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ABSTRACT 

Diets that increase production of ketone bodies to provide alternative fuel for the brain are 

evolving from the classic ketogenic diet for epilepsy devised nearly a century ago. The 

classic ketogenic diet and its more recent variants all appear to have similar efficacy with 

approximately 50% of users showing a greater than 50% seizure reduction. They all require 

significant medical and dietetic support, and there are tolerability issues. A review suggests 

that low-grade chronic metabolic acidosis associated with ketosis is likely to be an important 

contributor to the short term and long term adverse effects of ketogenic diets. Recent 

studies, particularly with the characterization of the acid sensing ion channels, suggest that 

chronic metabolic acidosis may increase the propensity for seizures. It is also known that 

low-grade chronic metabolic acidosis has a broad range of negative health effects and an 

increased risk of early mortality in the general population. The modified ketogenic dietary 

treatment we propose is formulated to limit ketosis by measures that include monitoring 

protein intake and maximizing consumption of alkaline mineral-rich, low carbohydrate green 

vegetables. We hypothesize that this acidosis-sparing ketogenic diet is expected to be 

associated with less adverse effects and improved efficacy. A case history of life-long 

intractable epilepsy shows this diet to be a successful long-term strategy but, clearly, clinical 

studies are needed. 
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1. Introduction 

 

The use of the ketogenic diet (KD) as an epilepsy therapy started around the 1920’s. It was 

developed to mimic the metabolic changes of starvation. The classic KD was generally 

initiated with a 24 - 48 hour fast, fluids were limited and total calories were typically restricted 

to 75% of the recommended dietary allowance (RDA) with 87%-90% of the person’s caloric 

intake derived from fat, based on the classical 3:1-4:1 ratio of fat to protein plus 

carbohydrate [1]. KD was widely used in the 1920’s and 1930’s but its use declined with the 

advent of new antiepileptic drugs (AEDs) [2]. The last 25 years has witnessed the 

introduction of over 10 new antiepileptic drugs (AEDs) in the UK. One study, however, 

showed that there has been only a small improvement in the prognosis of epilepsy with the 

proportion of people achieving seizure freedom increasing from 64% when analyzed in 1999 

to 68% when analyzed in 2008 [3]. Despite the introduction of these new drugs, over 30% of 

people with epilepsy continue to have seizures. Over this same period and particularly since 

2000, there has been a marked resurgence in the use of the KD [2]. This has led to the 

development of less restrictive variants such as the Medium Chain Triglyceride Diet (MCT), 

which is ~70% calories intake from fat, the Modified Atkins Diet (MAD), which is ~60% 

calories from fat, and the Low Glycemic Index Treatment (LGIT), which is also ~60% 

calories from fat. All the variants appear to have efficacy comparable to the classic KD and 

they all comprise at least ~60% calories from fat.  

Classic KD, the MAD and the MCT diet generally produce hyperketonemia (2 - 6 mM/L of 
beta hydroxybutyrate (BHB)) and a low-grade metabolic acidotic state. Low-grade chronic 
metabolic acidosis can be produced by increased consumption or production of organic 
acids [4], and in KDs, it mainly results from the generation of acidic ketone bodies. This 
generally produces a high anion gap, and bicarbonate levels may also be low. A number of 
studies have shown the association of KDs with metabolic acidosis [5-7]. 
 
Studies undertaken so far have not been able to demonstrate consistently a correlation 
between the extent of hyperketonemia and clinical efficacy. If the extent of hyperketonemia 
is not the critical factor for efficacy, might a diet not targeting high concentrations of BHB and 
thereby avoiding metabolic acidosis be more efficacious and be better tolerated? Here we 
provide the rationale for avoiding acidosis in dietary treatments. We describe the main 
principles in formulating an acidosis-sparing KD, and briefly summarize other elements of 
such a diet.  
 

 

 



 

 

2. Acidosis-related adverse effects of ketogenic diet  

 
The human body has a number of mechanisms to maintain its pH balance, suggesting that 
deviations such as acidosis may have negative effects. The acidosis associated with the KD 
is thought to be complicated by a number of adverse events. Acutely, acidosis may be the 
cause or contribute to the reports of gastrointestinal disturbances, such as nausea, vomiting, 
diarrhea and constipation. In one study, 39% of 129 people on KD reported these symptoms 
in the first 4 weeks of starting KD [8]. A possible mechanism for these adverse effects has 
been recently proposed, suggesting metabolic acidosis leads to acidification of the normally 
alkaline pancreatic juice and biliary secretion. This leads to impaired digestion in the small 
bowel. The poorly digested food accumulates in the small intestine where it is fermented by 
bacteria and yeast, producing large quantities of gas and toxic substances which can cause 
all the upper and lower gastrointestinal symptoms often reported in people on the KD [9].  
 
