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Abstract: We propose a modified DBP algorithm accounting for PMD. The accumulated PMD at

the receiver is factorized into several PMD sections, and inserted into the DBP routine to distributively

compensate for PMD, outperforming the conventional approach by 1.1 dB in SNR.

OCIS codes: 060.0060 Fiber optics and optical communications, 060.1660 Coherent communications.

1. Introduction

Digital signal processing (DSP) effectively mitigates linear fiber impairments, such as chromatic dispersion (CD) and

polarization-mode dispersion (PMD), whereas the intensity-dependent Kerr nonlinearity is suggested to be the ultimate

obstacle of the optical fiber capacity. Due to the nonlinear effects, there exists an optimal (effective) signal-to-noise

ratio (SNR) point at the compromise between additive noise and nonlinear interference where it is recommended

to operate. However, various nonlinear interference mitigation techniques are currently under investigation, among

which digital backpropagation (DBP) has proved to be promising [1]. DBP compensates for the deterministic fiber

nonlinear impairments by solving the nonlinear propagation equation using the split-step Fourier (SSF) method and

backpropagating the received optical field with inverted channel parameters. It is believed that the deterministic non-

linear signal–signal interactions are completely removed using DBP and that the performance of a fiber-optical system

is limited by the uncompensated stochastic effects, such as amplified spontaneous emission noise, which leads to

signal–noise interactions, and PMD leading to polarization-dependent nonlinear interactions [2–4].

PMD introduces a frequency-dependent delay that accumulates as a random-walk-like process along the fiber length

and it is usually compensated for at the receiver after DBP. When applying DBP, the entire reverse propagation is

performed with the accumulated PMD over the entire link; therefore the nonlinear compensation is mismatched and

its accuracy degrades with the backpropagated distance. In order to avoid this effect, PMD should be compensated for

as it naturally occurs, i.e., in a distributed fashion along the link, rather than doing it at once after DBP. It was shown

numerically that compensating for PMD on a per span-basis decreases its impact on DBP significantly [5]. However,

this approach requires a priori PMD knowledge for every span, which is challenging to realize.

Recently, a modified DBP algorithm that takes into account PMD was proposed in [6], where an appropriate amount

of differential group delay (DGD) at the link principal states of polarization (PSP) is introduced after each span, such

that the accumulation of DGD in the forward propagation is reversed. In [7], we recently proposed a modified DBP

method that reverses the PMD effects in the backward propagation by passing the reverse propagated signal through

PMD sections. Unlike [6] where the DGD is subtracted along the same PSP every time in the backward propagation,

in [7] the PSPs of the backward PMD sections are different and are aligned using an optimization algorithm such

that the Jones matrix modeling the total backward PMD equals the inverse of the Jones matrix modeling the PMD

occurring in the forward propagation. However, low-complexity DBP implementations (one step per span or less) are

marginally affected by polarization effects, since the nonlinear signal–signal interactions are not entirely removed and

dominate the achievable SNR [8].

In this paper, a DBP algorithm accounting for PMD is proposed where the PMD sections are computed analytically

using a first-order linearization approach, yielding in better performance at lower complexity.

2. Proposed Algorithm

The schematic diagram of the proposed algorithm is shown in Fig. 1. As can be seen, the DBP algorithm is connected

through a feedback loop with the channel equalizer, such as the constant/multiple modulus algorithm (CMA/MMA),

compensating for the PMD. The equalizer estimates the inverse of the accumulated PMD over the link, which can

be modeled by a frequency-dependent Jones matrix J( f ). The matrix J( f ) is fed back to the DBP algorithm, which

divides J( f ) into several sections that are spread evenly in the DBP routine. These sections are calculated by first

approximating the matrix J( f ) to its first order at f0 as J( f ) ≈ J( f0) + ( f − f0)J
′( f0), where (·)′ denotes the first
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Fig. 1. Schematic of the proposed DBP method, where NDBP is the number of

steps used by the DBP algorithm over the entire link and the equalizer is a con-

ventional channel equalizer such as the CMA or MMA. For brevity, the blocks

modeling the amplifiers and attenuation are not shown.
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Fig. 2. An example of the evolution of the DGD at

different frequencies versus distance in the forward

and backward propagation. The PMD parameter is

0.1 ps/
√

km and NPMD = 10.

derivative with respect to frequency. Thereafter, based on the approximation I +A ≈ exp(A) for A ∈ C
2, J( f ) can be

expressed as J( f )≈ J( f0)Js( f )NPMD , where Js( f ) is defined in (1) and (·)−1 denotes the inverse operator.

Js( f ) = exp

(

( f − f0)J
−1( f0)J

′( f0)

NPMD

)

(1) Jc( f ) = J( f )
(

J( f0)Js( f )NPMD

)−1

(2)

The operator Js( f ) is nested in the DBP procedure and applied NPMD times to distributively compensate for PMD in

the reverse propagation, whereas J( f0) is applied only once after DBP. The involved approximations in deriving Js( f )
hold tightly around f0, which is chosen to be in the middle of the signal bandwidth, but diverge as f deviates from

f0. To correct for these approximations, a correction matrix Jc( f ) defined in (2) is applied after DBP and J( f0), such

that J( f ) = Jc( f )J( f0)Js( f )NPMD . In [7], the PMD operators used in the backward propagation are calculated using an

optimization algorithm, which is more demanding than calculating (1) and (2).

