area for three annulus subtending 10° such as 40-50°, 80-90°
and 130-140°, which represents an annulus straddling 45°, 90° and 135° can be
calculated. The area for these are 93.7mm?, 132.5mm? and 93.7mm?. The area
increases from the posterior pole towards the equator and subsequently decreases
towards to anterior pole. This is particularly important when measuring area beyond
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the equator as the size decreases although projection artefacts are likely to
increasingly distort the images.

The primary aim of this study was to utilise a 3-D printed eye model to study if there
remains a distortion in the image produced and if so, suggest ways to rectify them to
enable quantification of lesion dimensions accurately. We also intend to study the
effects of axial length on the image produced and the concept of an anterior equator
distortion by studying the enlargement factor based on the angular location in the
image.

Methods

This image analysis study was performed in the National Institute for Health
Research Moorfields Biomedical Research Centre and University College London
Institute of Ophthalmology, London, United Kingdom.

Model eye

Three model eyes of different axial lengths were developed and 3D printed by
3DPrintUK, London using an EOS P100 (EOS Ltd, Germany) with material from
Nylon PA2200. The models were spheres with an 8mm aperture simulating the pupil.
The thickness of the model eye wall is 2mm. A sulcus was created to accommodate
a three piece +21.0 Dioptre intraocular lens. Therefore, the position of the lens would
simulate a lens positioned at the sulcus. The lens used was the Acrysof multi-piece
MAGOAC (Alcon, Texas, USA) with a 6.0mm optic and a reported spherical
aberration of +0.14 +/- 0.09um.*® A grid composed of multiple concentric rings
centred at the posterior pole were made for each model eye. The grooves are
0.4mm in width. Each ring is 9 degrees apart, beginning in the posterior pole and
extending to the ‘pupil’ or aperture. These model eyes consist of three different
internal diameters and thus simulating three different axial lengths, 22mm, 24mm
and 26mm. Figure 1 is an example of the design for a model eye with an axial length
of 24mm. The true object area of each ring which is the inter-ring area including the
grooves can be calculated using the known dimensions by applying the spherical
cap formula. As the rings are positioned 9 degrees apart, the area of ring 5 for
example, which is located between 36 and 45 degrees from the posterior pole, has a
larger true object area in the 26mm model eye than the 22mm model eye

Image Acquisition

Each model eye was imaged using the Optos 200TX (Optos, Dunfermline, United
Kingdom). The model eyes were positioned at the imaging area and the ‘green in-
focus’ light was obtained prior to obtaining a central image. Each image output is
automatically corrected for three-dimension to two-dimension projection errors by the
V2 Vantage Pro software (Optos, Dunfermline, United Kingdom) which utilises
stereographic projection techniques.

Image Analysis

Two central images of each model eye resulting in a total of six images were used
for analysis. The grid was traced using Photoshop CS2 (Adobe, San Jose, USA).
The measurements were made at the outer boundary of each groove as this is better
delineated. The pixel area of each ring area were measured using the magic wand
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tool in Image J.13 This is exhibited in Figure 2. The true calculated area for the
central circle is divided by the measured pixel area to obtain the equivalent area for
each pixel. The central circle at the posterior pole was used as a reference as the
distortion at zero degrees is minimal.8® The measured image area was then
determined by multiplying the measured pixel area with the equivalent area for each
pixel. The images obtained were divided into four quadrants, superior, right, inferior
and left. The superior and inferior quadrants represent the vertical component and
the right and left quadrants represent the horizontal component. The average
measurements of the quadrants were obtained from two images of each model eye
using ImageJ.

Image Enlargement Factor

The average measured image area of each ring from the two images for each axial
length were divided by the true calculated area to obtain an enlargement factor. This
was performed for each respective model eye. The enlargement factor obtained for
each ring in each model eye was used to assess if distortion is still present in
corrected ultra-widefield images. The enlargement factor was also calculated using
the same method for the vertical and horizontal component of each inter-ring area for
the three different model eyes.

Influence of axial lengths

The measured image pixel area of each ring for each model eye were plotted against
the degrees from the posterior pole. This was repeated with the true calculated area
for each ring for each model eye of different axial lengths. This was done to
understand the effects axial length and angular location has on peripheral distortion.

Anterior equator distortion

To determine if the anterior equator distortion is present, the measured image pixel
area of ring 10 (pre-equator) in all six images used from three different axial lengths
were compared with the area of ring 11 (anterior equator) in each respective image.
The inter-ring area for each annulus between 81-90° and 90-99° which are
represented by rings 10 and 11 are calculated to be 118.9mm?.