Chronically, acidosis is thought to be the cause of a number of adverse events such as 
nephrolithiasis, osteopenia, fractures, growth retardation and cardiac effects. Nephrolithiasis 
is a significant adverse event associated with KD. In a US series of children on the KD, 11 
(10.5%) of those not given Polycitra K developed renal stones, compared to only 1 (0.9%) 
out of 106 children given Polycitra K routinely at the start of KD treatment. Polycitra K 
treatment resulted in less acidic urine (mean pH: 6.8 vs 6.2; P = .002) [10].  
 
Osteopenia resulting from the KD was first reported in 1979 in a study comparing 5 children 
on KD with 18 children taking AEDs and 15 healthy controls. The subjects on KD showed 
decreased serum 25-hydroxyvitamin D, calcium concentrations and decreased bone mass 
[11]. A recent study looked at 25 children with intractable epilepsy and found that their initial 
bone mineral status was poor compared to healthy children. After 15 months on KD their 
bone mineral content declined sharply [12]. The negative impact of acidosis on bone has 
long been known but was thought to result from passive, physicochemical dissolution of 
bone mineral content, but it has been shown that bone resorption by cultured osteoclasts is 
stimulated directly by acid. Acidosis also exerts a powerful inhibitory effect on the 
mineralization of bone matrix by cultured osteoblasts [13]. The effect of diet-induced acidosis 
leading to lower bone mineral densities also occurs in the general population. The factors in 
the modern Western diet resulting in metabolic acidosis have been described [4, 14]. A study 
that had recruited 9724 people from the general population also suggests that metabolic 
acidosis, as evidenced by low bicarbonate concentrations, is associated with decreased 
bone mineral density – there was a significant linear trend across all quartiles of bicarbonate 
concentrations for lower bicarbonate concentrations to be associated with lower lumbar bone 
mineral densities [15].   
 
In the longer term, the effect of acidosis on bone can lead to fractures. In a retrospective 
review of medical records, 6 of the 28 children who were treated with KD for 6 – 12 years 
had fractures while on the diet and 4 of them had multiple fractures. The fractures occurred 
between 0.5 and 8 years after initiation of the diet [16]. 
 
A number of studies have shown that linear growth rate is also affected in children on KD 
[12, 17, 18]. It has been suggested that this is related to acidosis [12].  An observation that 
supports this suggestion is that the linear growth retardation seen in both proximal and distal 
renal tubular acidosis can be improved by correcting the acidosis [19].  
 
It is known that metabolic acidosis in people with chronic renal failure can lead to muscle 
wasting and correction of the acidosis can mitigate the muscle loss [20]. This effect of 



acidosis on muscle may contribute to the diminished weight gain observed in people on KD. 
In a study of 129 people on KD, 73 continued on the diet for >12 months. Forty-seven (65%) 
showed a decrease in weight percentile [8]. Other studies show similar effects of KD on body 
weight [16, 17]. 
 
The metabolic acidosis observed with KD may also have cardiac consequences. A study of 
20 children on KD showed a significant correlation between prolonged QTc in the ECG (a 
marker for risk of arrhythmia) and both low serum bicarbonate and high BHB. Three of the 
children had evidence of cardiac chamber enlargement. The cardiomyopathy in one child 
resolved on discontinuing the diet [21].  
 
 
3. Rationale for limiting systemic acidosis 

 

The adverse effects described so far are likely to be reduced by limiting metabolic acidosis, 

and probably provide sufficient reasons to reduce KD-induced acidosis. Recent studies are 

elucidating the role of pH in neuronal function and suggest the potential for an acidic 

environment to increase seizure risk. Hence, there is growing body of evidence showing that 

limiting acidosis may potentially improve seizure control. 

