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Abstract 1 

 2 

 3 

Objectives: To analyse the effect of drug resistance mutations (DRM) on CD4 cell trends in HIV-4 

positive people maintained on virologically failing antiretroviral therapy (ART).   5 

 6 

Patient and Methods: Individuals from two large cohorts experiencing virological failure (VF) while 7 

maintained on ART with >1 CD4 count and >1 resistance test were included. CD4 cell slopes were 8 

estimated using linear mixed models. Principal component analysis (PCA) was used to assess the 9 

effect of clusters of mutations, defined using extracted component based scores from the PCA, on 10 

CD4 cell decline.  11 

 12 

Results: 5,357 individuals contributing 7,661 VF episodes were included: any DRM were detected in 13 

88.8% of episodes. After adjustment, CD4 counts declined less steeply during episodes where DRM 14 

were detected compared to episodes with no DRM (difference=28 cells/mm3/year, 95%CI=18-39, 15 

p<0.001). Among individuals with at least one DRM, we found evidence that any 16 

nucleoside/nucleotide reverse-transcriptase inhibitor (NRTI) resistance, the reverse transcriptase 17 

(RT) mutations M184V, D67N and T215Y as well as the protease mutations V82A and I54V were 18 

associated with reduced CD4 cell declines.  The detection of any non-nucleoside reverse-19 

transcriptase inhibitor (NNRTI) resistance, the RT mutations V179D and L74V were associated with 20 

steeper CD4 cell declines. The presence of some mutation patterns similar to the clusters identified 21 

by the PCA also affected the CD4 cell decline.   22 

 23 

Conclusion: Detection of resistance and of certain DRM during VF of ART has a small but significant 24 

favourable effect on CD4 cell decline.  25 

 26 
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Introduction 29 

 30 

Despite the success of antiretroviral therapy (ART) in lowering mortality of people living with HIV, 31 

some individuals still experience virological failure (VF) on their ART regimen. Given the large 32 

number of potential anti-HIV drugs available, an effective second- or third-line salvage regimen 33 

consisting of new drugs from different drug classes can generally be prescribed [1]. However, for a 34 

minority of individuals it is sometimes difficult to construct a salvage regimen because of extensive 35 

and complex resistance patterns or, in resource-limited settings (RLS), because of limited drug 36 

availability, infrequent or absent viral load monitoring and a consequent lack of timely switching. In 37 

these situations, clinicians may be forced to keep individuals on their failing regimen for extended 38 

periods of time [2,3].  39 

 40 

Individuals who are kept on a failing ART regimen can still derive clinical benefit from the treatment 41 

and may experience stable or increasing CD4 counts despite ongoing viral replication [4–6].  This has 42 

been hypothesised to reflect lower replicative capacity of viruses with drug resistance mutations 43 

(DRM), particularly for the mutation M184V selected for by lamivudine [7]. However, other factors 44 

such as reduced CD4 cell turnover and/or activation [8], the inhibition of CD4 cell apoptosis by 45 

protease inhibitors (PI) [9], ineffective replication in the thymus by PI resistant viruses [10] or 46 

residual antiviral activity [11] have also been proposed as potential explanations.  Although 47 

increased CD4 counts despite ongoing viral replication have been observed in several studies [5,12–48 

17], only a few large studies have investigated the effect of DRM on CD4 counts [18–20].  We used 49 

data from two large European cohorts of HIV-positive people receiving ART to evaluate the 50 

association between the detection of DRM and CD4 count changes in the presence of ongoing viral 51 

replication. 52 
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Methods 53 

 54 

Study participants 55 

We included individuals from the EuroSIDA cohort [21] and the UK Collaborative HIV Cohort (UK 56 

CHIC) Study [22] (with linked resistance data from the UK HIV Drug Resistance Database (UK HDRD) 57 

[23] ) who had  ≥1 episode of VF (2 or more consecutive viral load (VL) measurements of >500 58 

copies/mL while remaining on the same ART regimen) who had ≥1 resistance test and ≥1 CD4 count 59 

measured during these episodes of VF . Episodes of VF were defined as starting on the date of the 60 

first VL measurement >500 copies/mL, and as ending on the date of the first VL measurement <500 61 

copies/mL or on the date when the ART regimen was changed (defined as either stopping or adding 62 

one or more drugs). Participants could contribute multiple episodes of VF, and baseline was defined 63 

as the date of the first CD4 measurement of each episode.  64 

 65 

Exposure and outcome definitions  66 

We modelled CD4 counts linearly on a raw (i.e. cells/mm3) scale. Resistance was classified using the 67 