Fig. 1 also illustrates the internal structure of the proposed DBP method. The conventional DBP algorithm is con-

fined in the dark gray box, whereas the two extra operators Js( f ), Jc( f )J( f0) are added to account for PMD. Initially,

the DBP algorithm operates as in the conventional approach, without compensation for PMD, and J( f ) is estimated

by the equalizer and fed back to DBP, after which PMD will be compensated for in the DBP routine. Since PMD is a

time-varying stochastic process, the residual PMD after DBP due to temporal variations is mitigated by the equalizer

and J( f ) has to be periodically updated to account for this residue.

Fig. 2 illustrates an example of the evolution of the accumulated DGD in the forward propagation and in the back-

ward propagation applying (1) and (2) to compensate for PMD. As can be seen, different frequency components

accumulate different amounts of DGD in the forward propagation in a random-walk-like fashion. In the backward

propagation, the Js( f ) operator is applied at every multiple of 100 km starting from distance 1000 km, whereas

Jc( f )J( f0) is applied last, at distance 0 km. The DGD at f0, where the first order approximation is performed, de-

creases after every Js( f ) operation with a constant step equal to 1/NPMD of the total DGD at 1000 km. On the other

hand, due to the approximations involved in deriving Js( f ), the DGDs at the other two frequencies do not decrease

to 0. Since the approximations are tighter around f0, the DGD at f0 + 25 GHz has a lower residual DGD at 0 km

compared to the one at f0 + 50 GHz. This residual DGD is corrected by applying Jc( f ) at 0 km. This operation has

no impact on the DGD at f0, since there is no approximation in this case and the accumulated DGD is successfully

removed already at 100 km.

3. Simulation Setup

We study through numerical simulations a point-to-point transmission link consisting of an ideal transmitter and coher-

ent receiver, and 10 spans of 100 km standard single-mode fiber with one erbium-doped fiber amplifier per span com-

pensating for the exact span loss and having a noise figure of 4.5 dB. The transmitted signal consists of a polarization-

multiplexed 16-ary quadrature amplitude modulated channel at 50 Gbaud shaped using a root-raised cosine (RRC)

pulse with roll-off factor 0.01. The signal propagation was simulated by solving the Manakov-PMD equation [9] using

the SSF approach with steps of 0.1 km. PMD was emulated at every SSF step consisting of a polarization scrambler,

which uniformly [10] scatters the state of polarization, and a retardation plate. The DGD introduced by each retarda-

tion plate was Gaussian distributed with mean ∆τp and standard deviation ∆τp/5 [11]. In order to capture the stochastic

nature of PMD, 120 fiber realizations were simulated for each set of parameters. We consider two receiver DSP setups:

i) conventional DBP followed by a linear PMD equalizer, and ii) modified DBP described in the previous section. DBP

is performed with the same number of SSF steps as in the forward propagation and is followed by an ideal matched

RRC filter applied to the signal, after which the SNR is estimated by comparing the transmitted and received symbols.

4. Results and Discussion

Fig. 3a shows the achieved performance obtained for a PMD parameter of 0.1 ps/
√

km, resulting in 3.16 ps average

DGD. The maximum SNR obtained in this setup compensating only for CD and PMD is 18.5 dB, not shown in the
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Fig. 3. (a) Average SNR versus input power. The shaded areas represent the standard deviation. (b) Histogram of the SNRs obtained by DBP

and the proposed modification. The vertical thin bars represent the mean values. (c) Average optimum SNR and SNR gain versus the fiber

PMD parameter obtained at the optimum input power for each scenario.

figure for conciseness. As can be seen, the performance of conventional DBP degrades in the presence of PMD by

∼ 3 dB and the modified DBP scheme improves the SNR by 1.1 dB compared to the conventional approach. In [7], a

gain of only 0.7 was obtained in the same simulation setup. However, a more comprehensive study including [6, 7] is

required to investigate which of three methods offers the best performance for various simulation setups and channel

conditions. In the same figure, we compare the performance achieved by an ideal equalizer with results based on the

blind MMA with 31 taps. As can seen, the MMA induces a penalty of ∼ 0.1 dB, which is approximately constant over

the entire range of input power and is the same for both DBP schemes.

Fig. 3b illustrates the histogram of the achieved SNRs with the two DBP schemes at the optimum input power of 10

and 11 dBm, respectively, for different PMD realizations with a PMD parameter of 0.1 ps/
√

km. As can be seen, the

SNR range of the proposed scheme is narrower and the worst/best case is 2.5/0.5 dB better than with the conventional

DBP, thus improving the required SNR margin.

Fig. 3c shows the average performance of the two schemes as a function of the PMD parameter at the optimal input

power for each case. As the PMD parameter increases, the achieved SNR by both schemes degrades significantly from

27.6 dB down to 19.6 dB when the PMD coefficient is 1.5 ps/
√

km. However, the proposed DBP method provides

gains greater than 0.8 dB over the range of 0.04− 0.4 ps/
√

km PMD coefficient, which covers most of the modern

optical fibers. The peak gain of 1.2 dB is achieved for 0.25 ps/
√

km, after which the gain declines and becomes 0.1

dB at 1.5ps/
√

km. At low PMD parameters, PMD has a smaller impact on DBP, hence the small gains obtained by the

proposed algorithm, whereas at high PMD parameters, it is likely that the gain deteriorates due to the approximations

used to compute Js( f ), which become less accurate.

5. Conclusions

We presented a simple modification of the DBP algorithm to blindly reverse the PMD effects in the backward prop-

agation. The algorithm has been proved to work with PMD information obtained from the blind MMA equalizer and

provides SNR gains of 1.1 dB for a 1000 km link with 0.1 ps/
√

km PMD parameter.
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