A receptor for H+ that activated Na+ current in mammalian neurons was first described in 

1981 [22]. It was not until 1997 that a channel from the rat brain activated by H+ and 

carrying an excitatory Na+ current, was cloned [23]. This channel, ASIC1a, is now included 

in the family of H+ gated ionic channels. Considerable progress has been made in further 

characterization of ASICs and in understanding their physiological functions. Non-invasive 

techniques to measure cerebral pH with sufficient spatial and temporal resolution had limited 

progress. Recently, a magnetic resonance imaging strategy was described that achieved 

spatial resolution of ~4mm and temporal resolution of 6 secs [24]. This technique was able 

to show that in the human brain (a) breathing 5% CO2, consistent with hypercarbic acidosis, 

produced a widespread decrease in cerebral pH; (b) paced hyperventilation at 27 breaths a 

minute, consistent with respiratory alkalosis, produced an increase in cerebral pH [24]. An 

inference from the above observations is that metabolic acidosis as seen in many people on 

KDs would be expected to lead to pH changes in the brain. So, how might limiting systemic 

acidosis improve seizure control? 

The mechanisms by which seizures are terminated are not fully understood. It is likely that 

multiple mechanisms are involved. One of the mechanisms involved is related to the 

changes in brain pH. It has been shown that seizures lead to acute acidification of the 

interstitial fluid, attributed to the production of CO2 and acid metabolites [25], and recent 

studies suggest that ASICs may play a significant role in the termination of seizures. ASICs 

are widely expressed in both the peripheral sensory neurons and CNS neurons. These 

channels are involved in a variety of physiological and pathological processes such as 

nociception, mechanosensation, synaptic plasticity and acidosis-mediated neuronal injury. A 

study in mouse found that disrupting ASIC1a increased the severity of chemoconvulsant-

induced seizures, whereas overexpressing ASIC1a had the opposite effect. Overexpressing 

ASIC1a did not affect seizure threshold or onset, but shortened seizure duration and 

prevented seizure progression. It is thought that acute acidosis increased neuronal inhibition 

by activating inhibitory interneurons through ASIC1a. This suggests that ASIC1a may play 

an important role in seizure termination when brain pH falls [26]. In another study elevated 

ASIC3 expression patterns in the brains of people with temporal lobe epilepsy and epileptic 

rats have been detected. Blocking ASIC3 with an antagonist, shortened the latency to 



seizure and increased the incidence of generalized tonic clonic seizure. These findings 

suggest that elevated levels of ASIC3 may serve as an anti-epileptic mechanism [27]. While 

studies have not been conducted, one might speculate that intermittent extracellular acidosis 

as a consequence of seizure activity might be expected to lead to the observed upregulation 

of ASIC1a and ASIC3, then chronic systemic metabolic acidosis, i.e. chronic ASIC1a and 

ASIC3 activation might lead to a down-regulation of these receptors, making this seizure 

termination mechanism less effective.  

The propensity for seizures to occur can be considered to result from the imbalance of 

excitatory and inhibitory neurotransmission. The principal excitatory input is through the 

activation of NMDA receptors. It has been suggested [28] that as H+ is a potent inhibitor of 

NMDA receptor, chronic systemic metabolic acidosis would lead to chronic inhibition of 

NMDA channels and as a consequence an up-regulation of the channel. The increase in 

number of NMDA channels makes excitatory neurotransmission more likely to occur, and as 

a result seizures are more likely.  There are clinical observations supporting the suggestion 

that upregulation of NMDA channels is seizurogenic but no studies of this have been 

reported. The increase in susceptibility to seizures seen in withdrawal of diazepam [29] and 

alcohol [30] is thought to be related to the upregulation of NMDA channels.  

The reason for suggested opposite effects of acidosis on ASIC1 and NMDA channels is that 

H+ is an agonist at the ASIC1 channel while it is an inhibitor at NMDA channels. In 

considering the impact of acidosis on the seizure process, one must also bear in mind the 

several ways in which acidosis can be produced. As discussed, the occurrence of seizures 

leads to acidification of the interstitial fluid, and this acidosis may contribute to seizure 

termination. Other ways of producing acute acidosis such as breathing 5% CO2, shown to 

produce widespread cerebral acidosis as discussed above, produced acute anti-

seizurogenic effects in rats, monkeys and in humans [31]. Acute acidosis probably exerts 

antiseizure effects through several mechanisms including activation of ASIC1a channels and 

inhibiting NMDA receptors as discussed above. Acute acidosis needs to be clearly 

distinguished from chronic acidosis. Chronic metabolic acidosis can result from dietary 

factors and KD is particularly potent in producing chronic acidosis as ketone bodies are 

acidic and other products of lipid metabolism are also acidic. If protein intake becomes 

excessive, the acidic metabolic products increase the overall systemic burden. KD is also 

generally deficient in alkaline-forming foods. We argue in this section that chronic acidosis 

has opposite effects from acute acidosis and is likely to produce greater susceptibility to 

seizures. 