IAS (2015), Stanford (2014), ANRS (2015) and Rega (2013) classification systems.  We used the IAS 68 

list to classify minor PI mutations.  Any resistance was defined as the detection of at least 1 DRM in 69 

reverse transcriptase (RT) or protease (PR) in either any of the 4 classification systems. Individuals 70 

with only minor PR mutations were considered as having no detectable resistance, and we only 71 

studied minor PR mutations when these were present with other DRM. The resistance categories 72 

that we studied were: nucleoside reverse transcriptase (NRTI) resistance, non-nucleoside reverse 73 

transcriptase (NNRTI) resistance, any protease inhibitor (PI) resistance (considering only major 74 

mutations) and any PI resistance (considering both major and minor mutations). We also evaluated 75 

the effect of individual mutations that were detected in >1% of episodes. Resistance was presumed 76 

to be present from the start of the failure episode until the end, irrespective of the point during the 77 

episode at which it was detected by the genotypic test.   78 
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 79 

As mutations can co-occur in patterns, we conducted a principal component analysis (PCA) to 80 

identify clusters of mutations in the RT and PR [24]. The details of the PCA are provided in the 81 

supplementary materials (S1).  For simplicity, and to avoid capturing associations driven by temporal 82 

changes to the virus, we did not differentiate between different amino-acid substitutions in the 83 

same position for this part of the analysis. To study the effect of DRM clusters on CD4 count 84 

changes, we used extracted component-based scores from the PCA. These scores indicate how 85 

closely an individual’s mutation pattern resembles that described by a given cluster. A high score 86 

indicates that the individual’s mutation pattern is close to that of the cluster.  After extracting the 87 

scores, we looked at whether individuals with high scores (defined as a score in the highest quartile) 88 

for a certain cluster had different CD4 count changes compared to those with lower scores.   89 

 90 

Statistical methods 91 

We compared CD4 cell slopes estimated using  linear mixed models with random intercepts and 92 

slopes among individuals with any drug resistance to those without any detected resistance [25,26]. 93 

Among those with any resistance, we then evaluated the effect of class of resistance and individual 94 

DRM.  The effect of PCA-derived scores on CD4 cell slopes was also evaluated among individuals with 95 

any resistance. Potential confounders were identified using previous publications and clinical 96 

knowledge, and the final model was adjusted for age (categorised into quartiles), hepatitis C status 97 

(yes/no/missing), risk group (Men who have sex with men/ Injecting Drug Use/ heterosexual/ other) 98 

and subtype (B/Non-B). A summary literature review undertaken before this study is provided in the 99 

supplementary materials (S2). We did not adjust for baseline CD4 counts, as this risks introducing 100 

bias [27,28]. VL can be considered both as a potential confounder and as a causal pathway variable, 101 

as the effect of any mutation on the CD4 cell decline may at least in part be mediated through 102 

changes in the VL. For this reason, we conducted step-wise adjustments as follows: 1) Exposure 103 

alone, 2) Model 1 + age, hepatitis C status, risk group and subtype and 3) Model 2 + VL. We adjusted 104 
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for VL as a continuous, time-updated covariate on the log10 scale. For the baseline table we also 105 

present data on the level of viral suppression. This was estimated by comparing current VL levels 106 

with an individual’s viral set point, which was defined as the mean of all pre-ART VL measures.  107 

 108 

We adjusted the p-values derived from the analysis of individual DRM for multiple testing, as these 109 

were chosen based on a prevalence threshold and not an a-priori hypothesis.  To do this we used the 110 

Benjamini-Hochberg procedure for correcting the false discovery rate (FDR) [29], which produces a 111 

q-value representing the probability of a significant finding being a false positive.  We used a q-value 112 

threshold of 0.05 to indicate significant results. 113 



8 
 

114 

Results 115 

Characteristics of the study population 116 

A total of 5,357 individuals contributing 7,661 VF episodes were included in the analyses; 2,757 117 