Statistical analysis

Kruskal-Wallis test was used to assess statistical significance between the
enlargement factors between the three different axial lengths. Linear regression was
used to assess the relationship between the enlargement factor of each inter-ring
area and the location of the rings. Mann-Whitney U test was used to assess the
differences in pre-equatorial and post equatorial rings. A significance level was set at
0.05.

Results
1. Image enlargement factor

The inter-ring area enlargement factors for each model eye of simulated axial
lengths of 22mm, 24mm and 26mm are detailed in table 1. A graphical
representation of this is provided in figure 3. There is still a graduated increase in
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distortion which is related to the angular position from the posterior pole, R>=0.9739,
p=<0.0001. There were no significant difference between the enlargement factors for
different axial lengths, p=0.9512. By using the 24mm model, the percentage of the
area of each ring over the entire image was identified and the enlargement factor
weighted to the percentage covered by each ring was determined to obtain a global
enlargement factor. This was found to be 1.62, and thus a conversion factor
(1/enlargement factor) of 0.62. The mean enlargement factor for the vertical
component was 1.54 while that of the horizontal component was 1.37, p=0.0629.

2. Influence of axial length

The enlargement ratio followed a similar pattern with no statistically significant
difference between the three different axial lengths, p=0.9512. The exact
measurements are tabulated in Table 1 and this is further presented in Figure 3.
Figure 4 details the measured image area in pixels and the true calculated object
inter-ring area for each ring in each of the three models.

3. Anterior equator distortion

The mean area of ring 10 (pre-equator) was 14915 pixels 95% CI [12916, 16915].
The mean area of ring 11 (anterior equator) was 15827 pixels 95% CI [13454,
18201]. The difference between the two was statistically significant, p=0.0025.

Discussion

Numerous methods have been utilised to study image distortion in ultra-widefield
imaging but this is the first reported study whereby 3-D printed model eyes have
been used with the analysis of the influence of varying axial lengths on the image
produced.®1° Previous reports have used known sizes such as the Argus implant or
the optic disc but using a 3-D printed model eye, more detailed analyses can be
performed.>1%16 From our study, we have identified several key findings. Firstly,
despite software correction, there is still an increasing distortion towards the
periphery. The average enlargement factor at 9-18 degrees from posterior pole is
1.13 and 1.90 at 81-90 degrees from the posterior pole. We have also identified that
the enlargement factors for the three different axial lengths follows a similar curve as
seen in figure 3. Therefore, these enlargement factors may be used in all eyes
independent of their axial lengths. This finding is due to the fact that angles were
used to delineate the rings in the model eye, i.e. each ring is 9 degrees from the
next. Therefore, the enlargement factor is dependent on the angular location.
Although, the size is different between model eyes, the angular position of each
segment is similar between different axial lengths and so the enlargement ratio is
similar. Secondly, although the true calculated object area for each ring in the three
different models are different, the measured image pixel size of each ring for the
three different axial lengths are almost identical as depicted in figure 4. This helps
explain the finding by Sagong et al that reported the size of objects can vary as
much as 10% depending on axial lengths.2° The larger the axial length, there is more
‘shrinkage’ of a similar sized object and vice versa. We propose that this is related to
the mechanism by which the ultra-widefield system obtains images and therefore
theoretically the inside of a football and a ping pong ball will look rather similar in the
image produced despite obvious differences in size.
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We have also shown that the distortion is still present and larger towards the
periphery which has an implication towards the ischemic index measurements
utilised in previous studies. As the ischemic index takes the percentage of non-
perfused retina as a whole, variability in the distribution of retinal non-perfusion will
affect the corrected ischemic index as described by Tan et al, whereby the difference
ranged from -5.9% to 14.8%.* This is due to the variability in the enlargement factor
which is based on the angle from the posterior pole.

This study also confirms the presence of an anterior equator enlargement and that it
contributes to the distortion obtained. This anterior equator phenomenon is an
interesting concept especially when imaging technology improves and allows more
peripheral imaging. Our study suggests that the anterior equator appears to follow
the same projection curve irrespective of axial lengths with no reduction in size. We
acknowledge that the numbers are small, six sets of measurements from three
different models.

Interestingly, in the uncorrected images, a horizontal stretch was identified using
different models.8°® The new software (V2 Vantage Pro, Optos) corrects for this
distortion. Although, there appears to be a trend for the vertical component of images
to be stretched more than the horizontal in the corrected images but this was not
found to be significant in our study.