 

The principal inhibitory neurotransmission involves GABAergic neurons. In a study using 

murine cortical slices, whole-cell voltage-clamp techniques showed impaired cortical 

GABAergic neuronal function when the pH of the perfusate was changed from 7.35 to 6.75. 

This procedure was considered to simulate clinical acidosis conditions [32]. Hence, there is 

the suggestion that chronic acidosis may result in increased excitatory and diminished 

inhibitory inputs, both favouring the occurrence of seizures. Clearly, more work needs to be 

undertaken to confirm these potential influences. 

Recent studies suggest that inflammation plays a significant role in the pathophysiology of 

seizures. The experimental and clinical evidence supporting the role of inflammation in 

seizures has been reviewed by several authors [33-35]. There are now several studies using 

macrophages documenting the effect of extracellular pH on the synthesis and release of 

inflammatory mediators. Studies using HCl as the acidifying agent consistently show 

proinflammatory effects at the level of nuclear factor kappa b DNA binding and Tumour 



Necrosis Factor (TNF) synthesis [36]. Hence, limiting the acidosis of dietary treatments for 

epilepsy may also avoid acidosis-related proinflammatory effects. 

A number of drugs are known to produce metabolic acidosis through a number of different 

renal mechanisms [37] and, in particular, a number of AEDs are carbonic anhydrase 

inhibitors producing metabolic acidosis by inhibiting the reabsorption of bicarbonate from 

renal tubules. Hence, it is particularly relevant to limit acidosis in people who are on drugs 

known to produce metabolic acidosis.  

 

4. Chronic metabolic acidosis has negative impact on general health 

 

Research has  shown that higher levels of inflammatory biomarkers are associated with the 

development of a number of diseases including cardiovascular disease [38] and cancer [39], 

and increase in all-cause mortality [40]. The factors that lead to increase in systemic 

inflammation have so far not been elucidated. In a cross-sectional study of 4525 healthy 

adults, lower serum bicarbonate and higher serum anion gap were associated with higher 

levels of inflammatory markers [41]. Therefore, acidosis may be one of the factors that 

causes an increase in systemic inflammation. A large population study showed that those 

with low bicarbonate levels (<22mM) had a 75% increased risk of mortality over a mean 

follow-up period of 8.6 years, compared with the reference group (bicarbonate 26-30mM) 

[42]. In a study of 31,590 adults, those with an acidic urine (pH < 5.5) compared to those 

with alkaline urine (pH > 8) also had a significantly increased hazard ratio (2.6, 95% CI 1.3-

4.9) for all-cause mortality [43]. 

Acidosis may also have an impact on cardiometabolic risk factors. In a cross sectional study 

involving 1136 female students, higher estimated dietary acid load was significantly 

associated with several risk factors including systolic and diastolic blood pressure, LDL 

cholesterol levels, BMI and waist circumference [44].  

The modern Western diet is acidogenic and produces a low-grade metabolic acidosis 

associated with microalbuminuria, insulin resistance and increased cardiovascular risk [45]. 

A number of studies suggest metabolic acidosis leads to insulin resistance and increases the 

risk of developing type 2 diabetes. A study in 16 healthy volunteers showed that the 

induction of mild metabolic acidosis with ammonium-chloride resulted in a decrease in 

insulin sensitivity [46]. Conversely, 4 weeks of sodium bicarbonate treatment in people with 

chronic renal failure reversed metabolic acidosis and led to an increase in insulin sensitivity 

[47]. A prospective case-controlled study including 630 women who developed type 2 

diabetes during a 10 year follow-up, showed that those with plasma sodium bicarbonate 

greater than the median level had a lower odds ratio (OR 0.76, 95% confidence interval [CI] 

0.60-0.96) of developing diabetes compared with women below the median level. 

Additionally, a large prospective study including 66485 women followed up for 14 years 

showed that higher dietary acid load was associated with an increased incidence in type 2 

diabetes [48]. 

Sodium bicarbonate concentration, a marker for metabolic acidosis, is an established 

predictor for progression of chronic kidney disease (CKD). But even in subjects with normal 

eGFR (estimated glomerular filtration rate >60 mL/min/1.73 m2), low sodium bicarbonate 

indicative of metabolic acidosis, was associated with a greater risk of development of CKD 

[49].  