(36%) from EuroSIDA and 4,904 (64%) from UK CHIC. Individuals experienced a median of 1 118 

(range=1-9) VF episodes, which lasted for a median of 5 (inter-quartile range [IQR]=2-13) months 119 

and contained a median of 3 (IQR=2-5) CD4 measurements. The characteristics of the population at 120 

the start of each episode can be seen in the supplementary materials, S3. Although 15.6% of 121 

episodes occurred while individuals were on mono/dual therapy, the majority occurred while 122 

individuals were in receipt of more than 3 drugs. The most common type of cART was NNRTI based 123 

(19.8%).  56% of episodes occurred while individuals were receiving lamivudine. The second most 124 

common drug was tenofovir (30%) followed by indinavir (33%). 1,338 different combinations of 125 

drugs were used, the most common being zidovudine, lamivudine and nevirapine. A description of 126 

all drugs utilised can be found in the supplementary materials (S4).  127 

 128 

Any resistance was detected in 6,804/7,661 episodes (88.8%). The prevalence of any NRTI resistance 129 

was 68.0%, any NNRTI resistance 58.2% and any PI resistance (excluding minor PI mutations) 51.0%. 130 

The prevalence of the 55 distinct RT mutations and 64 PI mutations that were detected at a 131 

frequency of more than 1% can be seen in Figure 1. There were some differences in host and viral 132 

characteristics between episodes where resistance was detected compared to episodes where it was 133 

not (Supplementary materials, S3).  Notably, episodes with no resistance had higher baseline viral 134 

load values (p<0.001). The baseline viral load values were also more likely to be higher than set-135 

point estimates in episodes with no detected resistance (p<0.001). However, there was only very 136 

weak evidence suggesting a difference in CD4 counts measured at the start of episodes (p=0.05).  137 
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CD4 count changes over time and according to the detection of any and class resistance  138 

In univariable analysis, the estimated CD4 cell decline during episodes of VF was 20 cells/mm3/year 139 

(95%CI=-22;-17) in the entire population. CD4 cell declines were less steep (although still notable) 140 

when time-updated VL levels were below pre-ART set-point values (p=0.008; data not shown). 141 

Figure 2 shows the estimated difference in annual CD4 cell decline according to the detection of any 142 

and class of resistance. CD4 counts declined less rapidly during episodes where drug resistance was 143 

detected compared to episodes where resistance was not detected, with an estimated difference of 144 

28 (18-39) cells/mm3/year (-17 [-20; -15] v -46 [-56; -36]) cells/mm3/year, interaction p<0.001). 145 

These findings persisted after adjustment for the pre-specified confounders (difference=28 [17-39] 146 

cells/mm3/year, p<0.001) and after further adjustments for VL (difference=32 [21-42] 147 

cells/mm3/year, p<0.001, Figure 2). 148 

 149 

Among individuals with detected drug resistance, CD4 counts declined less rapidly during episodes 150 

where NRTI resistance was detected compared to episodes where NRTI resistance was not detected 151 

(-15 (-18; -12) v -40 (-48; -33) cells/mm3/year, interaction p<0.001). Adjustment for pre-specified 152 

confounders and VL did not change the difference in CD4 cell slopes between those with and 153 

without NRTI resistance markedly (difference=27 [18-35] and 28 [20-37] cells/mm3/year 154 

respectively, Figure 2). There was also evidence that CD4 counts declined faster during episodes 155 

where NNRTI resistance was detected in both univariable analyses (-22 (-26; -19) v -10 (-15; -5) 156 

cells/mm3/year, interaction p<0.001) and after both adjustments (Figure 2). 157 

 158 

There was no evidence to suggest that CD4 cell decline differed according to the detection of PI 159 

resistance including minor PI mutations (Error! Reference source not found. 2). However, there was 160 

some weak evidence suggesting that CD4 cell decline was less steep during episodes where major PI 161 

mutations were detected, both in univariable (difference=6 (-1-12) cells/mm3/year, p=0.07) and 162 
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multivariable models (difference=7 (1-14) cells/mm3/year, p=0.02  in model 1, difference= 6 (-0; 12) 163 

cells/mm3/year, p=0.05 in model 2).  164 

 165 

The effect of specific DRM on CD4 count changes 166 

The difference in CD4 cell decline between episodes with and without a given RT mutation after 167 

adjustment for pre-specified confounders is shown in Figure 3. After correcting for multiple testing, 168 

the strongest association was found for M184V, with episodes where M184V was detected 169 

experiencing somewhat less steep CD4 cell declines (difference= 17 (11-23) cells/mm3/year, 170 

q<0.001). These findings did not change markedly after additional adjustment for VL (difference=16 171 