There are several limitations in our study and this includes the assumption that in
practice, the eye is a perfect sphere like the model eyes used. In reality, variations in
ocular shape and deviation from a perfect sphere will affect the accuracy in
translating our findings into practice. Secondly, only three different axial lengths were
studied.

For clinical use, using our data, we have produced an enlargement factor based on
the position in the image. This can be helpful in clinical practice to obtain an
approximate size of lesions in varying positions of an ultra-widefield image. We
acknowledge that for a more precise quantification of area, Croft et al have proposed
and proven that projecting the image into a three-dimensional model and using
spherical trigonometry, accurate measurements can be made.'® We acknowledge
that using this method, it may be more accurate however from a practical point in
clinical practice, it will be difficult.

We appreciate that in digital imaging, the sizes in ultra-widefield imaging are in pixels
and therefore any object in the posterior pole whereby the distortion is less can be
used as a reference.?1® For example, in an image with an optic disc area of 2.54mm?
that measures 800 pixels, a lesion at 85-90 degrees from the centre measuring 6000
pixels, the actual size of the lesion should be approximately 10.10mm? instead of
19.05mm?, using a conversion factor of 0.53.

The concentric rings method has been reported as a reliable method in determining
retinal non-perfusion.? By superimposing the rings, an ultra-widefield image of the
retina and the image of a 24mm model eye, we have summarised the enlargement
factor and angle imaged for each of the concentric rings. This is further detailed in
Table 2.

This revelation of a significant magnification in the periphery has also been
suggested by Oishi et al® however by identifying a specific enlargement factor and
thus a conversion factor for images, we are now able to better quantify area in ultra-
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widefield imaging. In previous studies, the maximum area identified in ultra-widefield
imaging were 1148mm? and 1856mm? by using a standard disc area of
2.54mm?.1217 This is a unlikely to be accurate and mirrors a peripheral distortion as
the predicted size of the retina including the optic disc has been mathematically
determined to be 1133.8mm? and the area of perfused area in normal retina in ultra-
widefield angiography was found to be 977.0mm?.181° By using the global
conversion factor of 0.62, these values from previous studies would be converted to
711.8mm? and 1150.7mm? which is more realistic. Furthermore, previous

In conclusion, ultra-widefield imaging is used frequently in clinical research to assess
the peripheral retina and an accurate quantification of area is required to further
validate the results obtained. The enlargement factor is based on angular location
despite varying axial lengths. We propose a conversion factor that can be used to
improve the accuracy in quantifying area in ultra-widefield images after incorporating
corrections for peripheral and anterior equator distortion.
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Figure Captions

Figure 1: The design of the model eye with an axial length of 24mm with section A-A
representing the coronal plane and section B-B, the sagittal plane (Top left). The
radius of the model is 13mm, R13 (top right). The walls of the model eye have a
thickness of 2mm. Each model is made up of multiple rings centered at the posterior
pole with each ring separated by nine degrees as in the image. Top right image
represents the sagittal plane and bottom left image represents the coronal plane.
Bottom right image represents the model eye viewed externally.

Figure 2: The grids in the original image (left) is traced using Photoshop CS2
(Adobe, San Jose, USA) (middle). In this example, the line thickness is set at 5
pixels for ease of the reader however, in determining the area, this was set at 1 pixel
for increased accuracy. The traced image which was used to determine the area of
each ring in pixels using ImageJ (right).

Figure 3: Graph representing the enlargement factors of model eyes with simulated
axial lengths of 22mm, 24mm and 26mm. The results were plotted against an x-axis
of the angles (in degrees) from the posterior pole of the model eye.

Figure 4: The measured pixel area of each ring (Left) and the true calculated area in
mm? of each ring (Right) for the model eyes with axial lengths of 22mm, 24mm and
26mm.
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Table 1: The enlargement factors for each model eye of axial lengths 22mm, 24mm,

and 26mm
Angle Ring Axial length of | Axial length of Axial length of
(degrees) | number 22mm 24mm 26mm
0-9 1 1.00 1.00 1.00
9-18 2 1.15 1.10 1.12
18-27 3 1.19 1.15 1.15
27-36 4 1.25 1.23 1.23
36-45 S 1.33 1.30 1.31
45-54 6 1.40 1.37 1.36
54-63 7 1.51 1.47 1.47
63-72 8 1.62 1.61 1.62
72-81 9 1.74 1.76 1.73
81-90 10 1.90 1.87 1.93
90-99 11 2.06 1.97 2.04
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