A number of clinical and preclinical studies have been undertaken to elucidate the role of 

cerebral pH in the pathological mechanisms of panic attacks. The studies generally suggest 

that factors that lead to cerebral acidosis e.g. produced by CO2 inhalation or lactate infusion, 

can provoke panic attacks in people with the disorder. Hence disturbance in cerebral pH 

homeostasis appears to have a role in panic disorder [50]. 

In a healthy volunteer study, chronic metabolic acidosis was induced by administering 

NH4Cl to six male subjects. Mean plasma bicarbonate concentration decreased significantly 

from 25.0 to 15.5 mmol/l. The chronic metabolic acidosis produced by this procedure 

resulted in a decrease in thyroid function [51]. The thyroid hormone is known to have both 

non-genomic and genomic effects on increasing mitochondrial biogenesis and function [52]. 

It has been suggested by a number of authors that mitochondrial dysfunction plays a role in 

the underlying pathophysiology of a wide range of seemingly unrelated medical conditions 

including cancer, osteoporosis, diabetes, cardiovascular disease, biliary cirrhosis, retinitis 

pigmentosa, psychiatric disorders, neurodegenerative conditions and epilepsy [53-57].  

It is becoming clear that metabolic acidosis produced acutely by administering ammonium 

chloride or as assessed by high dietary acid load, low serum bicarbonate concentrations, 

high serum anion gap, and acidic urine, can have a wide ranging and negative impact on 

many conditions that contribute to general health.  

 

5. Hypothesis 

 

Our review clearly suggests that low-grade chronic metabolic acidosis which may complicate 

the KD is associated with acute and chronic adverse effects. The growing evidence on the 

potential effects of acidosis on seizurogenic mechanisms suggests that limiting acidosis may 

improve seizure control. Low-grade chronic metabolic acidosis also appears to have wide 

ranging negative health consequences. For these reasons, we hypothesize that modifying 

the KD to reduce low-grade chronic metabolic acidosis is likely to reduce adverse effects 

and improve seizure control. 

 

6. Proposal for an acidosis-sparing ketogenic diet (ASK). 

 

Even though mechanisms of the antiepileptic effects of KD have not been fully understood, it 

seems that the potential for the therapeutic effects of KD could be disrupted by low-grade 

chronic metabolic acidosis. We would like to suggest an acidosis-sparing ketogenic (ASK) 

diet which evolved to improve the efficacy and tolerability of the classic KD in an adult 

female subject (see Appendix 1) 

The principal elements of the ASK diet comprise: 

6.1. Measures to reduce acidosis.       
                                                              
6.1.1. Limit circulating ketone bodies. 
 
As the ketone bodies are acidic (acetoacetate, pKa 3.6; beta-hydroxybutyrate, pKa 4.7; 
acetone, pKa 20), and they have not been shown to correlate consistently with efficacy [58], 
the ASK diet attempts at least initially to avoid high ketone levels, tentatively setting target 



BHB levels of around 2mM/L and urine ketones at moderate (4mM/L) or lower. The main 
means to achieve this is to start dietary treatment with 60% calories from fat. In non-
responsive individuals, a gradual increase to a maximum of 80-90% calories from fat 
determining whether a higher systemic acidity might be well tolerated and whether ketogenic 
ratio up to a 4:1 ratio of fat to combined protein and carbohydrate (90% fat) is more 
therapeutic for the individual.  
 
Intake of the higher amounts of ketogenic medium-chain triglycerides (MCTs) [59] and 
polyunsaturated fatty acids (PUFA)s [60] is controlled by selecting certain foods with a view 
to balancing the overall fatty acid profile of the diet.  
 
Caloric intake also affects the degree of ketosis. A factor in achieving moderate ketonemia is 
avoidance of calorie restriction [61]. 
 
6.1.2. Control protein intake. 
 
Metabolism of protein generates sulfuric acid and is the major factor in contributing to 

endogenous acid production in normal Western diets [62]. The ketogenic branched-chain 

amino acids (BCAAs) in whey products may also increase the production of ketone bodies 

[63]. However, in order to compensate for loss of nutrients in high fat diet, the recommended 

dietary allowance (RDA) of 0.8 g protein per kilogram of body weight is raised, to ~1-1.2g/kg 

with a view to enhancing nutrition and metabolic functions [64].  