(10-21) cells/mm3/year, q<0.001, Supplementary Materials, S5).  There was also reasonable 172 

evidence that the T215Y and D67N mutations were associated with less steep CD4 cell declines both 173 

before (difference=11 (5-17) and 11 (5-17) respectively, both p=0.012) and after (difference=10 (4-174 

16) and 12 (6-17), q=0.019 and 0.003 respectively) adjustment for VL. One NNRTI mutation, V179D, 175 

was associated with steeper CD4 declines, although the confidence intervals surrounding this finding 176 

were very wide (difference=-44 (-69; -19) cells/mm3/year, q=0.012, Figure 3). There was also some 177 

very weak evidence (q=0.05) suggesting that those with the L74V mutation experienced somewhat 178 

steeper CD4 declines, but the evidence supporting this finding disappeared upon adjustment for VL 179 

(Supplementary Materials, S5).  180 

 181 

Of the PI mutations studied, 2 remained associated with a less steep CD4 decline after correction for 182 

multiple testing: V82A and I54V (Figure 4). The strongest association was found for the V82A 183 

mutation, where CD4 decline was estimated to be 18 (10-25) cells/mm3/year less steep during 184 

episodes where the mutation was detected compared to episodes without the mutation (q<0.001). 185 

CD4 decline was also 13 (5-20) cells/mm3/year less steep during episodes where I54V was detected 186 

(q=0.015). Again, further adjustment for VL did not change these conclusions or shift the point 187 

estimates notably (Supplementary Materials, S5).  188 
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Clusters of mutations 189 

The PCA analysis identified five RT and two PR clusters. The process by which they were selected is 190 

described in more detail in the Supplementary Materials (S1).  Briefly, the first three RT clusters 191 

corresponded roughly to the TAM mutations (RT codons 210, 41, 215, 219, 67, 70 plus 44, and 118), 192 

the 151M complex (RT codons 151, 116, 77and 75 and weakly, 65 and 62) and the TAM-2 pathway 193 

(RT codons 70, 219 and weakly, 67). The fourth RT cluster consisted primarily of substitutions at 194 

positions 74, 221 and 181 and the fifth cluster of substitutions at positions 101, 103 and 225. Of the 195 

two PR clusters, the first consisted primarily of major PI mutations (codons 46, 48, 54, 58, 82, 84 and 196 

90) with some minor PI mutations (codons 10, 24, 33, 53, 64, 71and 73) which represented broad PI 197 

resistance. The second PI cluster consisted of 4 minor PI mutations (codons 20, 36, 69 and 89) which 198 

are common in non-B subtypes, with some weak contributions from substitutions in position 16 and 199 

15. 200 

 201 

The effect of mutation clusters on CD4 count changes 202 

The effect of the mutation clusters on CD4 count changes are shown in Error! Reference source not 203 

found.. Individuals with scores in the highest quartile of the 3rd RT cluster (weakly corresponding to 204 

TAM-2 mutations) experienced reduced CD4 cell declines (difference=9 (2-16) cells/mm3/year, 205 

p=0.007), as did individuals with scores in the highest quartile of the 1st PI cluster, which represented 206 

broad PI resistance (difference=14 (7-20) cells/mm3/year, p<0.001). Individuals with scores in the 207 

highest quartile of the 5th RT cluster, which included K103N, experienced steeper CD4 cell declines 208 