6.1.3. Formulate meals with a large, fixed quantity of low-carbohydrate green vegetables. 
 
Potassium and bicarbonate-rich, low-carbohydrate, alkaline-ash producing green vegetables 
serve to neutralize endogenous acid production [62].  
 
6.1.4. Include a lemon or lime each day. 
 
The citrate in lemon or lime is metabolized in the liver to generate bicarbonate.  
 
6.1.5. Include a magnesium citrate supplement.  
 
If the above steps are insufficient to neutralize the acidosis and/or constipation is a problem, 
a magnesium citrate supplement may be necessary. Each molecule of citrate is converted 
by the liver to 3 molecules of bicarbonate. Magnesium citrate is suggested because 
magnesium itself may have anti-seizure properties [65-68]. 
 
6.1.6. Avoid, if possible, acid-producing drugs and nutritional supplements. 
 
A number of drugs are known to affect the body’s acid-base balance. Drugs that lead to 
metabolic acidosis caused by acid load or base loss have been reviewed [69]. AEDs that 
inhibit carbonic anhydrase may cause metabolic acidosis [70].  
 
 
6.2. Composition of the diet 
  
6.2.1. Fats 
 
A large number of traditional ethnic diets in different parts of the world have especially prized 
the milk fat of ruminants rich in saturated fatty acids which are a major part of the 
phospholipids (lecithins in all cells) that support the integrity of neural cell membranes. Dairy 
fat contains: vitamins A,D,E and K; cholesterol that is important for myelin synthesis;  
bioactive fatty acids e.g. butyric acid which lowers inflammation in the intestine; caproic, 



caprylic, capric and lauric acids with anti-microbial, anti-viral, and anti-fungal properties; 
myristic acid known to raise HDL cholesterol to bind and eliminate toxins, protect cells and 
lipoproteins from damage, and participates in their repair; stearic acid with beneficial effects 
on thrombogenic and atherogenic risk factors [71]. The more than 400 fatty acids in dairy fat 
are complemented with foods providing additional monounsaturates and polyunsaturates: 
egg yolk, pork, nuts and seeds. In addition, fish provides docosahexaenoic and 
eicosapentaenoic acids, and beef and lamb provide arachidonic acid. The goal is to mimic, 
as closely as possible, the fatty acid composition of human milk, which is the unique 
biological template for the nurture of the human brain. Furthermore, breastfeeding has been 
linked to decreased epilepsy in childhood [72].  

In a diet of 2000 kcal, the percentage of energy derived from lipids might be started at 1200 
kcal (60%) and might be raised gradually to the classic KD 3 or 4:1 ratios of fat to combined 
protein and carbohydrate by weight. 

6.2.2. Protein 
 
Protein intake is controlled as discussed above. Protein foods are eggs, a daily staple that 
boosts nutrition with the fat soluble vitamins A D E and K, several B vitamins, minerals 
including selenium, essential fatty acids, lecithin and cholesterol. Beef and lamb are staples 
high in carnitine to support the beta-oxidation of fatty acids [73], and carnosine known to 
function as an acid-base buffer [74]. Pork is also a staple that is known to increase 
monounsaturated fatty acids (MUFA) and thiamine. It has been suggested that thiamine 
deficiency may provoke seizures [75]. 
                                         
6.2.3. Carbohydrate 
 
Carbohydrate is anti-ketogenic. Hence, starches and sugars are not allowed. Carbohydrates 

from green leafy vegetables and other vegetables with low carbohydrate content are allowed 

and constitute the main bulk of each meal. In addition, carbohydrates in lemon, lime, the 

fatty fruits avocado and olive are allowed, as well as nuts and seeds which contribute to 

important nutritional and metabolic effects. Inclusion of artisanal fermented vegetables like 

sauerkraut and kimchee may improve the gut microbiome and stimulate the vagal afferents 

to the brain. It has been suggested that stimulating the vagus nerve may help to improve 

seizure control [76]. Since a number of chemicals used in food production and processing 

have been shown to be mitochondrial inhibitors and have widespread negative effects on 

cellular metabolism [77], fresh, local, organically grown produce is preferred.   

The high volume of green vegetables recommended for their generous alkaline mineral 

content provide only approximately 30g/d carbohydrate. The estimated initial ketogenic ratio 

is approximately 2:1.  

 
6.2.4. Hydration 
 
Steady maintenance of hydration, neither too much fluid nor too little, is of the utmost 
importance, hence testing the urine for specific gravity is recommended at times when the 
prescribed daily fluid intake may be compromised. Mineral waters rich in bicarbonate, 
magnesium, and calcium, low in sodium, and without fluoride are preferred. 
 
 
6.3. Other important elements of the diet: 
 



The high ATP levels resulting from a KD may be involved in helping normalize synaptic 

transmission [78], and nutrients in dietary substrate may also affect neurotransmission [79]. 

Hence, specific nutrient-dense foods are prescribed as staples most likely to support 

metabolic and nutritional needs. Furthermore, environmental toxins [80] and drugs [80, 81], 

including AEDs [82] that inhibit mitochondrial function, are avoided as much as possible. 

A case history of a subject using the ASK diet is given in Appendix 1 and details of her meal 

plan is given in Appendix 2. 

 

7. Discussion 

 

Two randomized clinical trials have demonstrated the efficacy of the classic ketogenic diet 

[83, 84], and the positive experience in using the classic KD and its variants in childhood 

epilepsy have been reviewed [85, 86]. There is also now increasing experience with the use 

of the classic KD and its variants in adults [87, 88]. As with pharmacological therapies, a 

significant proportion of people do not respond to KD.  Approximately half of people tried on 

KD do not show a greater than 50% seizure reduction. There are also issues of acceptability 

of the diet and there can be significant adverse effects. Acidosis and uncertainties of 

nutritional management complicate clinical management and discourage use of ketogenic 

dietary treatment. We raise the question of whether changes to KD might improve efficacy 

and reduce potential adverse effects. In this paper we suggest that controlling the potential 

low-grade chronic acidosis and supporting metabolic regulation by prescribing specific, 

nutrient-dense whole foods may be important strategies to improve efficacy and tolerance. 

Clearly clinical research is required to determine if indeed avoiding acidosis and enhancing 

nutrition can improve KD efficacy and tolerability. 

 

8. Future studies 

Initially open studies should be conducted to verify that indeed the ASK diet can avoid low-

grade chronic metabolic acidosis as assessed by serum anion gap and bicarbonate levels. 

The studies should also determine if efficacy is improved or at least not compromised by the 

changes to avoid acidosis. These studies should also determine the best strategies in 

initiating the diet and to verify if indeed acute side effects are avoided with the ASK diet. If 

efficacy is not optimal, the studies should determine if higher levels of ketones provide better 

seizure control and if those levels are still well tolerated and are not producing low-grade 

chronic metabolic acidosis. Following the greater experience in using the ASK diet in open 

studies, comparative studies with the classical KD and other KD variants should be 

undertaken to ascertain if the hypothesis can be confirmed. 
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Appendix 1 

A case history (Presented at the Global Symposium on the Dietary Treatments of Epilepsy 

and Other Neurological Disorders, Edinburgh, 2010.) 

 

RA is a 41 yr. old female with subcortical band heterotopia. She had autism and seizures 

with multiple atypical seizure types which started when she was 9 months old. She was first 

hospitalized for status epilepticus (SE) at age 13. Her seizures remained refractory on 

various AED combinations. She had 8 further admissions because of SE, the last SE and 

hospitalization occurring at age 33. RA started ketogenic dietary treatment at age 27. Her 

dietary management has evolved over a period of 14 years. Her ketogenic diet has been 

modified for improved nutritional support, reduction of metabolic acidosis, avoidance of 

neurotoxins, and protection of mitochondrial and peroxisomal beta-oxidation pathways. 

Since age 33 years RA has been without overt episode of seizure of either a clearly defined 

complex partial or secondary generalized nature. EEG at age 35 was essentially normal. 

Primary treatment consists of phenytoin, maintained at maximum therapeutic level, high 

dose levetiracetam, and ketogenic-based diet (80 to 90% calories from fat). RA is now in 

excellent health, and shows cognitive and social rehabilitation indicative of recovery from 

autistic dysfunction. RA’s physical examination and biochemistry results are given in Table 1 

and RA’s most recent meal plan is given in Appendix 2. 