(difference=-9 (-16; -3) cells/mm3/year, p=0.007) compared to individuals with lower scores on this 209 

component. There was also some very weak evidence that scores in the highest quartile of the 1st RT 210 

cluster, which included the TAM-1 mutations, were associated with somewhat reduced CD4 cell 211 

declines (p=0.03).  212 

 213 
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214 

Discussion  215 

Although the aim of HIV treatment should always be to suppress the VL to undetectable levels, there 216 

is a minority of patients with extensive resistance or without access to any other drug options for 217 

whom this is not possible. Composing a salvage regimen for these individuals presents a particular 218 

challenge, and it has long been debated whether including drugs that preserve resistance patterns 219 

associated with lower viral fitness may provide some clinical benefit [4,6,30]. In this analysis, we 220 

found that among individuals maintained on a failing treatment regimen, CD4 counts declined less 221 

rapidly during episodes in which resistance was detected compared to episodes where resistance 222 

was not detected. DRM detection can serve as a proxy for ongoing ART pressure and at least partial 223 

antiviral activity, whereas the absence of DRM can indicate high levels of non-adherence. VF 224 

episodes with no detected DRM had much higher baseline VL levels in addition to more rapid CD4 225 

cell decline, which supports the hypothesis that those individuals without DRM may not be taking 226 

their ART. When restricting the analyses to episodes with any detected resistance, CD4 counts 227 

decreased less steeply during episodes of virological failure where any NRTI resistance, the RT 228 

mutations M184V, D67N and T215Y and either of the PR mutations V82A and I54V were detected. 229 

CD4 counts declined more steeply during episodes with detected NNRTI resistance, as well as the RT 230 

mutations V179D and, marginally, L74V. 231 

 232 

It has been suggested that differences in CD4 cell decline according to the presence of certain DRM 233 

could reflect differences in the replicative capacity of the virus [31]. The M184V mutation in the 234 

reverse transcriptase has been frequently shown to adversely impact replicative capacity [32–35], 235 

and the T215Y mutation has been associated with an impaired RC [35,36]. In contrast,  D67N has 236 

been found to have relatively high RC [31,36]. The V82A mutation has been reported to negatively 237 

impact the functionality of the viral protease  which could lead to a lower RC [37].  However, 238 

adjustment for VL, which is associated with the replicative capacity of a virus [14], did not affect the 239 
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conclusions or the size of the CD4 cell decline markedly in this analysis. Although this could indicate 240 

that the effects described here are not being mediated through viral load changes,  a model 241 

adjusting for a mediating variable often fails to accurately estimate the total direct effect of the 242 

exposure on the outcome [38–40].  It is possible that adjusting for time-updated VL has not removed 243 

the effect that might be mediated through this variable, and this limitation should be born in mind 244 

when interpreting the results.  245 

 246 

The results from studying clusters of mutations indicated that episodes where the mutation pattern 247 

broadly aligned with TAM-2 mutations or the broad PI resistance described by the 1st PI cluster had 248 

less steep CD4 cell declines.  Although the TAM-2 mutations D67N, K70R and K219Q have relatively 249 

low fitness costs when present alone [31], the presence of K70R has been shown to result in 250 

reduction in fitness when it emerges in viruses carrying both D67N and K219Q in the absence of drug 251 

pressure [41]. Such a combined effect may also explain why the detection of each of these 3 252 

mutations individually resulted in less steep CD4 cell declines, although only significantly so for the 253 

D67N mutation after correcting for multiple testing. The impact of PI resistance on replicative 254 

capacity is complex to predict as these mutations may be accompanied by compensatory PI 255 

mutations that can restore viral fitness [31]. However, it is possible that the first PI cluster could 256 

capture the effect of a number of major PI mutations which, when present in combination, could be 257 

associated with favourable CD4 cell changes. We also found weak evidence that the fourth RT 258 

cluster was associated with steeper CD4 cell declines. The mutations that formed part of this cluster 259 

include K103N and L100I, both of which have been shown to have a very small fitness cost  [31].  260 

 261 

Previous studies of the effect of drug resistance on CD4 cell changes have found conflicting results. A 262 

previous randomised trial, COLATE, which evaluated continuation versus discontinuation of 263 

lamivudine in individuals with VF as compared to other cART in order to study the effect of 264 

preserving the M184V/I mutation, failed to demonstrate a virological or immunological benefit of 265 
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continuing lamivudine [30]. The authors suggested that this could be due to the high GSS of the 266 

switch regimens, which could be masking any potential benefits. An earlier pilot trial (E-184V) 267 

reported a benefit of lamivudine monotherapy compared to treatment interruption in treatment 268 

experienced patients on HAART requesting a treatment interruption, and suggested that these 269 

benefits are in part due to the preservation of M184V [6]. Recently presented results from the 270 