 



 

Table 1. Physical Exam and Biochemistry Results 

 

PHYSICAL EXAM   

Weight 56.6 kg  

Height 159 cm  

Blood pressure 120/81 mm/Hg  

Pulse 83 beats/min  

Neurological exam Unremarkable, except for  
inappropriate behaviors 

 

BIOCHEMISTRY  Normal range 
Sodium 136 mEq/L 135 - 145 

Potassium 4.1 mEq/L 3.5 – 5.2 

Chloride 103 mEq/L 95 - 109 

CO2 Content 25 mEq/L 22 – 31 

Glucose 77 mg/dL  (4.3mmol/L) 70 – 99 

Creatinine 0.7 mg/dL (61umol/L) 0.6 – 1.1 

Calcium 9.7 mg/dL (2.4mmol/L) 8.6 – 10.2 

Lipids   

     HDL 82 mg/dL    (2.1mmol/L) >59 low risk 

     LDL 156 mg/dL  (4.0mmol/L) 130 – 159 borderline 

     Cholesterol 250 mg/dL  (6.5mmol/L) >239 high 

     Triglycerides 59 mg/dL    (0.7mmol/L) <150 normal 

     CHO/HDL ratio 3.0 <5 desirable 
Carnitine, free 37 umol/L 25 – 60 

Beta-hydroxybutyrate 3.3 mg/dL   (0.3mmol/L) 0 - 3.0 

Ketones (not BHB) Negative Negative 

 



Appendix 2 

RA’s Meal Plan (2012-2016) 

The plan below accommodated RA’s energy requirement with ~80% calories from fat. 

Preparation of her meals was on stove-top at low heat. Ingredients were mixed together to 

form an approximately isocaloric homogeneous meal, with raw ingredients incorporated 

upon serving. 

 

 



 

Breakfast Lunch Dinner 

2 free-range eggs; 2 TBSP 

clarified butter (ghee); 2 TBSP 

whipping cream 

Rotation of 3oz pastured beef, 

lamb, pork; 2 TBSP ghee 

3 oz cold water fish; 2 TBSP 

crème fraîche 

   

1 cup cooked fresh, organic 

vegetables 

1 cup cooked fresh, organic 

vegetables 

1 cup cooked fresh, organic 

vegetables 

(choose 3) (choose 3) (choose 3) 

   

1 cup uncooked vegetables 1 cup uncooked vegetables 1 cup uncooked vegetables 

(choose 3) (choose 3) (choose 3) 

1/3 lemon (juice and pulp) 1/3 lemon (juice and pulp) 1/3 lemon (juice and pulp) 

2 tsp sea salt, sesame seeds, 

seaweed condiment (gomasio) 

 

2 tsp seaweed gomasio 2 tsp seaweed gomasio 

1 walnut; 2 almonds 1walnut; 2 almonds 1 walnut; 2 almonds 

   

   

Beverage – approved herbal 

tea; 2 TBSP whipping cream  

Beverage – approved herbal 

tea;  2 TBSP  whipping cream  

Beverage – approved herbal 

tea; 2 TBSP  whipping cream  

In addition to the breakfast 

beverage, a mid-morning 

beverage may be required to 

fulfill the required fluid intake. 

In addition to the lunch 

beverage, a mid-afternoon 

beverage may be required to 

fulfill the required fluid intake. 

In addition to the dinner 

beverage, a bed-time 

beverage may be required to 

fulfill the required fluid intake. 

  

   

   

 

Cooked  Fresh Organic Vegetables:  alfalfa/bean sprouts, artichokes, asparagus, bamboo 

shoots, beet greens, bok choy, broccoli, broccolini, Brussels sprouts, cabbage, cauliflower, 

celery, chard, collard greens, eggplant, green beans (haricots), green bell peppers, green 

onions (scallions), kale, kohlrabi, leeks, mustard greens, okra, pumpkin, snap peas, snow 

peas, spinach, swiss chard, turnips, water chestnuts, zucchini squash (courgette). Chives, 

cilantro, curry spices, marjoram, oregano, parsley, and thyme may be included in cooking. 

Uncooked Fresh Organic Vegetables:  arugula (roquette), avocado, bamboo shoots, basil, 

celery, cilantro, cucumber, daikon radish, escarole, endive, green onions (scallions), green 

bell peppers, jicama, kohlrabi, lettuce (all varieties and mixed salad greens), parsley, salt-



fermented vegetables (sauerkraut, pickled cabbage (kimchee), pickles), seaweeds (sea 

vegetables), water chestnuts, watercress. 

Beverages: mineral and spring waters high in calcium and bicarbonates and without 

fluoride; hot and cold infusions of mint, holy basil (tulsi) tea, passionfruit, ginger, lemon, 

coconut cream, with cinnamon or pure vanilla essence; cream “shakes”/“smoothies”; meat 

broths and soups; vegetable juices and soups.  
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