MOBIDIP/ ANRS 12286 trial have also shown a marked clinical benefit of using lamivudine in 271 

combination with a boosted PI compared to the use of a boosted PI alone as a simplification strategy 272 

for patients with a suppressed VL on second line therapy [42]. The findings from observational 273 

studies have also been conflicting. In broad agreement with the findings presented here, a recent 274 

analysis by Hoffman et al of a large cohort of people living with HIV from South Africa found that 275 

CD4 counts declined less rapidly during episodes of persistent viraemia where M184V was detected, 276 

although not significantly so (p=0.1) [43].  A study by Antinori et al in 2001 found that both M184V 277 

and V82A were associated with immunological recovery despite ongoing viral replication in 278 

univariable analyses, but not after adjustments for confounders including VL [20]. This is similar to 279 

results reported by  Gianotti et al, who found no associations between individual mutations in the 280 

pol gene region and the odds of discordant immuno-virological responses when studying 825 281 

individuals from the large ARCA database in Italy [19].  282 

 283 

There are several important limitations of our findings. Firstly, we did not have a validated measure 284 

of adherence available, which unfortunately meant that we were not able to adjust for poor 285 

adherence. Adherence has the potential to be an important confounder in this analysis, as it is likely 286 

to influence both the presence of resistance and CD4 cell decline [44]. Although sensitivity analyses 287 

where we excluded individuals with potentially poor adherence based on their VL trajectories led to 288 

consistent results (data available on request), it is possible that this did not accurately identify poorly 289 

adherent individuals. Secondly, many different drug combinations were used to treat individuals in 290 

this study, and it was not possible to study the effect of individual regimens. Although adjustment 291 
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for current VL should remove the effect of residual antiviral activity exerted through the VL, we 292 

cannot rule out that some of the different regimens used exerted some residual antiviral activity 293 

that could explain some of the findings. Although we conducted sensitive analyses where we 294 

adjusted for the class of drug received which showed consistent results (results available within the 295 

supplementary materials, S4), we cannot rule out that adjustment for the specific regimen received 296 

would produce different results due to the presence of residual confounding in our study. Future 297 

studies conducted in other settings may have greater homogeneity in the types of regimens used, 298 

and in these situations it would be of great interest to repeat the analyses stratified by the type of 299 

regimen received. In addition, we cannot rule out that the results would differ in settings where 300 

other subtypes predominate. Repeating the analyses within cohorts with a higher prevalence of non-301 

B subtypes would be of great interest. Finally, despite using combined data from two large cohorts, 302 

the relatively low prevalence of individual mutations means that some of our estimates, particularly 303 

for rare mutations, suffer from low precision.   304 

 305 

Bearing these limitations in mind, our findings provide some support for the hypothesis that CD4 cell 306 

decline may be less marked when individuals experiencing VF are maintained on regimens that 307 

preserve specific mutations that have previously been associated with reduced viral fitness. This 308 

could have implications for individuals in RLS who have failed all existing available lines, and suggests 309 

that in these instances the inclusion of lamivudine/emtricitabine and a boosted PI may be the best 310 

option in terms of composing a salvage regimen.  However, the likely effect of the presence of a 311 

particular mutation on annual CD4 cell decline is likely to be relatively small and complex to predict 312 

due to the presence of epistatic interactions and potentially confounding effects which are hard to 313 

measure, such as residual drug action and adherence. Further research is needed to evaluate the 314 

clinical benefits of specific treatment strategies that aim to preserve particular resistance patterns 315 

among individuals for whom a potent ART regimen cannot be prescribed, as well as to elucidate the 316 

mechanisms through which any beneficial effect is mediated. Until then, efforts should focus on 317 
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ensuring that those who experience VF have access to individualised care and a broad range of 318 

antiretroviral drugs, and, where possible, novel ART drugs through compassionate early access 319 

programs to allow the construction of fully suppressive regimens.   320 
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